
Journal of Machine Learning Research 21 (2020) 1-34 Submitted 7/19; Revised 3/20; Published 6/20

A Unified Framework of Online Learning Algorithms for
Training Recurrent Neural Networks

Owen Marschall oem214@nyu.edu
Center for Neural Science
New York University
New York, NY 10003, USA

Kyunghyun Cho∗ kyunghyun.cho@nyu.edu
New York University
CIFAR Azrieli Global Scholar

Cristina Savin csavin@nyu.edu

Center for Neural Science

Center for Data Science

New York University

Editor: Yoshua Bengio

Abstract

We present a framework for compactly summarizing many recent results in efficient and/or
biologically plausible online training of recurrent neural networks (RNN). The framework
organizes algorithms according to several criteria: (a) past vs. future facing, (b) tensor
structure, (c) stochastic vs. deterministic, and (d) closed form vs. numerical. These axes
reveal latent conceptual connections among several recent advances in online learning.
Furthermore, we provide novel mathematical intuitions for their degree of success. Testing
these algorithms on two parametric task families shows that performances cluster according
to our criteria. Although a similar clustering is also observed for pairwise gradient align-
ment, alignment with exact methods does not explain ultimate performance. This suggests
the need for better comparison metrics.

Keywords: real-time recurrent learning, backpropagation through time, approximation,
biologically plausible learning, local, online

1. Introduction

Training recurrent neural networks (RNN) to learn sequence data is traditionally done
with stochastic gradient descent (SGD), using the backpropagation through time algorithm
(BPTT, Werbos et al., 1990) to calculate the gradient. This requires “unrolling” the network
over some range of time steps T and performing backpropagation as though the network were
feedforward under the constraint of sharing parameters across time steps (“layers”). BPTT’s
success in a wide range of applications (Mikolov et al., 2010; Graves, 2013; Bahdanau
et al., 2016, 2014; Cho et al., 2015; Graves et al., 2016; Vinyals et al., 2015; Luong et al.,
2015) has made it the industry standard; however, there exist alternative online algorithms

∗. This work was done while the author was a part-time research scientist at Facebook AI Research.

c©2020 Owen Marschall, Kyunghyun Cho, Cristina Savin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-562.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-562.html


Marschall, Cho, Savin

for training RNNs. These compute gradients in real time as the network runs forward,
without explicitly referencing past activity or averaging over batches of data. There are
two reasons for considering online alternatives to BPTT. One is practical: computational
costs do not scale with T . The other is conceptual: human brains are able to learn long-
term dependencies without explicitly memorizing all past brain states, and understanding
online learning is a key step in the larger project of understanding human learning.

The classic online learning algorithm is real-time recurrent learning (RTRL, Williams
and Zipser, 1989), which is equivalent to BPTT in the limit of a small learning rate (Murray,
2019). RTRL recursively updates the total derivative of the hidden state with respect to
the parameters, eliminating the need to reference past activity but introducing an order
n (hidden units) × n2 (parameters) = n3 memory requirement. In practice, this is often
more computationally demanding than BPTT (order nT in memory), hence not frequently
used in applications. Nor is RTRL at face value a good model of biological learning, for
the same reason: no known biological mechanism exists to store—let alone manipulate—a
float for each synapse-neuron pair. Thus RTRL and online learning more broadly have
remained relatively obscure footnotes to both the deep learning revolution and its impact
on computational neuroscience.

Recent advances in recurrent network architectures have brought the issue of online
learning back into the spotlight. While vanishing/exploding gradients used to significantly
limit the extent of the temporal dependencies that an RNN could learn, new architectures
like LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al., 2014) as well
as techniques like gradient clipping (Pascanu et al., 2013) have dramatically expanded this
learnable time horizon. Unfortunately, taking advantage of this capacity requires an equally
dramatic expansion in computational resources, if using BPTT. This has led to an explosion
of novel online learning algorithms (Tallec and Ollivier, 2017; Mujika et al., 2018; Roth et al.,
2019; Murray, 2019; Jaderberg et al., 2017) which aim to improve on the efficiency of RTRL,
in many cases using update rules that might be implemented by a biological circuit.

The sheer number and variety of these approaches pose challenges for both theory and
practice. It is not always clear what makes various algorithms different from one another,
how they are conceptually related, or even why they might work in the first place. There
is a pressing need in the field for a cohesive framework for describing and comparing online
methods. Here we aim to provide a thorough overview of modern online algorithms for
training RNNs, in a way that provides a clearer understanding of the mathematical structure
underlying different approaches. Our framework organizes the existing literature along
several axes that encode meaningful conceptual distinctions:

a) Past facing vs. future facing

b) The tensor structure of the algorithm

c) Stochastic vs. deterministic update

d) Closed form vs. numerical solution for update

These axes will be explained in detail later, but briefly: the past vs. future axis is a root dis-
tinction that divides algorithms by the type of gradient they calculate, while the other three
describe their representations and update principles. Table 1 contains (to our knowledge)
all recently published online learning algorithms for RNNs, categorized according to these

2



A Unified Framework of Online Learning Algorithms

Algorithm Facing Tensor Update Bias Mem. Time

RTRL Past Mkij Determ. Closed-form No n3 n4

UORO Past AkBij Stoch. Closed-form No n2 n2

KF-RTRL Past AjBki Stoch. Closed-form No n2 n3

R-KF Past AiBjk Stoch. Closed-form No n2 n3

r-OK Past
∑r

l=1AljBlki Stoch. Numerical No rn2 rn3

KeRNL Past AkiBij Determ. Numerical Yes n2 n2

RFLO Past δkiBij Determ. Closed-form Yes n2 n2

E-BPTT – – Determ. Closed-form No nT n2

F-BPTT Future – Determ. Closed-form No nT n2T
DNI Future Ali Determ. Numerical Yes n2 n2

Table 1: A list of learning algorithms reviewed here, together with their main properties.
The indices k, i and j reference different dimensions of the “influence tensor” of
RTRL (§3.1.1); l references components of the feedback vector ã in DNI (§4.2).

criteria. We can already see that many combinations of these characteristics manifest in
the literature, suggesting that new algorithms could be developed by mixing and matching
properties. (We provide a concrete example of this in §3.4.)

Here we describe each algorithm in unified notation that makes clear their classification
by these criteria. In the process, we generate novel intuitions about why different approxi-
mations can be successful and discuss some of the finer points of their biological plausibility.
We confirm these intuitions numerically by evaluating different algorithms’ ability to train
RNNs on a common set of synthetic tasks with parameterized, interpretable difficulty. We
find that both performance metrics and pairwise angular gradient alignments cluster ac-
cording to our criteria (a)–(d) across tasks, lending credence to our approach. The class of
approximations that proves best depends on the nature of the task: stochastic methods are
better when the task involves long time dependencies while deterministic methods prove
superior in high dimensional problems. Curiously, gradient alignment with exact methods
(RTRL and BPTT) does not always predict performance, despite its ubiquity as a tool for
analyzing approximate learning algorithms.

2. Past- and Future-Facing Perspectives of Online Learning

Before we dive into the details of these algorithms, we first articulate what we mean by past-
and future-facing, related to the “reverse/forward accumulation” distinction described by
Cooijmans and Martens (2019). Consider a recurrent neural network that contains, at each
time step t, a state1 a(t) ∈ Rn. This state is updated via a function Fw : Rm → Rn, which is
parameterized by a flattened vector of parameters w ∈ RP . Here m = n+nin+1 counts the
total number of input dimensions, including the recurrent inputs a(t−1) ∈ Rn, task inputs
x(t) ∈ Rnin , and an additional input clamped to 1 (to represent bias). For some initial state

1. An element of Rn is a column vector unless it appears in the denominator of a derivative; ∂(·)/∂a would
be a row vector.

