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Abstract. We introduce a framework for approximate dynamic programming that we
apply to discrete-time chains on Zd+ with countable action sets. The framework is grounded
in the approximation of the (controlled) chain’s generator by that of another Markov
process. In simple terms, our approach stipulates applying a second-order Taylor ex-
pansion to the value function, replacing the Bellman equation with one in continuous space
and time in which the transition matrix is reduced to its first and second moments. In some
cases, the resulting equation can be interpreted as a Hamilton–Jacobi–Bellman equation for
a Brownian control problem. When tractable, the “Taylored” equation serves as a useful
modeling tool. More generally, it is a starting point for approximation algorithms. We
develop bounds on the optimality gap—the suboptimality introduced by using the control
produced by the Taylored equation. These bounds can be viewed as a conceptual un-
derpinning, analytical rather than relying on weak convergence arguments, for the good
performance of controls derived from Brownian approximations. We prove that under
suitable conditions and for suitably “large” initial states, (1) the optimality gap is smaller
than a 1 – α fraction of the optimal value, with which α ∈ (0, 1) is the discount factor, and
(2) the gap can be further expressed as the infinite-horizon discounted value with a “lower-
order” per-period reward. Computationally, our framework leads to an “aggregation”
approach with performance guarantees. Although the guarantees are grounded in partial
differential equation theory, the practical use of this approach requires no knowledge of
that theory.
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1. Introduction
Dynamic programming is the primary tool for solving
optimization problems in which decisions are subject
to dynamic changes in the system state. It is used in the
study and practice of a variety of applications.

Deriving structural insights is typically a challenge,
and computationally, the number of calculations grows
exponentially with the size of the state space (the in-
famous “curse of dimensionality”). As in other classes
of optimization problems—combinatorial, stochastic,
and so forth—approximations are often the only way
to gain modeling and computational tractability for
large problems. The computational challenge has mo-
tivated the development of approximate dynamic pro-
gramming methods (see, e.g., the books by Powell
(2007) and Bertsekas (2007)). As a modeling tool,
Brownian approximations have made inroads across
multiple disciplines, notably in economics, operations
management, and electrical engineering. They often
capture structural relationships that are inaccessible in

the original, “too” detailed dynamic programming
problem. Yet, for a variety of reasons, these have not
been widely used as a way to reduce computational
complexity.
What we add is an approximation to dynamic

programs that is inspired by perturbation techniques
that were recently developed for the approximation
of stationary queues by “Brownian queues” (see
Gurvich (2014), Braverman and Dai (2017), Huang
and Gurvich (2018), and the additional discussion as
follows). The seeds of the idea for extending these
methods from performance analysis to optimal con-
trol appear in Ata and Gurvich (2012) and Huang and
Gurvich (2018). This paper seeks to expand those ideas—
applied to queues in heavy traffic—into an accessible
and generalizable framework. The initial step in our
approach is intuitively straightforward: we formally
replace the value function in the optimality (a.k.a.
Bellman) equation with its second-order Taylor ex-
pansion to obtain an equation considered over a
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continuous state space. As an example, consider a
discrete time and space Markov chain on Z collecting
a reward r(x) when visiting state x and making tran-
sitions following the stochastic matrix P ≡ Px,y. Fixing
α ∈ (0, 1), the infinite-horizon discounted reward

V(x) � Ex
∑∞
t�0

αtr(Xt)
[ ]

, x ∈ Z,

satisfies the functional equation

V(x) � r(x) + α
∑
y

Px,yV(y), x ∈ Z,

which can be rewritten as

0 � r(x) + α
∑
y

Px,y(V(y) − V(x)) − (1 − α)V(x), x ∈ Z.

Applying (formally) a second-order Taylor expan-
sion V(y) ≈V(x) +V′(x)(y− x) + 1

2V
′′(x)(y− x)2, we ob-

tain the differential equation

0 � r(x) + αμ(x)V′(x) + α
1
2
σ2(x)V′′(x) − (1 − α)V(x),

x ∈ R,

where μ(x) :�Ex[X1 − x] � ∑
y Px,y(y − x) and σ2(x) :�

Ex[(X1 − x)2] � ∑
y Px,y(y − x)2.

When it exists, the solution V̂ to this Taylored equa-
tion can be interpreted as corresponding to the infinite-
horizon discounted reward of a diffusion process with
driftαμ(x), diffusion coefficientασ2(x), and exponential
discounting e−(1−α)t. Such an interpretation, although
conceptually useful, is not mathematically necessary.
Second-order Tayloring leads naturally to bounds in
terms of the third derivative of V̂:

V̂(x) − V(x)
⃒⃒⃒ ⃒⃒⃒

≤ j̄3Ex
∑∞
t�0

αt D3V̂(Xt)
⃒⃒⃒ ⃒⃒⃒∗

Xt±j̄

[ ]
,

where |D3V̂(Xt)|∗Xt±j̄ is the maximum of the third de-
rivative in a neighborhood of radius j̄ around Xt, and
j̄ is the maximal jump of the Markov chain (see
Theorem 1 and Remark 1).

This analysis of performance evaluation suggests an
approach for optimization. Applying the second-order
Taylor expansion to the Bellman equation

V(x) � max
u∈8(x)

r(x,u) + α
∑
y

Pu
x,yV(y)

{ }
,

we obtain a Hamilton–Jacobi–Bellman (HJB) equa-
tion (see Section 2). We refer to this equation as a
“Taylored” control problem (TCP) to underscore its
origins in Tayloring. Formulating the TCP is the first
step. The next steps are (1) to translate the Tayloring-
induced error into bounds on optimality gaps and

(2) to build on Tayloring to propose solution algorithms.
In this paper, we focus mostly on step 1. For step 2, we
provide a strong starting point: a conceptual framework
(TCP equivalence) and initial implications.
For the development of optimality-gap bounds, we

draw on the theory of partial differential equations
(PDEs) to prove a vanishing-discount and an order-
optimality result, both under suitable “smoothness”
conditions on the primitives μ, σ2, and r. For suitably
“large” initial conditions, we have the following: (a) as
α ↑ 1, the optimality gap shrinks in relative terms pro-
portionally to (1 − α), and (b) the gap can be bounded
by the infinite-horizon discounted reward with an
immediate-reward function that is of a lower poly-
nomial order. It should not come as a surprise that our
approach “inherits” some of the challenges and sub-
tleties of PDE theory. This is reflected in the bounds in
Theorem 2, which depend on the amount of time that
the chain spends in “corners” of the state space.
From a computational perspective, because Tay-

loring collapses the transition matrices into μ and σ,
multiple chains can induce the same TCP; they are
TCP-equivalent.We can rely on the TCP to “translate”
the original chain to another, more tractable one. The
TCP “couples” the two chains and supplies bounds on
the approximation error (see Equation (11)).
What we are about to introduce in this paper has

intimate connections to and creates a bridge between
two somewhat disparate streams of the literature.

Asymptotic Optimality in Queues and Generator
Comparisons. Asymptotic optimality arguments in
queueing theory typically rely on the machinery of
weak convergence to produce a so-called diffusion
approximation. One starts from the renewal processes
(arrival and service completions), which are the building
blocks, and applies central limit theorem scaling to the
state process and“embeds” the queueing system being
studied within a sequence of such. Heavy traffic is
imposed by assuming suitable convergence of the
arrival rate to infinity or/and the utilization to 100%.
One then interprets, in the context of the original sys-
tem, the policy arising from the “limit” diffusion-control
problem. Near optimality is shown by means of con-
vergence arguments along the sequence of queues in
heavy traffic.
Our approach is motivated by recent developments

in queueing theory pertaining to Stein’s method and
offers (in applicable cases) a simple alternative with
explicit bounds.1 In performance analysis (i.e., for a
given control), Stein’s method allows us to bound
directly—without resorting to convergence arguments—
the (impressive) “proximity” between the stationary
distribution of a queueing system and its Brownian
approximation by comparing their transition proba-
bilities (or,more precisely, their generators)—that of the
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Markov chain and that of a suitable diffusion process
(see Gurvich 2014, Braverman and Dai 2017). Al-
though the use of the language of generators is
mathematically natural, it is simpler and conceptu-
ally useful to view this as Taylor expansion applied
to equations that characterize stationary performance
and/or optimality conditions.

Tayloring does not go through diffusion approxima-
tions. It applies to theMarkov chain as given; no space
scaling is used. It is also applied at the level of the
value function rather than in the level of the stochastic
process. It is these properties that make it relevant in
settings in which there is no natural notion of scaling.
The absence of scaling simplifies the very construction
of the TCP and, in turn, the derivation of optimality-gap
bounds (see Section 2.3).

Nevertheless, specializing our results to queueing
examples and relating the discount factor to the uti-
lization does shed some light on the nature of our
results (see Section 5).

Transitioning from performance analysis, as con-
sidered in earlier papers, to controlled chains, as
we do here, is like considering a family of generators
(“indexed” by the control) instead of a single gener-
ator. One can interpret the Taylored equation as the
HJB equation for a suitable Brownian control prob-
lem. The relation we seek to uncover is based not on
process-limit theory but rather on first principles,
namely, the Tayloring of the value function.

Approximate Dynamic Programming (ADP). Ap-
proximate value or policy iteration typically starts
with the choice of a function family (a base) from
which to construct a candidate value function. The
queueing-approximations literature teaches us that as
a heuristic, the value function of a suitable Brownian
control problem is a good candidate for a base function;
such an approach is taken, for example, in Chen et al.
(2009). Our analysis supports this approach: we es-
tablish that the TCP solution, even taken as the sole
item in the base, yields an approximation whose
performance is related to properties of a closely re-
lated differential equation.

Algorithmically, our Taylored approximate policy it-
eration (TAPI) algorithm is a modification of policy
iteration in which the policy evaluation portion of itera-
tion k requires solving a linear PDE to get an ap-
proximate value function V(k), which is subsequently
plugged into a policy improvement step (an optimi-
zation problem that does not require the solution of
a PDE) to produce u(k+1) and so on. The linear PDE
can be solved via finite difference (FD) or other PDE
discretization-based solution methods. The coarser
the discrete grid, the more efficient is the computation.

An alternative to FD in the implementation of TAPI
is to build on the Taylored equation as an intermediate

step—a translator—between Bellman equations cor-
responding to two TCP-equivalent chains, that is, that
induce the same TCP. Given a controlled chain, one
possible construction of a TCP-equivalent one is in-
spired by the transformation put forth in Kushner and
Dupuis (2013) and Dupuis and James (1998). Their
construction relates the differential equation to a control
problem for a Markov chain, henceforth referred to as
the “K-D chain”—one with a smaller state space and a
simpler transition structure. In contrast with the in-
finitesimal view inherent to the K-D approach (inwhich
one takes the discretization to zero to approximate
continuous state space), we use it with coarse dis-
cretization so that the new Bellman equation can be
viewed as an aggregation method in which the state
space is reduced to a coarser grid of “super states” (for
existing aggregation ideas see, e.g., Bertsekas (2007,
chapter 6)). Concurrent work (Zhang and Gurvich
2018) builds on the observed connection to aggrega-
tion to develop scalable algorithms based on Tayloring
(see Remark 8).
Our Tayloring approach to approximate dynamic

programming stands on strongmathematical footing.
The gap introduced by using a TCP-equivalent chain
can be bounded via the (suitably integrated) third
derivative of the PDE solution. From a computational
viewpoint, although the algorithm that we propose
is not entirely immune to the curse of dimensionality,
it pushes computational barriers. Ultimately, we
believe that the analysis put forth here can enhance
existing ADP algorithms by facilitating a rigorous
(rather than ad hoc) choice of “design parameters”
(Remark 8 hints at the plausibility of this pursuit).
This paper introduces the framework and provides

analytical support and initial numerical evidence.
Extensions to continuous chains and other criteria
(e.g., long-run average) as well as a full account of
algorithms and computational benefits are left for
future work (see Section 6 and Remark 8).

1.1. Notation
We use the standard notation Rd+ for the positive
orthant in Rd and Rd++ for its interior—the space of
strictly positive d-dimensional vectors. We use d(x, y)
to denote the Euclidean distance between twopoints x
and y and d(x,Ω) � infy∈Ω d(x, y) to denote the distance
from x to a set Ω ⊆ Rd+. For a set Ω ⊆ Rd+, ∂Ω denotes
its boundary. In particular, ∂Rd+ � Rd+\Rd++ � ⋃d

i�1 @i,
where @i :� {x ≥ 0 : xi � 0}. The standard Euclidean
norm is denoted by | · |, and for x ∈ Rd+ and ε > 0, we
denote by x ± ε the set {y ∈ Rd+ : |y − x| ≤ ε}. For a
function f : Rd+ → R and a subset Ω ⊆ Rd+, we let
| f |∗Ω � supy∈Ω | f (y)| and for β ∈ (0, 1],

f
[ ]∗

β,Ω
� sup

y,z∈Ω

f y
( ) − f z( )⃒⃒ ⃒⃒
y − z
⃒⃒ ⃒⃒

β
.
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If f is twice continuously differentiable, we write
fi(x) � ∂

∂xi
f (x) and fij(x) � ∂2

∂xi∂xj
f (x). We useDf (x) for the

gradient vector (whose elements are fi(x)) and D2f (x)
for the Hessian matrix (whose elements are fij(x)). We
use the standard notation#2(Ω) for the family of twice
continuously differentiable functions over Ω, and
#2,β(Ω) is the subset of #2(Ω) whose members have a
second derivative that isHölder continuous onΩwith
exponent β; β � 1 corresponds to Lipschitz continuity
on Ω. In this paper, when we speak of a solution to a
differential equation, wemean that in the classical sense.

