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Damping of a microelectromechanical oscillator in turbulent superfluid 4He: A probe
of quantized vorticity in the ultralow temperature regime
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We report a comprehensive investigation of the effects of quantum turbulence and quantized vorticity in
superfluid 4He on the motion of a microelectromechanical systems (MEMS) resonator. We find that the MEMS
is uniquely sensitive to quantum turbulence present in the fluid. To generate turbulence in the fluid, a quartz
tuning fork (TF) is placed in proximity to the MEMS and driven at a large amplitude. We observe that at low
velocity, the MEMS is damped by the turbulence, and that above a critical velocity, vc � 5 mm s−1, the turbulent
damping is greatly reduced. We find that above vc, the damping of the MEMS is reduced further for increasing
velocity, indicating a velocity dependent coupling between the surface of the MEMS and the quantized vortices
constituting the turbulence. We propose a model of the interaction between vortices in the fluid and the surface of
the MEMS. The sensitivity of these devices to a small number of vortices and the almost unlimited customization
of MEMS open the door to a more complete understanding of the interaction between quantized vortices and
oscillating structures, which in turn provides a new route for the investigation of the dynamics of single vortices.
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I. INTRODUCTION

Similar to classical fluids, superfluids, such as 4He, 3He,
and Bose-Einstein condensates of ultracold gases, can also
become turbulent [1–5]. This phenomenon goes by the name
quantum turbulence (QT). Quantum turbulence differs from
classical turbulence in at least two key ways. Firstly, in
QT, all of the circulation in the superfluid component is
due to quantized vortices. Analogous to vortices in type-II
superconductors, quantized vortices in a superfluid consist
of circulating superfluid around a normal core of diameter
a0. The quantum of circulation is κ = h/m [6], where h is
Planck’s constant and m is the mass of the boson constituting
the superfluid. For 4He, the vortex core diameter estimated
from the nonlinear Schrödinger equation is a0 � 10−10 m [6]
and κ = 9.97 × 10−8 m2 s−1. Because the energy of a quan-
tized vortex is proportional to the square of the circulation
[6], doubly quantized vortices are unstable, with the fluid
preferring two singly quantized vortices instead. Therefore,
all of the circulation is due to singly quantized vortices, and
QT may be understood as a tangle of these identical vortices.
Secondly, the superfluid differs from the classical fluid in that
it has zero viscosity, and viscous dissipation is absent.

Despite these differences, in some ways QT is remarkably
similar to classical turbulence. In both 3He [7,8] and 4He
[9–12], the decay rate of turbulent energy was found to
have the same time dependence as predicted by the classical
Kolmogorov-Ohbukov theory. In 4He, the quintessential k−5/3
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law for turbulent fluctuations and intermittency has also been
observed [13]. Remarkably, the similarities between quantum
and classical turbulence, do not exist only at high tempera-
tures, where the superfluid and normal fluid are coupled by
mutual friction. In this regime, it might be expected that the
turbulence in the superfluid inherits classical characteristics
through its interaction with the normal fluid. However, even
in the ultralow temperature regime, where the normal fluid
is effectively absent, the superfluid is able to mimic classical
turbulent flow on scales larger than the average inter vortex
distance, � = L−1/2, where L measures vortex line length per
unit volume. By polarizing and forming bundles, quantized
vortices are able to generate flow on all scales between � and
the system size [14]. In this way, pure superfluid turbulence
can behave quasiclassically [15]. Although, at scales similar
to and smaller than �, the individual nature of the quantized
vortices becomes apparent and the flow loses any classical
character.

In the ultralow temperature regime, in the absence of vis-
cous damping, how is the energy in quantum turbulence dissi-
pated? It is well established through experiment [7–12,16] and
simulation [14,17–21] that at scales much larger �, turbulent
energy is transferred to smaller scales in a manner similar to
the Richardson cascade [22] of classical turbulence. However,
at scales similar to � this process must stop, and a new
process must take over. It is thought that the energy is carried
to smaller scales by the Kelvin wave cascade on individual
vortices before it is radiated away as phonons. However, direct
experimental evidence of this process has not been observed,
due to the lack of an appropriate experimental probe.

When the normal fluid is absent, powerful probes, such as
second sound and tracer particles, cease to function. There
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FIG. 1. Schematic diagram of the oscillators used in this experiment (a). A scale diagram of the MEMS. The MEMS consists of a 125 ×
125 μm2 square plate, and is suspended above the substrate by springs which are anchored to the substrate at the anchor points. The device
is actuated and detected through the capacitively coupled electrodes on either side. (b) A cartoon of the cross section of the MEMS (not to
scale). The MEMS has a uniform 2 μm thickness, and is suspended above the substrate by 2 μm. The arrows indicate the direction of motion
for the primary resonance mode discussed. (c) Cartoon of the TF used to drive turbulence in the experiment. The dimensions of the fork are
W = 0.10 mm, T = 0.23 mm, and L = 2.36 mm. The tines oscillate in the plane of the fork and in antiphase to one another. (d) Schematic of
the experimental setup. The TF is located �3 mm above the MEMS device. When the TF is driven with large amplitude, turbulence is formed
and vortex rings are ejected from the tangle, which interact with the MEMS.

has been significant success with injected electrons [9–12].
Currently, this method has only been able to measure av-
erage properties about large scale flow, such as the aver-
age L. In the past two decades, small oscillating objects,
such as vibrating wires [7,8,23–46]; tuning forks [47–60];
microspheres [61–67]; and vibrating grids [40,68–73], have
successfully investigated many properties of QT in 4He and
3He over a large range of temperatures, including the ultralow
temperature regime. They have been particularly useful in
understanding the generation of QT and the crossover from
laminar to turbulent flow. However, in 4He, none are con-
tinuously sensitive to externally applied turbulent flow, as
they begin to generate their own turbulent flow after being
exposed to vortices from the turbulent flow. This precludes
them from being able to measure important quantities, such
as the fluctuations in turbulent energy or in line density, L.

In this work, we investigate the effects of QT and quantized
vorticity on the motion of a microelectromechanical systems
(MEMS) resonator in the ultralow temperature limit of 4He.
Previously, similar MEMS resonators have been used to study
superfluid [74–76] and normal fluid [77] 3He. To generate QT,
a quartz turning fork (TF) is placed in proximity to the MEMS
and driven with large amplitude. We find that the MEMS
is uniquely sensitive to vortices and is able to continuously
monitor the turbulent flow. We also find that the coupling
between the MEMS and quantized vortices is velocity de-
pendent, with a critical velocity of 5 mm s−1 separating two
distinct regimes of coupling. While these are not observations
of the elusive Kelvin wave cascade, the sensitivity of these
devices to a small number of vortices and the almost unlimited
customization of MEMS open the door to a more complete
understanding of the interaction between quantized vortices
and oscillating structures, which in turn provides a new route
for the investigation of the dynamics of single vortices and
turbulent fluctuations in the ultralow temperature regime.