3



Marschall, Cho, Savin

a(0), Fw defines the network dynamics by

a(t) = Fw(a(t−1),x(t)).

At each time step an output y(t) ∈ Rnout is computed by another function F out
wo

: Rn → Rnout ,
parameterized by wo ∈ RPo . We will typically choose an affine-softmax readout for F out

wo
,

with output weights/bias Wout ∈ Rnout×(n+1). A loss function L(y(t),y∗(t)) calculates an
instantaneous loss L(t), quantifying to what degree the predicted output y(t) matches the
target output y∗(t).

The goal is to train the network by gradient descent (or other gradient-based optimizers
such as ADAM from Kingma and Ba, 2014) on the total loss L =

∑
L(t) w.r.t. the param-

eters w and wo. It is natural to learn wo online, because only information at present time t
is required to calculate the gradient ∂L(t)/∂wo. So the heart of the problem is to calculate
∂L/∂w.

The parameter w is applied via Fw at every time step, and we denote a particular
application of w at time s as w(s).2 Of course, a recurrent system is constrained to share
parameters across time steps, so a perturbation δw is effectively a perturbation across all
applications δw(s), i.e., ∂w(s)/∂w = IP . In principle, each application of the parameters
affects all future losses L(t), t ≥ s. The core of any recurrent learning algorithm is to
estimate the influence ∂L(t)/∂w(s) of one parameter application w(s) on one loss L(t), since
these individual terms are necessary and sufficient to define the global gradient

∂L
∂w

=
∑
t

∂L(t)

∂w
=
∑
t

∑
s≤t

∂L(t)

∂w(s)

∂w(s)

∂w
=
∑
t

∑
s≤t

∂L(t)

∂w(s)
. (1)

This raises the question of how to sum these components to produce individual gradients to
pass to the optimizer. In truncated BPTT, one unrolls the graph over some range of time
steps and sums ∂L(t)/∂w(s) for all t, s in that range with t ≥ s (see §4.1.1). This does not
qualify as an “online” learning rule, because it requires two independent time indices—at
most one can represent “real time” leaving the other to represent the future or the past.
If we can account for one of the summations via dynamic updates, then the algorithm is
online or temporally local, i.e. not requiring explicit reference to the past or future. As
depicted in Fig. 1, there are two possibilities. If t from Eq. (1) corresponds to real time,
then the gradient passed to the optimizer is

∇wL(t) =
t∑

s=0

∂L(t)

∂w(s)
=
∂L(t)

∂w
. (2)

In this case, we say learning is past facing, because the gradient is a sum of the influences
of past applications of w on the current loss. On the other hand, if s from Eq. (1) represents
real time, then the gradient passed to the optimizer is

∇wL(s) =

∞∑
t=s

∂L(t)

∂w(s)
=

∂L
∂w(s)

. (3)

Here we say learning is future facing, because the gradient is a sum of influences by the
current application of w on future losses.

2. Many authors use total and partial derivative operators to make this distinction when differentiating.
For us, d/dw→ ∂/∂w and ∂/∂w→ ∂/∂w(s).

4



A Unified Framework of Online Learning Algorithms

Past-facing: Future-facing:

Figure 1: Cartoon depicting the past- and future-facing perspectives of online learning, for
an RNN unrolled over time. Each a represents the RNN hidden state value,
while Fw denotes applications of the recurrent update; the instantaneous losses
L implicitly depend on the hidden state through L(t) = L

(
F out
wo

(a(t)),y∗(t)
)
. The

blue (yellow) arrows show the paths of influence accounted for by the past-facing
(future-facing) gradient described in the corresponding equation.

2.1. Past-Facing Online Learning Algorithms

Here we derive a fundamental relation leveraged by past-facing (PF) online algorithms. Let
t index real time, and define the influence matrix M(t) ∈ Rn×P , where n and P are
respectively the number of hidden units and the number of parameters defining Fw. M(t)

tracks the derivatives of the current state a(t) with respect to each parameter wp:

M
(t)
kp =

∂a
(t)
k

∂wp
. (4)

Let’s rewrite Eq. (4) with matrix notation and unpack it by one time step:

M(t) =
∂a(t)

∂w
=
∑
s≤t

∂a(t)

∂w(s)
=
∑

s≤t−1

∂a(t)

∂w(s)
+
∂a(t)

∂w(t)

=
∑

s≤t−1

∂a(t)

∂a(t−1)

∂a(t−1)

∂w(s)
+
∂a(t)

∂w(t)

=
∂a(t)

∂a(t−1)

∂a(t−1)

∂w
+
∂a(t)

∂w(t)

≡ J(t)M(t−1) + M
(t)
. (5)

A simple recursive formula emerges, wherein the influence matrix is updated by multiplying
its current value by the Jacobian J(t) = ∂a(t)/∂a(t−1) ∈ Rn×n of the network and then

5



Marschall, Cho, Savin

adding the immediate influence M
(t)

= ∂a(t)/∂w(t) ∈ Rn×P . To compute the gradient
that ultimately gets passed to the optimizer, we simply use the chain rule over the current
hidden state a(t):

∂L(t)

∂w
=
∂L(t)

∂a(t)

∂a(t)

∂w
≡ c(t)M(t), (6)

where the immediate credit assignment vector c(t) ∈ Rn is defined to be ∂L(t)/∂a(t)

and is calculated by backpropagating the error δ(t) through the derivative of the output
function F out

wo
(or approximated by Feedback Alignment, see Lillicrap et al., 2016). In the

end, we compute a derivative in Eq. (6) that is implicitly a sum over the many terms of
Eq. (2), using formulae that depend explicitly only on times t and t − 1. For this reason,
such a learning algorithm is online, and it is past facing because the gradient computation
is of the form in Eq. (2).

2.2. Future-Facing Online Learning Algorithms

Here we show a symmetric relation for future-facing (FF) online algorithms. The credit
assignment vector c(t) ∈ Rn is a row vector defined as the gradient of the loss L with
respect to the hidden state a(t). It plays a role analogous to M(t) and has a recursive update
similar to Eq. (5):

c(t) =
∂L
∂a(t)

=
∑
s≥t

∂L(s)

∂a(t)
=
∂L(t)

∂a(t)
+
∑

s≥t+1

∂L(s)

∂a(t)

=
∂L(t)

∂a(t)
+
∑

s≥t+1

∂L(s)

∂a(t+1)

∂a(t+1)

∂a(t)

=
∂L(t)

∂a(t)
+

∂L
∂a(t+1)

∂a(t+1)

∂a(t)

= c(t) + c(t+1)J(t+1). (7)

As in the PF case, the gradient is ultimately calculated using the chain rule over a(t):

∂L
∂w(t)

=
∂L
∂a(t)

∂a(t)

∂w(t)
≡ c(t)M

(t)
. (8)

The recursive relations for PF and FF algorithms are of identical form given the following
changes: (1) swap the roles of L and w, (2) swap the roles of t−1 and t+1, and (3) flip the
direction of all derivatives. This clarifies the fundamental trade-off between the PF and FF
approaches to online learning. On the one hand, memory requirements favor FF because
L is a scalar while w is a matrix. On the other, only PF can truly be run online, because
the time direction of the update in FF is opposite the forward pass. Thus, efficient PF
algorithms must compress M(t), while efficient FF algorithms must predict c(t+1).