For j ∈ {1, 2, . . . , }, we use [j] to denote the set of
integers {1, . . . , j}. Throughout, to simplify notation,
we use γ, Γ to denote Hardy-style constants that may
change from one line to the next and that do not
depend on the discount factor α or on the state x.

1.2. Outline of the Paper
Section 2 comprises the mathematical portion of this
paper. In it, we introduce the Taylored control equa-
tion and state the key results in Theorems 1 and 2 and
Corollaries 1 and 2. Sections 3.1 and 4 discuss com-
putation and include numerical experiments. Section 5
briefly explores the connection to the heavy-traffic
approximations of queues. All the proofs can be found
in the e-companion.

2. Tayloring the Bellman Equation
Consider an infinite-horizon discounted Markov deci-
sion process (MDP) on Zd+:

Vα
∗ (x) :� max

U
EU
x

∑∞
t�0

αtr Xt,U Xt( )( )
[ ]

, x ∈ Zd
+,

where r(x,u) is the reward collected at state x under a
control u. A stationary policy U � {U(x), x ∈ Zd+} has
the property that U(x) ∈ 8(x), where 8(x) is the set of
actions allowed in state x. We assume that 8(x) is
discrete (possibly countably infinite), and it is an in-
tersection of a polyhedron (that can depend on x) and
a discrete set D that does not depend on x; that is, for
some da,8(x) � {u ∈ Rda : Au ≤ b(x)} ∩ D, where b(x) is
defined for all x ∈ Rd+. We let U � ×x∈Zd+8(x).

Given x ∈ Zd+ and u ∈ 8(x), we write ru(x) � r(x,u)
and let Pu

x,y be the probability of transitioning from x
to y under an action u ∈ 8(x). We write Ex

U[·] for the
expectation with respect to the law of the U-controlled
Markov chain (Xt, t ≥ 0)with the initial state x; Ex

u[·] is
the expectation with respect to the law Pu

x,·.
Under standard conditions (e.g., Bertsekas 2007,

section 1.4), Vα∗ (x) solves the Bellman equation

V(x) � max
u∈8(x)

ru(x) + αPuV(x){ }
� max

u∈8(x)
ru(x) + αEu

x V X1( )[ ]{ }
, (1)

where we use the operator notation PuV(x) �∑
y Pu

x,yV(y) �Eu
x[V(X1)]. Subtracting V(x) on both

sides of the Bellman equation, we have

0 � max
u∈8(x)

ru(x) + α PuV(x) − V(x)( ) − (1 − α)V(x){ },
x ∈ Zd

+. (2)

Pretending that V is extendable to Rd+ and twice-
continuously differentiable there, we have

Pu − I( )V( )(x) � ∑
y

Pu
x,yV y

( ) − V(x)

≈ ∑
y

Pu
x,y

∑
i
Vi(x) yi − xi

( )(

+ 1
2

∑
i,j

Vij(x) yi − xi
( )

yj − xj
( ))

.

Defining

μu
( )

i(x) :�Ex
u (X1)i − xi
[ ]

� ∑
y

Pu
x,y yi − xi
( )

, i ∈ [d], and (3)

σ2u
( )

ij(x) :�Ex
u X1( )i − xi
( )

X1( )j − xj
( )[ ]

� ∑
y

Pu
x,y yi − xi
( )

yj − xj
( )

, i, j ∈ [d], (4)

for all x ∈ Zd+ and u ∈ 8(x) (and extending these to Rd+;
see the discussion after Assumption 1), we arrive at

ru(x) + α PuV(x) − V(x)( ) − (1 − α)V(x)
≈ ru(x) + α+uV(x) − (1 − α)V(x), x ∈ Rd

+,
(2nd order Taylor)

where

+uV(x) � ∑
i

μu
( )

i(x)Vi(x) + 1
2

∑
i,j

σ2u
( )

ij(x)Vij(x)

� μu(x)′DV(x) + 1
2
trace σ2u(x)′D2V(x)( )

.

This suggests, heuristically at this stage, replacing (1)
with

0 � max
u∈8(x)

ru(x) + α+uV(x) − (1 − α)V(x){ }, x ∈ Rd
+. (5)

A solution to (5) is a pair (Ûα∗ (x), V̂α∗ (x)), where Ûα∗ (x) is
the maximizer. The restriction of the maximizer Ûα∗ (x)
to Zd+ gives a feasible control for the original chain,
allowing us to refer to the Ûα∗ -controlled chain.
Implicit in this derivation is an extension of ru, μu,

and σ2u from Zd+ to Rd+. We require that the primitives
have natural extensions from {(x, u) : x ∈ Zd+,u ∈ 8(x)}
to {(x, u) : x ∈ Zd+,u ∈ D}.
Assumption 1 (Primitives). There exist functions

fr(x,u), fμ(x,u), fσ(x,u), x ∈ Zd
+,u ∈ D (6)

Braverman, Gurvich, and Huang: On the Taylor Expansion of Value Functions
634 Operations Research, 2020, vol. 68, no. 2, pp. 631–654, © 2020 INFORMS



such that ru, μu, and σ2u are the restrictions of these
functions to x ∈ Zd+ and u ∈ 8(x) and satisfy the following
properties: (a) fr is locally Lipschitz in Zd+ (uniformly in u),
and (b) the functions fμ and fσ are globally bounded and
Lipschitz uniformly in u; that is, there exists L > 0 (not
depending on u) such that

fμ(·,u)
⃒⃒ ⃒⃒∗

Zd+
+ fμ(·,u)[ ]∗

1,Zd+
, fσ(·,u)
⃒⃒ ⃒⃒∗

Zd+
+ fσ(·,u)[ ]∗

1,Zd+
≤ L.

Finally, (c) fσ(x,u) (and, in turn, its restriction σ2u(x))
satisfies the ellipticity condition: there exists λ > 0 (not
depending on u) such that

λ−1 ξ| |2 ≥ ∑
i,j

ξiξj fσ
( )

ij(x,u) ≥ λ ξ| |2,

for all ξ ∈ Rd, x ∈ Zd
+, u ∈ D. (elliptic)

Under the Lipschitz requirement in Assumption 1,
the McShane–Whitney extension theorem (McShane
1934) constructs an explicit extension to Rd+ that is
itself Lipschitz continuous with the same constant L
(or locally Lipschitz in the case of fr). It is sometimes
convenient to leave a discontinuity at the boundary
(see the oblique-derivative (OD) boundary condition
as follows and Example 1). Importantly, the com-
putational algorithm in Sections 3.1 and 4 relies on
the extension to Rd+ only (if at all) on the boundary.
Continuity properties of these extensions do matter
for our analytical results.Henceforth, fr(·,u), fμ(·,u), and
fσ(·,u) are the extensions to Rd+.

Finally, because every discrete state space can be
embedded in Z+, it is fair to ask what the require-
ments that we impose on the original problem are. As
in Assumption 1, these requirements are stated as
constraints on μ and σ2. Our optimality-gap bounds
require, for example, that the optimally controlled
chain has bounded jumps (see Theorems 1 and 2). The
bound’s magnitude, in turn, depends on the maximal
jump size as it depends on the Lipschitz constant L in
Assumption 1. The embedding of a two-dimensional
chain into one dimension might induce μu and/or a
maximal jump size that are significantly larger than
in the original two-dimensional model.

Our approach is thus relevant to settings in which
(1) there is a natural meaningful metric on the state
space so that μ can be interpreted as the average step
size starting at x, (2) one can speak of large and small
initial states, and (3) boundaries have physical mean-
ing. Thus, for example, inventory and queuing prob-
lems are natural candidates for this approach, but a
Markov chain in which the states are colors or letters
might not be.

2.1. Boundary Conditions
Equation (5), althoughwell defined, poses a challenge
insofar as we want to apply existing PDE theory

as collected, for example, in Gilbarg and Trudinger
(2001) and Lieberman (2013). The theory covers
mostly first-order conditions on the boundary, that is,
those in which eitherDV orV appear but notD2V. We
consider two such conditions: (1) first-order Taylor-
ing (FOT) and (2) an oblique-derivative condition that
supports second-order Tayloring on the boundary.

FOT Boundary. Applying first-order Tayloring in
boundary states, that is, replacing V(y) − V(x) ←
DV(x)′(y − x) for x ∈ ∂Rd+, leads to

0 � max
u∈8(x)

ru(x) + α+uV(x) − (1− α)V(x){ }, x ∈ Rd
++,

0 � max
u∈8(x)

ru(x) + αμu(x)′DV(x) − (1− α)V(x){ }
, x ∈ ∂Rd

+.

We say that the FOT boundary condition is control
independent if μu(x) ≡ μ(x) for all x ∈ ∂Rd+. In that case,
the maximizer on the boundary Û∗(x), x ∈ ∂Rd+ does
not depend on the value of V̂∗ and DV̂∗ there.

OD Boundary. Under certain assumptions on the
behavior of μ near the boundary, certain first-order
boundary conditions imply that (5) also holds (as a
second-order equation) on the boundary. Informally,
suppose that there exists a vector η(x) such that for y
close to a boundary point x ∈ ∂Rd+ and all u ∈ D,

fμ y, u
( ) − fμ(x,u) ∝∼ η(x),

that is, that the boundary change in the drift is approx-
imately proportional to η ( fμ(y,u) − fμ(x,u) ≈ ϕ(u)η(x)
for some real-valued function ϕ(u)). Then (Û∗, V̂∗)
with V̂∗ ∈ #2(Rd+) that solves the OD-boundary TCP

0� max
u∈8(x)

ru(x) + α+uV(x) − (1 − α)V(x){ }, x ∈ Rd
++, (7)

0� η(x)′DV(x), x ∈ ∂Rd
+, (8)

also solves the second-order TCP (5). See Lemma EC.1
in the e-companion for the formal statement.
These mapping alternatives emphasize, in partic-

ular, the flexibility there is in constructing the TCP.
Because the Markov chain and its discrete state space
are fixed, we have some freedom in designing ex-
tensions near the boundary and, in turn, determin-
ing the boundary conditions. In all our examples, the
reader will notice, OD boundary conditions arise
naturally.
An advantage of the TCP with OD boundary con-

dition is its interpretability as the HJB of a control
problem for a reflected diffusion (see, e.g., Borkar and
Budhiraja 2004). The FOT boundary, in contrast, im-
poses fewer structural requirements. Although queu-
ing settings provide an intuitive way to identify η
(see Example 2 and Section 4.3), FOT is more direct
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and requires less context-specific expertise. It does
come, however, at the cost of weaker bounds (see
Remark 3).

Example 1 (A Discrete-Time Single-Server Queue). Con-
sider a controlled randomwalk on Z+, where, for x ≥ 1,
Pu
x,x−1 � u,Pu

x,x+1 � 1 − u and Pu
0,1 ≡ 1. We take 8(x) �

D � [0, 1] ∩Q (Q denotes the rational numbers) for
all x ∈ Z+. Then μu(x) � 1 − 2u �: fμ(x,u) for x ≥ 1 and
fμ(0,u) � 1. Also, σ2u(x) ≡ 1 �: fσ(x, u). We use a reward
function that penalizes for large states (holding cost)
and for speedy service (effort cost) ru(x) � −x4 − cs

1−u,
where cs > 0.

We use the discontinuous extension for fμ(x, u) that
has fμ(x,u) � 1 − 2u for all x > 0 and fμ(0,u) � 1 so that
fμ(0+, u) − fμ(0, u) � −2u∝∼ − 1 and the OD boundary
condition is V′(0) � 0. This condition—familiar from
performance equations for reflected Brownian motion
(Harrison 2013, section 6.3)—finds a natural justifi-
cation in Lemma EC.1 in the e-companion: if a so-
lution (V̂α∗ , Û∗) to

0 � max
u∈8(x)

ru(x) + α(1 − 2u)V′(x) + α

2
V′′(x)

{
− (1 − α)V(x)

}
, x > 0,

0 � V′(0),
has Û∗ that is continuous at x � 0, then this solution
satisfies (5) at x � 0.

In this example, the FOT boundary condition re-
duces to the (control-independent) equation

0 � max
u∈D ru(0) + αV′(0) − (1 − α)V(0){ }

� −cs + αV′(0) − (1 − α)V(0).

2.1.1. State-Space Truncation and Boundary Conditions.
The discussion of boundary conditions is unnecessary
if the state space is Zd—as in the inventory example in
Section 4. But even in these cases, computation re-
quires truncating the state space, making boundary
conditions relevant.

