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ABSTRACT: The frequency of heat waves (defined as daily temperature exceeding the local 90th percentile for at least
three consecutive days) during summer in the United States is examined for daily maximum and minimum temperature and
maximum apparent temperature, in recent observations and in 10 CMIP5 models for recent past and future. The annual
average percentage of days participating in a heat wave varied between approximately 2% and 10% in observations and in
the model’s historical simulations during 1979-2005. Applying today’s temperature thresholds to future projections, heat-
wave frequencies rise to more than 20% by 2035-40. However, given the models’ slight overestimation of frequencies and
positive trend rates during 1979-2005, these projected heat-wave frequencies should be regarded cautiously. The models’
overestimations may be associated with their higher daily autocorrelation than is found in observations. Heat-wave fre-
quencies defined using apparent temperature, reflecting both temperature and atmospheric moisture, are projected to
increase at a slightly (and statistically significantly) faster rate than for temperature alone. Analyses show little or no changes
in the day-to-day variability or persistence (autocorrelation) of extreme temperature between recent past and future, in-
dicating that the future heat-wave frequency will be due predominantly to increases in standardized (using historical period
statistics) mean temperature and moisture content, adjusted by the local climatological daily autocorrelation. Using non-
parametric methods, the average level and spatial pattern of future heat-wave frequency is shown to be approximately
predictable on the basis of only projected mean temperature increases and local autocorrelation. These model-projected

changes, even if only approximate, would impact infrastructure, ecology, and human well-being.
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1. Introduction

In recent decades, much research has focused on the fre-
quency, intensity, and duration of heat waves, especially in the
context of a warming climate (e.g., Vose et al. 2017; Hansen
et al. 2012). Heat waves in summer in the United States have
been found to be related to specific atmospheric wave patterns
(e.g., Teng et al. 2013; Grotjahn et al. 2016), land surface
conditions (Durre et al. 2000), or oceanic temperature patterns
(McKinnon et al. 2016).

Many heat-wave definitions and associated warning systems
exist, often reflecting what local officials consider best serves
the public (Sheridan and Kalkstein 2004). For a given location
and time of year, heat waves are often defined as a set of
consecutive days with temperature exceeding a defined per-
centile threshold relative to a reference climatological distri-
bution (Perkins and Alexander 2013). Examples requiring
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various thresholds and consecutive day durations are numer-
ous, for example, Oswald and Rood (2014), Anderson and Bell
(2009), Smith et al. (2013), and Tan et al. (2007), among others.
Some definitions require only a single heat-wave day (e.g.,
Alexander et al. 2006).! Other definitions include the spatial
extent of extreme temperature (e.g., McKinnon et al. 2016;
Lyon et al. 2019), or the integrated magnitude of an event (e.g.,
Russo et al. 2014). The variation of the spatial distribution of
heat-wave activity across the United States as a function of the
percentile threshold and duration requirement was examined
in Lyon and Barnston (2017) (hereinafter LB17). A review of
the effects of rising temperature on extreme heat events under
various definitions is discussed in Horton et al. (2016).

In this study, the role of day-to-day autocorrelation of the
temperature—a feature that has a stable, climatologically de-
termined spatial pattern across the United States for a given
time of year—is highlighted as a key indicator of the expected
frequency of heat-wave occurrence. Further, the autocorrela-
tion becomes a modulating factor in the prediction of future
heat-wave rates, given projected increases in temperature. In
this introduction, we now discuss some preliminary analyses to
set the stage for the study’s main questions and the analyses to
address them.

! Alexander et al. (2006) also considered other heat-wave
definitions.
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FIG. 1. Probability of 1-6 consecutive days of 90th-percentile
temperature, for values of daily autocorrelation of 0, 0.4, 0.6, 0.7
and 0.8. The lines show probabilities for the counting method when
each day in an n-day heat wave is counted as an n-day event, as
done in this study. Note that the 0.018 and 0.003 probabilities
shown for two and three consecutive days, respectively, for zero
autocorrelation would be only 0.01 and 0.001 (i.e., [1 — 0.90]* and
[1 — 0.90]%) if the string of two (or three) heat-wave-qualifying days
were counted as one 2-day (or 3 day) heat-wave occurrence instead
of counting each of the two (or three) days as an occurrence as
done here.

When the definition of a heat wave requires two or more
consecutive qualifying days, the occurrence of heat waves is
governed partly by the climatological level of persistence of
weather patterns—a characteristic that varies spatially across
the United States. The day-to-day (hereafter, “daily”) autocor-
relation, statistically representing this tendency for persistence, is
governed partly by the speed with which upper-atmospheric
waves move through a region, and by the persistence of land
surface anomalies—particularly soil moisture (Berg et al. 2014). If
each day’s temperature anomaly were independent of that on
adjacent days, the heat-wave rate would be far lower than ob-
served. If each day in a string of n consecutive heat-wave days is
counted as an occurrence of an n-day heat wave (as done in this
study), the frequency of occurrence of heat waves of varying du-
rations for different levels of autocorrelation can be determined
nonparametrically. Here, using a 90th-percentile requirement,
50000 simulations are conducted using a Gaussian random
number generator, in which the autocorrelation at n-day lag is the
assigned 1-day lag autocorrelation value raised to the nth power
(i.e., a first-order Markov model, as used in other extreme daily
temperature studies; e.g., Mearns et al. 1984). The resulting
heat-wave frequencies are shown in Fig. 1. With a typical 1-day
observed lag autocorrelation of approximately 0.7 for daily
maximum temperature at individual stations, the frequency of
observing at least three consecutive days at the 90th percentile
is about 4.8%.

The results shown in Fig. 1 assume that daily maximum or
minimum temperature is approximately normally (Gaussian)
distributed, as has been assumed in some past studies (e.g.,
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Mearns et al. 1984). This assumption is not entirely realistic,
however. Deviations from normality in daily maximum tem-
perature over extensive regions were noted in Loikith and
Neelin (2015) and Loikith et al. (2018), in the form of a
shortened right tail of the distribution. A short right tail, as-
sociated with negative skewness, results in a greater increase in
the frequency of high percentile temperatures with a given
increase in temperature than expected in a normal distribution.
In LB17 a tendency for negative skewness was shown in
maximum and minimum daily summer U.S. temperatures,
particularly in the Rockies and Great Basin regions for maxi-
mum temperature. We assume a Gaussian distribution in one
of our analyses, but also evaluate the realism of that assump-
tion and the effect of negative skewness on the result.

Assuming a Gaussian distribution and using a baseline daily
standard deviation, the increase in the mean daily temperature
indicated in climate projections allows for an estimation of the
future increase in frequency of single heat-wave-qualifying
days, and, when combined with knowledge of the daily auto-
correlation, an estimation also of the frequency of strings of
multiple consecutive qualifying days. For example, using a
90th-percentile threshold and assuming unchanging daily var-
iability, the probability of a single heat-wave day would in-
crease from the 0.10 baseline to 0.22, then to 0.39, and finally to
0.59 for increases in standardized mean temperature of 0.5, 1.0,
and 1.5 standard deviations, respectively. This analysis design
was applied to individual U.S. stations in Mearns et al. (1984).
The calculation of the frequency of multiday sequences of
qualifying days depends also on estimated future values of
autocorrelation and daily variability, each of which may re-
main at the currently observed levels or change in the future.