II. EXPERIMENTAL

A. Devices

The MEMS device used for this study is 2 μm thick and
consists of a 125 × 125 μm2 square plate with two rows of
capacitively coupled comb electrodes on two opposite sides
of the plate. The device is suspended 2 μm above a substrate
by four springs, which allows for a fluid film to be formed
beneath the device. A diagram of the device is shown in
Fig. 1(a) along with a cartoon of the cross section of the
device in Fig. 1(b). Due to the geometry of the MEMS device,
there are several modes of oscillation, which are illustrated
in Refs. [78,79]. In this work, we only study the behavior of
the shear mode, which has its motion directed in the plane
of the device, as shown in Fig. 1(b). In contradistinction to
most of the resonators mentioned previously, when oscillating
in the shear mode, the whole device is displaced equally, and
the velocity is uniform. This is an advantage of our device,
as nonuniform velocity profiles have the tendency to blur the
measurements of velocity dependent phenomena.

The device is asymmetrically driven and detected
via the comb electrodes. An oscillating voltage, V (t ) =
Vf cos(2π f t/2), is applied to one side of the device, which
creates a force due to the gradient of the electrostatic energy,
F = 1

2V
2 dC
dx , whereC is the capacitance between the movable

electrode and the fixed electrode, and x is the displacement of
the device from its equilibrium position. The driving force is
then

Fd = 1
4βV 2

f cos(2π f t ), (1)

where β = dC
dx |x=0 = 1.44 nF m−1 (in helium) is called the

transduction factor [80]. Because the force depends on
the square of the voltage, the force is transduced at twice the
excitation frequency, and also at f = 0. The DC component
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of the force, 1
4βV 2

f , negligibly shifts the equilibrium position,
and may be ignored.

The displacement is detected by using the electrodes on
the other side of the device. A DC bias voltage, Vb, applied
to the electrodes induces a charge on the electrodes. As the
device is displaced the capacitance varies by δC, which varies
the charge by δq = VbδC = Vbβx. The change in the charge
is measured by a charge sensitive amplifier with amplification
α = 0.67 pF−1. The displacement can be calculated as

x = Vo
αβVb

, (2)

where Vo = αδq is the voltage measured at the output of the
charge sensitive amplifier.

At the low temperatures used in this work, damping of
the device is minimal and the quality factor Q exceeds 105.
Because of this, the nonlinear nature of the device is ap-
parent, see Fig. 4. The nonlinearity observed in this device
is attributed to the nonlinear variation of the capacitance.
After a carefully accounting for the nonlinear variation in
capacitance [80], it is found that two additional forces need to
be considered: a modification to the spring constant, 1

2V
2
b c1x,

and a nonlinear spring restoring force, 1
2V

2
b c3x3, where c1 and

c3 are constants that depend on the geometry of the electrodes.
Additional forces also arise which are proportional to V 2

f ;
however, (Vf /Vb)2 < 0.002 for all measurements, so they may
be ignored. Including these nonlinearities the equation of
motion for the MEMS is

ẍ + 2(�1 + �2x
2)ẋ + ω2

0x + α3x
3 = g0 cos(2π f t ), (3)

where 2�1 = 
ω is the full width at half max (FWHM)
of the resonance at low amplitude, 2�2 characterizes the
nonlinear damping intrinsically present in the silicon, ω2

0 =
(k − 1

2V
2
b c1)/m, k is the mechanical spring constant, m is the

mass, α3 = − 1
2V

2
b c3/m, and g0 = βV 2

f /4m.
The TF used in this work is the commercially available

Epson C-002RX. These forks are typically used as timing
devices for integrated circuits, and they are designed to have a
frequency of 215 = 32768 Hz. They come packaged in a her-
metically sealed vacuum can, which is lathed off exposing the
fork. A 3D rendering of the TF is shown in Fig. 1(c). The TF is
made of single crystal quartz with metal electrodes patterned
on the tines (not shown). The fork consists of two large aspect
ratio tines of length L = 2.36 mm, width W = 0.10 mm, and
thickness T = 0.23 mm. When oscillating in its fundamental
mode (the only mode used in this work) the tines oscillate
in anti-phase to one another in the plane of the fork. It is
actuated and its motion is detected by taking advantage of the
piezoelectirc property of quartz. The electrical properties of
the TF are characterized by a single quantity, the fork constant,
a [81]. Similar to the MEMS, the fork is driven by applying
an alternating voltage, V (t ) = Vf cos(2π f t ), directly to one
of the electrodes on the fork. This applies a force on the fork
proportional to V (t ):

Fd = 1
2aVf cos(2π f t ). (4)

In contradistinction to the MEMS, the force on the TF is
at the same frequency as the applied excitation. As the fork
oscillates, a current is generated proportional to the velocity

of the fork, v(t ):

I (t ) = av(t ). (5)

It should be noted that the fork tines do not move with
uniform velocity, i.e., the tines have the maximum velocity
v at the tip and zero velocity at the base. The current is then
amplified using a transimpedance amplifier with amplification
α = −10 k �. The output voltage, Vo = αI , can then be
directly related to the velocity using Eq. (5). Calibration of
the fork and determination of the fork constant are discussed
further in the supplementary information. For the fork used in
this work, it was found that a = 2.84 μC m−1 [80].

B. Measurement technique

To study the behavior of the MEMS in the presence of
turbulence, the MEMS and the TF are situated in close prox-
imity, with the TF 3 mm above the MEMS, as depicted in
Fig. 1(d). The devices are located inside of a copper cell with
a cylindrical volume of about 2 cm3. The cell is affixed just
below the mixing chamber stage of a dilution refrigerator. To
generate turbulence, the TF is driven with a large amplitude.
For TFs, the transition to turbulent flow and their behavior in
the turbulent regime has been studied extensively over the past
decade, in both 4He and 3He-B [47–60]. Because the MEMS
is most sensitive to the effects of vortices when the damping is
smallest, all of the measurements made in the turbulent regime
are made at the lowest attainable temperature of 14 mK to
avoid excess damping due to the presence of normal fluid.

To characterize the generation of turbulence by the TF,
we measure the velocity of the TF on resonance as the
driving force is varied. This allows us to measure the velocity
dependent damping force experienced by the TF. When the TF
is on resonance, the force is in phase with the velocity, and we
may equate the driving force with the damping force. In order
to remain on resonance, a feedback loop was employed, taking
advantage of the property that the quadrature component of
the TF signal passes through zero on resonance. The feedback
loop is implemented in a LabVIEW program and adjusts
the frequency of excitation until the quadrature component
is within some specified distance from zero. Figure 2 shows
the results of this measurement for increasing and decreasing
driving force. At low velocity, the damping force on the TF is
roughly proportional to the velocity, F ∝ v. This is identified
as the laminar regime. More accurately, the flow around the
TF in this regime is potential, because the viscous normal
fluid is absent at this temperature. As the velocity is increased
beyond about 140 mm s−1, the velocity jumps to a lower
value, indicating a sudden increase in the damping, and the
damping force is no longer proportional to the velocity. This
is identified as the turbulent regime. As the velocity is reduced
in the turbulent regime, the damping force continues to follow
the new power law until it eventually crosses over into the
laminar regime. The velocity where the turbulent and potential
regimes merge is identified as the critical velocity vc. For our
TF, vc = 90 mm s−1.