We impose the truncation of Zd+ to a square SM �
{x ∈ Zd+ : maxi xi ≤ M}.2 The boundary conditions for
the TCP depend on the way in which we define the
transition probabilities on these artificial boundaries.
It is natural to define the transition probabilities for
x ∈ SM by

P̃u
x,y �

0, for y /∈ SM,
Pu
x,y∑

z∈SM Pu
x,z
, otherwise.

⎧⎪⎪⎨⎪⎪⎩
In the random walk of Example 1, this simply means
P̃u
M,M+1 � 0 and P̃u

M,M−1 � 1, which leads naturally to
the OD boundary condition V′(M) � 0.

2.2. The Initial Tayloring Bound
In what follows, for a fixed stationary policy U and a
function f : Zd+ → R, we write

Vα
U f
[ ](x) � E x

U
∑∞
t�0

αtf (Xt)
[ ]

.

We drop the argument f when the immediate reward
function is ru(x) and clear from the context. Thus, for
example, Vα

Û∗
(x) is the value under the policy Û∗

with the reward function ru(x).
Given a stationary policy U, we define jU to be the

smallest integer (allowing for infinity) such that for all
x, y ∈ Zd+ with |y − x| > jU, P

U(x)
x,y � 0. We say that the

chain has uniformly bounded jumps if

j̄ :� sup
U∈U

jU < ∞.

The controls Û∗ and U∗ are likely to depend on α, but
for notational convenience, we do not make this de-
pendence explicit. For the following result, recall that
Vα∗ (x) is the (exact) optimalvalue that solves theBellman
equation (1) and U∗ is the optimal control; Vα

U is the
value under a fixed (not necessarily optimal) control U.

Theorem 1 (Initial Bound with Second-Order Tayloring
at the Boundary). Fix α ∈ (0, 1) and suppose that there
exists a solution (Û∗, V̂∗) to (5)with V̂∗ ∈ #2,β(Rd+) for some
β ∈ (0, 1]. Suppose further that jÛ∗

, jU∗ < ∞ and that
|V̂∗(x)| ≤ Γ(1 + |x|m) for some m and Γ (that can depend on
α). Then, for x ∈ Zd+,

V̂∗(x) − Vα
∗ (x)

⃒⃒⃒ ⃒⃒⃒
∨ Vα

Û∗
(x) − Vα

∗ (x)
⃒⃒⃒ ⃒⃒⃒( )

≤ j
2+β
Û∗

∨ j
2+β
U∗ Ex̂

U∗ ∑∞
t�0

αt D2V̂∗
[ ]∗

β,Xt±jÛ∗

[ ](

+Ex
U∗ ∑∞

t�0
αt D2V̂∗
[ ]∗

β,Xt±jU∗

[ ])
. (9)

This first theorem states that using the control de-
rived from the TCP produces an optimality gap that is
bounded by a suitable “integrated” higher derivative
of the TCP solution. For the bound to take explicit
meaning, two things must be addressed: (1) the theo-
rem assumes the existence of a smooth solution and
leaves unexplored the dependence of the Hölder co-
efficient [D2V̂∗]∗β,Xt±jU∗

on the state x and the discount
factor α, and (2) the right-hand side of (9) depends on
the optimal control U∗, which is the very thing we
want to avoid computing. We address these issues in
Theorem 2 and its Corollaries 1 and 2. There we de-
velop explicit bounds that relate the right-hand side
directly to Vα∗ and establish, roughly speaking, that
|Vα

Û∗
(x) − Vα∗ (x)| � o(Vα∗ (x)).
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Remark 1 (Performance Approximation). We make the
obvious observation that Theorem 1 applies as well
to the performance analysis of a given control. Fixing
a control U is the same as taking control sets 8(x)
that contain the single action U(x). Equation (9) re-
duces to

V̂(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ j

2+β
U Ex

U
∑∞
t�0

αt D2V̂
[ ]∗

β,Xt±jU

[ ]
. (10)

In this case, the TCP is a linear PDE. □

Remark 2 (Unbounded Jumps). The bound can be easily
adjusted to unbounded jumps with suitable finite
moments. In this case, the right-hand side of (9) takes
the form

Ex̂
U∗

∑∞
t�0

αtEXt ΔXt

⃒⃒ ⃒⃒2+β D2V̂
[ ]∗

β,Xt±|ΔXt |

[ ][ ]

+ Ex
U∗

∑∞
t�0

αtEXt ΔXt

⃒⃒ ⃒⃒2+β D2V̂
[ ]∗

β,Xt±|ΔXt |

[ ][ ]
,

whereΔXt � Xt+1 − Xt (see the proof of Theorem 1). □

Remark 3 (FOT Boundary). With first-order Tayloring
on the boundary, (9) is replaced with

V̂∗(x) − Vα
∗ (x)

⃒⃒⃒ ⃒⃒⃒
∨ Vα

Û∗
(x) − Vα

∗ (x)
⃒⃒⃒ ⃒⃒⃒( )

≤ j2
Û∗

∨ j2U∗ Ex̂
U∗

∑∞
t�0

αt e V̂∗, jÛ∗

[ ]⃒⃒⃒ ⃒⃒⃒∗
β,Xt±jÛ∗

[ ](

+E x
U∗

∑∞
t�0

αt e V̂∗, jU∗

[ ]⃒⃒⃒ ⃒⃒⃒∗
β,Xt±jU∗

[ ])
,

where

|e f , z
[ ]|∗β,Ω � zβ D2f

[ ]∗
β,Ω

+∑
i
l{x ∈ @i}

∑
j ��i

| fij|∗Ω.

Relative to (9), the second derivative on the boundary
factors into the optimality gap. In addition, the Hölder
bounds for the second derivative are somewhat
weaker in the case of the FOT boundary condition
(compare Lemmas 1 (for OD boundary) and EC.2 in
the e-companion (for FOT boundary). □

2.2.1. Toward Computability: TCP-Equivalent Chains.
The primitives of the MDP are the reward function(s)
ru, the transitionmatrices Pu—fromwhichwe buildμu
and σ2u—and the discount factor α ∈ (0, 1). There are
multiple MDPs (or primitives) that induce the same
TCP. Specifically, consider an MDP for a controlled
chain X̃with the same state and action spaces. Let {P̃u}
be a family of transition matrices and α̃(x) ∈ (0, 1) be a

(possibly state-dependent) discount factor that jointly
satisfy the constraints∑

y
P̃u
x,y yi − xi
( ) � α 1 − α̃(x)( )

α̃(x)(1 − α) μu
( )

i(x),∑
y

P̃u
x,y yi − xi
( )

yj − xj
( ) � α 1 − α̃(x)( )

α̃(x)(1 − α) σ2u
( )

ij(x),

and take the reward function r̃u(x) � 1−α̃(x)
1−α ru(x).

These “tilde” primitives then induce the same TCP
as the original primitives. The two chains X and X̃ are
TCP-equivalent. Let Ũ∗ be the optimal policy for this
new optimal control problem (generating the opti-
mal value Ṽα∗ ). It then follows that

Vα
∗ (x) − Ṽα

∗ (x)
⃒⃒⃒ ⃒⃒⃒

≤ Γ Ex̂
U∗

∑∞
t�0

αt D2V̂∗
[ ]∗

β,Xt±jÛ∗

[ ](

+Ex
U∗

∑∞
t�0

αt D2V̂∗
[ ]∗

β,Xt±jU∗

[ ]

+Ex̂
U∗

∑∞
t�0

ᾱt D2V̂∗
[ ]∗

β,̃Xt±jÛ∗

[ ]

+Ex
Ũ∗

∑∞
t�0

ᾱt D2V̂∗
[ ]∗

β,̃Xt±j̃U∗

[ ])
, (11)

where jŨ∗
is themaximal jump of the chain X̃ under the

policy Ũ∗, ᾱ � supx∈Zd+
α̃(x), and Γ is an appropriate

constant that depends on jÛ∗ , jU∗ , jŨ∗ , and β.
Among all TCP-equivalent chains, it is reasonable

to look for one that introduces significant computa-
tional benefits. There are substantial degrees of
freedom in making this choice. The K-D chain that we
use for illustration in Section 3.1 has, for example, a
state space that is a strict subset of that of X. Within
so-called soft aggregation (see, e.g., Bertsekas 2019),
TCP-equivalence can support the choice of an algo-
rithm’s design parameters (see Remark 8).
This transition fromoneMarkov chain to a different

but TCP-equivalent one does not require solving any
continuous state-and-time control problem. The TCP
merely serves as the basis for optimality-gap guar-
antees. What we pursue next is making these guar-
antees more explicit.

2.3. Explicit Bounds
We open the pursuit of explicit bounds with a simple
example that serves to motivate and illustrate two
notions of near optimality that we generalize in this
section’s main results.

Example 2 (The Discrete Queue Revisited). In the setting
of Example 1, let us fix the control to U(x) ≡ 1/2 (see
Remark 6 (at the end of this section) and Example EC.1
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in the e-companion for the full control version). The
OD-boundary TCP is given by

0 � −x4 − cs
1 −U(x) + α 1 − 2U(x)( )V′(x) + α

1
2
V′′(x)

− (1 − α)V(x), x > 0,
0 � V′(0),

and admits the unique solution3

V̂U(x) � − x4

1 − α
− 6αx2

(1 − α)2 −
6α2

(1 − α)3 −
2cs
1 − α

, x ≥ 0,

(12)
so that

D2V̂U

[ ]∗
1,[0,x]

≤ D3V̂U

⃒⃒⃒ ⃒⃒⃒∗
[0,x]≤

24x
1 − α

, x ≥ 0.

Because the maximal jump is 1 (j̄ � 1), Theorem 1
(with β � 1) and Equation (10) imply that

V̂U(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ EU

x

∑∞
t�0

αt D3V̂U

⃒⃒⃒ ⃒⃒⃒∗
Xt±1

[ ]

≤ 24Eu
x

∑∞
t�0

αt Xt + 1
1 − α

[ ]
, x ∈ Z+,

where, recall,Vα
U(x) is the infinite-horizon discounted

reward with the immediate reward ru and under the
policy U. For all x ≥ 0, x

1−α ≤ (1 − α)x4 + 1
(1−α)2 so that

V̂U(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ 24EU

x

∑∞
t�0

αt Xt + 1
1 − α

[ ]

≤ EU
x

∑∞
t�0

αt (1 − α)X4
t +

1
(1 − α)2

( )[ ]
+ 1
(1 − α)2

≤ (1 − α) Vα
U(x)

⃒⃒ ⃒⃒ + 2
(1 − α)3 . (13)

We claim that |Vα
U(x)| ≥ γ

(1−α)4 for all x ≥ 1
1−α so that

V̂U(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ Γ(1 − α) Vα

U(x)
⃒⃒ ⃒⃒

, for all x ≥ 1
1 − α

(14)

(see Corollary 1 to Theorem 2 and its proof). Further-
more, because x

1−α ≤ x3 + 1
(1−α)32

for all x ≥ 0, we have

V̂U(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ 24Eu

x

∑∞
t�0

αt Xt + 1
1 − α

[ ]

≤ Eu
x

∑∞
t�0

αt X3
t +

1
(1 − α)32

( )[ ]
+ 1
(1 − α)2

≤ Vα
U f3
[ ](x) + 2

(1 − α)52 , (15)

where Vα
U[ f3](x) is the value under the control U with

the “lower-order” cost function f3(x) � x3 replacing
x4 + cs

1−u. We claim that Vα
U[ f3](x) ≥ 1

(1−α)5/2 for all x ≥
1

(1−α)5/8, leading to the order-optimality result

V̂U(x) − Vα
U(x)

⃒⃒⃒ ⃒⃒⃒
≤ ΓVα

U f3
[ ](x), for all x ≥ 1

(1 − α)5/8
(16)

(see Corollary 2). The arguments in this example are
not the tightest, but they illustrate the generalizable
arguments in Section 2.3.

Remark 4 (Impact of Initial State x and Discount Factor α).
Let us reconsider (14). First, it is evident that for small
values of α, for example, α � 1/2, this bound becomes
weak (see Section EC.1 in the e-companion). Further-
more, when the initial state x is small, the constant
portion of the bound, 2/(1 − α)3, dominates the bound
(especially if α is close to 1). It is only when the initial
state is sufficiently large—specifically larger than
1/(1 − α)—that the relative error is proved to be small
relative to the value function. This additive constant
term does not make a strong appearance in our nu-
merical control examples. The reason for this might be
that in the context of control, the optimal policyU∗ and
the TCP policy Ûα∗ are insensitive to constant shifts of the
value function.
The order-optimality bound in (16) is, in contrast,

also useful for small values of α. It is somewhat weak
if x is small because, in that case, Vα

U[f3] and Vα
U(x)

might be of the same order of magnitude. □

Some preliminary construction and definitions are
needed for the statement of our bounds.

Smoothing the State Space. PDEs do not, in general,
admit classical solutions in domains with corners (see
Dupuis and Ishii 1990). Fortunately, the discreteness
of the state space facilitates a smoothing of the do-
main without compromising the bounds. Consider a
two-dimensional controlled chain on the “square”
state space {x ∈ Z2+ : x1, x2 ≤ M} in Figure 1. We can
replace the point 0 with a point 0̃—through which we
can “pass” a smooth boundary while preserving the
transition probabilities and the reward function (see
Figure 1). This does not change the value functionVα∗ or
the optimal controlU∗ of the original chain. It changes
the extensions of ru(x) as well as the values (and ex-
tensions) of μu and σ2u, but notice that these change
only at states that connect to the new origin 0̃. Notice
how the discreteness of the state space facilitates this
smoothing by replacing the point 0 with the point 0̃
without changing the true value function. This may
not be feasible with continuous state space (see the
discussion in Section 6).