Mann et al. (2017, 2018) suggest that, as the climate warms,
quasi-resonant midlatitude wave patterns may result in more
persistent summer temperature extremes (implying greater
daily autocorrelation). Increases in daily temperature vari-
ability alone would also lead to increases in heat-wave fre-
quency. While Schir et al. (2004) and Yiou et al. (2009)
discussed upward trends in observed daily temperature vari-
ability in Europe, Rhines and Huybers (2013) found no sta-
tistically significant change in observed variability since the
mid-twentieth century over North America. Further, Sippel
et al. (2015) found a lack of increasing daily variability in
various regions of the globe once they accounted for a statis-
tical bias affecting some prior assessments. Huntingford et al.
(2013) found a lack of secular trend during approximately
1960-2000 in observed global interannual variability (with
notable regional variations, including within the United States
in summer), which is a secondary contributor to daily vari-
ability. For future projections, Cattiaux et al. (2015) noted in-
creases in daily temperature variability and range in Europe
based on CMIP5 models, and Schir et al. (2004) similarly
identified increases in variability in Europe based on regional
climate model projections. Huntingford et al. (2013) found a
lack of model indication of a future global average increase in
interannual temperature variability, with a possible decrease
suggested for late in the century.

In light of this somewhat ambiguous picture, we here ex-
amine the CMIP5 models (Taylor et al. 2012) for changes in
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TABLE 1. The 10 CMIP5 models and their sources and references, analyzed here for heat-wave behavior during approximately 1979—
2005 for historical baseline and 2005-40 for future projections under the RCP4.5 and RCP8.5 greenhouse gas scenarios. When available,
the transient climate response and equilibrium climate sensitivity (after Flato et al. 2013) are given, to be compared with the 30-model

average and 90% model uncertainty given in the bottom row.

Model name

Source institution; reference

Transient climate Equilibrium climate
response (°C) sensitivity (°C)

ACCESS1.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) 2.0 38
and Bureau of Meteorology (BOM), Australia; Dix et al. (2013)

ACCESS1.3 CSIRO BOM,; Dix et al. (2013) 1.7 n/a

BCC_CSM1.1(m) Beijing Climate Center, China Meteorological Administration, China; 21 29
Wau et al. (2014)

CSIRO Mk3.6.0  CSIRO; Jeffrey et al. (2013) 1.8 4.1

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences and 1.4 n/a
Tsinghua University, China; Li et al. (2013)

HadGEM2-CC Met Office Hadley Centre, United Kingdom; Martin et al. (2011) n/a n/a

IPSL-CM5A-MR  L’Institut Pierre-Simon Laplace (IPSL), France; Dufresne et al. (2013) 2.0 n/a

IPSL-CM5B-LR  IPSL; Dufresne et al. (2013) 1.5 2.6

MIROCS Japan Agency for Marine-Earth Science and Technology, Japan; 1.5 2.7
Watanabe et al. (2010)

NorESM1-M Norwegian Climate Centre, Norway; Iversen et al. (2013) 1.4 2.8

10-model mean 1.7 32

30-model mean; 1.8 0.6 32+13

90% uncertainty

daily autocorrelation and variability during summer in the
United States. We examine heat-wave frequencies defined by
temperature and apparent temperature, and the factors un-
derpinning the broad features of their geographical distribu-
tions across the United States in the present and future, using
observations and model output for both historical simulations
and future projections. The model projections are examined
for near-future decades (to 2040), using 10 CMIP5 models for
two greenhouse gas forcing scenarios.

Our main objectives are to 1) demonstrate that daily auto-
correlation shapes the spatial distribution of heat-wave fre-
quency in observations and model data; 2) evaluate the realism
of CMIP5 models’ historical simulations of autocorrelation,
heat-wave frequencies, and trends; 3) compare model-projected
heat-wave frequencies in apparent temperature with those in
temperature alone; and 4) test the hypothesis that future in-
creases in heat-wave frequency are caused predominantly by
increases in mean temperature (or mean apparent temperature),
modulated by the local climatological daily autocorrelation, with
minimal contribution from changes in daily autocorrelation or
variability. Following descriptions of the data and methods in
sections 2 and 3, respectively, results are presented in section 4,
followed by a discussion and some concluding remarks in
section 5.

2. Data

This study uses daily station temperature observations, and
daily temperature and specific humidity from reanalysis, both
spanning 1979-2013. It also uses daily temperature and specific
humidity outputs from 10 CMIP5 models (Table 1) for recent
past simulations (1979-2005) and near-future climate projec-
tions (2006-40). The model projections use the high concen-
tration RCP8.5 (Riahi et al. 2011) and the more moderate
RCP4.5 (Thomson et al. 2011) forcing pathways.
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Two observational datasets are used. The first is the U.S.
Historical Climatology Network (USHCN; Menne et al. 2009,
2015), version 1, providing daily maximum and minimum
temperatures for 1218 stations across the continental United
States. The USHCN data are postprocessed to maximize ho-
mogeneity, based on the homogenized monthly mean data of
USHCN, version 2.5 (Menne et al. 2009; Vose et al. 2012).
Version 2.5 contains adjustments for temporal discontinuities
related to station relocations, change of the time of observation
(Vose et al. 2003), and other artifacts. The homogenization
method used is that described in Oswald and Rood (2014),
where the nonhomogenized daily data are compared with the
homogenized monthly mean data. Details about the homoge-
nization process are provided in section S1 of the online sup-
plemental material. Aside from homogenization, some of the
daily datain USHCN, version 1, are rejected, based on the data
warning flags provided in the version 1 data (see supplemental
section S1). Missing data are not filled in. Stations with more
than 10% missing data during May-September 1979-2013 are
rejected, leaving 857 stations for our analyses. The percentage
of days with nonmissing data is taken into account in calcula-
tions of the relative (percentage) frequency of heat-wave
occurrence.

The second dataset is the North American Regional Reanalysis
(NARR; Mesinger et al. 2006), an observational data assimilation
system built around the eta forecast model. The NARR contains
gridded values at 32-km spatial resolution and provides 3-hourly
values of 2-m air temperature, specific humidity, and relative
humidity. Daily maximum and minimum temperatures are de-
rived from the 3-hourly NARR values, and the moisture variables
enable calculation of the maximum apparent temperature, de-
fined following the multiple linear regression of Steadman (1984)
as —1.3 + 0.92T +2.2e (for shade, with no wind), where T is
temperature (°C) and e is vapor pressure (kPa). The apparent
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temperature incorporates absolute atmospheric moisture to best
reflect human discomfort and is highly correlated with the heat
index used by the U.S. National Weather Service. A comparison
of the apparent temperature with the heat index is provided in
section S2 of the online supplemental material.

Because most of the USHCN stations contain no measure-
ments of atmospheric moisture, the gridded specific humidity
data from the NARR at the nearest grid point are used to
compute the apparent temperature at the USHCN stations.
Use of components from two different datasets introduces
some uncertainty into the resulting apparent temperature.
However, the viability of this combination was evaluated in
LB17 through a comparison with apparent temperatures at 187
stations (NCDC 2011) having direct observations of both
temperature and moisture, with favorable results. While the
NARR moisture data do have some reported problems, such
as a negative bias during high moisture extremes (Raymond
et al. 2017), overall, it is considered as representative of ob-
served conditions as most other reanalysis datasets.

The 10 CMIPS models were selected on the basis of data
reliability and processing capacity and were regridded to a
common 2° grid. The first individual ensemble member is se-
lected from each model. Table 1 shows the transient climate
response and equilibrium climate sensitivity of each of the 10
models (Flato et al. 2013), compared with the full 30-model
mean and uncertainty range. The mean of the 10 models is
close to that of the full set for both parameters, and the un-
certainty range shows that none is near either extreme tail of
the 30-model distribution.