This behavior is different from the generation of turbulence
in classical fluids. In a classical fluid, there is no critical
velocity and the onset of turbulence is continuous. Here, in
pure superfluid, there is no turbulent flow or emission of
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FI = γv

FT

19 nN

1.4 nN

FIG. 2. Damping force on resonance for various velocities at
14 mK in He-II for increasing (blue) and decreasing (orange) veloc-
ities. The change of slope of the TF’s velocity dependence on force
is associated with the generation of turbulence. The dashed line is an
extrapolation of the potential flow regime to higher velocities. The
excess damping force due to turbulence is calculated by subtracting
off the extrapolated damping force from the potential flow regime.
(Inset) Frequency sweeps of the TF in He-II at 14 mK for driving
forces in the range 1.4–19 nN. Here, the responses of the device
have been normalized by the driving excitation. The data collapse
to a universal curve on the low velocity tails, but fail to collapse
on resonance. This indicates that at low velocities the damping is
linear and becomes nonlinear beyond vc, due to the generation of
turbulence.

vorticity below vc [35,51,61]. The difference arises because
vorticity in superfluid 4He is nucleated extrinsically from
preexisting remnant vortices pinned to the surfaces of the
oscillating structures. The growth of these remnant vortices
occurs through the Glaberson-Donnely instability [82], which
only happens above a critical velocity determined by the size
of the largest vortex pinned to the device.

To further illustrate the effects of turbulence generation on
the TF, a set of frequency sweeps of the TF are shown in the
inset of Fig. 2. There, the sweeps are scaled by the driving
excitation. Collapse of the data onto a single universal curve
after scaling indicates that the fork is in the linear regime.
Here, it is clearly seen that the data on resonance do not
overlap, and that the data measured with larger driving force
are situated toward the bottom, which indicates increased
damping at higher velocities. However, the tails of the res-
onance still collapse to a single curve, confirming that the
excess damping is only present above vc.

The effects of turbulence on the MEMS device was inves-
tigated by performing measurements in both the frequency
domain and time domain. For both types of measurement,
the output of the MEMS, after the preamp, was fed into a
lock-in amplifier referenced at the frequency of the driving

 Memory 
CPU 

Data I/O

Zurich Instruments MFLI

FIG. 3. The MEMS and TF are measured through a lock-in
referenced at ωd = 2π fd , where fd is the driving frequency for
each respective device. This setup is employed for both time and
frequency domain measurements, and allows for the collection of
both phase and amplitude information.

force, fd (twice the excitation voltage frequency). This allows
us to collect amplitude and phase information by measuring
the components of the signal in and out of phase with the
driving force, see Fig. 3.

The frequency response of the MEMS is measured by
driving the MEMS with a fixed amplitude while varying the
driving frequency through the resonance. In the absence of
turbulence, the frequency response of the device is modeled
by Eq. (3) [83,84]. The displacement of the MEMS has the
following form x(t ) = A(ω) cos(ωt + φ(ω)) with

A(ω) = g0√(
ω2

0 − ω2 + 2
Aω0
)2 + ω2

(
2�1 + 1

2�2A2
)2

(6)

and

tan(φ(ω)) = −2ω
(
�1 + 1

2�2A2
)

ω2
0 − ω2 + 2
A2ω0

. (7)

Here, 
 = 3
8

α3
ω0

. Above a critical amplitude, ac, which de-
pends on all of the resonance parameters, a hysteresis appears
between sweeping through the resonance with increasing and
decreasing frequency [83]. Figure 4 shows an upward and
downward frequency sweep through the resonance of the
MEMS, with the directions of the sweeps indicated by the
arrows. A clear hysteresis is observed, which is characteristic
of the Duffing nonlinearity. The intrinsic (i.e., not due to the
fluid) nonlinear nature of the damping can be seen in Fig. 6(a),
where the intrinsic damping measured in vacuum is shown as
the solid green curve.

For the measurements that follow, only downward sweeps
through the resonance (down sweeps) are considered. This
is because we are primarily focused on the damping force
experienced by the MEMS. Because our device possess a
spring softening nonlinearity, the down sweeps contain the
resonance peak (maximum displacement). As is true for
the linear resonator, at the peak of the nonlinear resonance,
the force and velocity are in phase, i.e., φ(ωpeak ) = π/2.
Therefore, by measuring the peak velocity, we may equate the
driving force with the damping force and map the relationship
between MEMS velocity and damping force.

The time domain response of the MEMS is measured by
observing its free decay (ringdown). To do this, the MEMS is
first energized by driving it at a frequency close to resonance.
For these measurements, we wish to start at large amplitude
on the upper branch of the resonance (blue curve of Fig. 2.).
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FIG. 4. Frequency response of the device in vacuum at 6 mK,
demonstrating the hysteresis between upward and downward fre-
quency sweeps through the resonance.

To accomplish this, the frequency must be set above the
hysteretic region and slowly reduced to the desired value.
In the absence of turbulence, the behavior of the MEMS
under free decay is determined by solving Eq. (3) for g0 = 0
[85]. Here the response of the MEMS is given by x(t ) =
A(t ) cos(ω0t + φ(t )) with

A(t ) = A0e−�1t√
1 + 1

4
�2
�1
A2

0(1 − e−2�1t )
(8)

and

φ̇(t ) = 
A2(t ), (9)

where A0 is the initial displacement amplitude. The device pa-
rameters can then be determined by fits to either the frequency
response or the free decay.

In presenting Eqs. (6)–(9), we stated that they only hold
true in the absence of turbulence. This is because the func-
tional form of the damping and frequency shifts on the device
due to the vorticity is not known a priori and is not included in
Eq. (3). The response of the device presented above describes
the intrinsic behavior of the device, and any deviations may
be attributed to the effect of turbulence in the fluid.