Braverman, Gurvich, and Huang: On the Taylor Expansion of Value Functions
638 Operations Research, 2020, vol. 68, no. 2, pp. 631–654, © 2020 INFORMS



The boundary of the truncated and smoothed state
space is illustrated for d � 2 on the right-hand side of
Figure 1. We refer to ΩM as the open subset of Rd+
defined by this boundary, andΩM is its closure. This is
the domain on which we consider the PDE (see Re-
mark 9 for a concrete example of domain smoothing).

Corners. We distinguish between corners, such as
the point 0̃, and one-dimensional boundaries. Recall
that @i � {x ∈ Rd+ : xi � 0}. Let us also define @out

i �
{x ∈ Rd+ : xi � M}. Given a strictly positive function
�(x), define the set

Ω�(·)
− :� x ∈ ΩM : d(x,@i ∪@out

i ) ≤ �(x), for at most
{
one i

}
.

The set Ω�(·)− includes states that, although possibly
close to an axis, are far from points at which two or
more axesmeet. In the two-dimensional case, taking a
constant �(x) � � is the same as carving out squares
from the corners of ΩM. Our bounds distinguish be-
tween points in Ω�(x)− and points outside of this set. In
the one-dimensional case (d � 1), Ωρ(·)− � ΩM � [0,M].

Actions Space. Lemma 1 covers action sets that do not
depend on the state x. We can accommodate 8(x) �
{u : Au ≤ b(x)}⋂D by introducing a penalty of the
form H[Au − b(x)]+ for suitably large H. Notice that
the updated reward function that incorporates the
penalty—r̄u(x) ← ru(x) −H[Au − b(x)]+—has4

r̄u[ ]∗1,Ω ≤ ru[ ]∗1,Ω +H[b]∗1,Ω.

The following is an indirect corollary of the PDE
literature. All statements focus on the case of the OD
boundary condition. Analogues for the FOT bound-
ary condition appear in the e-companion (see the
discussion that precedes Theorem EC.1 there).

Lemma 1. Let ΩM be an open-bounded domain as earlier
with boundary in #2,1, and suppose that 8(x) ≡ 8 � D

and that Assumption 1 holds. Suppose further that
η ∈ #1,1(∂ΩM) with |η|∗∂ΩM

+ |Dη|∗∂ΩM
+ [Dη]∗1,∂ΩM

≤ L and
that there exists ν0 > 0 such that η(x) · θ(x) ≥ ν0|η(x)|,
where θ(x) is the outward normal at x ∈ ∂ΩM. Finally,
suppose that supu∈8 |ru|∗ΩM

+ supu∈8[ru]∗1,ΩM
< ∞. Then the

TCP with the OD boundary condition has a unique solution
V̂∗ ∈ #2,β(ΩM) for some β ∈ (0, 1) (that does not depend on
α), and given a function � : Zd+ → R++, we have the bound

D2V̂∗
[ ]∗

β,x±�(x)
2

≤ Γ
V̂∗
⃒⃒⃒ ⃒⃒⃒∗

x±�(x)
�2+β(x) +max

u∈8
[ru]∗β,x±�(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, x ∈ Ω�(·)

− .

(17)
We also have the global bound

D2V̂∗
[ ]∗

β,x±�(x)
2

≤ ΓΘM, x ∈ ΩM,

whereΓ≡Γ(d,λ,L,ν0,∂ΩM),ΘM :�|V̂∗|∗ΩM
+maxu∈D[ru]∗β,ΩM

,

and λ is as in the requirement (elliptic).

Two comments are due: (1) the bound can depend
on α only through V̂∗ and �(x) (if the latter is chosen to
depend on α), and (2) in the one-dimensional case,
Ω�(·)− � ΩM, so the bound in (17) holds in fact in all
of ΩM.

Figure 1. (Color online) A Two-Dimensional Example of Truncating the State Space and “Curving” the Boundary

Notes. The right-hand side displays the smoothed and truncated domain. The shaded squares are the points outside of Ω�−.
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Theorem 2 uses Lemma 1 to translate the bounds in
Theorem 1—given in terms of infinite-horizon “in-
tegration” of thehigher-orderderivative—to meaningful
explicit bounds. For its statement, we define fk(x) �
|x|k for k ∈ N and x ∈ Rd+ and let

7CO � t ≥ 0 : Xt /∈ Ω�(·)
−

{ }
be the set of times the chain spends close to the corners
of ΩM. This set is, by definition, empty in the one-
dimensional case.

Theorem 2 (Explicit Bounds). Let (Û∗, V̂∗) be a solution to
the TCP as in Lemma 1. In addition to the requirements in
Lemma 1, suppose that j̄ < ∞ and that, for all x ∈ Rd+,

max
u∈8

[ru]∗β,0±|x| ≤ Γ 1 + |x|k−β( )
, and

V̂∗
⃒⃒⃒ ⃒⃒⃒∗

0±|x| ≤ Γ
1

(1 − α)m + |x|k
1 − α

( )
. (18)

Then

D2V̂∗
[ ]∗

β,x±j̄
≤ Γ (1 + |x|)k−β + 1

(1 − α)m(k−β)
k+2

+ 1
(1 − α)12(k−β)

( )
,

for all x ∈ Ω�(·)− . In turn, for a stationary policy U ∈ U and
all x ∈ ΩM,

EU
x

∑
t/∈7CO

αt D2V̂∗
[ ]∗

β,Xt±j̄

[ ]

≤ Γ Vα
U fk−β
[ ](x) + 1

(1−α)m(k−β)
k+2 +1 +

1
(1−α)12(k+2−β)

( )
,

so

Vα
Û∗
(x) − Vα

∗ (x)
⃒⃒⃒ ⃒⃒⃒

≤ Γ max Vα
U∗ fk−β
[ ](x),Vα

Û∗
fk−β

[ ](x){ }(
+ 1

(1 − α)m(k−β)
k+2 +1 +

1
(1 − α)12(k+2−β)

+ΘME
Û∗
x

∑
t∈7CO

αt

[ ]
+ΘME

U∗
x

∑
t∈7CO

αt

[ ])
, (19)

where ΘM ≤ Γ 1
(1−α)m + |M|k

1−α
( )

.

The term in the second line of (19) is the contri-
bution of the corners to the optimality gap. The
magnitude of the boundary effect depends on how
much time the chain spends near corners. We revisit
this point in Section 5.

Remark 5 (A Priori Requirements on V̂ ∗ and the Value
of m). We can gain some insight into the value of m in

requirement (18) by considering the one-dimensional
case. Suppose that (Û∗, V̂∗) satisfies

0 � rÛ∗
(x) + α+Û∗

V̂∗(x) − (1 − α)V̂∗(x), x > 0,

and V̂′∗(0) � 0. Suppose, further, that (a) μÛ∗
(x) ≤ 0

for all x > 0 and that (b) uniformly in x, 0 < σ ≤
σÛ∗

(x) ≤ σ̄ < ∞. It follows from basic arguments (see
Lemma EC.3 in the e-companion) that for k > 1,

V̂∗(x) ≤ Γ
xk

1 − α
+ 1

(1 − α)k+22
( )

,

so we can take m � (k + 2)/2.
If there existsκ > 0 such that μÛ∗

(x) ≤ −κ for all x > 0,
then m � 1; that is, V̂∗(x) ≤ Γ((xk + 1)/(1 − α)). If μÛ∗

(x)
is not necessarily negative but is bounded—|μÛ∗

(x)| ≤
κ (not dependent on α or x)—then we can take
m � k + 1. □

If ru(x) ≥ γfk(x) for some k and all u, then it trivially
holds that |Vα

U(x)| ≥ γVα
U[ fk](x). When this “super-

polynomial” property holds, the following corollary
shows that the difference between the optimal value
and the value induced by the TCP control is at most
(1 − α) of the true optimal value; that is, the relative
gap is (1 − α).
Corollary 1 (Vanishing Discount Optimality). Let (Û∗, V̂∗)
be a solution to the TCP, and suppose that the assumptions of
Theorem 2 hold with m ≤ k + 1. Then, for every stationary
policy U,

EU
x

∑
t/∈7CO

αt D2V̂∗
[ ]∗

β,Xt±j̄

[ ]
≤ Γ(1 − α)βVα

U fk
[ ](x),

for all x : |x| ≥ 1/(1 − α). Consequently, if
Vα

∗ (x)
⃒⃒ ⃒⃒ � Vα

U∗ (x)
⃒⃒⃒ ⃒⃒⃒

≥ γVα
U∗ fk
[ ](x) and

Vα
Û∗
(x)

⃒⃒⃒ ⃒⃒⃒
≥ γVα

Û∗
fk

[ ](x), x ∈ Zd
+, (20)

for some γ > 0 that does not depend on α, then

Vα
Û∗
(x) − Vα

∗ (x)
⃒⃒⃒ ⃒⃒⃒

≤ Γ(1 − α)βmax Vα
∗ (x)

⃒⃒ ⃒⃒
, Vα

Û∗
(x)

⃒⃒⃒ ⃒⃒⃒{ }
+ ΓΘM EÛ∗

x

∑
t∈7CO

αt

[ ]
+ EU∗

x

∑
t∈7CO

αt

[ ]( )
.

Our second corollary states that the optimality gap
is proportional to the value function with a lower-
order reward function. Roughly speaking, if the imme-
diate reward function is bounded (in absolute value)
by a polynomial of order k, the error is bounded by the
infinite-horizon discounted value with an immediate re-
ward that ispolynomialoforder k − 1 (recall Example 2).
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Corollary 2 (Order Optimality). Suppose that the assump-
tions of Theorem 2 hold, and let ζ(m, k) � 1

k+1−β ·
max m(k−β)

k+2 + 1, 12 (k + 2 − β)
{ }

. Then, for all x such that
|x| ≥ 1

(1−α)ζ(m,k),

Vα
Û∗
(x) − Vα

∗ (x)
⃒⃒⃒ ⃒⃒⃒

≤ Γmax Vα
U∗ fk−β
[ ](x),Vα

Û∗
fk−β

[ ](x){ }
+ ΓΘM EÛ∗

x

∑
t∈7CO

αt

[ ]
+ EU∗

x

∑
t∈7CO

αt

[ ]( )
.

Remark 6 (Example 2 Revisited). The bounds in Exam-
ple 2 (in which we consider a fixed control) are con-
sistent with Corollaries 1 and 2 taking m � 3 � k − 1
and β � 1 so that 1

2 (k + 2 − β) � m(k − β)/(k + 2) +
1 � 2.5, and the terms depending on (1 − α) in the
first line of (19) would correspond to 1/(1 − α)2.5.

Although Theorem 2 and its corollaries cover only
TCP solutions with β ∈ (0, 1), the direct derivation in
Example 2 gave us a solution with β � 1.

Because ru(x) ≤ −x4, the requirements of both Cor-
ollaries 1 and 2 are satisfied, and their conclusions
apply, allowing us to extend the bounds in Example 2
from performance analysis to optimization. Also,
there are no corners in this one-dimensional example,
so the second line of (19) is zero. □

3. Computation: Tayloring-Based
Approximate Dynamic Programming

The two staple algorithms for solving MDPs are the
value and policy iteration algorithms. The curse of
dimensionality renders both incapable of solving
large-scale problems and motivates the development
of approximation algorithms. In this section, we offer
a direct algorithmic interpretation of Tayloring. The
resulting approximate policy iteration algorithm al-
ready offers a reduction in computational effort com-
paredwith solving the originalMDP; in Section 4.3, for
example, we solve a problem in which Taylored ap-
proximate policy iteration (TAPI) takes less than 10
minutes for some instances in which the exact solution
takes more than 15 hours. This provides evidence for
the feasibility of scalable algorithms with optimality-
gap bounds that are grounded in our analysis of Tay-
loring (see Remark 8).

Whereas the state space of the MDP is unbounded,
truncating is inevitable for computation. We use S for
the truncated state space, S̃ for its continuation, and
∂S̃ for the boundary of S̃. Mostly, we restrict attention
to the case in which the original state space is Zd+ and
introduce the truncated state space S � [0,M]d ∩ Zd+
and its continuation S̃ � [0,M]d.

Because S is finite, the Bellman equation

V∗(x) � max
u∈8(x)

ru(x) + αEu
x V∗(X1)[ ]{ }

, x ∈ S,

has a unique solution, and the policy iteration (PI)
algorithm is guaranteed to converge to this solution in
finitely many iterations.

Algorithm 1 (Standard PI)
1. Start with some initial stationary policy U(0) ∈ U.
2. For k � 0, 1, . . .,

(a) Policy evaluation: solve for the infinite horizon
discounted performance under U(k); that is, find
V(k)(x) that satisfies
V(k)(x) � r x,U(k)(x)

( )
+ αEU(k)(x)

x V(k)(X1)
[ ]

, x ∈ S.