3. Past-Facing Algorithms

3.1. Real-Time Recurrent Learning

The Real-Time Recurrent Learning (RTRL, Williams and Zipser, 1989) algorithm directly
applies Eqs. (5) and (6) as written. We call the application of Eq. (5) the “update”

6



A Unified Framework of Online Learning Algorithms

to the learning algorithm, which is deterministic and in closed form. Implementing
Eq. (5) requires storing nP ≈ O(n3) floats in M(t) and performing O(n4) multiplications
in J(t)M(t), which is neither especially efficient nor biologically plausible. However, several
efficient (and in some cases, biologically plausible) online learning algorithms have recently
been developed, including Unbiased Online Recurrent Optimization (UORO; Tallec and
Ollivier, 2017; §3.2), Kronecker-Factored RTRL (KF-RTRL; Mujika et al., 2018; §3.3),
Kernel RNN Learning (KeRNL; Roth et al., 2019; §3.5), and Random-Feedback Online
Learning (RFLO; Murray, 2019; §3.6). We claim that these learning algorithms, whether
explicitly derived as such or not, are all implicitly approximations to RTRL, each a special
case of a general class of techniques for compressing M(t). In the following section, we
clarify how each of these learning algorithms fits into this broad structure.

3.1.1. Approximations to RTRL

To concretely illuminate these ideas, we will work with a special case of Fw, a time-
continuous vanilla RNN:

a(t) = Fw(a(t−1),x(t)) = (1− α)a(t−1) + αφ(Wâ(t−1)), (9)

where â(t−1) = concat(a(t−1),x(t), 1) ∈ Rm, W ∈ Rn×m, φ : Rn → Rn is some point-wise
nonlinearity (e.g. tanh), and α ∈ (0, 1] is the network’s inverse time constant. The trainable
parameters wp are folded via the indexing p = i× n+ j into the weight matrix Wij , whose
columns hold the recurrent weights, the input weights, and a bias. By reshaping wp into its
natural matrix form Wij , we can write the influence matrix as an order-3 influence tensor

M
(t)
kij = ∂a

(t)
k /∂Wij .

Thus M
(t)
kij specifies the effect on the k-th unit of perturbing the direct connection from the

j-th unit to the i-th unit. The immediate influence can also be written as a tensor. By
differentiating Eq. (9), we see it takes the sparse form

M
(t)
kij = ∂a

(t)
k /∂W

(t)
ij = αδkiφ

′(h
(t)
i )â

(t−1)
j ,

because Wij can affect the k-th unit directly only if k = i. Many approximations of RTRL

involve a decomposition of M
(t)
kij into a product of lower-order tensors. For example, UORO

represents M
(t)
kij by an outer product A

(t)
k B

(t)
ij , which has a memory requirement of only

O(n2). Similarly, KF-RTRL uses a Kronecker-product decomposition A
(t)
j B

(t)
ki . We can

generalize these cases into a set of six possible decompositions of M
(t)
kij into products of

lower-order tensors A(t) and B(t):

M
(t)
kij ≈



A
(t)
k B

(t)
ij UORO, §3.2

A
(t)
j B

(t)
ki KF-RTRL, §3.3

A
(t)
i B

(t)
kj “Reverse” KF-RTRL, §3.4

A
(t)
ki B

(t)
ij KeRNL/RFLO, §3.5/§3.6

A
(t)
kjB

(t)
ij Unexplored

A
(t)
ki B

(t)
kj Unexplored

.

7



Marschall, Cho, Savin

Each such decomposition has a memory requirement of O(n2). Of course, it is not sufficient
to write down an idealized decomposition for a particular time point; there must exist some
efficient way to update the decomposition as the network runs forwards. We now go through
each algorithm and show the mathematical techniques used to derive update equations and
categorize them by the criteria outlined in Table 1.

3.2. Unbiased Online Recurrent Optimization (UORO)

Tallec and Ollivier (2017) discovered a technique for approximating M(t) ∈ Rn×P as an outer
product A(t)B(t), where A(t) ∈ Rn×1 and B(t) ∈ R1×P . The authors proved a crucial lemma
(see Appendix A or Tallec and Ollivier, 2017) that gives, in closed form, an unbiased rank-1
estimate3 of a given matrix over the choice of a random vector ν ∈ Rn with E[νiνj ] ∝ δij
and E[νi] = 0. They leverage this result to derive a closed-form update rule for A(t) and
B(t) at each time step, without ever having to explicitly (and expensively) calculate M(t).
We present an equivalent formulation in terms of tensor components, i.e.,

M
(t)
kij ≈ A

(t)
k B

(t)
ij ,

where B
(t)
ij represents the “rolled-up” components of B(t), as in Wij w.r.t. w. Intuitively,

the kij-th component of the influence matrix is constrained to be the product of the k-th

unit’s “sensitivity” A
(t)
k and the ij-th parameter’s “efficacy” B

(t)
ij . Eqs. (10) and (11) show

the form of the update and why it is unbiased over ν, respectively:

A
(t)
k B

(t)
ij =

(
ρ0

∑
k′

J
(t)
kk′A

(t−1)
k′ + ρ1νk

)(
ρ−1

0 B
(t−1)
ij + ρ−1

1

∑
k′

νk′M
(t)
k′ij

)
=
∑
k′

J
(t)
kk′A

(t−1)
k′ B

(t−1)
ij +

∑
k′

νkνk′M
(t)
k′ij

+
∑
k′

νk′

[
ρ1ρ
−1
0 δkk′B

(t−1)
ij + ρ0ρ

−1
1 M

(t)
k′ij

∑
k′′

J
(t)
k′k′′A

(t−1)
k′′

]
(10)

=⇒ E
[
A

(t)
k B

(t)
ij

]
=
∑
k′

J
(t)
kk′E

[
A

(t−1)
k′ B

(t−1)
ij

]
+
∑
k′

E[νkνk′ ]M
(t)
k′ij

+
∑
k′

E[νk′ ] (cross terms)

=
∑
k′

J
(t)
kk′M

(t−1)
k′ij +

∑
k′

δkk′M
(t)
k′ij +

∑
k′

0× (cross terms)

=
∑
k′

J
(t)
kk′M

(t−1)
k′ij +M

(t)
kij

= M
(t)
kij . (11)

The cross terms vanish in expectation because E[νk] = 0. Thus, by induction over t, the

estimate of M
(t)
kij remains unbiased at every time step. The constants ρ0, ρ1 ∈ R>0 are

3. In this instance we mean “rank” in the classical linear algebra sense, not “tensor rank,” which we refer
to as “order.”

8



A Unified Framework of Online Learning Algorithms

chosen at each time step to minimize total variance of the estimate by balancing the norms
of the cross terms. This algorithm’s update is stochastic due to its reliance on the random
vector ν, but it is in closed form because it has an explicit update formula (Eq. 10). Both
its memory and computational complexity are O(n2).

3.3. Kronecker-Factored RTRL (KF-RTRL)

Mujika et al. (2018) leverage the same lemma as in UORO, but using a decomposition of
M(t) in terms of a Kronecker product A(t)⊗B(t), where now A(t) ∈ R1×m and B(t) ∈ Rn×n.

This decomposition is more natural, because the immediate influence M
(t)

factors exactly as

a Kronecker product â(t) ⊗D(t) for vanilla RNNs, where D
(t)
ki = αδkiφ

′(h
(t)
i ). To derive the

update rule for UORO, one must first generate a rank-1 estimate of M
(t)

as an intermediate
step, introducing more variance, but in KF-RTRL, this step is unnecessary. In terms of
components, the compression takes the form

M
(t)
kij ≈ A

(t)
j B

(t)
ki ,

which is similar to UORO, up to a cyclic permutation of the indices. Given a sample ν ∈ R2

of only 2 i.i.d. random variables, again with E[νiνj ] = δij and E[νi] = 0, the update takes
the form shown in Eqs. (12) and (13):

A
(t)
j =

(
ν0ρ0A

(t−1)
j + ν1ρ1â

(t−1)
j

)
(12)

B
(t)
ki =

(
ν0ρ
−1
0

∑
k′

J
(t)
kk′B

(t−1)
k′i + ν1ρ

−1
1 αδkiφ

′(h
(t)
i )

)
(13)

=⇒ A
(t)
j B

(t)
ki = ν2

0

∑
k′

J
(t)
kk′A

(t−1)
j B

(t−1)
k′i + ν2

1αδkiφ
′(h

(t)
i )â

(t−1)
j + cross-terms

=⇒ E
[
A

(t)
j B

(t)
ki

]
=
∑
k′

J
(t)
kk′E

[
A

(t−1)
j B

(t−1)
k′i

]
+ αδkiφ

′(h
(t)
i )â

(t−1)
j

=
∑
kk′

J
(t)
kk′M

(t−1)
k′ij +M

(t)
kij

= M
(t)
kij .