III. RESULTS

A. Frequency domain

The effect of turbulence on the device can be clearly seen
by comparing two sweeps made with the same driving force.
Figure 5(a) shows two down sweeps of the MEMS shear
mode, both made with 400 mVp excitation. One sweep was
made in the presence of turbulence, labeled “Turbulent” and
the other in its absence, labeled “Quiescent.” For the turbulent

(a)

(b)

Turbulent

Quiescent

High Damping

FIG. 5. Frequency response of the MEMS in the presence of
turbulence generated by the TF measured at 14 mK. (a) Two down-
ward frequency sweeps of the MEMS with (Turbulent) and without
(Quiescent) the TF generating turbulence. The main figure shows
the quadrature components of the signal and the inset shows the
amplitude. In the turbulent state the peak amplitude is smaller due
to increased damping. Excess noise in the phase also appears caused
by fluctuations of the damping [79,86]. (b) A set of frequency sweeps
made with excitations between 100–420 mVp in steps of 20 mVp

while the TF was generating turbulence (vTF = 126 mm s−1). For the
lowest several excitations, the corresponding sweeps (labeled “High
Damping”) experience significant damping, which can be seen by the
relatively small amplitudes. This behavior can be seen more clearly
in Fig. 6.

sweep, the velocity of the TF was 126 mm s−1. There are
several features that distinguish the turbulent sweep from
the quiescent sweep. The turbulent sweep transition between
bi-stable states of the Duffing oscillator (the big jump around
23621 Hz) occurs at a higher frequency and lower amplitude,
and also has its phase shifted relative to the other sweep.
Extra noise is also observed in the quadrature channels, but
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not in the amplitude, which can be interpreted as phase noise.
Measurements of the phase noise spectra and discussion of
the origin of the noise are to be presented in a forthcoming
publication. Because the peak occurs when the driving force
is equal to the damping force, and because both sweeps were
performed with the same excitation, the lower peak of the
turbulent sweep indicates increased damping due to the pres-
ence of turbulence. The overall shift in phase and the increase
in frequency of the bistable transition are consequences of the
peak occurring at a lower amplitude.

Figure 5(b) shows a series of frequency sweeps made
while the TF was generating turbulence at 126 mm s−1.
The frequency sweeps were made with excitations from
100–420 mVp with 20 mVp steps. It can be seen that for
the lowest few excitations the damping is significantly higher
compared to the other sweeps (labeled “High Damping”),
and on this scale the signal is indistinguishable from the
noise floor. To characterize the velocity dependence of the
damping, we record the velocity of the MEMS at the peak
for various driving forces. Figure 6 shows the result of this
measurement. Figure 6(b) depicts the data shown in Fig. 6(a)
with the vacuum damping [solid green curve in Fig. 6(a)]
subtracted. Therefore the damping presented in Fig. 6(b) may
be identified as the damping from the presence of vortices
and turbulence. A preliminary version of the results shown
in Figs. 5 and 6 were discussed previously in Refs. [86,87].

In Fig. 6, alongside the measurements made in TF gen-
erated turbulence, are measurements of the response of the
device due to remnant vortices pinned to the surface, which
are shown as open and closed squares. These vortices became
pinned to the surface after some turbulent event, such as
driving the TF or cooling through the superfluid transition
[88]. They remain attached to the surface after the turbulence
has dissipated. These measurements were made directly after
cooling to base temperature through the superfluid transition,
so that many remnant vortices were present, and the MEMS
was highly damped. They were also made in the absence
of turbulence generated by the TF. The measurements were
first made for increasing velocity, then decreasing velocity.
A large hysteresis between these measurements can be seen
and is identified with the removal of some vortices pinned
to the device. We identify the change in damping around
v � 5 mm s−1 with the onset of vortex removal. To observe
the hysteresis again, more remnant vortices must be generated.
Otherwise, upon increasing the velocity again, the damping
closely follows the lower curve. We term the process of vortex
removal as annealing. While the MEMS may be annealed by
use of the shear mode, as seen in Fig. 6, it may be annealed
to a greater degree by driving other modes of the device.
The effects of remnant vortices and the annealing process are
discussed further in Refs. [79,86,87].

In the presence of turbulence, hysteresis is no longer ob-
served. This is consistent with the interpretation that pinned
vortices are being removed when the velocity of the device
exceeds v � 5 mm s−1. In the turbulent flow, vortices are con-
tinually colliding with the MEMS and becoming pinned; any
vortices removed by driving the MEMS are quickly replen-
ished. For velocities below 5 mm s−1, the MEMS experiences
significant drag. This corresponds to the “High Damping”
regime referenced in Fig. 5. Upon exceeding this critical

(a)

(b)

FIG. 6. Damping force on the MEMS in the presence of tur-
bulence generated by the TF measured by performing frequency
sweeps. Also shown is the damping from remnant vortices, which
is measured while the TF is at rest. (a) The total damping force expe-
rienced by the MEMS as a function of velocity. The colored and open
symbols represent measurements made for increasing and decreasing
MEMS velocity, respectively. (b) The damping force experienced by
the MEMS due to turbulence for various TF velocities. The turbulent
damping force is calculated by subtracting the intrinsic damping of
the device, which is shown as the solid curve in (a). The intrinsic
damping was measured in vacuum at 6 mK.

velocity, the damping of the MEMS is reduced, whereupon
the velocity of the MEMS jumps to �70 mm s−1. Similar to
the remnant vortex response, in the high velocity regime the
turbulent damping force is reduced as the velocity increases.

To understand the high damping regime it is helpful to
consider how much extra vortex line length would need to be
generated to account for the observed damping. For this, we
consider how much energy is dissipated during each cycle of
oscillation. We simplify the argument by assuming that the
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force and velocity are sinusoidal, and that they are exactly
in phase. This last assumption is justified because we are
only considering the damping on resonance. In this case, the
energy dissipated per cycle is E = F0v0/2 f , where F0 and
v0 are the amplitudes of the force and velocity, respectively.
For F0 = 10−11 N and v0 = 10 mm s−1, the energy dissipated
each cycle is E = 2.1 × 10−18 J. The linear energy density
of a vortex is E/l = (ρκ2/4π ) ln(�/a0) [6], where ρ is the
density of helium, � is the inter vortex spacing around the
device, and a0 � 10−10 m is the size of the vortex core. For
our device, a reasonable guess for the vortex spacing is in
the range � ∼ 1–100 μm. This then yields a linear energy
density E/l = 1.0–1.4 × 10−18 J μm−1, which corresponds
to ∼2 μm/cycle of total increased length.

We can estimate the number of vortices pinned to the
device by constructing a simple model for how the vortices
are pinned, see Figs. 7(a)–7(d). The movable portion of the
MEMS is suspended d = 2 μm above a substrate. Consider
a straight vortex bridging the moving plate and the substrate
such that its length is d . If the plate is displaced horizontally
by a distance x, the vortex length is increased by δl � x2/2d .
For a complete cycle of oscillation the increased length is
twice that amount. The displacement amplitude of the MEMS
near the critical velocity is roughly x � 0.1 μm. This yields
an increase of length per vortex of δl � 5 × 10−3 μm, which
suggests there are about 400 vortices pinned to the device in
the high damping regime. This excess vortex length would
then be carried away from the device by vortex rings that are
created when the length of an individual vortex is large enough
to intersect itself and cause a reconnection event [89,90].
It is not possible to know the exact distribution of vortices
on the device; however, they are most likely concentrated
around the perimeter of the device. Including the electrodes,
the perimeter of the MEMS is quite large. For 400 vortices,
the inter-vortex distance is � ∼ 1–10 μm, consistent with our
initial guess above.