(21)
(b) Policy improvement: Find

U(k+1)(x) � argmax
u∈8(x)

ru(x) + αEu
x V(k)(X1)
[ ]{ }

, x ∈ S.

(22)

The computational bottlenecks of PI are well
understood:
Value-function storage: We require 2(|S|) space (|S| is

the size of the set S) to store V(k)(x), and |S|may grow
exponentially with the dimension of the problem.
Transition-matrix storage: In the kth step of the PI

algorithm,we invertP(k) − I, where P(k) is the transition
probability matrix associated with policy U(k)(x).
Depending on density (or sparsity) of this matrix,
storing it may require as much as 2(|S|2). The value-
iteration algorithm does not require such storage.
Optimization complexity: Each iteration includes a

policy improvement step: finding (greedy) optimal
actions relative to the value-function approximation
V(k)(x). For each state x ∈ S and action u ∈ 8(x), com-
puting the expectation Eu

x V(k)(X1)[ ]
may require as

many as 2(|S|) function evaluations, depending on the
transition structure of the Markov chain. Further-
more, the optimizationmay require exhaustive search
over the discrete action space 8(x) (whose size is
denoted by |8(x)|). The total cost of the policy im-
provement step therefore can be up to 2(|8|max|S|2),
where |8|max � supx∈S |8(x)| is an upper bound on the
number of feasible actions. Our example in Section 4.3
is one in which this worst-case cost is realized.

3.1. TAPI
The basic idea in approximate policy iteration (API) is
to produce an approximation of V(k)(x) for the value
function at iteration k and then use it in the policy
improvement step. Linear architecture is a popular
approximation scheme that uses an element of the
space {Φr|r ∈ RF}, that is, functions of the form V̂(x) �∑F

i�1 riΦi(x), where Φ is the |S| × F matrix that collects
the so-called feature vectors Φi : S → R. The feature
vectors capture preselected properties of each state
x ∈ S. Features of a particular state can be generated
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on the fly, so there is no need to store the entire matrix
Φ; it suffices to store r to represent all elements of
{Φr|r ∈ RF}. This produces computational benefits
when F is significantly smaller than |S|. The optimality
gaps of API depend on the “richness” of the feature
vectors, which are typically chosen based on struc-
tural insight into the problem at hand (see Bertsekas
(2011) for a survey of API methods).

Tayloring offers a generalizable way to approxi-
mateV(k)(x) that requires little ad hoc intuition. In this
scheme, the intermediate solution V(k)(x) is replaced
in the policy evaluation step by the solution to the as-
sociated PDE. In addition to approximating the policy
evaluation step, we can also approximate the policy
improvement step. The details of TAPI are presented in
Algorithm 2.

Algorithm 2 (TAPI)
1. Start with initial stationary policy U(0)(x).
2. For k � 0, 1, . . .,

(a) Approximate policy evaluation: approximate,
using the Taylored equation, the infinite-horizon
discounted performance under U(k); that is, find
V(k)(x) that satisfies

r x,U(k)(x)
( )

+ α+U(k)(x)V(k)(x) − (1 − α)V(k)(x) � 0,

x ∈ S̃, (23)
η(x)′DV(k)(x) � 0, x ∈ ∂S̃.

(b) Approximate policy improvement: Let
U(k+1)(x) be the greedy policy associated with
V(k)(x) in the Taylored equation

U(k+1)(x) � argmax
u∈8(x)

ru(x) + α+uV(k)(x)
{

− (1 − α)V(k)(x)
}
, x ∈ S̃. (24)

In the kth step, assuming that the linear PDE (23)
has a solution, it can be numerically approximated
by any of a number of solution methods. The most
standard of these is the FD method (see, e.g., Larsson
and Thomée 2008). FD returns a solution defined on
a suitably spaced grid. In our experiments, this grid
is a subset of the state space S. The efficiency gains of
TAPI cover all three of the previously identified
computation bottlenecks of PI:

Value-function storage: Any method to solve (23)
involves either a discretized grid or some other state-
space-partitioning scheme (as in the finite element
method). As the discretization gets finer, the approxi-
mation converges, under suitable conditions, to the true
solution of the PDE.Choosing a coarser grid reduces the
cost of storing the value function estimates.

Transition-matrix storage: In (23), the transition probabil-
itymatrix“collapses” into the lower-dimensional μu(x)
and σ2u(x). In contrast to the standard PI algorithm, we
are not inverting the full matrix P(k) here.
Optimization complexity: The computational benefit

of the approximate policy improvement in TAPI
comes from the fact that +uV(k)(x) depends on u only
through μu(x) and σ2u(x), andV(k)(x) and its derivatives
do not depend on u. For finite action and state spaces,
the quantities μu(x) and σ2u(x) can be precomputed
once in advance (or computed on the fly and kept in
memory). Contrast this with PI, in which the term
Eu
x[V(k)(X1)] has to be recomputed for each u and

x at each iteration k, and computing this expectation
requires going over all the “neighbors” of x. The
computational cost of the approximate policy improve-
ment is, consequently, 2(|8|max|S|) per iteration com-
paredwith 2(|8|max|S|2) for exact policy improvement.
This cost may be further reduced if, given x, one has
tractable expressions for the dependence of μu(x) and
σ2u(x) on u (see the examples in the next section).
Given the discrete nature of the controls, the exact

policy improvement step in (22) can be computa-
tionally expensive. Our example in Section 4.3 is one
in which it is difficult to avoid exhaustive search. In
Moallemi et al. (2008, p. 7), the authors show how to
leverage an “affine-expectations” assumption to ap-
proximate the solution of this problem by that of a
linear program. The approximate policy improve-
ment step in TAPI is a generalizable way to simplify
this step.

3.1.1. Convergence and Error Bounds. As stated
earlier, the PDE in (23) might not be mathematically
meaningful;U(k)(x) could be such that a solution does
not exist to the PDE in the policy evaluation step.
One implementation we propose—developed for the
specific PDEs arising from diffusion control problems—
is put forth in Kushner and Dupuis (2013). Roughly
speaking, applying certain finite difference schemes
to (23) leads back to discrete (time and space) MDPs.
The goal in Kushner and Dupuis (2013) is to solve the
continuous control problem by taking the discretiza-
tion to be increasingly finer. We take the opposite ap-
proach and choose a coarse grid to reduce the compu-
tational effort relative to the original Bellman equation.
The construction of Kushner and Dupuis (2013) gen-
erates one concrete TCP-equivalent chain. The ap-
proximation error that it introduces is related to the
third derivative of the PDE solution multiplied by a
number that captures the coarseness of the grid (recall
the discussion closing Section 2.2 and see (30)).
With themethod of Kushner andDupuis (2013), the

approximate policy evaluation and improvement are
replaced with exact evaluation and improvement for
the (newly constructed) chain on a finite state space.
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The convergence to the optimal policy then follows
from standard results for policy iteration.

Example 3 (K-D Construction in One Dimension). Consider
the one-dimensional TCP on the truncated state space
[0,M]:

0 � max
u∈8(x)

ru(x) + α μu(x)V′(x) + 1
2
σ2u(x)V′′(x)

( ){
− (1 − α)V(x)

}
, x ∈ (0,M), (25)

with the boundary condition

V′(0) � V′(M) � 0.

Fix h > 0, and let Sh � {0, h, 2h, . . . ,M} be the dis-
cretized space. Let us make the assumption that M
is divisible by h.

The K-D chain construction is most intuitive under
the “small drift” assumption

σ2u(x) ≥ μu(x)
⃒⃒ ⃒⃒

h, x ∈ Sh, u ∈ 8(x). (26)

For each x ∈ Sh\{0,M}, let us replace V′(x) and V′′(x)
with the appropriate “central” differences

V′(x) ← V(x + h) − V(x − h)
2h

, and

V′′(x) ← V(x + h) − 2V(x) + V(x − h)
h2

,

to get

(1 − α)V(x)
� max

u∈8(x)
ru(x) + α μu(x)V(x + h) − V(x − h)

2h

({
+ 1
2
σ2u(x)

V(x + h) − 2V(x) + V(x − h)
h2

)}
� max

u∈8(x)
ru(x) + α

μu(x)h + σ2u(x)
2h2

V(x + h)
({

+−μu(x)h + σ2u(x)
2h2

V(x − h) − σ2u(x)
h2

V(x)
)}
. (27)

Let Σ(x) � supu∈8(x) σ
2
u(x) > 0. Multiplying both sides

of (27) by h2/αΣ(x), we arrive at

V(x)
� max

u∈8(x)
αh(x)h2ru(x)

αΣ(x) + αh(x) μu(x)h + σ2u(x)
2Σ(x)

({
V(x + h)

+ −μu(x)h + σ2u(x)
2Σ(x) V(x − h) + 1 − σ2u(x)

Σ(x)
( )

V(x)
)}
,

(28)
where

αh(x) :� 1 + h2

Σ(x)
1
α
− 1

( )( )−1
.

Let, for x ∈ Sh\{0,M},

Pu,h
x,x+h �

μu(x)h + σ2u(x)
2Σ(x) ,Pu,h

x,x−h �
−μu(x)h + σ2u(x)

2Σ(x) ,

Pu,h
x,x � 1 − Pu,h

x,x+h − Pu,h
x,x−h, (29)

and r̃h(x,u) � αh(x)h2ru(x)/(αΣ(x)). Notice that these
are well-defined probabilities because of assumption
(26). Also notice that r̃h(x,u) � 1−αh(x)

1−α r(x, u). We arrive
at the equation

V(x) � max
u∈8(x)

r̃h(x,u) + αh(x) Pu,h
x,x+hV(x + h)

({
+Pu,h

x,x−hV(x − h) + Pu,h
x,xV(x)

)}
.

This equation, in the interior, is recognizable as a
Bellman equation for a new Markov chain with state
space Sh, transition probabilities and reward function
as specified, and state-dependent discount factor αh(x).
For the boundary points x � 0 and x � M, we cannot

use central differences because the points −h andM +
h are not available. We can use instead the forward
difference V′(0) ← V(h)−V(0)

h at x � 0 and the backward
differenceV′(M) ← V(M)−V(M−h)

h , which then lead to the
added equations V(h) � V(0) and V(M − h) � V(M).
No discount factor is associated with these boundary
states. A thorough treatment of reflecting boundaries
appears in Kushner and Dupuis (2013, chapter 5.7).
This construction can be easily modified to have FOT
on the boundary instead of the oblique-derivative
condition.
The K-D chain is but one concrete construction of a

TCP-equivalent chain. A nice property of this con-
struction is the sparsity of neighbors—that, from
each state, one can only transition to atmost 2d neighbors.
In fact, it follows from Kushner and Dupuis (2013)
that in the setting of the oblique-derivative boundary
condition, there always exists a TCP-equivalent con-
struction on the coarser grid. Although this construction
need not be as simple as in the one-dimensional case,
it always maintains the desirable properties of sparsity
of neighbors.
In the multidimensional case, the state space of the

K-D chain is

Sh � ×d
i�1 0,Mi[ ] ∩ hZ+ ∪ Mi{ }{ }},{

where hZ+ � {0, h, 2h, 3h, . . .}. We denote by Xh � {Xh
t ,

t � 1, 2, . . .} the (controlled) Markov chain on the state
space Sh arising from the K-D construction. As in
Example 3, we let Vh∗ (x) be the solution to the Bellman
equation for the K-D chain and denote by Uh∗ the
optimal stationary policy for this chain.
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Then, under the requirements on V̂∗ in Theorem 1,
Equation (11) implies the bound

V̂∗(x) − Vh
∗ (x)

⃒⃒⃒ ⃒⃒⃒
≤ h2+β EÛ∗

x

∑∞
t�0

ᾱt
h D2V̂∗
[ ]∗

β,Xh
t ±h

[ ](

+EUh∗
x

∑∞
t�0

ᾱt
h D2V̂∗
[ ]∗

β,Xh
t ±h

[ ])
, x ∈ Sh. (30)

This bound is similar in spirit to and inspired byDupuis
and James (1998). A challenge here is that Vh∗ (x) and
Uh∗ are only defined on the coarse grid Sh. To borrow a
term from the ADP literature, we must now “disag-
gregate” these to generate a policy for the original chain.

One way to achieve this is via one-step improve-
ment relative to an extended Vh∗ (x). Assume that we
have an extension of Vh∗ (x), denoted by Ṽh∗ (x), that is
defined for all x ∈ S. Then we can use, in the original
chain, a greedy policy relative to Ṽh∗ :

Uh(x) � argmax
u∈8(x)

ru(x) + αEu Ṽh
∗ (X1)

[ ]{ }
.

The error introduced by doing so can be suitably
bounded (see Remark EC.1 in the e-companion). Al-
ternative aggregation methods (see Remark 8) do pro-
duce direct controls that are defined for all states in
the detailed state space S.

Remark 7 (Exact Policy Improvement). Algorithmically,
one can replace the approximate policy improvement
step in (24) with an exact policy improvement step in
which we let U(k+1)(x) be the greedy policy associated
with V(k)(x); that is,

U(k+1)(x) � argmax
u∈8(x)

ru(x) + αEu
x V(k)(X1)
[ ]{ }

, x ∈ S.