As in UORO, the cross terms vanish in expectation, and the estimate is unbiased by induc-
tion over t. This algorithm’s updates are also stochastic and in closed form. Its memory
complexity is O(n2), but its computation time is O(n3) because of the matrix-matrix prod-
uct in Eq. (13).

3.4. Reverse KF-RTRL (R-KF)

Our exploration of the space of different approximations naturally raises a question: is an
approximation of the form

M
(t)
kij ≈ A

(t)
i B

(t)
kj (14)

also possible? We refer to this method as “Reverse” KF-RTRL (R-KF) because, in matrix
notation, this would be formulated as M(t) ≈ B(t) ⊗A(t), where A(t) ∈ R1×n and B(t) ∈

9



Marschall, Cho, Savin

Rn×m. We propose the following update for A
(t)
i and B

(t)
kj in terms of a random vector

ν ∈ Rn:

A
(t)
i B

(t)
kj =

(
ρ0A

(t−1)
i + ρ1νi

)(
ρ−1

0

∑
k′

J
(t)
kk′B

(t−1)
k′j + ρ−1

1

∑
i′

νi′M
(t)
ki′j

)
(15)

=
∑
k′

J
(t)
kk′A

(t−1)
i B

(t−1)
k′j +

∑
i′

νiνi′M
(t)
ki′j + cross-terms

=⇒ E
[
A

(t)
i B

(t)
kj

]
=
∑
k′

J
(t)
kk′E

[
A

(t−1)
i B

(t−1)
k′j

]
+M

(t)
kij

=
∑
k′

J
(t)
kk′M

(t−1)
k′ij +M

(t)
kij

= M
(t)
kij . (16)

Eq. (16) shows that this estimate is unbiased, using updates that are stochastic and in
closed form, like its sibling algorithms. Its memory and computational complexity are
O(n2) and O(n3), respectively. R-KF is actually more similar to UORO than KF-RTRL,

because M
(t)
kij does not naturally factor like Eq. (14), introducing more variance. Worse,

it has the computational complexity of KF-RTRL due to the matrix-matrix multiplication
in Eq. (15). KF-RTRL stands out as the most effective of these 3 algorithms, because it
estimates M(t) with the lowest variance due to its natural decomposition structure. (See
Mujika et al., 2018 for variance calculations.)

3.4.1. Optimal Kronecker-Sum Approximation (OK)

We briefly mention an extension of KF-RTRL by Benzing et al. (2019), where the influ-
ence matrix is approximated not by 1 but rather a sum of r Kronecker products, or, in
components

M
(t)
kij ≈

r∑
l=1

A
(t)
lj B

(t)
lki.

On the RTRL update, the k index of B
(t)
lki is propagated forward by the Jacobian, and then

the immediate influence—itself a Kronecker product—is added. Now M
(t)
kij is approximated

by r + 1 Kronecker products

M
(t)
kij ≈

r∑
l=1

A
(t−1)
lj J

(t)
kk′B

(t−1)
lk′i + αâ

(t−1)
j δkiφ

′(h
(t)
i ),

but the authors developed a technique to optimally reduce this sum back to r Kronecker
products, keeping the memory complexity O(rn2) and computational complexity O(rn3)
constant. This update is stochastic because it requires explicit randomness in the flavor
of the above algorithms, and it is numerical because there is no closed form solution to
the update. We leave the details to the original paper.

10



A Unified Framework of Online Learning Algorithms

3.5. Kernel RNN Learning (KeRNL)

Roth et al. (2019) developed a learning algorithm for RNNs that is essentially a compression

of the influence matrix of the form M
(t)
kij ≈ AkiB

(t)
ij . We will show that this algorithm is also

an implicit approximation of RTRL, although the update rules are fundamentally different
than those for UORO, KF-RTRL and R-KF. The eligibility trace B(t) ∈ Rn×m updates

by temporally filtering the immediate influences αφ′(h
(t)
i )â

(t−1)
j with unit-specific, learnable

timescales αi:

B
(t)
ij = (1− αi)B

(t−1)
ij + αφ′(h

(t)
i )â

(t−1)
j . (17)

The sensitivity matrix A ∈ Rn×n is chosen to approximate the multi-step Jacobian

∂a
(t)
k /∂a

(t′)
i with help from the learned timescales:

∂a
(t)
k

∂a
(t′)
i

≈ Aki(1− αi)
(t−t′). (18)

We will describe how A is learned later, but for now we assume this approximation holds and
use it to show how the KeRNL update is equivalent to that of RTRL. We have dropped the
explicit time-dependence from A, because it updates too slowly for Eq. (18) to be specific
to any one time point. If we unpack this approximation by one time step, we uncover the
consistency relation

Aki(1− αi) ≈
∑
k′

J
(t)
kk′Ak′i. (19)

By taking t = t′ in Eq. (18) and rearranging Eq. (19), we see this approximation implicitly
assumes both

Aki ≈

{
δki

(1− αi)
−1
∑

k′ J
(t)
kk′Ak′i

. (20)

Then the eligibility trace update effectively implements the RTRL update, assuming induc-

tively that M
(t−1)
kij is well approximated by AkiB

(t−1)
ij :

AkiB
(t)
ij = Aki

[
(1− αi)B

(t−1)
ij + αφ′(h

(t)
i )â

(t−1)
j

]
= Aki(1− αi)B

(t−1)
ij + αAkiφ

′(h
(t)
i )â

(t−1)
j

≈
∑
k′

J
(t)
kk′Ak′iB

(t−1)
ij + αδkiφ

′(h
(t)
i )â

(t−1)
j (21)

=
∑
kk′

J
(t)
kk′M

(t−1)
k′ij +M

(t)
kij

= M
(t)
kij .

In Eq. (21), we use each of the special cases from Eq. (20). Of course, the Aki and αi have
to be learned, and Roth et al. (2019) use gradient descent to do so. We leave details to the
original paper; briefly, they run in parallel a perturbed forward trajectory to estimate the
LHS of Eq. (18) and then perform SGD on the squared difference between the LHS and
RHS, giving gradients for Aki and αi.

11



Marschall, Cho, Savin

KeRNL uses deterministic updates because it does not need explicit random variables.

While the B
(t)
ij update is in closed form via Eq. (17), the updates for Aki and αi are

numerical because of the need for SGD to train them to obey Eq. (18). Both its memory
and computational complexities are O(n2).

3.6. Random-Feedback Online Learning (RFLO)

Coming from a computational neuroscience perspective, Murray (2019) developed a beau-
tifully simple and biologically plausible learning rule for RNNs, which he calls Random-
Feedback Online Learning (RFLO).4 He formulates the rule in terms of an eligibility trace

B
(t)
ij that filters the non-zero immediate influence elements φ′(h

(t)
i )â

(t−1)
j by the network

inverse time constant α:

B
(t)
ij = (1− α)B

(t−1)
ij + αφ′(h

(t)
i )â

(t−1)
j .

Then the approximate gradient is ultimately calculated5 as

∂L(t)

∂Wij
≈ c(t)

i B
(t)
ij .