This simple model is consistent with the linear scaling of
the force with velocity in the high damping regime: the energy
lost per cycle is proportional to the velocity squared, E ∝ v2,
and the energy transferred to the vortices is proportional to the
increased length which is proportional to the velocity squared,
E ∝ δl ∝ x2 ∝ v2. To effectively transfer energy from the
device to the vortex line, the frequency of the device should
be matched to the frequency of a standing mode of the vortex
[68]. If the frequency of the device is too low, the vortex
line will respond adiabatically and will be in its instantaneous
equilibrium position determined by the flow around the de-
vice. In this limit, there is no accumulation of excess length
through one period of motion. If the frequency of the device
is much larger than the standing mode, the coupling of motion
is greatly reduced. The frequency of standing wave modes for
a quantized vortex is given by

f (k) = 1

2π

κk2

4π
ln

(
1

ka0

)
, (10)

where k = nπ/l is the wave number [6]. Taking the range
of lengths, l = 2.0–2.2 μm, we find that the fundamental
frequency of the standing mode is in the range 27.3–22.9 kHz,
which is consistent with the frequency of the SH mode

(a) (b)

(c) (d)

(e) (f)

FIG. 7. A cartoon of the interaction between the MEMS and
quantized vortices. [(a)–(d)] A mechanism for damping the MEMS.
(a) A quantized vortex is pinned between the device and the substrate.
(b) Because of the pinning, the vortex is elongated when the device
is displaced. (c) The extra length after displacement is accumulated.
Some number of cycles later the vortex line is long enough to
reconnect with itself. (d) The reconnection ejects a vortex ring, which
removes length from the pinned vortex, and the process begins again.
[(e) and (f)] A mechanism for the decoupling of the motion of the
MEMS from the motion of vortices. (e) At velocities lower than the
velocity required to depin a vortex, vpin, the motion of the MEMS is
coupled to the motion of the vortex. (f) When the MEMS exceeds
vpin the vortex is free to slide along the surface and the motion is no
longer coupled. A distribution in depinning velocities would cause
the damping to be gradually reduced as the velocity is increased, as
seen in Fig. 5(b).

(23.6 kHz), indicating that the device can efficiently transfer
energy to the vortices.

Another possible mechanism for the damping of the
MEMS that might be proposed is the removal of energy
through a Kelvin wave cascade. The initial stages of this
process are similar to what is described above, i.e., the motion
of the device causes motion on the vortices pinned to the
device. Except, instead of the energy being carried away from
the device as vortex rings, it is ferried to smaller scales of wave
motion on the attached vortices through the Kelvin wave cas-
cade until the vortex can efficiently radiate phonons. However,
this process predicts that the power dissipated should scale
as the tenth power of the displacement amplitude, A10 [91],
which is clearly not observed, so this process can not fully
explain the damping observed by the device.
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Because the TF is situated above the MEMS, it is rea-
sonable to expect that some vortices will become pinned to
the top of the moving plate (i.e., the side in contact with the
bulk). However, these vortices should not significantly con-
tribute to the damping because it is unlikely that their lengths
correspond to a Kelvin wave resonance at the frequency of the
device. It may be expected that vortices pinned to the top of
the device could cause the MEMS to transition to turbulent
flow in a manner similar to the TF, but this is not observed.
Because of the geometry of the device, the backflow around
the device is minimal, and it is the backflow which provides
the superflow necessary for the transition to turbulence. For
these reasons, we do not believe that vortices pinned to the top
of the MEMS significantly contribute to the observed results.

The reduction of damping with increasing velocity, ob-
served above the critical velocity, can be understood as the
depinning of vortices from pinning sites on the surface.
Figures 7(e) and 7(f) illustrate this process. When the velocity
of the plate is below the depinning velocity vpin, the vortex
remains attached to the pinning site. Because the vortex is
pinned, its length is increased as the plate is displaced, which
leads to damping as discussed above. When the velocity
exceeds vpin the vortex is no longer pinned to a specific place
on the surface and is free to move relative to the surface.
Because of this, the motion of the vortex is no longer coupled
to the motion of the plate and no longer contributes to the
damping. The depinning velocity for a vortex pinned between
two parallel plates was considered by Schwarz [90], and was
found to be

vpin = κ

2πd
ln

(
b

a0

)
. (11)

Here, d = 2 μm is the MEMS gap size and b = 10−7–10−8 m
is the size of the pinning site, measured by atomic force mi-
croscopy [78]. However, the argument presented in Ref. [90]
is for uniform superflow between the plates, which is not the
case for the MEMS. A vortex pinned between the moving
plate and the substrate will experience some velocity gradient
as the plate is displaced. Despite this, we use Eq. (11) for
an order of magnitude comparison. For our MEMS, vpin �
50 mm s−1, which is close to the region where the damping is
observed to decrease, 70–200 mm s−1. The observed velocity
dependence of the damping may be due to a distribution in
the size of pinning sites. The surface of the MEMS is rough
on the scale of 100 nm, and there is a distribution of bump
sizes that make up this roughness. A detailed discussion of the
surface characteristics of these MEMS devices is provided in
Refs. [78,92]. Because of the distribution in the bumps there is
a distribution in the depinning velocities. As the velocity is in-
creased, more vortices decouple and the damping is reduced.
However, the velocity depends only on the logarithm of the
bump size, and this is unlikely able to explain this behavior
over the whole velocity range. A complete explanation of
this phenomena is not possible because there is still much
unknown about how the MEMS interacts with the turbulence
from the TF. We currently do not know how the MEMS
captures and removes vortices. It is also unknown how the
flow field induced by the turbulent vortices around the device
affects its motion.

Annealed

Remnant

Turbulent

FIG. 8. From top to bottom, the response of the MEMS in the
quiescent state after being annealed (see text), in the quiescent
state before annealing, and with turbulence. The solid black curves
represent the amplitude of the device, A(t ), while the oscillating
curves represent the component of the signal in-phase with the
original driving signal, A(t ) cos[(ω(t ) − ωd )t] [see Eq. (9)]. At large
amplitude, ω(t ) � ωd , and the oscillation is slow. As the amplitude
is decreased φ̇ tends towards zero and ω(t ) tends toward ω0. At low
amplitude, the signal then oscillates with frequency |ω0 − ωd |. The
out-of-phase signal is also recorded, but is not plotted for clarity. The
envelopes of these ringdowns are shown in Fig. 9(b) in log-linear
scale, where the departure from a pure exponential decay can be
easily noticed.