Because the policy improvement is done exactly—
using the transitions and state space of the Markov
chain—we must extend V(k)(x) to the state space S

(say, by interpolation). In our examples, we find that
although this version of TAPI has no convergence
guarantees, itmay result in a smaller optimality gap. □

Remark 8 (Aggregation as a Basis for Scalable Algorithms).
The construction of a TCP-equivalent chain on a coarser
grid can be viewed as an aggregation procedure. Bounds
on the optimality gaps introduced by aggregation
methods are often stated in terms of oscillations of
the true value function over the coarser grid (see, e.g.,
Bertsekas and Tsitsiklis 1996, section 6.7). The bounds
depend on the same quantity that we are trying to avoid
computing. In contrast, our construction of the approx-
imate coarse chain is grounded in the TCP, which also
provides a grounding for optimality-gap analysis. In
the cases in which our bounds apply, they are stated in

terms of the approximation V̂∗ rather than by the value
function itself. At the same time, existing (flexible)
aggregation algorithms may offer scalability that far
exceeds our relatively simple discretization-based
aggregation.
It seems feasible to piggyback on existing aggre-

gation approaches to develop algorithms that simul-
taneously (1) make use of the insights (and bounds)
that we developed and (2) preserve the scalability of
the algorithm on which we piggyback; this direction is
explored in Zhang and Gurvich (2018). To convey this
feasibility, we briefly outline this approach here.
Recall (see Equation (11) and the discussion there)

that two controlled chains on the same state space S

andwithmatrices P and P̃ have a common TCP if they
share the (induced) drift vectors and diffusion ma-
trices. We can then apply the control derived from the
tilde chain to the original chain with the optimality
guarantees stated in this paper.
Soft aggregation (see Bertsekas 2007) is a flexible

ADP algorithm that is perfectly suited for the creation
of such a Markov chain P̃. One (probabilistically)
groups states into a small number of “metastates.”
There is a set } � {1, . . . ,m} of metastates. To be
useful,mmust be smaller than the size of the detailed
state space S. Instead of solving the original Bellman
equation, one solves an aggregated Bellman equation
on the metastates:

R(k) � ∑
x∈S

qk,x min
u∈8(x)

∑
y∈S

Pu
x,y ru(x) + α

∑
l∈}

φy,lR(l)
( )

,

k ∈ },

(31)

where the m × n matrix Q � {ql,x} contains the dis-
aggregation probabilities and the n ×m matrix Φ �
{φx,l} contains the aggregation probabilities.
The optimal policy in (31) is identical—it is shown

in Zhang and Gurvich (2018)—to that of a Markov
chain on the detailed state space Swith the transition
matrix

P̃u
x,y �

∑
z∈S,l∈}

Pu
x,zφzlql,y.

In other words, the optimal control in the Bellman
equation

Ṽ(x) � max
u∈8(x)

ru(x) + α
∑
y∈S

P̃u
x,yṼ(y)

{ }
can be derived by solving the lower-dimensional ag-
gregate equation (31). It is precisely here that Zhang
and Gurvich (2018) piggyback on aggregation. If we
can choose the matrix aggregation’s design variables
Φ,Q (of a suitable rank smaller than n) such that the
local moment matching holds, then (1) the two chains P
and P̃ are “coupled” via the TCP, and (2) computation

Braverman, Gurvich, and Huang: On the Taylor Expansion of Value Functions
644 Operations Research, 2020, vol. 68, no. 2, pp. 631–654, © 2020 INFORMS



requires solving only the aggregate equation (31).
Matching (at least closely) the moments is doable and
can be done with great efficiency (see Zhang and
Gurvich 2018). □

4. Examples
The three exampleswe study are intended to illustrate
the performance of the proposed algorithm. The first
two examples have a one-dimensional state space and
are, hence, computationally cheap even for an exact
solution. We use them because visualization is easier
in d � 1 and supports useful observations.

4.1. Service-Rate Control
This is a variant of Example 2. We consider the hold-
ing cost c(x) � x2 when there are x customers in the
system and the control cost f (u) � 1/(1 − u). The cost
minimization problem is equivalent to a reward max-
imization problem with the negative reward −x2 − 1/
(1 − u). The control set consists of the rational num-
bers (denoted by Q) in [0, 1]. The Taylored equation is

0 � min
u∈[0,1]⋂Q

x2 + 1
1 − u

+ α (1 − 2u)V′(x) + 1
2
V′′(x)

( ){
− (1 − α)V(x)

}
,

0 � V′(0).

Per Lemma 1, this equation has a solution V̂∗ ∈ #2,β for
some β ∈ (0, 1), and the policy Û∗ derived from this
equation induces an optimality gap |Vα

Û∗ − Vα∗ | that
obeys the bound in Theorem 2.

We use TAPI based on the K-D chain to obtain the
optimal control Ûh∗ for this chain. We build a control
for the original chain by extending toZ+ in a piecewise
constant manner: the control at point mh is kept
constant for all points mh, . . . , (m + 1)h − 1. We denote
this control by Uh. We try h ∈ {1, 2}. In our compu-
tations, we allow the control to be any number in
[0, 1], which allows us, in this example, to write the
control as an explicit function of the value in neigh-
boring states.

In Figure 2, we plot the absolute (rather than rel-
ative) optimality gap VUh(x) − V∗(x) for α � 0.99 and
discretization h equal to 1 and 2. It is important that
even in the case of h � 2, an optimality gap of 30 (at
x � 100) is negligible relative to the optimal value at
that state, which is of the order of 3 × 105. More im-
pressive is the performance after one-step policy
improvement. The greedy policy achieves an opti-
mality gap that is indistinguishable from zero. This
result is explained by Figure 3, in which we report
the comparison of actions. The plot also includes the
control after one-step policy improvement starting at
the K-D chain interpolated value.

Per Theorem 1, the error should be of the order of
the integrated third derivative. If this derivative is
uniformly bounded by Γ, the optimality gap must be
smaller than (or equal to) Γ/(1 − α). The central dif-
ferences proxy with h � 1 for the third derivative of
V̂∗(x) is given by

V̂′′′
∗ (x) ≈ 1

2
Vh

∗ (x + 2) − 2Vh
∗ (x + 1) + 2Vh

∗ (x − 1)(
−Vh

∗ (x − 2)).
The peak of this proxy for h � 1 and α � 0.99 is
1.8, generating in our theorem an error bound of
1.8/(1 − α) � 180, which is 0.0006 of the value of more
than 270,000 for the state x � 1/(1 − α) � 100.

4.2. An Inventory Problem
In the inventory problem we study next, the optimal
policy is a so-called order-up-to level policy, implying
large jumps in some states. This problem seems to
pose a challenge to our bounds, which depend on the
size of the maximal jump.
Period t demand Dt is drawn from a Poisson dis-

tribution with mean E[Dt] � λ. Demand is indepen-
dent across periods. There is a backlog cost of b, a per-
period cost H for holding a unit in inventory, and a
per-unit order cost of c. The lead time is zero.
The state is the inventory position. The per-period

cost is given by

ru(x) � cu +HE (x + u −D)+[ ] + bE (D − (x + u))+[ ],
where the action u is the amount ordered. Orders are
placed (and received), and then demand is realized,
and backorder and holding costs are incurred. Transi-
tions have the form

Xt → Xt +Ut −Dt( ),
whereUt is the order quantity in period t. The Bellman
equation is given by

V(x) � min
u∈Z+

ru(x) + αE V(x + u −D)[ ]{ }.
The drift and diffusion coefficients are given by

μu ≡ μu(x) � E X1 − x[ ] � E x + u −D − x[ ] � u−λ and

σ2u ≡ σ2u(x) � E (X1 − x)2[ ] � E (x + u −D − x)2[ ]
� (u − λ)2 + λ,

so the TCP is

0 � min
u∈Z+

ru(x) + α μuV′(x) + 1
2
σuV′′(x)

( ){
− (1 − α)V(x)

}
, x ∈ R.

Notice that σ2u ≥ λ for all x and u ∈ Z so that strict
ellipticity holds. Because the state space includes all
the integers, there are no boundary conditions here.
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These are artificially introduced in our numerical com-
putation to make the state space finite. Specifically, we
truncate the space at stateM and −M, where μu(−M) �
u, σ2u(−M) �u2, andμu(M) �−λ, σ2u(M) �λ+λ2.We then
introduce the boundary condition V′(M) �V′(−M) � 0.
Notice that, for constant u, the drift and diffusion co-
efficient are constant in x and in particular Lipschitz.
The cost function is, as well, Lipschitz in x uniformly
in u. The existence of a solution follows from Lemma 1.

We use the K-D chain for value of coarseness
h ∈ {1, 3}. For each h, we use (with some abuse of
notation) V̂α∗ (x) for the value from the K-D approxi-
mation, which is a proxy for the TCP value. For h � 3,
we extend the value function to the integers in a
piecewise constant manner. We also take the con-
trol Û∗

h and interpolate it to the whole state space in a

piecewise constant manner. Denote by VÛ∗
(x) the value

in the original chain when using this control. Finally, the
value after one-step improvement is the infinite-horizon
discounted reward under Uh—the greedy control
relative to Vh,α∗ (x). Figure 4 displays the computa-
tional results.

4.3. A Routing Problem
This example is based on the inpatient-management
queuingmodel studied in Dai and Shi (2017). The task
is to optimally route patients from dedicated queues
to internal hospital wards so as to minimize the ag-
gregate cost of holding and routing.
The dynamics of the queues are modeled via a

discrete-time queuing model with J server pools (the
internal wards), in which pool j has Nj servers (beds),

Figure 2. (Color online) Algorithm Performance for the Service-Rate Control Problem

Notes. Top: The optimal value compared against the approximate values. The lines are indistinguishable at the scale of the optimal value. Bottom:
The absolute optimality gap: the difference between the cost under the proposed policy and the optimal cost. The ’×’ series is the result after one-
step improvement. It is indistinguishable from zero.
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a dedicated inflow of customers, and an infinite-sized
dedicated buffer. This buffer is truncated for the
numerical experiments. Customers from the jth in-
flow are referred to as type-j customers. These cus-
tomers can be served by their dedicated pool j and
also by other pools.

We let Xj(t) be the number of customers of type j in
the system at time t � 0, 1, 2, . . . and letX(t) ∈ Zd+ be the
vector whose components are Xj(t). A customer in the
system can either be in service or waiting in a buffer
to be served.

The (controlled) chain’s evolution is as follows: at
the start of time period t, customers waiting in buffer
j enter service in pool j until the buffer is emptied or

all idle servers are taken. If any customers remain in
buffer j, we proceed to the overflowdecision. This is the
overflow control. At a cost of Bij per customer, we can
choose to assign a customer waiting in buffer i to im-
mediately enter service in pool j �� i if that pool has an
idle server available. We can also decide not to overflow
any customers. We let Uij(t) � Uij(X(t)) be the number
of customers overflown from buffer i to pool j in time
period t. After overflows are executed, a holding cost
Hi per customer waiting in buffer i is incurred. Next, de-
partures are resolved: a type j customer in service com-
pletes service and leaves the system with probability pj
(service time is geometric with mean 1/pj). Otherwise,
the customer remains in service until the next period.

Figure 4. (Color online) Algorithm Performance for the Inventory Problem

Notes. Left: h � 1. Right: h � 3. The performance of the K-D control is not as good, but one-step improvement relative to the K-D value function
Vh,α∗ generates an extremely accurate value for all states.

Figure 3. (Color online) Control Comparison for the Service-Rate Control Problem

Notes. Left: h � 1. Right: h � 2. The control obtained from one-step improvement is almost identical (at all states) to the optimal control.
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After departures are resolved, new arrivals occur:
the number of type-j customers to arrive per period is
Poisson distributed with mean λj. Arrivals are in-
dependent across types and across time periods. An
incoming customer either occupies an idle server in
the customer’s dedicated pool or, if there are no such
servers, enters the buffer and waits for service.

Under a stationary control u, X(t) satisfies the dynamics

Xi(t) � XP
i (t − 1) + Ai(t − 1) −Di XP

i (t − 1)( )
, i ∈ [d],

(32)
where

XP
i (t − 1) � Xi(t − 1) +∑

j ��i
Uji(X(t − 1))

−∑
j ��i

Uij(X(t − 1))

is the post-action state in period t − 1,

Di(x) ∼ Binomial x ∧Ni, pi
( )

is the number of departures from pool i, and

Ai(t) ∼ Poisson(λi)
is the number of new unblocked type-i arrivals, in-
dependent across periods.

The state space is Zd+, and the action space is

8(x) � u ∈ ZJ×J
+

⃒⃒⃒ ∑
j ��i

uji ≤ (Ni − xi)+ and

{
∑
j��i

uij ≤ (xi −Ni)+, i ∈ [d]
}
.