By observing that

c
(t)
i B

(t)
ij =

∑
k

c
(t)
k δkiB

(t)
ij ,

we see that RFLO is a special case of KeRNL, in which we fix Aki = δki, αi = α. Alterna-
tively, and as hinted in the original paper, we can view RFLO as a special case of RTRL

under the approximation J
(t)
kk′ ≈ (1 − α)δkk′ , because the RTRL update reduces to RFLO

with M
(t)
kij = δkiB

(t)
ij containing B

(t)
ij along the diagonals:

M
(t)
kij =

∑
k′

J
(t)
kk′M

(t−1)
k′ij +M

(t)
kij

= (1− α)
∑
k′

δkk′M
(t−1)
k′ij +M

(t)
kij

= (1− α)M
(t−1)
kij + αδkiφ

′(h
(t)
i )â

(t−1)
j . (22)

Fig. 2 illustrates how B(t) is contained in the influence matrix M(t). This algorithm’s update
is deterministic and in closed form, with memory and computational complexity O(n2).

4. Future-Facing Algorithms

4.1. Backpropagation Through Time (BPTT)

For many applications, a recurrent network is unrolled only for some finite number of time
steps, and backpropagation through time (BPTT) manifests as the computation of the sum

4. An essentially equivalent algorithm, termed e-prop 1, was applied to biologically inspired spiking networks
in Bellec et al. (2019).

5. As the “random feedback” part of the name suggests, Murray goes a step further in approximating c
(t)
k

by random feedback weights á la Lillicrap et al., 2016, but we assume exact feedback in this paper for
easier comparisons with other algorithms.

12



A Unified Framework of Online Learning Algorithms

Figure 2: A visualization of the influence matrix and its 3 indices k, i, and j. In RFLO,

the filtered immediate influences, stored in B
(t)
ij , sparsely populate the influence

matrix along the diagonals.

∂L(t)/∂w(s) over every s ≤ t in the graph. This can be efficiently accomplished using

c(t) = c(t) + c(t+1)J(t+1) (23)

(see Eq. 7) to propagate credit assignment backwards. However, in our framework, where
a network is run on an infinite-time horizon, there are two qualitatively different ways of
unrolling the network. We call them “efficient” and “future-facing” BPTT.

4.1.1. Efficient Backpropagation Through Time (E-BPTT)

For this method, we simply divide the graph into non-overlapping segments of truncation
length T and perform BPTT between t − T and t as described above, using Eq. (23). It
takes O(n2T ) computation time to compute one gradient, but since this computation is
only performed once every T time steps, the computation time is effectively O(n2), with
memory requirement O(nT ). A problem with this approach is that it does not treat all
time points the same: an application of w occurring near the end of the graph segment has
less of its future influence accounted for than applications of w occurring before it, as can
be visualized in Fig. 3. And since any one gradient passed to the optimizer is a sum across
both t and s, it is not an online algorithm by the framework we presented in §2. Therefore,
for the purpose of comparing with online algorithms, we also show an alternative version of
BPTT that calculates a future-facing gradient (up to truncation) ∂L/∂w(t) for every t.

4.1.2. Future-Facing Backpropagation Through Time (F-BPTT)

In this version of BPTT, we keep a dynamic list of truncated credit assignment estimates
ĉ(s) for times s = t− T, · · · , t− 1: [

ĉ(t−T ), · · · , ĉ(t−1)
]
,

where each truncated credit assignment estimate includes the influences of a(s) only up to
time t− 1:

ĉ(s) =
t−1∑
t′=s

∂L(t′)

∂a(s)
.

13



Marschall, Cho, Savin

RTRL E-BPTTF-BPTT

a b c

Figure 3: A visualization of various exact gradient methods. Each plot contains a lattice of
points, representing derivatives ∂L(t)/∂w(s) for s ≤ t, with gray boxes represent-
ing individual gradients passed to the optimizer. a) RTRL sums these derivatives
into gradients for fixed t, using the PF relation (Eq. 5, §2) to efficiently derive
successive gradients (blue arrow). b) F-BPTT sums these derivatives into gra-
dients for fixed s by backpropagating through time (yellow arrows). c) E-BPTT
creates a triangular gradient for non-overlapping subgraphs, using the FF relation
(Eq. 7, §2) for efficient computation (red arrows). Here, the truncation horizon
is T = 4.

At current time t, every element ĉ(s) is extended by adding ∂L(t)/∂a(s), calculated by back-
propagating from the current loss L(t), while the explicit credit assignment c(t) is appended
to the front of the list. To compensate, the oldest credit assignment estimate ĉ(t−T ) is
removed and combined with the immediate influence to form a (truncated) gradient

ĉ(t−T )M
(t−T )

=
t∑

t′=t−T

∂L(t′)

∂a(t−T )

∂a(t−T )

∂w(t−T )
=

t∑
t′=t−T

∂L(t′)

∂w(t−T )
≈ ∂L
∂w(t−T )

,

which is passed to the optimizer to update the network. This algorithm is “online” in that it
produces strictly future-facing gradients at each time step, albeit delayed by the truncation
time T and requiring memory of the network states from t− T . Each update step requires
O(n2T ) computation, but since the update is performed at every time step, computation
remains a factor of T more expensive than E-BPTT. Memory requirement is still O(nT ).
Fig. 3 illustrates the differences among these methods and RTRL, using a triangular lattice
as a visualization tool. Each point in the lattice is one derivative ∂L(t)/∂w(s) with t ≥ s,
and the points are grouped together into discrete gradients passed to the optimizer.

4.2. Decoupled Neural Interfaces (DNI)

Jaderberg et al. (2017) developed a framework for online learning by predicting credit

assignment. Whereas PF algorithms face the problem of a large influence tensor M
(t)
kij

that needs a compressed representation, FF algorithms face the problem of incomplete

14



A Unified Framework of Online Learning Algorithms

information: at time t, it is impossible to calculate c(t) without access to future network
variables. The approach of Decoupled Neural Interfaces (DNI) is to simply make a linear
prediction of c(t) (Czarnecki et al., 2017) based on the current hidden state a(t) and the
current labels y∗(t):

c
(t)
i ≈

∑
l

ã
(t)
l Ali,

where ã(t) = concat(a(t),y∗(t), 1) ∈ Rm′
, m′ = n+ nout + 1, and Ali are the components of

a matrix A ∈ Rm′×n, which parameterizes what the authors call the synthetic gradient
function. The parameters Ali are trained to minimize the loss

L
(t)
SG =

1

2

∥∥∥∥∥∑
l

ã
(t)
l Ali − c

(t)
i

∥∥∥∥∥
2

(24)

via gradient descent, similar to KeRNL’s treatment of Aki and αi (and we drop the time
dependence of Ali for the same reason). Of course, this begs the question—the whole point
is to avoid calculating c(t) explicitly, but calculating the error in Eq. (24) requires access
to c(t). So the authors propose a “bootstrapping” technique analogous to the Bellman
equation in Reinforcement Learning (Sutton and Barto, 2018). If we take the FF relation
we derived in Eq. (7)

c(t) = c(t) + c(t+1)J(t+1) (25)

and approximate the appearance of c(t+1) with the synthetic gradient estimate ã(t+1)A,

then Eq. (25) provides an estimate of c
(t)
i to use in Eq. (24). Then the update for A can be

written as

∆Ali ∝ −ã
(t)
l

[∑
l′

ã
(t)
l′ Al′i −

(
c

(t)
i +

∑
m

∑
l′

ã
(t+1)
l′ Al′mJ

(t+1)
mi

)]
(26)

with learning rate chosen as a hyperparameter. As in Eq. (8), the gradient is calculated by
combining the estimated credit assignment for the i-th unit with the explicit influence by
the ij-th parameter:

∂L
∂W

(t)
ij

=
∂L
∂a

(t)
i

∂a
(t)
i

∂W
(t)
ij

= c
(t)
i φ′(h

(t)
i )â

(t−1)
j ≈

(∑
l

ã
(t)
l Ali

)
φ′(h

(t)
i )â

(t−1)
j

This algorithm is future facing because it ultimately estimates the effect of applying
w at current time t on future losses. Its updates are deterministic, because no explicit
randomness is required, and numerical, because the minimization problem over Ali implied
by Eq. (24) is approximated via gradient descent rather than solved in closed form. It
requires O(n2) memory for A and O(n2) computation for the matrix-vector multiplications
in Eq. (26).