Here, just the 2006-40 period is examined, with the rationale
that 1) more confidence may be placed in the projections and
the greenhouse gas forcing scenarios for the near future, and
2) many users’ decision time scales go out only one to two
decades. The global average temperature projections under
the RCP4.5 and RCP8.5 greenhouse gas scenarios do not di-
verge substantially until the middle of the twenty-first century
(Wuebbles et al. 2017; Sillmann et al. 2013), and are expected
to just begin to differ noticeably by 2040. However, the near-
term similarity in mean temperature evolution may not nec-
essarily translate directly to heat-wave frequency (Russo et al.
2015). Examination of both scenarios also provides a second-
ary benefit of increasing the sample size of projections.

3. Methods

The interannual variability of the frequency of heat waves in
the United States is evaluated during May through September,
with spatial analyses conducted for the July-August period—the
peak of the warm season. A statistical modeling experiment
(described below) is carried out to test the hypothesis that future
heat-wave increases are caused mainly by increases in mean
temperature. A heat wave is defined as at least three consecutive
days with daily temperature at or above the 90th percentile
threshold, which is defined nonparametrically using ranking (see
section S3 of the online supplemental material for further de-
tails), with respect to the recent period of 1979-2013 for obser-
vations, and 1979-2005 (or 1980-2005) for model simulations. In
direct comparisons between observations and models, the 1979—
2005 period is used. For the model projections, heat waves are
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defined with respect to thresholds identified from each model’s
own simulations for the historical period for daily maximum and
minimum temperature, and maximum apparent temperature.
For both the observed and model data, the maximum apparent
temperature is calculated using daily average specific humidity.
Heat-wave days are tallied by counting each day in a sequence of
consecutive qualifying days equally. Thus, for three consecutive
qualifying days all three days are counted as an occurrence of a
3-day heat wave, resulting in a count of 3 rather than 1.

Following general results showing time series and spatial
maps of historical and projected heat-wave frequencies, the
following hypothesis is tested: Model-projected future in-
creases in heat-wave frequency are determined primarily by
upward shifts in mean temperature, with little or no contri-
bution from changes in daily variability or autocorrelation. The
hypothesis is tested under the assumption of a Gaussian daily
temperature distribution, and a first-order Markov daily lag
correlation structure in which the 1-day lag correlation is r, the
2-day lag correlation is 7%, and so on. The theoretically ex-
pected future heat-wave frequency is estimated by shifting the
models’ historical daily temperature distribution by the dif-
ference in mean temperature between the models’ historical
period and their future period, standardized with respect to the
mean and standard deviation of the daily historical data. In the
analysis, the autocorrelation and daily standard deviation are
held fixed to those of the historical data. The model autocor-
relation is computed over all years using daily departures from
the historical period average for each July day, and therefore
contains both intraseasonal and interannual components. (The
intraseasonal component alone would use departures only
from the average of the days of July for a given single year.)
More information about the computation is provided in
section S6 of the online supplemental material. A 50 000-
member synthetic time series with the prescribed autocor-
relation is developed from Gaussian random numbers, and
the frequency of a single heat-wave qualifying day, and then
3+ heat-wave days, is determined for a specified upward
shift in the mean. This calculation is performed separately
for each model and each grid point for July, with the re-
sulting expected heat-wave frequencies averaged across all
models. Using this nonparametric approach, Fig. 2 shows
the frequency of 3+-day heat waves resulting from given
increases in standardized mean temperature for given auto-
correlation levels, assuming unchanging variability.> These
synthetically modeled heat-wave frequencies are compared
with direct calculations of heat-wave frequency from the
projected model data, and differences are discussed in view of
1) direct determinations of changes in model daily variability
and autocorrelation between the historical runs and the fu-
ture projections and 2) the realism of the Gaussian and
Markov assumptions used.

2 A plot similar to Fig. 2, but for mean temperature increases for
given changes in daily variability assuming an unchanging auto-
correlation, is shown in section S4 of the online supplemental
material.
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FIG. 2. Probability of occurrence of three or more consecutive
heat-wave-qualifying days as a function of standardized tempera-
ture increases and daily autocorrelation. A Gaussian distribution of
temperature is assumed. A horizontal dashed line is shown at the
0.79 autocorrelation level (as measured for the multimodel July
average for the historical model simulation period of 1979-2005),
and vertical dashed lines are shown for temperature increases of
0.57 and 0.66 standard deviations (as projected for 2026—40 relative
to 1979-2005 for July—August for the RCP4.5 and RCP8.5 sce-
narios, respectively).

4. Results

a. Heat-wave frequency in observations

The geographical distribution of warm season (May-
September) heat-wave frequency over the United States,
based on daily maximum temperature during 1979-2013 us-
ing the USHCN station data and the NARR gridded data
(placed onto a 1° grid; see the caption), is shown in the top
panels of Fig. 3. These plots show a relative minimum in
frequency in the northeastern and north-central parts of the
country where synoptic weather activity, which interrupts
persistent regimes, continues through summer. This pattern is
similar to that shown in LB17 and is approximately echoed by
the patterns for duration and intensity of extreme heat events
in Oswald and Rood (2014), also using USHCN data, and less
closely matches those in Smith et al. (2013) who used NLDAS
data (Xia et al. 2012) under several qualification criteria. The
pattern of heat-wave frequency defined using daily minimum
temperature (Fig. 3, bottom) shows an additional broad
minimum in the Rockies and Great Basin for USHCN data,
and overall, fewer heat-wave events than noted for maximum
temperature.

The heat-wave frequency patterns show a close correspon-
dence to those of the daily autocorrelation of July® daily
maximum and minimum temperature, shown in Fig. 4, based
on the USHCN station data and gridded NARR data (again,

3The autocorrelation patterns for May-September and July—
August (not shown) are similar to that of July.
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placed onto a 1° grid). It is not surprising that autocorrelation,
representing the tendency for anomaly persistence, is associ-
ated with heat-wave frequency, given the consecutive day re-
quirement for a heat wave.* The autocorrelation in the NARR
is higher than in USHCN (Fig. 4) because temperatures are
averaged over a grid square in NARR versus a point in
USHCN temperatures, the former benefitting from noise fil-
tering. Also, the NARR is based on model dynamics that
cannot include all of the smaller-scale processes governing the
surface observations, resulting in greater temporal continuity
in NARR. In both datasets autocorrelation tends to be higher
for maximum than minimum temperature, resulting in higher
heat-wave frequencies for maximum temperature (found also
in LB17).

The top panel of Fig. 5 shows interannual variations of the
percentage frequency of heat waves for the United States as a
whole for daily maximum and minimum temperature, aver-
aged over May through September of each year for USHCN
and NARR data during 1979-2013. Unlike the frequencies
shown in Fig. 3, using heat-wave thresholds based on the 1979-
2013 period, the percentage frequencies here are derived from
thresholds based on only the 1979-2005 period (but applied to
all of 1979-2013), for comparability to the model simulations
(discussed below). For 1979-2013, maximum temperature
frequencies in the two datasets are correlated at 0.80, despite
the NARR’s frequency surge during 2007 and 2009-13, relative
to USHCN. The USHCN data show an upward trend in heat
waves based on daily maximum temperature (the linear trend
slope is 0.10% per year, statistically significant at p < 0.05),
while the positive trend in the NARR is greater (0.28% yr~ ",
significant at p < 0.01). Positive trends in U.S. daily maximum
temperature as well as number of days exceeding the 90th
percentile were similarly found in Mutiibwa et al. (2015) using
NLDAS phase-2 data (derived largely from the NARR data
fields). The notable rise in heat-wave frequency based on maxi-
mum temperature in the NARR data late in the observed period
is found to reflect a similar rise in the maximum temperature.
Section S5 of the online supplemental material provides more
detail about this surge in NARR maximum temperature.