The first constraint guarantees that the overflow to
pool i does not exceed the number of idle servers,
and the second constraint guarantees that the num-
ber of overflowed type-i customers does not ex-
ceed the number of customers waiting in buffer i.
The action space satisfies the structure8(x) � D

⋂{u :
Au ≤ b(x)}. Finally, the per-period cost includes the
cost of overflow and linear cost of holding and is
given by

ru(x) �
∑
i

∑
j��i

Bijuij +
∑
i
Hi × xi −

∑
j��i

uij −Ni

( )+
.

(33)

The goal is to make overflow decisions that minimize
the expected infinite-horizon discounted cost.

The Bellman equation for this dynamic program is
computationally challenging. A modest system with
J � 3, Ni ≡ 40, and M � 60 has more than 1 million
states. Moreover, depending on the policy U(x), a

state can havemany “neighboring” states, making the
transition probability matrix dense and expensive
to store. Finally, because actions are discrete, the only
option is exhaustive search over the very large action
space: we have to decide how many customers to
overflow from each buffer into each pool.
We next construct the TCP’s ingredients. For x ∈ S

and u ∈ 8(x), let xPi (u) � xi +∑
j��i(uji − uij). Then

μu(x)( )
i �

∑
j��i

uji −
∑
j ��i

uij + E Ai(t)[ ] − E Di xPi (u)
( )[ ]

�∑
j��i

uji − uij
( )+λi − pi �xi� +

∑
j ��i

uji − uij
( )( )

∧Ni

( )
�: fμ(u, x)( )

i, i ∈ [d],
and

σ2u(x)
( )

ij � E
∑
k ��i

uki − uik( ) + Ai(t) −Di xPi (u)
( )( )[

∑
k ��j

ukj − ujk
( ) + Aj(t) −Dj xPj (u)

( )( )]
�: fσ(u, x)( )

ij, i, j ∈ [d].
We use the oblique derivative condition

η(x)′DV̂(x) � 0, x ∈ ∂Rd
+,

where ηi(x) � pi if xi � 0 and is zero otherwise.
This is grounded in intuition about the “pushback”

at zero but is also mathematically supported by choos-
ing the suitable extension of μu and σ2u. The function
fμ(u, x) is well defined for all x ∈ Zd+ and u ∈ D and
can be continuously extended to x ∈ Rd++ in multiple
ways. We choose to extend �xi� so that it is con-
stant (and equal to 1) for all xi ∈ (0, 1]. We extend
fσ(u, x) so that it is continuous on all of (not just the
interior of) Rd+. For x with xi < Ni, 8(x) contains only
u with uij � 0 for all j �� i. If Û∗ is piecewise con-
stant and continuous at the boundary,5 then (η(x))i �
(μÛ∗

(x−i, 0+))i − (μÛ∗
(x−i, 0))i � −pi.

We also tried the more direct FOT boundary con-
ditions for this example, obtaining similar perfor-
mance to what is reported in Table 1, panels (A)–(C).
In our computational experiments, we truncate the

state space by using finite buffers and truncating
arrivals in an intuitive way. We use exhaustive search
over u ∈ 8(x) in the policy improvement step rather
than relaxing the integrality constraints (see, e.g.,
Moallemi et al. 2008). We do so because we wish to
capture the error induced by the Taylor expansion
without confounding it by approximations to the
action space. Still, the computational savings of TAPI
are significant: a single iteration of TAPI took a few
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minutes compared with about three hours for a PI
iteration, leading to a reduction of total running time
from more than 15 hours to less than 10 minutes.

Table 1, panels (A)–(C), presents the results of
applying TAPI to multiple three-dimensional (J � 3)
instances of the model. The panels show the dif-
ference between the value function under the pro-
posed policies Vα

Uh∗
(x) and the actual optimal value

Vα∗ (x). The maximal relative error is computed by
maxx∈S |VUh∗ (x) − V∗(x)|/V∗(x), where Uh∗ is the policy
suggested by the approximation algorithm. The

mean relative error column reports 1
|S|
∑

x∈S |VUh∗ (x)−
V∗(x)|/V∗(x).
In all three panels, we consider an increasing se-

quence of discount factors in which α � 0.9 is con-
sidered small (corresponding to an effective horizon
of length 1/(1 − α) � 10). Per the discussion in Re-
mark 4, one expects that (1) the gap will be larger for
small values of α (vanishing-discount optimality) and
also that (2) even for small values of α, the optimality
gap will be small for states x with large |x| (order
optimality). In other words, the biggest errors are

Table 1. Applying TAPI to an instance of the model with ( J � 3)
Panel A

λi � 0.7Nipi λi � 0.8Nipi

α h Maximum relative error Mean relative error Maximum relative error Mean relative error

0.9 2 0.058 0.001 0.064 0.001
4 0.043 0.0004 0.030 0.0005
8 0.038 0.0002 0.037 0.0009

0.99 2 0.023 0.001 0.019 0.002
4 0.016 0.0004 0.017 0.0005
8 0.019 0.0004 0.014 0.005

0.999 2 0.004 0.001 0.004 0.002
4 0.003 0.0004 0.003 0.0005
8 0.003 0.0004 0.007 0.006

Panel C

λi � 0.7Nipi λi � 0.8Nipi

α h Maximum relative error Mean relative error Maximum relative error Mean relative error

0.9 2 0.114 0.016 0.104 0.011
4 0.079 0.006 0.075 0.004
8 0.071 0.018 0.053 0.014

0.99 2 0.077 0.021 0.053 0.009
4 0.060 0.009 0.039 0.005
8 0.069 0.042 0.025 0.014

0.999 2 0.034 0.024 0.016 0.009
4 0.019 0.010 0.009 0.004
8 0.059 0.055 0.017 0.016

Notes. Panel A:N1 � N2 � N3 � 10,M � 14, (p1, p2, p3) � (0.8, 0.8, 0.8), (H1,H2,H3) � (1, 2, 3), (B12,B13) �
(1, 1), (B21,B23) � (4, 1), and (B31,B32) � (2, 1). Panel B:N1 � N2 � N3 � 10,M � 14, (p1, p2, p3) � (0.4, 0.6,
0.1), (H1,H2,H3) � (10, 2, 6), (B12,B13) � (5, 2), (B21,B23) � (3, 7), and (B31,B32) � (7, 9). Panel C: N1 �
N2 � N3 � 10, M � 14, (p1, p2, p3) � (0.2, 0.7, 0.5), (H1,H2,H3) � (1, 1, 4), (B12,B13) � (5, 2), (B21,B23) �
(7, 1), and (B31,B32) � (7, 9).

Panel B

λi � 0.7Nipi λi � 0.8Nipi

α h Maximum relative error Mean relative error Maximum relative error Mean relative error

0.9 2 0.685 0.013 0.516 0.011
4 0.685 0.012 0.45 0.009
8 0.312 0.028 0.186 0.022

0.99 2 0.206 0.011 0.096 0.005
4 0.184 0.012 0.120 0.005
8 0.110 0.032 0.055 0.011

0.999 2 0.037 0.007 0.028 0.002
4 0.036 0.010 0.014 0.003
8 0.051 0.039 0.016 0.011
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confined to a small set of states, so the mean relative
error should be small.

We see both effects in our numbers. For α � 0.9, the
maximal (over the state space) relative gap can be
fairly large (and decreases as α increases). The mean
gap is small for all α values because the big errors are
confined to a relatively small number of states.

In Figure 5, we use a two-dimensional example to
visualize this fact. Even in cases in which the maximal
error is as largeas3.7%, such errors are confined to a very
small portion of the state space (close to a boundary)
and are much smaller in most of the state space. This is
captured in Figure 5, in which we plot the relative
error in a two-dimensional (d � 2) case.

Finally, in reference to Remark 7, we compare the
performance of TAPI with a heuristic in which the
policy improvement is executed exactly rather than
approximately. Introducing exact improvement, al-
though having no convergence guarantees, can result
in better performance (see the “+Exact improve.”
column in Table 2). This performance is, however,
matched by using TAPI as is (with approximation
improvement) and adding at the very end a single
exact policy improvement step (see the column “One
step” in the same table).

Remark 9 (Smoothing the State Space). We use this ex-
ample, with d � 2, to illustrate the domain smoothing
described in Section 2.3. We replace the corner point
(0, 0) in the Markov chain’s state space with the point
0̃ � (ε, ε) so that we can pass a smooth boundary

through this point. Let us denote the drift and diffusion
coefficients by μ̃u and σ̃2u. Because Pu

0̃,y
� Pu

0,y, we have

μ̃u
( )

i 0̃
( ) � ∑

y
Pu
0,y yi − ε
( ) � ∑

y
Pu
0,y yi − 0
( ) − ε

� μi(0) − ε � λi − ε, for i ∈ [d],
and

σ̃2u
( )

ij �
∑
y

Pu
0,y yi − ε
( )

yj − ε
( )

� E Ai(t) − ε( ) Aj(t) − ε
( )[ ]

, for i, j ∈ [d].
For all other states, (μ̃u)i(x) � (μu)i(x) + Pu

x,0ε and
(σ̃2u)ij(x) � (σ2u)ij(x) + Pu

x,0ε(ε − xi − xj). Notice that ε
appears only in the new corner; there are no states of
the form (ε, x2) or (x1, ε) for x1, x2 ≥ 1. Finally, the
vector η is given by (p1, 0)when x1 � 0 and x2 ≥ 1 and
by (0, p2) when x2 � 0 and x1 ≥ 1. It is η(x) � (p1, p2) at
x � 0̃. We then extend to the curved boundary in a
smooth way. These constructions extend to d > 2. □

5. Tayloring and Queues in Heavy Traffic
The impetus for the nascent literature on refined
bounds—towhich this paper belongs—was, to a large
extent, provided by the observed accuracy of Brow-
nian approximation–based prescriptions in queuing
systems. For example, in Koçağa and Ward (2010,
theorem 5.2), the limit theorem “only” guarantees
that theHJB-based prescription induces an optimality
gap that is o( ̅̅̅

N
√ ) (where N is the number of servers).

However, the numerical experiments (Koçağa and
Ward 2010, table 1) show an extremely small opti-
mality gap, one that does not grow with N.

Figure 5. (Color online) Concentration of Error

Notes. d � 2,N1 � N2 � 10,M � 10, (p1, p2) � (0.56, 0.56), (H1,H2) � (1, 4), (B12,B21) � (5, 1), α � 0.99, h � 2, and λi � 0.8Nipi. On the left, we plot

the relative error
|VUh∗

(x)−V∗(x)|
V∗(x) over the entire domain Z2+. The 3.7%maximal relative error reported in Table 2 is caused by only a small portion of

the state space. For contrast, the plot on the right shows the distance toV∗(x) of the value function under the (suboptimal) policy that overflows as
many customers as possible.

Braverman, Gurvich, and Huang: On the Taylor Expansion of Value Functions
650 Operations Research, 2020, vol. 68, no. 2, pp. 631–654, © 2020 INFORMS



In this short section, we wish to illustrate, informally
and via the simplest of examples, the connection be-
tween Tayloring and heavy-traffic approximations.

Consider the discrete-time queue with holding cost
c(x) � x, Px,x+1 � λ, and Px,x−1 � μ :� 1 − λ > 0.5. These
parameters are fixed, so the question is one of perfor-
mance approximation, but it is sufficient for illustration;
Example EC.1 in the e-companion adds control.

Let us consider two avenues to approximate the
infinite-horizon discounted cost.

5.1. Process Convergence
Let μ ↓ 1

2 so that ρ � λ/μ � (1 − μ)/μ ↑ 1—the queue is
in heavy traffic (see, e.g., Whitt 2002, chapter 9). It is
then a standard heavy-traffic result that extending
time by (1 − ρ)−2 and shrinking space by (1 − ρ),

(1 − ρ)X (1−ρ)−2t� � ≈ X̂(t),

where X̂(t) is a so-called reflected Brownian motion
with drift − 1

2 and diffusion coefficient σ2 ≡ 1. This
result is formalized by weak convergence arguments.
With discount factor equal, for example, to 1, the
infinite-horizon discounted reward of the diffusion
V̂(x) � Ex[

∫ ∞
0 e−sc(X̂(s))ds] solves the ordinary differ-

ential equation (ODE)

0 � x − 1
2
V′(x) + 1

2
V′′(x) − V(x), V′(0) � 0.

Relying on the weak convergence to X̂, it is then
possible to show that if one takes—in the Markov
chain control problem—the discount factor to be

αρ � 1 − (1 − ρ)2,

Then, as ρ↑1,

(1 − ρ)3V(x) � (1 − ρ)3Ex
∑∞
t�0

αt
ρXt

[ ]
≈ V̂(x).