4.2.1. Biological Approximation to DNI

While many of the algorithms we have presented are biologically plausible in the abstract,
i.e. temporally/spatially local and requiring no more than O(n2) memory, we have not
yet discussed any explicit biological implementations. There are a handful of additional
considerations for evaluating an algorithm with respect to biological plausibility:

15



Marschall, Cho, Savin

i Any equation describing synaptic strength changes (weight updates) must be local, i.e.
any variables needed to update a synapse connecting the i-th and j-th units must be
physically available to those units.

ii Matrix-vector multiplication can be implemented by network-wide neural transmission,
but input vectors must represent firing rates (e.g. post-activations a) and not mem-
brane potentials (e.g. pre-activations h), since inter-neuron communication is mediated
by spiking.

iii Feedback weights used to calculate c cannot be perfectly symmetric with Wout, since
there is no evidence for biological weight symmetry (see Lillicrap et al., 2016).

iv Matrices (e.g. J or A) must represent a set of synapses, whose strengths are determined
by some local update.

With a few modifications, many of the presented algorithms can satisfy these requirements.
We briefly illustrate one particular case with DNI, as shown in Marschall et al. (2019). To

address (i), the result of the synthetic gradient operation
∑

l ã
(t)
l Ali can be stored in an

electrically isolated neural compartment, in a manner similar to biological implementations
of feedforward backpropagation (Guerguiev et al., 2017; Sacramento et al., 2018), to allow
for local updates to Wij . For (ii), simply pass the bootstrapped estimate of c(t+1) from
Eq. (26) through the activation function φ so that it represents a neural firing rate. For
(iii), one can use fixed, random feedback weights Wfb instead of the output weights to
calculate c(t), as in Lillicrap et al. (2016). And for (iv), one can train a set of weights Jij
online to approximate the Jacobian by performing SGD on L

(t)
J =

∥∥∥a(t)
i −

∑
j Jija

(t−1)
j

∥∥∥2
,

which encodes the error of the linear prediction of the next network state by Jij . The
update rule manifests as

∆Jij ∝ −

a(t)
i −

∑
j′

Jij′a
(t−1)
j′

 a
(t−1)
j ,

essentially a “perceptron” learning rule, which is local and biologically realistic. Although
this approximation brings no traditional computation speed benefits, it offers a plausible
mechanism by which a neural circuit can access its own Jacobian for learning purposes.
This technique could be applied to any other algorithm discussed in this paper. We refer
to this altered version of DNI as DNI(b) in the experiments section.

5. Experiments

The ultimate goal of empirical evaluation of different algorithms would be to assess their
performance in real-world tasks. However, a full algorithmic comparison in large real-world
problems would likely require a complex architecture (LSTM/GRU), batching, and sophis-
ticated optimization. For each algorithm, each of these choices and associated hyperparam-
eters would have to be individually optimized in a principled way for a fair comparison,
which goes beyond the scope of this paper. Instead, we use the simplest possible setup for
RNN learning, i.e. the simplest architecture (vanilla RNN), a true online setting (batch size
1), and basic SGD optimization, so that we can focus on the effects of different gradient

16



A Unified Framework of Online Learning Algorithms

approximations, without having to consider how they interact with all the additional tech-
niques required to make learning work in real-world problems. This setup restricts us to
simple tasks, but allows us to systematically investigate how key task features, such as time
horizon and dimensionality, affect the comparison outcome.

5.1. Setup

We evaluate each algorithm’s ability to learn two different synthetic tasks: an additive
dependencies task (“Add”) borrowed from Pitis (2016) and a mimic target RNN task
(“Mimic”). Each of these tasks is strictly online, i.e. a continuous sequence of data, as
opposed to discrete subsequences presented in batches. Each admits a parametrizable notion
of difficulty, either time horizon of dependencies (in Add) or computational complexity (in
Mimic).

In the Add task, a stream of i.i.d. Bernoulli inputs x(t) ∈ {0, 1} is provided to the RNN.
The label y∗(t) has a baseline value of 0.5 that increases (or decreases) by 0.5 (or 0.25) if
x(t−t1) = 1 (or x(t−t2) = 1), for specified lags t1 and t2. This task is similar in spirit to
the more popular “Adding Problem” from Hochreiter and Schmidhuber (1997), but our
Add task is truly online and can be learned by vanilla RNNs. Task difficulty is naturally
parameterized by the two delays; here we chose to incrementally vary t1, with fixed t2− t1.

In the Mimic task, the inputs are multi-dimensional i.i.d. Bernoulli inputs x(t) ∈ {0, 1}nin ,
with labels y∗(t) ∈ Rnout determined by the outputs of an untrained target RNN (with nh

hidden units and randomly generated, unitary recurrent weight matrix) that is fed the

same input stream
{

x(t′) : t′ ≤ t
}

. We typically use nin = nout = 32 in Mimic, chosen

so that learning W is necessary for strong performance. We parameterically vary nh to
modulate task difficulty—a target RNN with more hidden units will induce more complex
dependencies between x and y∗.

For each task, we consider two versions on different time scales: when the network is
perfectly discrete (α = 1, see Eq. 9) and when the network update has some time continuity
(α = 0.5). For the α = 0.5 case, the tasks are stretched over time by a factor of 2 to
compensate (i.e. each input/label is duplicated for one time step).

We implement each algorithm in a custom NumPy-based Python module.6 We use gra-
dient descent with a learning rate of 10−4, the fastest learning rate for which all algorithms
are able to converge to a stable steady-state performance. We restrict ourselves to using
a batch size of 1, because, in an online setting, the network must learn as data arrive in
real time. Most algorithms demand additional configuration decisions and hyperparameter
choices: the truncation horizon T (F-BPTT), the initial values of the tensors A and B (all
approximations), the initial values of the learned timescales αi (KeRNL), the distribution
from which ν is sampled for stochastic updates (UORO, KF-RTRL, R-KF), and the learn-
ing rate for the numerical updates (KeRNL, DNI). For each algorithm, we independently
optimize these choices by hand (see Appendix B for details).

6. Link to public code repository: https://github.com/omarschall/vanilla-rtrl/tree/release

17

https://github.com/omarschall/vanilla-rtrl/tree/release


Marschall, Cho, Savin

0 200 400 600 800 1000
0.45

0.55

0.50

0 200 400 600 800 1000
optimal0.45

0.55

0.50

a

fixed W

KeRNL

RTRL UOROR-KF
KF-RTRL

RFLODNI

F-BPTT

DNI(b)

fixed W

KeRNL

RTRL

UORO

R-KF
KF-RTRL

RFLO

DNI
F-BPTT

DNI(b)

time steps (1k)

tra
in

in
g 

lo
ss

time steps (1k)

0.55

0.65

0.45

0.55

0.65

0.45

baseline

task difficulty task difficulty

te
st

 lo
ss

0 1910 0 8 14

c d
fixed W

KeRNL

RTRL

UORO
R-KF

KF-RTRLRFLO
F-BPTT

DNI(b)

b

fixed W

KeRNL

RTRLUORO
R-KF

KF-RTRLRFLO

DNI

F-BPTT

DNI(b)

DNI

Figure 4: a) Cross-entropy loss for networks trained on Add task (t1 = 5, t2 = 9) with
α = 1 for various algorithms. Lines are means over 24 random seeds (weight ini-
tialization and training set generation), and shaded regions represent ±1 S.E.M.
Raw loss curves are first down-sampled by a factor of 10−4 (rectangular kernel)
and then smoothed with a 10-time-step windowed running average. b) Same for
α = 0.5 and t1 = 2, t2 = 4. c) Test loss after training runs for the Add task
with α = 1 for a range of task difficulties, where “difficulty” is quantified as the
horizon of the first dependency t1, with t2 = t1 + 2. We used 12 random seeds
per algorithm-difficulty pair. d) Same for α = 0.5.