For daily minimum temperature (dotted lines in top panel of
Fig. 5), lower heat-wave frequencies are apparent, and USHCN
and NARR frequencies are correlated at 0.89, with statistically
significant (p < 0.05) positive trends slopes of 0.12% and
0.08% yr ', respectively. A larger upward trend in U.S. heat-
wave frequency for minimum vis-a-vis maximum temperature
was found in LB17, Oswald (2018), and in Peterson et al. (2008)
for high temperature extremes in many North American subre-
gions. The trend difference seen here for the USHCN data is in
the same sense, but more modest and not statistically significant.

The marked difference in the maximum temperature trend
in USHCN versus NARR observations may raise questions
about the reality of the NARR data at the surface, assuming

4The ““1-sided correlation” (Van Den Dool 1987), in which the
contribution to the autocorrelation comes only from positive
temperature anomalies (for greater relevance to heat waves), is
found to be highly similar to the full-sample autocorrelation.
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FIG. 3. Observed heat-wave frequency during May-September of 1979-2013, interpolated to a 1° grid, for (left) the USHCN obser-
vations and (right) the NARR observations, based on (top) daily maximum temperature and (bottom) minimum temperature. Heat-wave
thresholds are derived using the full 35-yr observation period. When more than one station contributes to a 1° cell, the frequencies are
averaged for the USHCN data, and, for comparability, the NARR gridded values closest to each station are likewise averaged for the 1°
cells. For all maps, if a grid square has no stations within it, it is left blank.

that the homogenized USHCN station observations better
reflect ground truth.

The observed heat-wave frequency time series for daily
maximum apparent temperature is shown on the bottom panel
of Fig. 5, compared with the observed maximum temperature
(dotted lines). Frequencies of the two variables generally track
one another, correlating at 0.88, and the upward trend in maxi-
mum apparent temperature (0.08% yr~ ') is significant (p < 0.05).
This feature agrees with findings in Gaffen and Ross (1998, 1999),
although they found more strongly significant upward trends in
apparent temperature in much of the United States for somewhat
earlier periods. We also note that, using NLDAS phase-2 data,
Smith et al. (2013) showed statistically significant upward trends in
heat waves in daily maximum apparent temperature over a similar
analysis period as ours, using multiple qualification criteria. As
noted above, NARR (and NLDAS) show greater upward trends
in temperature and in heat-wave frequency than USHCN, due to
NARR’s strong late-period increases.

b. Comparison of model simulations with observations
The multimodel mean of the heat-wave frequency for the
historical simulations (1979-2005) are shown on the left side of
the top and bottom panels of Fig. 5 (purple line), with a closer
view of just the historical period of the top panel provided in
the middle panel. While simulated and observed frequencies
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are at comparable levels in the first decade, simulated fre-
quencies tend to exceed those for the USHCN and NARR
observations from the early 1990s through 2005, and thus
show a slightly stronger upward trend and a higher period
mean. While the NARR frequency rises rapidly from 2007 to
2013, trend consistency during the common period of 1979-
2005 is desired. The difference in the linear trend between the
USHCN observations and the multimodel mean during 1979-
2005 (0.06% yr—' vs 0.19% yr~! for maximum temperature-
based heat waves) is weakly significant at p = 0.07. The trend
of the NARR during the period is 0.10% yr~!, statistically
indistinguishable from the model trend. These comparisons are
important because, if the credibility of the trend in the model
simulations is in question, one might distrust the models’ future
heat-wave trend rates and resulting frequencies.

The left side of the panels of Fig. 6 shows the range in sim-
ulated heat-wave frequency across the single members of the
10 CMIPS5 models and the multimodel mean, based on daily
maximum temperature (Fig. 6, top) and apparent temperature
(Fig. 6, bottom). Figure 6 shows that despite the greater up-
ward trend slope in the models than in the observations, the
frequencies of both USHCN and NARR observations fall
within the range of the model frequencies during most years.
On the other hand, the first column of data in Table 2 shows, for
each model, the mean heat-wave frequency and the linear
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FIG. 4. Adjacent-day lag autocorrelation of July temperature in (left) USHCN-based station observations and (right) NARR reanalysis
observations, both for 1979-2013, and interpolated to a 1°-grid, for (top) daily maximum temperature and (bottom) daily minimum.

trend rates for maximum temperature in the model simulations
and the observations. Despite substantial differences in mean
frequency level and trends among the models (due to both
model differences and differing phasing of multidecadal in-
ternal variability), upward trends exceed that of the USHCN
observations in all 10 models.

Other studies have shown closer correspondence between
CMIP5 model and observed trends in actual temperatures
than we find here for heat-wave frequencies, for longer or
earlier periods and/or larger regions. Kumar et al. (2013)
showed a realistic positive trend rate in CMIP model-
simulated annual mean temperature averaged over global
land areas during 1930-2004. More specific to the United
States during summer in 1980-2005, Lee et al. (2019) noted
reasonably good CMIPS5 trend fidelity in mean temperature,
except for the southeast region where the simulated tem-
perature trend was positive while the observed trend was
negative. However, while not significant, they found CMIP5
trends more strongly positive than the USHCN-observed
trend in five of the remaining six U.S. regions during 1980-
2005. Similarly, Stegall and Kunkel (2017) found greater
upward trends for summer in CMIPS simulations than in
observations using U.S. Climate Division data in most regions
of the country during 1980-2005.

To further validate the CMIP5 model performance during
the historical period, the spatial distributions of the linear trend
slopes, the mean heat-wave frequencies, and the daily
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autocorrelation within the United States in the CMIP5 multi-
model average are compared with those of the USHCN and
NARR observations during 1979-2005 (Fig. 7). The left col-
umn of Fig. 7 shows, despite an overall overestimation of the
upward trend by the models, a reasonably good model repro-
duction of the observed spatial variation of trends in both
USHCN and NARR observations, with maxima in the interior
southwestern United States and secondarily in the interior
mid-Atlantic/Northeast region. The model pattern correlates
at approximately 0.6 with both USHCN and NARR. The
model reproduction of the pattern of heat-wave frequencies
themselves during the historical period (middle column of
Fig. 7) is also satisfactory, although the models generally
overestimate heat-wave frequencies, and do not reproduce the
relative minimum in the northern Great Plains region. This
model omission is likely related to the omission of a minimum
in daily autocorrelation in the same region (right column of
Fig. 7), while approximately reproducing the main features of
the autocorrelation pattern otherwise. The models overesti-
mate the autocorrelation level in much of the country, and
this bias helps explain the general overestimation of heat-wave
frequencies. The bottom row of Fig. 7 shows the spatial
distribution of the difference between the models (Fig. 7,
third row) and the USHCN observations (Fig. 7, first row).
In all three variables—trend, frequency, and autocorrela-
tion—the models tend to show smaller spatial variability
across the United States than seen in the observations, in
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agreement with findings in Kumar et al. (2013) for temper-
ature itself over a longer period. The spatial average of the
standard deviation of the daily maximum temperature is
also compared between models and observations during
1979-2005 and is found to be comparable (3.35°C for
USHCN and 3.05°C for NARR vs 3.29°C for CMIP5). The
exceedance of the model overall autocorrelation level over
that of observations is substantially, but not entirely (not
shown), due to the larger (here, 2°) grid squares used for the
models than for the observations.