B. Time domain

We further investigate the effects of turbulence on the
MEMS motion by studying the properties of the free decay
of the MEMS in the turbulent and quiescent regime. In
the quiescent regime we investigate the effect of remnant
vortices. For all measurements, the MEMS was tuned to
fd = 23 621.72 Hz and was driven at 400 mVp. The lock-in
was referenced at fd , and the time constant was chosen such
that 1/τ > ωd − ω(t ) for all time. Here, ω(t ) = ω0 + 
A2(t )
[Eq. (9)] depends on the amplitude and changes during the
ringdown measurement due to the nonlinear restoring force.
Note that the measurements do not begin on resonance. This
is done because the noise due to turbulence will readily cause
the MEMS to transition from the high amplitude state into the
low amplitude state if the frequency is tuned too close to the
transition frequency [93].

From top to bottom, Fig. 8 shows the ringdown response
of the MEMS in the quiescent regime after annealing, in
the quiescent regime before annealing, and in the turbulent
regime. For each different measurement shown, ten individual
decays were recorded and averaged. The black curve is the
amplitude of motion A(t ) and the oscillating curve is the in-
phase component of the motion, A(t ) cos[(ω(t ) − ωd )t]. The
out-of-phase component is also collected, but it is not plotted
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AnnTurb

[ ] Rem

(a) (b) (c)

FIG. 9. Ringdown response of the MEMS for several different TF velocities between 126–183 mm s−1. (a) Amplitude dependent frequency
shift calculated from the time dependent phase [see Eq. (12)]. The main figure shows the response in the quiescent state after annealing, and
the solid line is a fit to Eq. (9) with 
/2π = 2.0 Hz μm−2. The inset shows the frequency response for all different TF velocities, including the
response shown in the main figure. Within the precision of the measurement, the presence of turbulence does not alter the linear or nonlinear
restoring force. (b) Ringdown envelopes in log-linear scale for various TF velocities. The measurements are grouped into three categories:
“Turb” for measurements made in the turbulent state, “Rem” for measurements made in the quiescent state before annealing, and “Ann” for
measurements made in the quiescent state after annealing. The solid red line is a fit of the “Ann” data to Eq. (8) with �1/2π = 0.037 Hz and
�2/2π = 0.18 Hz μm−2. The inset shows the short time behavior at high velocity before the nonlinearities significantly affect the response of
the device. (c) The velocity dependence of the instantaneous damping rate �, calculated from Eq. (13). � can be understood as the instantaneous
slope of an envelope shown in (b). (Inset) Damping force experienced by the MEMS calculated as m2�v, where m is the mass of the MEMS,
v is the velocity, and � is the value displayed in the main figure.

for clarity. The frequency of oscillation at any given time is
| f (t ) − fd |. This shift in frequency is due to demodulation
occurring within the lock-in. Relative to the motion in the qui-
escent annealed state, the motion in the presence of remnant
vortices and turbulence is more damped, which is consistent
with the frequency domain measurements. The decay in all
three cases begins roughly the same, and only deviates as
the amplitude is decreased. In the turbulent state, the decay
clearly deviates from an exponential time dependence at lower
amplitudes. Several more measurements of the free decay
of the MEMS were made for various TF velocities in the
range of 126–183 mm s−1. Again, for each TF velocity ten
decays were measured and averaged. The results of these
measurements are shown in Fig. 9.

Visually, it is not obvious from Fig. 8 what effect the
turbulence has on the nonlinear frequency shift. To see how
the turbulence affects the frequency shift we first need to
calculate the frequency of oscillation as the amplitude decays.
To do this, we first calculate the phase of the oscillator as a
function of time from the measured quadrature components
as

φ(t ) = tan−1

(
A(t ) sin[(ω(t ) − ω0)t]

A(t ) cos[(ω(t ) − ω0)t]

)
. (12)

To obtain the total accumulated phase, π is added every time
the argument of Eq. (12) changed signs from − to +. The
frequency shift was then calculated by numerically differen-
tiating the phase with respect to time. At low amplitude, the
noise would cause the sign of the phase to fluctuate and spoil
the process described above. A moving average including the
40 nearest points was performed to reduce the noise.

The amplitude dependent frequency shift for the MEMS
measured in the quiescent annealed state is shown in Fig. 9(a).

The solid line is a fit to the data using Eq. (9). Around A =
1.3 μm the frequency shift deviates from the fit. This anomaly
is due to the ringdown beginning off resonance. The fit yields
a nonlinear frequency pulling of 
/2π = −2.0 Hz μm−2. In
the inset of Fig. 9(a), the nonlinear frequency shifts of the
MEMS in both the turbulent and quiescent state are shown.
Within the precision of the measurement, all of the data lie on
top of each other. This implies that the presence of turbulence
does not significantly affect the resonance frequency or the
nonlinear frequency shift of the MEMS.

The ringdown envelopes for all measurements are shown
in Fig. 9(b) in log-linear scale. When plotted this way, the
slope at any point is the instantaneous damping rate, and a
straight line in the plot corresponds to a pure exponential
decay. The envelope labeled “Ann” was made in the quiescent
state after annealing. The solid red line is a fit to the data
using Eq. (8). From the fit we obtain �1/2π = 0.037 Hz and
�2/2π = 0.18 Hz μm−2. Because the normal fluid is absent
and the remnant vortices have been removed, the measured
linear and nonliner damping may be attributed to intrinsic
processes polysilicon. Two measurements were made in the
quiescent state directly after turbulence was present, and
are labeled “Rem”. These measurements were made before
annealing, so the device is still influenced by remnant vortices.
The envelopes labeled “Turb” were made while the TF was
continuously generating turbulence, with velocities in the
range 126–183 mm s−1. Even in the absence of turbulence,
the remnant envelope differs significantly from the annealed
envelope. Directly after initiating the ringdown, the damping
rate begins to decrease. However, as the velocity is reduced
further, the damping rate begins to increase for the remnant
case, while it remains constant after annealing. The increased
damping rate at low amplitude is more pronounced for the
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measurements made in turbulence. These observations are
consistent with our previous measurements: there is large
damping at low velocities, and at large velocities the damping
is reduced.

The decay of the MEMS in the presence of vorticity cannot
be described by Eq. (8), as the functional form of the damping
is unknown. However, we can extract the local damping rate
� at a given time by computing the slope of ln(A(t )) at that
time, that is,

� = −d ln(A(t )/A0)

dt
. (13)

The damping rates extracted this way are shown in Fig. 9(c)
as a function of the velocity of the resonator. Because of the
noise, the data were first smoothed using a local weighted
regression and the numerical derivative was averaged over
the 100 nearest points. The damping rates are peaked at low
velocity, and as the velocity increases the damping falls off
like v−1 until it begins to plateau around 100 mm s−1. The
inset of Fig. 9(c) shows the damping force, m2�v, calculated
from the data shown in the main figure. This can be directly
compared with Fig. 6(a), where it can be seen that the same
broad features are displayed. The critical velocity observed
in Fig. 6(a) can be understood as the velocity at which the
damping rate becomes inversely proportional to v, i.e., � ∝
v−1. The large jump in velocity above the critical velocity seen
in Fig. 6, can also be understood from the velocity dependence
of �. When � ∝ v−1, the damping force experienced by the
MEMS, F ∝ �v, is constant and independent of velocity.
Therefore, any incremental increase in the force will cause the
velocity to grow until some new process alters the velocity
dependence of � causing the damping force to once again
equal the driving force.