5.2. Add Task: Results and Analysis

Fig. 4 shows the performance of each learning algorithm on the Add task, in both α = 1 and
α = 0.5 conditions. We also include a fixed W algorithm, where learning is restricted to the
subset of parameters Wout, as baseline. As expected, since they compute exact gradients up
to truncation, RTRL and F-BPTT perform best, although KF-RTRL is a sufficiently robust
approximation to virtually tie with them. All three approach the theoretical optimum,
defined as the cross-entropy when the outputs perfectly match the labels.7

7. Counterintuitively, this is nonzero because the labels are not binary, so e.g. an output of 0.75 with a
label of 0.75 is a perfect match, but carries a cross-entropy loss of −0.75 log(0.75)−0.25 log(0.25) = 0.56.

18



A Unified Framework of Online Learning Algorithms

R-KF and UORO perform similarly and worse than KF-RTRL does, as expected, since
these approximations carry significantly more variance than KF-RTRL. However, in the
α = 0.5 condition, their performance is similar to that of KF-RTRL.

KeRNL and RFLO also cluster in performance across α conditions. KeRNL is theoreti-
cally a stronger approximation of RTRL than RFLO, because of its ability to learn optimal
Aki and αi whereas RFLO has fixed Aki = δki and αi = α. However, the numerical pro-
cedure for updating Aki and αi depends on several configuration/hyperparameter choices.
Despite significant effort in exploring this space, we are not able to get KeRNL to perform
better than RFLO, suggesting that the procedure for training Aki and αi does more harm
than good in our setup (see Fig. S1 in Appendix C for a systematic analysis across tasks
and α values). We have chosen a favorable setting for KeRNL, such that it performs almost
as well as RFLO, but still learns Aki values that are distinct from δki. In the original paper,
Roth et al. (2019) show promising results using RMSProp (Tieleman and Hinton, 2012) and
batched training, which makes us suspect that the perturbation-based method for training
Aki is simply too noisy for online learning.

DNI sits somewhere between the RFLO-KeRNL cluster and the rest, with its biologically
realistic sibling DNI(b) performing slightly worse than DNI, as to be expected, since it is
an approximation on top of an approximation. As with KeRNL, DNI’s numerical update
of Ali introduces more hyperparameters and implementation choices, but there is a larger
space of configurations in which the updates improve rather than hinder the algorithm’s
performance.

The above observations hold across task difficulties, as we vary t1 with t2 = t1 + 2
(Fig. 4c,d). All algorithms perform near-optimally for easy versions of the task, while
approaching the performance lower bound as t1 increases. This bound is defined as the
cross-entropy loss for a network that has learned the marginal output statistics but has no
knowledge of the input dependencies. For a range of moderate difficulties the algorithms’
performances are grouped similarly to Fig. 4a,b in both α settings.

5.3. Mimic Task: Results and Analysis

For the Mimic task (Fig. 5), we also see a clustering of the algorithms that reflects their
conceptual similarity. For instance, stochastic algorithms UORO and R-KF perform sim-
ilarly to each other (as in Add), and so do deterministic algorithms RFLO and KeRNL.
However, the latter group performs better in Mimic than the former, unlike in Add.

Since in our setup all target networks have unitary weight matrices, Mimic has roughly
the same time constant independent of task difficulty, as illustrated in the input-output
cross-correlograms of the target networks (Fig. S2a,b in Appendix C). This time horizon is
relatively short, as confirmed by the fact that the task can be learned to the same level of
performance even with small BPTT truncation horizons (Fig. S2c,d in Appendix C). This
explains why RFLO, KeRNL and DNI performance approaches that of BPTT and RTRL.

A noticeable difference is that stochastic algorithms perform systematically worse than
they did on the Add task relative to deterministic ones. One potential explanation, in line
with the above, is that when temporal demands of the task are small, the benefit of an
unbiased gradient is outweighed by the drawback of gradient variance. It is also possible
that the high task dimensionality of Mimic disproportionately affects the performance of

19



Marschall, Cho, Savin

0 200 400 600 800 1000 0 200 400 600 800 1000
time steps (1k) time steps (1k)

0.02

0.06

0.04

tra
in

in
g 

lo
ss

0.08

0

0.02

0.01

0.03

0

a b

0.04

0.02

0

0.010

0.005

0

task difficulty task difficulty

te
st

 lo
ss

8 32 256 8 32 256

c d

fixed W

KeRNL
RTRL

UORO
R-KF

KF-RTRL RFLO
DNI

F-BPTT
DNI(b)

fixed W

UOROR-KFRTRL

KF-RTRL
F-BPTT KeRNL

RFLO
DNI
DNI(b)

KeRNL

RTRL

UORO
R-KF

KF-RTRL
RFLO
DNI

F-BPTT

DNI(b)

UORO

R-KF

RTRL

KF-RTRL
F-BPTT

KeRNL
RFLO
DNI

DNI(b)

Figure 5: Same as Fig. 4, for Mimic task with mean-squared-error loss. Task difficulty is
quantified as the number of hidden units nh of the target RNN; nh = 32 in a,b.

stochastic algorithms. In further experiments, we vary the input dimensionality, while du-
plicating inputs appropriately to keep nin = 32, thereby fixing the total number of network
parameters. Across latent dimensionalities, we find that UORO and R-KF perform signif-
icantly worse than all other algorithms. Only when latent dimensionality is small do they
perform similarly (Fig. S3 in Appendix C). Our conjecture is that UORO and R-KF are
more effective at maintaining information over time (cf. Add), but the variance of their
gradients becomes problematic in high dimensions.

5.4. Gradient Similarity Analysis

We conduct an in-depth investigation looking beyond task accuracy by directly comparing
the (approximate) gradients produced by each algorithm. Fig. 6 shows how a given pair
of algorithms align on a time-step-by-time-step basis for the Add and Mimic tasks. Each
subplot is a histogram giving the distribution of normalized dot products

cos
(
θ

(t)
XY

)
=

∆
(t)
X W ·∆(t)

Y W∥∥∥∆
(t)
X W

∥∥∥ ∥∥∥∆
(t)
Y W

∥∥∥ (27)

20



A Unified Framework of Online Learning Algorithms

KeRNLRTRL UORO R-KFKF-RTRL RFLO

DNI

KeRNL

UORO

R-KF

KF-RTRL

RFLO

F-BPTT

DNI

Add task

a b

KeRNLRTRL UORO R-KFKF-RTRL RFLO

DNI

KeRNL

UORO

R-KF

KF-RTRL

RFLO

F-BPTT

DNI

Mimic task

c d

RTRL F-BPTT
0

0.5

1.0

m
ea

n 
al

ig
nm

en
t

past facing
future facing

UORO
R-KF

KF-RTRL

RFLO
KeRNL DNI

0

0.5

1.0

m
ea

n 
al

ig
nm

en
t

RTRL F-BPTT
past facing

future facing

UORO
R-KF

DNI

RFLO KeRNL

KF-RTRL

Figure 6: a) Histograms of normalized gradient alignments for each pair of algorithms.
Gradients are calculated during a simulation of 100k time steps of the Add task
(same hyperparameters as in Figs. 4a,b). Learning follows RTRL gradients, with
other algorithms’ gradients passively computed for comparison. Mean align-
ment (dashed blue line) and 0 alignment reference (dashed black line) shown.
b) Mean alignments of each approximate algorithm with RTRL and F-BPTT,
color-coded by past facing (UORO, KF-RTRL, R-KF, RFLO, KeRNL) vs. future
facing (DNI). A single line segment corresponds to an approximate (i.e. non-F-
BPTT, non-RTRL) algorithm, with its end points denoting mean alignment with
each exact algorithm. c) Same as (a), for Mimic task, with hyperparameters as
in Figs. 5a,b. d) Same as (b), for Mimic task.