The somewhat greater upward trend in heat-wave frequency
in the multimodel ensemble (MME) than in observations
during 1979-2005, while concerning, does not necessarily imply
overestimation of projected future heat-wave frequency. It is
possible that the models are reproducing the observed upward
trend as well as expected if they are not able to incorporate
some circumstances unique to the brief 27-yr period in the
United States in summer—circumstances that may not persist
into the forthcoming decades. For example, a relative pause in
the global warming trend that started around the turn of the
century in global surface observations (e.g., Tollefson 2014;
Meehl et al. 2011; Trenberth et al. 2014) has been tied to
tropical Pacific decadal variability (Kosaka and Xie 2013) and
would not be expected to be reproduced in phase in unin-
itialized model simulations.’ More locally, Hansen et al. (1999)
found that the United States lagged the globe in its warming
rate, and that the eastern United States showed no warming
trend (for a longer period, ending in 1998) likely due to mul-
tidecadal fluctuations in North Atlantic Ocean sea surface
temperature. Another possible longer-term contributor to a
slowdown in extreme summer heat is a half-to-full-century-
long agricultural cropland intensification in a large area cen-
tered in the Midwest, causing more evapotranspiration and
precipitation, suppressing maximum temperatures (Mueller
et al. 2015). Moreover, the use of irrigation has been shown to
suppress summer daily maximum temperatures (Thiery et al.
2017; Cook et al. 2011; Adegoke et al. 2003).

If the above factors are not regarded as possible extenuating
circumstances, one might consider the CMIP5 model output
used here as unrealistic given their positive bias in heat-wave
trend rates. However, even if heat-wave trends in the model
projections are overestimated, this bias does not imply likely
failure to reproduce the approximate spatial distribution of
heat-wave trends (Fig. 7) and thus future frequency patterns,
relative changes in daily variability or autocorrelation, and
differences in rates of increase of heat waves using apparent
temperature versus temperature, or daily maximum versus
minimum temperature.

¢. Model projections of future heat-wave frequency
The right side of Fig. 5 (top panel) shows the interannual
variations of the projected multimodel average heat-wave

> However, on a global basis, observed global upward trends in
the frequency of extreme high temperature continued during this
warming pause in some studies (Seneviratne et al. 2014); perhaps
the United States is an exception during summer.
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percentage frequency averaged over the United States for
the May-September season for daily maximum and mini-
mum temperature for the RCP4.5 and RCP8.5 scenarios.
Frequencies for the two scenarios begin at near 10% and
reach 20%-25% by 2035-40, with RCP8.5 becoming higher
than RCP4.5 as expected given RCP8.5’s greater rate of
increase in radiative forcing, consistent with findings in
Wuebbles et al. (2014) and Sillmann et al. (2013) for annual
mean U.S. temperature.

Figure 5 shows heat-wave frequencies maintaining a
higher level for maximum than minimum temperature dur-
ing the historical and much of the future period, as expected
assuming that the higher daily autocorrelation for maximum
than minimum temperature in observations (Fig. 4) con-
tinues into the future. However, the projected difference in
frequency between daily maximum and minimum decreases
with time, and virtually disappears by 2035-40. This out-
come continues the greater upward trend rate in past ob-
served daily minimum than maximum temperature across
the United States, with an associated decrease in diurnal
temperature range (Karlet al. 1984, 1993; LB17). The higher
rate of warming in minimum temperature, also noted in
Sillmann et al. (2013) in CMIP5 models, offsets the effect of
the lower daily autocorrelation by 2040. The difference in
linear trend slope between heat-wave frequency for mini-
mum and maximum temperature, statistically significant
(p < 0.05) for both RCP4.5 and RCP8.5 scenarios, is asso-
ciated with a generally increasing atmospheric moisture
accompanying the warming trend, placing higher limits on
daily minimum temperatures. Additionally, a higher green-
house gas concentration decreases the rate of net nighttime
radiative cooling. Third, summer minimum temperature has
smaller daily variability than maximum temperature (e.g.,
Barnston 1993), making heat-wave thresholds more readily
exceeded for minimum than maximum temperature with
comparable increases in mean temperature.

During 2006-40, modeled future frequencies of heat waves
in maximum apparent temperature follow those of maximum
temperature closely for both RCP4.5 and RCP8.5 scenarios
until about 2020, when frequencies for apparent temperature
begin exceeding those for temperature by increasing margins
(Fig. 5, bottom). The difference between the trend slopes of
maximum temperature and apparent temperature is weakly
statistically significant (p = 0.07) for the RCP4.5 scenario and
significant (p = 0.05) for RCP8.5.

Heat-wave occurrences depend greatly on the persistence
of weather patterns that underpin multiday sequences of
high temperatures (Grotjahn et al. 2016), reflected in the
daily autocorrelation. Autocorrelations could increase if
extremes in atmospheric circulation patterns become
longer lasting or slower moving, or soil moisture feed-
backs intensify. Increases in the strength of circulation
patterns might occur if circulation became more meridi-
onally amplified, as conditionally suggested by some (e.g.,
Coumou et al. 2015, 2017; Mann et al. 2017, 2018). Such
amplification could increase the range and the variability
of daily maximum temperature, increasing the likelihood
of meeting the heat-wave criteria defined from the historical
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FIG. 5. (top) Historical simulations (purple) and future projec-
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2013, all for heat-wave percentage frequency for daily maximum
temperature (solid lines) and minimum temperature (dotted lines).
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projections for the RCP4.5 and RCP8.5 scenarios for 200640 (the
right part of the curves). Range for historical simulations and for
RCP8.5 projections is shaded yellow; range for RCP4.5 is denoted by
vertical hatching. Observations are also shown on the left side, where
heat-wave thresholds are derived using 1979-2005 data.

period further than expected from an increase in mean
temperature alone.

In anticipation of the spatial patterns of model-projected
future heat-wave frequency, Fig. 8 shows the pattern of the

«—

For the observations, heat-wave thresholds here are derived using
1979-2005 data. For projections, the RCP4.5 and RCP8.5 green-
house gas scenarios are shown by green and red lines, respectively.
(middle) As in the top panel, but for a close-up view of only the
1979-2005 period of model simulations. (bottom) As in the top
panel, but for daily maximum apparent temperature (solid lines)
and maximum temperature (dotted lines).
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TABLE 2. Mean heat-wave percentage frequency over the United States for May-September season and, in parentheses, the linear trend
(percentage per year) for daily maximum temperature, for the individual models during the 1979-2005 historical period of historical
simulations and the 2006—40 projection period for the RCP4.5 and RCP8.5 scenarios. The standardized anomaly of the maximum tem-
perature itself is shown for the 2026-40 period, with respect to the historical period. The multimodel mean is shown in boldface type. The
means and trend slopes for the two observational datasets are shown for comparison, both based on 90th-percentile heat-wave thresholds

derived from the 1979-2005 period.

Historical mean percentage
heat wave (and linear
trend; % yr~")

RCP4.5 mean percentage
heat wave (and linear
trend; % yr~")

RCP8.5 mean percentage
heat wave (and linear
trend; % yr~')

Temperature change from
the period of 1979-2005 to
2026-40 (std dev units)

Model 1979-2005 200640 200640 RCP4.5/8.5
ACCESS1.0 6.9 (0.25) 19.3 (0.26) 19.3 (0.55) 0.58/0.75
ACCESS1.3 6.9 (0.13) 14.0 (0.22) 15.7 (0.44) 0.43/0.54
BCC_CSM1.1(m) 6.5 (0.13) 14.1 (0.33) 14.9 (0.32) 0.49/0.66
CSIRO Mk3.6.0 6.6 (0.27) 15.6 (0.34) 17.0 (0.22) 0.60/0.58
FGOALS-g2 6.5 (0.20) 12.3 (0.16) 13.1 (0.28) 0.57/0.66
HadGEM2-CC 6.9 (0.07) 15.6 (0.45) 20.1 (0.59) 0.64/0.78
IPSL-CM5A-MR 6.4 (0.28) 18.3 (0.40) 20.8 (0.51) 0.49/0.63
IPSL-CM5B-LR 6.4 (0.16) 12.0 (0.44) 13.4 (0.46) 0.60/0.62
MIROC5 6.0 (0.22) 16.9 (0.52) 15.8 (0.53) 0.75/0.79
NorESM1-M 5.8 (0.20) 14.3 (0.45) 14.8 (0.47) 0.52/0.59
MME Avg 6.5 (0.19) 15.2 (0.36) 16.5 (0.44) 0.567/0.660
USHCN obs