For the data presented in Fig. 9, it is important to remember
that the data are collected for decreasing velocity. That is,
the damping starts off small and is increased as the velocity
is reduced. This increase in damping must come from an
increased coupling of the device motion to the motion of
vortices surrounding the device. This increased coupling can
be understood as the same process described in Figs. 7(e) and
7(f). Also, as the MEMS slows down it is more likely for
a vortex line impingent on the device to pin to the surface
upon collision. The increased likelihood of vortex capture is
due to the increased number of stable pinning sites at lower
velocities.

For short times after the beginning of the ringdown, the
damping can be considered to be linear, which is demonstrated
in the inset of Fig. 9(b). By fitting the data in the first 0.6 s
to a line, the damping rate, � can be extracted. The increase
in damping rate arising from the turbulence �Turb can be
determined by subtracting the damping rate of the device in
the annealed state, �A, i.e., �Turb = � − �A. It is found that
�Turb grows in proportion the square root of the turbulent
power. This is demonstrated in Fig. 10, where �Turb is plotted
against the square root of the turbulent power. The solid line is
a fit to the data, and the fitting function with the fit values are
shown in the figure. The turbulent power is calculated from
the excess force experienced by the TF when it is driving
turbulence, FT = F − γ v, where γ is determined by fitting

ΓTurb = ΓR + ζ
√

P

ΓR/2π = 6.5m Hz

ζ/2π = 0.65 mHz/
√

pW

FIG. 10. The increase of the MEMS damping rate at high ve-
locity as a function of the square root of the TF power input into
turbulence. The damping rate is calculated by fitting a line to the
data shown in the inset of Fig. 9(b) for times less than 0.6 s. The
increase in the damping rate due to turbulence, �Turb is calculated
by subtracting the damping rate measured without turbulence or
remnant vortices, �A, i.e., �Turb = � − �A.

in the potential flow regime, see Fig. 2. The power input to
turbulent flow is then P = FT v.

The dependence of �Turb on turbulent power may be un-
derstood by assuming that we are in the ultraquantum regime
of turbulence [15,16,20]. This regime is distinct from the
quasi-classical regime discussed in the introduction, and is
characterized by a lack of large scale flow. Here, the turbulent
vortex tangle is random and lacks any significant polarization.
In other words, most of the turbulent energy is contained at
the scale of the inter vortex spacing, �. With � being the
characteristic length scale of the ultraquantum turbulence, it
may be shown by dimensional analysis, that the decay rate
of the vortex line density, L, is proportional to κL2 [94].
To determine the steady state value of L we must add a
term to account for the creation of line length coming from
the TF. Because the energy of a vortex line is proportional
to its length, the rate of increase of line length should be
proportional to the power P. Including this we obtain

dL

dt
= χPP − χ2κL

2, (14)

where χP is a proportionality constant, which can be under-
stood at the inverse of the average linear energy density of
a vortex in the turbulent flow. The steady state value of L is
found when dL/dt = 0, yielding

L =
√

χPP

κχ2
. (15)
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It is natural to assume that the damping on the device is
proportional to the number of vortices interacting with the
device, and in turn proportional to L. Assuming this, we
arrive at �Turb ∝ L ∝ √

P. Unfortunately, we are unable to
make a quantitative calculation of L, because we lack a precise
theory for how L corresponds to �. However, by making a
similar measurement for a greater range of TF velocities, we
may be able to observe the crossover from the ultraquan-
tum to quasiclassical regime of turbulent flows. In the fully
developed quasiclassical regime dL/dt ∝ −L3/2, which
yields �Turb ∝ P2/3.

The offset of � at P = 0, �R, is likely due to a semiper-
manent background of remnant vortices. The data point at
(0 pW, 6.5 mHz) corresponds to the damping of both remnant
ringdown measurements, which were made at different times.
One was made after driving the TF at 125 mm s−1 and the
other after driving it at 183 mm s−1. Although they were
made at separate times, their ringdown envelopes overlap
almost perfectly. This indicates that there are some long lived
remnant vortices that are not removed by simply driving the
shear mode to high velocity. The extra damping of these
vortices is then present for all of the ringdown measurements
made in turbulence, which is seen as a constant shift of �Turb.
If there really is a semipermanent background of remnant
vortices, then why do the remnant ringdowns differ from
the annealed ringdown [see Fig. 9(b)]? Before making the
annealed measurement, the device was thoroughly annealed
using a combination of different resonance modes of the
device, and was annealed for a longer time. The extra care
in annealing seems to be responsible for the removal of these
semipermanent vortices.

IV. CONCLUSION

We have presented measurements of our MEMS device in
the presence of turbulence generated by a secondary structure
(tuning fork) in the ultralow temperature regime (14 mK)
and demonstrated that our device is uniquely sensitive to
turbulence. The uniqueness of this device is its ability to
continuously measure the turbulent flow. Until now, all other
oscillators measured in superfluid 4He begin to generate their

own turbulence immediately after being exposed to vorticity
in the fluid. While this has enabled many rich experiments
[33–37,95], it precludes the use of these devices to continu-
ously sense quantum turbulence.

To demonstrate the sensitivity of the MEMS, we have
presented measurements of the device in both the frequency
and time domain. It was observed that below a critical velocity
of about 5 mm s−1, the damping of the MEMS is greatly en-
hanced relative to its intrinsic damping. Above the critical ve-
locity, the damping is greatly reduced. From the time domain
measurements, it was observed that this critical velocity corre-
sponds to a change in the velocity dependence of the damping,
with the damping rate changing inversely proportional to the
velocity, � ∝ v−1. To explain the damping at low velocities
and the change in damping above the critical velocity we
propose a model of vortices pinned between the substrate and
the moving part of the MEMS. The model accounts for the
reduction in damping above the critical velocity by supposing
there is a distribution in depinning velocities, and that when
a vortex become depinned its motion is decoupled from the
motion of the device. However, from the frequency domain
measurements of the device under the influence of remnant
vortices, it is clear that complete removal of some fraction
of the vortices is also happening above the critical velocity.
Through the time domain measurements, it was also found
that high velocity damping of the MEMS scales in proportion
to

√
P. We interpret this result as an indication that the MEMS

is sensing the average vortex line density, L, which scales as√
P in the ultraquantum regime.
While there is still much to learn about the interaction

of vortices with the MEMS device before more quantitative
statements can be made, it is clear that there is a wealth of
information that can be extracted from these devices.
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A. M. Guénault, E. A. Guise, R. P. Haley, O. Kolosov, P. V. E.
McClintock, G. R. Pickett, M. Poole, V. Tsepelin, and A. J.
Woods, Phys. Rev. B 89, 014515 (2014).