In words, (1 − ρ)−3V̂ approximates the value function
up to an error that is small relative to (1 − ρ)−3.
5.2. Tayloring
The TCP for given λ and μ is given by

0 � x + α λ − μ
( )

V′(x) + 1
2
V′′(x)

( )
− (1 − α)V(x)

and V′(0) � 0. With λ < μ, this ODE has the solution

V̂α(x) � −α μ − λ

(1 − α)2 +
x

1 − α
+ c1eγ−x,

where γ− � −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(μ − λ)2 + 2 1

α (1 − α)
√

+ (μ − λ) < 0 and
c1 � − 1

(1−α)γ−.
Straightforward differentiation gives

D3V̂(x)
⃒⃒⃒ ⃒⃒⃒

� γ2−
1 − α

eγ−x ≤ γ2−
1 − α

,

so

Ex
∑∞
t�0

αt D3V̂α
⃒⃒⃒ ⃒⃒⃒∗

Xt±1

[ ]
≤ 1
1 − α

sup
x≥0

D3V̂α(x)
⃒⃒⃒ ⃒⃒⃒

≤ γ2−
(1 − α)2 ≤

Γ

(μ − λ)2 as α↑1,

where Γ does not depend on α, λ, μ. If μ and λ are
chosen so that ρ � λ/μ is away from 1, then the error
bound remains bounded as α↑1 while both the ap-
proximate value V̂α and the true value grow like
1/(1 − α) as α↑1.6
Let μ ↓ 1

2 and λ � 1 − μ to place the queue in heavy
traffic as before. Taking αρ � 1 − (1 − ρ)2, we have

Vαρ(x) − V̂αρ(x)
⃒⃒⃒ ⃒⃒⃒

≤ Γ

(1 − ρ)2 ,

consistent with the o(1/(1 − ρ)3)) accuracy of the
Brownian approximation derived through process
convergence.
Because Vαρ(x) ≥ 1

(1−ρ)3 for x ≥ 1
1−ρ, it follows that

Vαρ(x) − V̂αρ(x)
⃒⃒⃒ ⃒⃒⃒

≤ Γ(1 − ρ)Vαρ(x), for all x ≥ 1
1 − ρ

.

This establishes the asymptotic correctness of a
Brownian approximation by means of Tayloring
rather than by those of weak convergence. In con-
trast to Brownian approximations, Tayloring is a
purely analytical device.
Finally, this is an opportunity to revisit the con-

tribution of corners to the bound in Theorem 2. In a

Table 2. Relative Error: TAPI vs. TAPI with Exact-
Improvement Step

λi � 0.8Nipi

α h TAPI + Exact improve. One step

0.99 1 0.0376 0.0086 0.0095
2 0.0373 0.0081 0.0088
4 0.0346 0.0067 0.0079

0.999 1 0.0093 0.0033 0.0051
2 0.0082 0.0031 0.0045
4 0.0048 0.0023 0.0032

λi � Nipi

One stepα h TAPI + Exact improve.

0.99 1 0.0103 0.0089 0.0083
2 0.0107 0.0069 0.0100
4 0.0013 0.0014 0.0014

0.999 1 0.0013 0.0026 0.0030
2 0.0012 0.0026 0.0043
4 0.0001 0.0002 0.0002

Note. Parameters: d � 2, N1 � N2 � 10, M � 10, (p1, p2) � (0.56, 0.56),
(H1,H2) � (1, 4), and (B12,B21) � (5, 1).
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queuing network in which all stations operate at
utilization of 1 − ̅̅̅̅̅̅̅

1 − α
√ � 1 − ρ as before, the fraction

of time spent near corners at which two or more
stations are idle is of the order of (or smaller than)
(1 − α) � (1 − ρ)2.

6. Final Comments
In this paper, we have introduced Tayloring as a
rigorous framework for value function approxima-
tion. Applied to a controlled chain in discrete time
and space, we derive bounds grounded in PDE theory
and propose a solution algorithm with performance
guarantees. This paper is a first and by no means last
step. Much remains open in terms of the scope—
continuous time and space, finite and long-run av-
erage problems—and various algorithmic aspects.
Here is a short informal discussion of these directions.

6.1. Continuous Time
Consider theM/M/1 queue, which is the continuous-
time version of the discrete-time queue in Example 2.
This queue has Poisson arrivals with rate λ and a
single server with service times that are exponential
with (controlled) parameter u(x). Given holding and
service rate cost ru(x), consider the problem

min
U

Ex

∫ ∞

0
e−(1−α)tr X(t),U(t)( )dt

[ ]
.

The Bellman equation is given by

0 � min
u≥0 ru(x) + λ(V(x + 1) − V(x)){

+ u1{x > 0}(V(x − 1) − V(x)) − (1 − α)V(x)}.
Second-order Tayloring leads to the TCP

0 � min
u≥0 ru(x) + (λ − u)V′(x) + 1

2
(λ + u)V′′(x)

{
− (1 − α)V(x)

}
, x > 0,

and we use the boundary condition V′(0) � 0. Gener-
ally, for a continuous-time chain on Zd+ with transition-
rate matrix qu(x, y) at state x, we have

μu
( )

i(x) �
∑
y

qu(x, y) yi − xi
( )

and

σu( )ij(x) �
∑
y

qu(x, y) yi − xi
( )

yj − xj
( )

, for i, j ∈ [d].

It is reasonable to conjecture that versions of Theo-
rems 1 and 2 can be derived for the continuous-time
case with bounded rates because uniformization pro-
vides an immediate mapping between the con-
tinuous and discrete-time models and hence be-
tween their TCPs. In a variety of practical models,
the transition rates are unbounded as in the case of
queues with abandonment (see, e.g., Weerasinghe

and Mandelbaum 2013). Queueing models such as
this one may serve as test cases for the extension to
continuous time.

6.2. Continuous State Space
It is reasonable to conjecture that Theorems 1 and 2
still hold with modifications to μu and σu: for all
x ∈ Rd+,

μu
( )

i(x) � Ex
u (X1)i − xi
[ ]

�
∫
R+
Pu(x, dy) yi − xi

( )
, i ∈ [d], (34)

σ2u
( )

ij(x) � Ex
u ((X1)i − xi) (X1)j − xj

( )[ ]
�
∫
R2+

Pu x, dy
( )

yi − xi
( )

yj − xj
( )

, i, j ∈ [d]. (35)

Indeed, the continuous state space may seem initially
to simplify things insofar as there is no need to extend
μu and σu or to smooth the state space. This simpli-
fication, however, implies also losing the freedom, for
example, to extend μ and σ2 in a Lipschitz continuous
way or smooth the corners of the state space. It is these
freedoms that facilitate, in this paper, the application
of the PDE theory of classical solutions in smooth
domains.

6.3. Average Reward
Consider the average reward problem

V∗(x) � max
U

lim inf
n→∞

1
n + 1

Ex
∑n
t�0

r(Xt,U(Xt))
[ ]

.

Consider the equation

β + h(x) � max
u∈8(x)

ru(x) + Puh(x){ },

with Puh(x) :� ∑
y Pu

x,yh(y). Under suitable conditions
(e.g., Bertsekas 2007, chapter 4), if a constant β (to-
gether with a function h) solves this equation, then
V∗(x) ≡ β. That is, β is the optimal long-run average.
Second-order Tayloring then gives rise here to the

equation

β � max
u∈8(x)

ru(x) ++uh(x){ }.

Huang and Gurvich (2018) follow the Tayloring path
in identifying nearly optimal policies for an M/G/1
service-rate control problem under a long-run aver-
age criterion. There the volume of arrivals λ serves as
a natural scale parameter against which optimality
can be measured. That is, because the value function
scales with λ, one can express near optimality. It is
meaningful to write optimality gap � o(Vλ∗ ).
In venturing outside of queues, the long-run av-

erage cost criterion imposes a challenge: what is a
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natural notion of near optimality? This is in contrast to
the discounted case, in which the discount factor and
the initial condition supported generalizable notions
of scaling.

6.4. Finite-Horizon Problems
Consider a discrete time and space dynamic program
on a finite horizon of length T. Let Vt(x) be the value
with t steps to go and starting at state x. The Bellman
equation is given by

Vt(x) � max
u

ru(x) +
∑
y

Pu,t
x,yVt−1 y

( ){ }
,

which we can rewrite as

0 �max
u

ru(x) +
∑
y

Pu,t
x,y Vt(x) − Vt y

( )( ) + Vt−1(x) − Vt(x)
{

−∑
y

Pu,t
x,y Vt−1(x) − Vt−1 y

( ) + Vt(x) − Vt y
( )[ ]}

.

Let

μu,t(x) �
∑
y

Pu,t
x,y y − x
( )

, and σ2u,t(x) �
∑
y

Pu,t
x,y y − x
( )2.

Taking a second-order expansion in x and afirst-order
expansion in t, we arrive at the equation

0 � max
u

ru(x) + μu,t(x) ∂

∂x
Vt(x) + 1

2
σ2u,t(x)

∂2

∂x2
Vt(x)

{
− ∂

∂t
Vt(x)

}
.

We drop any consideration of boundary condition
from this informal outline. The approximation errors
should depend on the second derivative in t, the third
derivative in the state x, and the cross-derivative in
x and t that arises from the term

∑
y Pu,t

x,y[Vt−1(x) −
Vt−1(y) + Vt(x) − Vt(y)]. The connection between the
original chain and the Taylored equation seems a
straightforward extension of what we have done in
this paper, yet it remains for future work to discover
how all other ingredients, because they rely on PDE
bounds, can (if at all) be combined to produce similar
optimality-gap bounds.

6.5. State-Space Collapse (SSC)
A key benefit of asymptotic analysis in controlled
queues is so-called state-space collapse—the reduc-
tion of problem dimensionality through the conver-
gence of parts of the state space to degenerate points.
Roughly speaking, SSC is rooted in the fact that con-
trols can instantaneously direct more “power” to cer-
tain queues, a power that is greater in order of magni-
tude than the natural scale of the workload. Under SSC,

some states in the original state space “disappear” in the
asymptotic limit and become identical with a meta-
state that attracts them. For example, in a two-class,
single-server queue with the longest-queue-first policy,
all queue–state pairs (q1, q2)with the same sum q1 + q2
are “quickly” attracted to the metastate that captures
this total queue length (that is equally split between
the individual queues). In a setting absent of scaling
(except the discount factor), it is not clear how to
restore such effects.
It is reasonable to conjecture that—for a queuing net-

work that exhibits SSC under heavy-traffic analysis—
all states that are quickly attracted to a common
metastate in the asymptotic limit will have a similar
value-function value. It is therefore plausible that a
flexible enough aggregation procedure (such as the
one discussed in Remark 8) will capture this effect.
This is yet to be explored.

6.6. TAPI Computation with Nonuniform Grids
In our computational examples, we do not rationalize
the choice of the coarseness level h, and once h is chosen,
we use it uniformly in the state space. Our bounds,
however, might suggest a direction for improvement.
Finite difference methods for PDEs use finer grids

in regions in which large gradients are expected and
coarser grids in which the function is relatively “flat.”
This brings computational efficiency at little cost to
accuracy. A similar logic applies to TAPI, as is nicely
captured in the bound (30), which we rewrite here as

Ex̂
U∗

∑∞
t�0

ᾱt
hh

2+β D2V̂∗
[ ]∗

β,Xh
t ±h

[ ]

+ Ex
Uh∗

∑∞
t�0

ᾱt
hh

2+β D2V̂∗
[ ]∗

β,Xh
t ±h

[ ]
. (36)

The error depends on the interaction of the step size h
with the supremum of [D2V̂∗] over a neighborhood of
x. It makes sense to use large “boxes” in which [D2V̂∗]
is relatively flat and vice versa. Ad hoc knowledge of
the problem can help here. In the inventory problem
of Section 4, for example, V̂ is approximately linear far
from the origin, suggesting that one could use a large
h in that part of the state space. We can use such
understanding to build a (computationally beneficial)
TCP-equivalent chain with nonuniform spacing over
the state space.
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Endnotes
1This stream of the literature is in its infancy relative to the well-
developed literature on convergence-based asymptotic optimality.
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A key benefit of asymptotic analysis in controlled queues is so-called
state-space collapse—the reduction of problemdimensionality through
the convergence of parts of the state space to degenerate points.
A framework to incorporate such dimensionality reduction into a
Stein-type analysis is still absent (see Section 6).
2The question of how to truncate the state space of an MDP and how
the truncated values converge to the true one is of general interest in
MDP (see, e.g., Altman 1993 and the references therein). It is natural
to chooseM large enough so that the value functions remain relatively
unchanged as one increases M further.
3Moving from OD boundary to FOT boundary does not change
the conclusions for this example. The solution to the FOT-boundary
TCP has the form V̂U(x) � gα(x), where |D3gα(x)| ≤ Γ(1 − α) and
|D2gα(0)| ≤ Γ

̅̅̅̅̅̅̅
1 − α

√
.

4 It is here where we use the assumption that the action set is of the
form 8(x) � {u ∈ Rda : Au ≤ b(x)} ∩ D.
5 Û∗(xn) → Û∗(x) for all x ∈ ∂Rd+ and sequences {xn} with xn ∈ Rd++
and xn → x.
6Rewrite V̂α(x) � c1 − α μ−λ

(1−α)2 + x
1−α+ c1(eγ−x − 1) � c1 − α μ−λ

(1−α)2 + 1
(1−α) ·

(x − 1
γ− (eγ−x − 1)). It can be easily shown that c1 − α μ−λ

(1−α)2 ≈ 1
2(1−α)(μ−λ)

as α↑1, so, because 1
γ− (eγ−x − 1) ≥ x, V̂α(x) ≈ 1

2(1−α)(μ−λ) + 1
1−α ·

(x − 1
γ− (eγ−x − 1)) ≥ 1

2(1−α)(μ−λ).
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