1979-2005 5.39 (0.06)

1979-2013 5.93 (0.10)
NARR obs

1979-2005 4.93 (0.10)

1979-2013 6.56 (0.28)

multimodel mean 1-day lag autocorrelation for July daily
maximum temperature for the 2026-40 periods for projec-
tions.® It is important to note that the model-projected au-
tocorrelation patterns in Fig. 8 show little change from the
historical period’ (right panel of the bottom-middle row of
Fig. 7), with ratios of the average autocorrelation for
RCP4.5 or RCP8.5 to the historical autocorrelation both
1.00 with small geographical variation. The multimodel av-
erage autocorrelation (see Table S1 in the online supple-
mental material) averages 0.08-0.09 higher for daily maximum
than minimum temperature, helping to explain the relatively
lower heat-wave frequency for minimum temperature in the
simulations (consistent with observations) and early portion of
the future projections (Fig. 5, top), before the effect of the
greater warming rate in minimum than maximum temperature
begins outweighing that of the autocorrelation.

The upper-left panel of Fig. 9 shows the spatial distribution
of the multimodel average percentage frequency of heat waves
in daily maximum temperature for the historical simulations

6 Further details about the computation of the autocorrelation,
and the autocorrelations of the individual models during 1979-2005
and 2026-40, are provided in section S6 of the online supplemental
material.

7 Note that for the model projections heat-wave frequencies can
be high without also having high autocorrelations, because the
autocorrelation is computed with respect to means for the projec-
tion period (2026-40) whereas heat-wave frequencies are com-
puted using thresholds from the historical period (1979-2005).
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(1979-2005) for July-August. Frequencies are consistent with
those of the USHCN observations during May-September
1979-2005 (Fig. 7, top-center panel), except that they do not
reproduce the relatively low frequencies in the north-central
portions of the country—a feature reflected also in the models’
historical autocorrelation pattern (Fig. 7, right panel of the
bottom-middle row). The autocorrelations of the observed data
(Fig. 4 and supplementary Table S1) average lower than those of
the historical model simulations, partly because of spatial reso-
lution differences where CMIPS models are most coarse (2°
grid), NARR at an intermediate coarseness (32km grid), and
stations at a point; coarser resolution permits more noise filter-
ing. Even taking the resolution differences into account, how-
ever, the model autocorrelations are slightly higher than those
of the observations, likely due to their necessarily inadequate
representation of some subgrid-scale physical processes. This
overestimation of autocorrelation may underlie the models’
slight overestimation of heat-wave levels and trend rates in the
historical period, and therefore possible overestimation of both
of these in the projections.

The second and third panels of Fig. 9 show, respectively, heat-
wave frequency during 202640 for the RCP4.5 and RCP8.5
scenarios, using the 90th-percentile level defined from the models’
historical runs. While magnitudes are slightly higher for RCP8.5,
the patterns are similar, with highest frequencies in the Southeast,
Great Basin, and Southwest, and lowest in the Great Lakes and
north-central region. The projected overall spatial average heat-
wave frequency of 20%-25% is 3—4 times the average frequencies
shown over most of the historical period, but the models’ trend
rate may be overestimated, as noted above. The lower-right panel
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FI1G. 7. Comparison of (bottom middle) CMIP5 multimodel ensemble with the (top) USHCN and (top middle) NARR observations during
the 1979-2005 period for (left) linear trend slope (percentage change in heat-wave frequency per year), (center) period-mean percentage
heat-wave frequency, and (right) adjacent-day lag correlation. Linear trend and mean frequency are for the May-September period, and the
autocorrelation is for July. (bottom) Differences between the models and the USHCN observations. Trends and frequencies are derived from
heat-wave thresholds based on the 1979-2005 period, and the observed frequency results shown in Fig. 3 use thresholds based on 1979-2013.

of Fig. 9 shows frequency of heat waves in daily maximum ap-
parent temperature for the RCP8.5 scenario, with a pattern sim-
ilar to that for maximum temperature but with generally higher
frequencies.

The spatial patterns of future heat-wave frequency shown in
Fig. 9 differ somewhat from those for the model’s historical
simulations, as for example a shift of the maximum in the
Southwest to the Great Basin for the projections, and higher
values in the mid-Atlantic region.® This change in pattern is

8 The notable increase along the coasts of the Atlantic and Gulf
of Mexico is due to the low historical daily variability near large
water bodies that makes the heat-wave threshold easy to exceed
for a given rise in mean temperature.
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largely a function of the projected pattern of increase in mean
maximum temperature but constrained by the autocorrelation
pattern such that regions of higher autocorrelation are able to
have larger heat-wave frequency increases. The top row of
Fig. 10 shows the pattern of the multimodel-projected increase
in maximum temperature itself, from the period of 1979-2005
t02026-40 for the RCP4.5 and RCPS8.5 scenarios. In the second
row, this increase is standardized, using statistics of the his-
torical period. The standardized and nonstandardized patterns
differ considerably. Since the 90th percentile heat-wave
threshold marks a relative position in the historical distribu-
tion (as would a standardized anomaly), it is the standardized
future mean temperature increase rather than the temperature
increase itself that relates to the change in future heat-wave
frequency from the historical frequency; all other factors—for
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FIG. 8. Multimodel average 1-day lag autocorrelation of July
daily maximum temperature during the projected 2026—40 period
for the (top) RCP4.5 and (bottom) RCP8.5 scenarios.

example, daily autocorrelation and daily variability—remaining
approximately fixed. As noted above, the climatological (even
if unchanging) spatially varying values of the autocorrelation
modulate the extent to which the standardized temperature in-
crease can increase the heat-wave frequencies, determining their
future spatial pattern. The relative maxima in future frequencies
in the Great Basin and along the east coast of Florida, for ex-
ample, come about due to the intersection of high autocorrela-
tion and high projected standardized temperature increase.
Increases in both temperature and absolute moisture
content contribute to changes in heat-wave frequency de-
fined by the apparent temperature. The projected spatial
distribution of frequency for maximum apparent tempera-
ture for July-August 2026-40 for the RCP8.5 scenario was
shown in the last panel of Fig. 9. The projected change in
maximum apparent temperature itself, from the historical
simulations to the 2026-40 period for July-August for each
RCP scenario is shown in the third row of Fig. 10, while the
bottom row shows the change in maximum apparent tem-
perature minus that of temperature. For both scenarios, the
increase in apparent temperature is comparable to that in
temperature in much of the arid western part of the United
States, while east of the Continental Divide the apparent
temperature increases by greater amounts than tempera-
ture, particularly in the Southeast and mid-Atlantic sea-
board. In section S7 of the online supplemental material,
model-projected changes in two measures of absolute at-
mospheric moisture—specific humidity and dewpoint—are
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illustrated, and their contributions to the pattern of change
in apparent temperature are discussed.

d. Hypothesis: Future heat-wave frequency change is due
mainly to mean temperature change