[55] D. I. Bradley, M. J. Fear, S. N. Fisher, A. M. Guénault, R. P.
Haley, C. R. Lawson, G. R. Pickett, R. Schanen, V. Tsepelin,
and L. A. Wheatland, Phys. Rev. B 89, 214503 (2014).

[56] D. I. Bradley, R. P. Haley, S. Kafanov, M. Noble, G. R. Pickett,
V. Tsepelin, J. Vonka, and T. Wilcox, J. Low Temp. Phys. 184,
1080 (2016).

[57] D. Schmoranzer, M. J. Jackson, V. Tsepelin, M. Poole, A. J.
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de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe,
L. Skrbek, P. Skyba, R. E. Solntsev, and D. E. Zmeev, J. Low
Temp. Phys. 146, 537 (2007).

[82] W. Glaberson and R. Donnelly, Phys. Rev. 141, 208 (1966).
[83] R. Lifshitz and M. C. Cross, in Reviews of Nonlinear Dynamics

and Complexity (Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2008), pp. 1–52.

[84] A. H. Nayfeh, Nonlinear Oscillations (Wiley VCH, Weinheim,
1995).

[85] P. M. Polunin, Y. Yang, M. I. Dykman, T. W. Kenny, and S. W.
Shaw, J. Microelectromech. Sys. 25, 297 (2016).

[86] C. S. Barquist, W. G. Jiang, P. Zheng, Y. Lee, and H. B. Chan,
J. Low Temp. Phys. 196, 177 (2019).

[87] C. S. Barquist, W. G. Jiang, K. Gunther, Y. Lee, and H. B. Chan,
J. Low Temp. Phys., 1 (2019).

[88] D. D. Awschalom and K. W. Schwarz, Phys. Rev. Lett. 52, 49
(1984).

[89] J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993).
[90] K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).
[91] V. B. Eltsov and V. S. L’vov, Jetp Lett. (2020),

doi:10.1134/S0021364020070012.
[92] M. González, Ph.D. thesis, University of Florida (2012).
[93] C. Stambaugh and H. B. Chan, Phys. Rev. B 73, 172302

(2006).
[94] W. Vinen, Proc. Royal Soc. Lond. A 242, 493 (1957).
[95] H. Yano, K. Sato, K. Hamazaki, R. Mushiake, K. Obara, and O.

Ishikawa, J. Low Temp. Phys. 196, 184 (2019).

174513-13

https://doi.org/10.1103/PhysRevE.70.056307
https://doi.org/10.1103/PhysRevE.70.056307
https://doi.org/10.1103/PhysRevE.70.056307
https://doi.org/10.1103/PhysRevE.70.056307
https://doi.org/10.1103/PhysRevLett.92.244501
https://doi.org/10.1103/PhysRevLett.92.244501
https://doi.org/10.1103/PhysRevLett.92.244501
https://doi.org/10.1103/PhysRevLett.92.244501
https://doi.org/10.1103/PhysRevE.74.036307
https://doi.org/10.1103/PhysRevE.74.036307
https://doi.org/10.1103/PhysRevE.74.036307
https://doi.org/10.1103/PhysRevE.74.036307
https://doi.org/10.1007/s10909-009-9992-x
https://doi.org/10.1007/s10909-009-9992-x
https://doi.org/10.1007/s10909-009-9992-x
https://doi.org/10.1007/s10909-009-9992-x
https://doi.org/10.1103/PhysRevB.85.224533
https://doi.org/10.1103/PhysRevB.85.224533
https://doi.org/10.1103/PhysRevB.85.224533
https://doi.org/10.1103/PhysRevB.85.224533
https://doi.org/10.1103/PhysRevLett.117.195301
https://doi.org/10.1103/PhysRevLett.117.195301
https://doi.org/10.1103/PhysRevLett.117.195301
https://doi.org/10.1103/PhysRevLett.117.195301
https://doi.org/10.1103/PhysRevLett.118.065301
https://doi.org/10.1103/PhysRevLett.118.065301
https://doi.org/10.1103/PhysRevLett.118.065301
https://doi.org/10.1103/PhysRevLett.118.065301
https://doi.org/10.1007/s10909-017-1752-8
https://doi.org/10.1007/s10909-017-1752-8
https://doi.org/10.1007/s10909-017-1752-8
https://doi.org/10.1007/s10909-017-1752-8
https://doi.org/10.1103/PhysRevB.94.014505
https://doi.org/10.1103/PhysRevB.94.014505
https://doi.org/10.1103/PhysRevB.94.014505
https://doi.org/10.1103/PhysRevB.94.014505
https://doi.org/10.1063/1.4790196
https://doi.org/10.1063/1.4790196
https://doi.org/10.1063/1.4790196
https://doi.org/10.1063/1.4790196
http://link.aps.org/supplemental/10.1103/PhysRevB.101.174513
https://doi.org/10.1007/s10909-006-9279-4
https://doi.org/10.1007/s10909-006-9279-4
https://doi.org/10.1007/s10909-006-9279-4
https://doi.org/10.1007/s10909-006-9279-4
https://doi.org/10.1103/PhysRev.141.208
https://doi.org/10.1103/PhysRev.141.208
https://doi.org/10.1103/PhysRev.141.208
https://doi.org/10.1103/PhysRev.141.208
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1109/JMEMS.2016.2529296
https://doi.org/10.1007/s10909-018-02113-2
https://doi.org/10.1007/s10909-018-02113-2
https://doi.org/10.1007/s10909-018-02113-2
https://doi.org/10.1007/s10909-018-02113-2
https://doi.org/10.1103/PhysRevLett.52.49
https://doi.org/10.1103/PhysRevLett.52.49
https://doi.org/10.1103/PhysRevLett.52.49
https://doi.org/10.1103/PhysRevLett.52.49
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevB.31.5782
https://doi.org/10.1103/PhysRevB.31.5782
https://doi.org/10.1103/PhysRevB.31.5782
https://doi.org/10.1103/PhysRevB.31.5782
https://doi.org/10.1134/S0021364020070012
https://doi.org/10.1103/PhysRevB.73.172302
https://doi.org/10.1103/PhysRevB.73.172302
https://doi.org/10.1103/PhysRevB.73.172302
https://doi.org/10.1103/PhysRevB.73.172302
https://doi.org/10.1098/rspa.1957.0191
https://doi.org/10.1098/rspa.1957.0191
https://doi.org/10.1098/rspa.1957.0191
https://doi.org/10.1098/rspa.1957.0191
https://doi.org/10.1007/s10909-019-02143-4
https://doi.org/10.1007/s10909-019-02143-4
https://doi.org/10.1007/s10909-019-02143-4
https://doi.org/10.1007/s10909-019-02143-4