Here we discuss the results of the hypothesis test described
at the end of section 3 for statistically predicting future heat-
wave frequencies on the basis of the predicted change in mean
temperature alone. If projected increases in future heat-wave
frequency were due solely to projected increases in mean
temperature without contributions from changes in autocor-
relation or daily variability, and if daily temperature is ap-
proximately normally distributed (which we have noted is not
entirely realistic) and the autocorrelation profile is approxi-
mately that of a first-order Markov process, then heat-wave
frequency modeled using synthetic Gaussian time series with
an assigned autocorrelation and an appropriately upward-
shifted mean (see section 3 and Fig. 2) should match the
heat-wave frequency determined directly from the model
projections. The top two rows of Fig. 11 show a comparison of
the heat-wave frequencies for July 202640 predicted using the
synthetic data, with those directly computed from the RCP4.5
and RCP8.5 model projections. While the spatial patterns are
similar, the directly computed frequencies average higher than
those synthetically modeled by a factor of 1.10 (averaging
20.2% vs 18.3%) for RCP4.5 scenario, and 1.11 (22.1% vs
20.0%) for RCP8.5. Little or no change in the levels of auto-
correlation is noted from historical to future periods (Fig. 8 and
supplementary Table S1). This outcome may therefore be due
to higher daily variability in the model projections than in the
historical simulations, systematic departures from normality in
the daily temperature data, or deviations of the autocorrelation
profiles from a first-order Markov process. We next examine
each of these possibilities.

Table 3 shows a comparison of the spatial average of the
daily standard deviation in the models’ historical simulations
and projections. The daily variability is just slightly (about 2%)
and statistically insignificantly larger in projections than in the
historical simulations. The geographical distribution of the
ratio of July daily standard deviation during 2026—40 to that in
the historical simulations is shown in section S8 of the online
supplemental material. Following the relationship between a
change in standard deviation and heat-wave frequency (Fig. S2
of the online supplemental material), for a mean temperature
increase of 0.6 standard deviations, a 2% increase in variability
implies also an additional approximate 2% increase in fre-
quency, making a minor contribution to the approximate 10%
difference between the synthetically modeled and directly
computed future frequencies.

Another possible cause of the difference is a lack of a
Gaussian daily maximum temperature distribution, such as a
shortened right tail (e.g., Loikith and Neelin 2015; Loikith et al.
2018). When the Kolmogorov—Smirnov test is applied to the
models’ historical simulations of maximum temperature for
80 July days spanning 1980-89 separated by 4 days (to mini-
mize autocorrelation), the null hypothesis of normality cannot
be rejected at the 0.05 significance level in more than 5% of
the grid squares for any individual model. Inspection of the
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(bottom left) RCP8.5 greenhouse gas scenarios during 2026—40, and the (bottom right) daily maximum apparent temperature under the

RCP8.5 scenario. Note the different scale in the top-left panel.

rejected cases frequently shows no notable geographical pref-
erence. Nonetheless, when skewness is computed for July daily
maximum temperature for the USHCN station observations
and the multimodel ensemble of the CMIP models (Fig. 12),
mild to moderate negative skewness appears in the western
part of the country—particularly in the Rockies and part of the
Great Basin, in agreement with findings in LB17. While the
model skewness is slightly less than that observed, the spatial
patterns match reasonably well. A shortened right tail implies a
negative skewness, in which the 90th percentile corresponds
to a lower standardized anomaly value than in a normal
distribution (i.e., lower than +1.282 standard deviations).
Figure 12 (bottom) confirms that the standardized anomaly
of the 90th percentile in the multimodel historical data is
lower than expected for a Gaussian distribution in approx-
imately the region having negative skewness. While offset
somewhat by positive skewness in the Midwest in the mul-
timodel ensemble, the U.S. average skewness is —0.12, and
the average standardized anomaly of the 90th percentile is
1.274. It is difficult to estimate the expected correspondence
of this deviation from 1.282 to single-day and multiple day
heat-wave frequency without knowing more detail about the
shape of the distribution. For a normal distribution there
would be approximately a 1.5% single-day frequency un-
derestimation and a 2.3% frequency underestimation for
three consecutive days. This slight overall tendency toward
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negative skewness, representing a failure of the assumption
of anormal distribution, likely makes a detectable but minor
contribution to the 10% higher directly measured heat-wave
frequencies than those theoretically expected assuming a
Gaussian distribution.

An analysis of the profile of lag correlation of daily tem-
perature in the observations and model output data does not
reveal salient deviations from a first-order Markov model be-
yond sampling variability, as the lag correlations drop off, on
average, as 1 where r is the 1-day lag correlation and ¢ is the
number of days of lag. Further detail about this analysis is
provided in section S9 of the online supplemental material.

A final, possibly unexpected, factor that can cause the actual
heat-wave frequencies to exceed those synthetically modeled
is a positive bias in the actual computed frequencies caused by
applying heat-wave thresholds derived from the historical pe-
riod to projections outside of the historical period (Sippel et al.
2015). The bias stems from uncertainty in the statistics within
the historical reference period due to the finite sample size,
causing the frequency distribution in an external period to
follow a Student’s ¢ distribution (with higher variance and
thicker-shaped tails than the normal distribution), such that
frequencies of right-tail threshold exceedance are greater. For
the 90th-percentile threshold and the effective sample size of
the historical period used here, the overestimation of heat-
wave frequencies outside of the historical period relative to
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FIG. 10. (top) Multimodel average of the difference in daily maximum temperature (°C) averaged over July—August during 2026-40
period, and that for the historical period of 1979-2005, for the (left) RCP4.5 and (right) RCP8.5 greenhouse gas scenarios. (top middle) As
in the top row, except the difference is standardized with respect to the mean and standard deviation of the historical period of 1979-2005.
(bottom middle) As in the top row, but for the difference in daily maximum apparent temperature (°C); and (bottom) the difference

between the daily maximum apparent temperature (°C) increase from the historical period to the 202640 projection (shown in the
bottom-middle row) and the increase in daily maximum temperature (as shown in the top row).
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FIG. 11. (top) July heat-wave frequency for the (left) RCP4.5 and (right) RCP8.5 scenarios derived using Gaussian synthetic data with
an upward shift in mean daily maximum temperature matching that shown in the 10-model average between the historical period (1979-
2005) and the 2026—40 projections, and using historical autocorrelations. (middle) Directly computed 10-model average July heat-wave
frequency for 2026-40. (bottom) As in the top row, but adjusted for the ratio of the standard deviation during 202640 to that during the
historical period and also multiplied by 1.07 to account for the Sippel et al. (2015) statistical bias.

frequencies within the historical period is estimated at 7%.
More detail about the calculation of this estimate is provided in
section S10 of the online supplemental material. This factor is
larger than those stemming from the changes in the autocor-
relation, daily variability, and deviations from normality and
first-order Markov behavior, and likely explains most of the
difference between the actual heat-wave frequencies and the
synthetically modeled frequencies. This factor may cause a
slight overestimation of future heat-wave frequencies in all of
our results.

If the synthetically modeled heat-wave frequencies are
adjusted to take into account the geographical pattern of the
future-to-historical standard deviation ratio (see Fig. S5 of
the online supplemental material), and also multiplied by
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1.07 to account for the Sippel et al. (2015) statistical bias, the
resulting modeled frequencies come out as shown in the
bottom row of Fig. 11. These frequencies more closely
match those directly computed, shown in the middle row
(with differences of 1% or less when averaged over the
United States), despite remaining differences in the details
of the spatial patterns that may be associated with varying
departures from normal distributions or sampling variabil-
ity in the frequency of heat waves due to the limited sample
size of future cases.

Comparing the synthetically modeled with the directly an-
alyzed heat-wave frequency increases, and directly assessing
model changes in autocorrelation and daily variability, it ap-
pears that the projected increase in mean temperature,
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TABLE 3. Intraseasonal and full standard deviation (°C) of daily July maximum temperature in the historical simulations (1979-2005) of
10 CMIP5 models, and percentage of the standard deviation of the historical simulations found in the future RCP4.5 and RCP8.5 scenarios
(2026-40). The multimodel mean is shown in boldface type. For comparison, for 1979-2013, similar to the models’ historical period, the

intraseasonal and full standard deviations for the NARR and USHCN observations for July maximum temperature are shown at the

bottom of the table.

Intraseasonal std dev

Full std dev

Historical

1979-2005  RCP4.5 202640 as

RCP8.5 2026-40
as percent of

Historical

1979-2005 RCP4.52026-40 as  RCP8.5 202640 as

Model (obs to 2013) percent of historical historical (obs to 2013) percent of historical percent of historical
ACCESS1.0 2.92 104 106 3.30 97 101
ACCESS1.3 3.31 98 102 3.74 97 98
BCC_CSM1.1(m) 3.73 102 99 4.01 105 97
CSIRO MK3.6.0 3.03 100 100 3.33 105 100
FGOALS-g2 3.02 102 103 3.13 104 108
HadGEM2-CC 2.95 105 105 3.33 103 105
IPSL-CM5A-MR 2.06 106 113 2.28 105 111
IPSL-CM5B-LR 2.28 98 98 2.55 97 101
MIROCS5 2.64 97 97 2.90 96 96
NorESM1-M 2.36 110 108 2.59 108 109
MME Avg 2.83 102.2 103.1 3.29 101.4 102.4
NARR obs 2.75 3.05
USHCN obs 3.01 3.35

modulated by the autocorrelation, is responsible for the large
majority of the projected increase in heat-wave frequency.

5. Discussion and conclusions

The frequency of heat waves (exceedance of the 90th per-
centile for 3 + consecutive days) during summer in the United
States is analyzed for daily maximum and minimum tem-
perature and maximum apparent temperature in recent ob-
servations and in the historical simulations and near-term
projections of 10 CMIP5 climate models using RCP4.5 and
RCP8.5 greenhouse gas forcing pathways. Over the last sev-
eral decades, the percentage of days participating in a heat
wave was approximately 2%-10% in observed data and in the
CMIPS models’ historical simulations. The mean value and
the upward trend of the percentage is slightly overestimated
in the models’ historical simulations relative to the observa-
tions, possibly because the models’ daily autocorrelations are
likewise higher than those observed. Some conditions possi-
bly unique to the historical period in the United States in
summer that might exonerate the models were considered;
nonetheless, the projections may not necessarily provide
quantitatively accurate guidance on future heat-wave fre-
quency. However, based on evaluations of the spatial pat-
terns of the model’s heat-wave frequencies and trends, the
reliability of the large-scale spatial features of the projected
heat-wave frequencies, and differences in overall frequencies
for maximum temperature versus maximum apparent tem-
perature, maximum versus minimum temperature, or RCP4.5
versus RCP8.5, may well be realistic.

Keeping the above caveat in mind, when applying the
90th-percentile temperature threshold in the models’ historic
simulations to their future projections, heat-wave frequencies
based on daily maximum temperature rise to 20%-24% under
the RCP4.5 scenario and 23 %-26% under the RCP8.5 scenario
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by 2035-40. These projections vary by up to approximately
+8% among models. While projected heat-wave frequencies
based on daily minimum temperature begin lower than those
for maximum, their trend rate exceeds that of maximum tem-
perature, as found also in the last 50 years of observations.
Heat-wave frequencies based on the daily maximum apparent
temperature, reflecting both atmospheric moisture and tem-
perature, increase at a slightly (but statistically significantly)
faster rate than temperature itself. This faster increase would
have implications for human comfort and health (McGregor
2011), requiring more energy for cooling systems, although
some acclimation would be expected (e.g., Sheridan and Dixon
2017; Vicedo-Cabrera et al. 2018; Gasparrini et al. 2015).
CMIP5 model output indicates little or no change in the
values or patterns of daily autocorrelation of maximum or
minimum temperature between the recent past and the near-
future decades. These autocorrelation patterns, reflecting the
climatological degree of persistence of synoptic weather re-
gimes, substantially contributes to the observed pattern of
heat-wave frequency across the United States, and places
controls on the increases in frequency in the model projections
as the mean temperature rises. The models indicate little
change in the daily variability for the future temperature (a
statistically insignificant approximate 2% increase, with some
geographic variation). Mild to moderate negative skewness in
the distribution of daily maximum temperature is seen in part
of the western United States, but it is not found to seriously
compromise the performance of a statistical prediction of fu-
ture heat-wave frequency based on the predicted mean tem-
perature increase, that assumes a Gaussian distribution. The
lack of significant projected change in autocorrelation and
variability suggests that future increases in heat-wave fre-
quency for temperature and apparent temperature are at-
tributable predominantly to increases in mean standardized
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FIG. 12. (top) Skewness in the USHCN observations of July daily
maximum temperature during the 1979-2005 period. (middle) As
in the top panel, but for the multimodel simulations during the
historical period of 1979-2005. (bottom) Standardized anomaly of
the 90th-percentile heat-wave threshold for July daily maximum
temperature during the historical period. (In a Gaussian distribu-
tion, the skewness would be 0 and the standardized anomaly of the
90th percentile would be 1.28.)

(with respect to historical statistics) temperature and absolute
moisture. This standardized increase in the mean, modulated
by the daily autocorrelation (higher autocorrelation permit-
ting greater increases in heat-wave frequency), leads to the
spatial pattern of heat-wave frequency projected by the
CMIP models over the coming two decades.

For both the RCP4.5 and RCP8.5 greenhouse gas scenarios,
the future heat-wave frequency pattern for July—August during
2026-40 features highest frequencies (28%-45%) in the
southeastern quarter of the country, the Great Basin and
along coastlines, and lowest frequencies (10%-16%) in part
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of the northern tier. Increases in temperature show a fairly uni-
form pattern, similar to the midcentury projected increases shown
in Vose et al. (2017), with smallest increases in the southern tier
and along coastlines. Projected increases in standardized tem-
perature are largest in parts of the eastern portion and Great
Basin, consistent with findings in Stegall and Kunkel (2017) for
near-term CMIP5-projected increases in extreme monthly mean
standardized temperature. Increases in absolute moisture (e.g.,
specific humidity and dewpoint) are sufficient for the apparent
temperature to increase more than temperature itself every-
where except the Great Basin, with largest increases in the
southeast region and along most coastlines. The increased
apparent temperature portends greater difficulty for humans to
maintain comfort and safety (e.g., Coffel et al. 2018).

Increasing mean temperature is expected to have conse-
quential implications for infrastructure, such as aircraft op-
erations (Coffel et al. 2017), energy requirements (Scott et al.
2008; Petri and Caldeira 2015), and plant ecology (Teskey
et al. 2014). Additionally, maintaining human well-being
(Peng et al. 2011) depends not just on temperature but on
the increases in atmospheric moisture projected over the
densely populated eastern United States.

A primary aim in this study is to demonstrate the governing
roles of standardized temperature increase and daily autocor-
relation on projected heat-wave frequency. Additional deter-
minants of future frequency are changes in future daily
variability and autocorrelation, but here both of these are
found to be insignificant, leading to the conclusion that future
heat-wave frequencies are governed predominantly by increases
in standardized temperature (or temperature/moisture) modu-
lated by a generally unchanging local climatological daily auto-
correlation. Using nonparametric methods with random
Gaussian-distributed numbers, levels and spatial patterns
of future heat-wave frequency are shown to be predictable
with reasonable accuracy despite the fact that the assump-
tion of a Gaussian daily maximum temperature distribution
is somewhat violated in some regions of the country.
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