for (flattened) weight updates ∆
(t)
X W and ∆

(t)
Y W prescribed by algorithms X and Y , re-

spectively, at time t. Figs. 6a,c show qualitatively similar trends:

21



Marschall, Cho, Savin

i As shown directly in Figs. 6b,d, PF algorithms (UORO, KF-RTRL, R-KF, RFLO,
KeRNL) align better with RTRL than with F-BPTT, and vice versa for FF algorithms
(DNI). This effect is subtler in Mimic—not unexpected since the time horizon required
for solving the task is short, which obscures the distinction between PF and FF gradients.

ii The deterministic PF algorithms (RFLO and KeRNL) align better with RTRL than the
stochastic algorithms (UORO, KF-RTRL, and R-KF) align with RTRL.

iii RFLO and KeRNL align more strongly with each other than any other pair (by con-
struction since the learning rate for KeRNL is small).

iv UORO and R-KF do not align strongly with any other algorithms, despite their ability
to train the RNN effectively. UORO and R-KF each have mean alignments with RTRL
that are barely above 0 (Fig. 6b), yet they outperform other algorithms with much
higher average alignment, in particular RFLO, KeRNL, and DNI.

Observations (i)–(iii) validate our categorizations, as similarity according to the normalized
alignment corresponds to similarity by the past-facing/future-facing, tensor structure, and
stochastic/deterministic criteria. Observation (iv) is puzzling, as it shows that angular
alignment with exact algorithms is not predictive of learning performance.

How are UORO and R-KF able to learn at all if their gradients are almost orthogonal
with RTRL on average? We address this question for both UORO and R-KF by examin-
ing the joint distribution of the gradient’s alignment with RTRL and the gradient’s norm
(Fig. 7). All 4 cases show a statistically significant positive linear correlation between the
normalized alignment and the common log of the gradient norm. This observation may par-
tially explain (iv), because larger weight updates occur when UORO happens to strongly
align with RTRL. However, these correlations are fairly weak even if statistically significant,
and we argue that better algorithm similarity metrics are needed to account for observed
differences in performance.

5.5. RFLO Analysis

Among all approximate algorithms, RFLO stands out as having the simplest tensor struc-
ture and update rule, and it has been empirically demonstrated to be able to train RNNs on
long-term dependencies. This is such a severe approximation of RTRL, yet it works so well
in practice—and there is no clear understanding why. Although Murray (2019) goes into
detail showing how loss decreases despite the random feedback used to approximately cal-
culate c(t), he does not address the more basic mystery of how RFLO is able to learn despite
the significant approximation J(t) ≈ (1−α)I. In this section, we provide some intuition for
how this simple learning rule is so successful and empirically validate our claims.

We hypothesize that, rather than learning dynamics that actively retain useful bits of
the past like RTRL and BPTT, RFLO works by training what is essentially a high-capacity
feedforward model to predict labels from the natural memory traces of previous inputs
contained in the hidden state. This is reminiscent of reservoir computing (Lukoševičius and
Jaeger, 2009). We illustrate this idea in the special case of a perfectly discrete network

(α = 1), where the learning rule still performs remarkably well despite B
(t)
ij = φ′(h

(t)
i )â

(t−1)
j

22



A Unified Framework of Online Learning Algorithms

r = 0.18 r = 0.18

r = 0.06 r = 0.31

50

50

5

10

1

100

10

10

50

50

100

10

0.2-0.1 0.5-0.5

0.2-0.1 0.2-0.2

0

0

0

0

Add task, UORO

Add task, R-KF

Mimic task, UORO

Mimic task, R-KF

alignment alignment

alignment alignment

a b

c d

0.1

0.1

gr
ad

 n
or

m

gr
ad

 n
or

m
gr

ad
 n

or
m

gr
ad

 n
or

m

Figure 7: The joint distribution of normalized alignments and gradient norms (log scale).
a) UORO on Add task, b) UORO on Mimic task, c) R-KF on Add task, d)
R-KF on Mimic task. Color intensity represents (smoothed) observed frequency,
based on a sample of 100k time steps, with least-squares regression line in red.
The estimated correlation coefficients r are all significant.

containing no network history. As Fig. 8a depicts, a(t−1) ultimately maps to y(t) via a single-
hidden-layer feedforward network parameterized by W and Wout. The RFLO learning rule
in the discrete case corresponds exactly to training W by backpropagation:

∂L(t)

∂Wij
=
∂L(t)

∂a
(t)
i

∂a
(t)
i

∂Wij
= c

(t)
i φ′(h

(t)
i )â

(t−1)
j = c

(t)
i B

(t)
ij . (28)

While every learning algorithm additionally trains Wout online to best map a(t) to y∗(t), this
purely linear model cannot perfectly capture the complex ways that information about past
inputs x(t′), t′ ≤ t implicit in a(t) relates to labels y∗(t). Adding a hidden layer improves the
ability of the network to predict y∗(t) from whatever evidence of x(t′) is naturally retained
in a(t−1), analogous to how a single-hidden-layer feedforward network outperforms a simple
softmax regression on MNIST (Deng, 2012).

To empirically validate our explanation, we first show that the strength of natural
memory traces in the RNN depends on its recurrent weights. We measure this “memory” by
running an untrained RNN with fixed weights forwards for 20k time steps of the Add task
and calculating the r2 value of a linear regression of a(t+∆t) onto y∗(t) for different values
of the time shift ∆t. The sudden jumps in information occur as ∆t passes the time lags of

23



Marschall, Cho, Savin

a b

r2
tra

in
in

g 
lo

ss

0.5

0.6

0.5

0.7

0

1.0

0 5 10-5-10

25 500
time steps (1k)

Gaussian
orthogonal

diagonal
symmetric

c

Figure 8: RFLO as a static multi-layer regression. a) One time step of recurrent dynamics
combine with the output weights to form a single-hidden-layer feedforward net-
work that is trained to predict y∗(t) from â(t−1) by the RFLO learning rule (ψ
is softmax). b) Coefficient of determination r2 between a(t+∆t) and y∗(t) as a
function of the time shift ∆t for different methods of generating W. Each trace
is a different random initialization. The cyan dashed line shows the memory
at ∆t = −1, corresponding to the input a(t−1) of the network in (b). The black
dashed lines indicate the lags of the input-output dependencies explicitly included
in the task, corresponding to sudden jumps in information about y∗(t) contained
in the hidden state. c) Cross-entropy loss over learning by RFLO. The dashed
lines indicate benchmarks for learning output statistics, the first dependency, and
the second dependency, respectively (see Pitis, 2016 for details).

the input-output dependencies explicitly included in the task (t1 = 5, t2 = 9), followed by
a slow decay as the information relevant for predicting y∗(t) gets corrupted by running the
network forwards. The speed of this decay differs by the choice of W. As Fig. 8b shows,
orthogonal and Gaussian W seem to best preserve information over time, while symmetric
and diagonal W lose information quite rapidly, likely due to their real spectra. In separate
simulations (Fig. 8c), we trained networks initialized in these ways using the RFLO rule,
and only the networks initialized with orthogonal or Gaussian W are able to learn at all
with RFLO. This validates our hypothesis, that RFLO works by a static prediction of y∗(t)

based on evidence in a(t−1), because in cases where this evidence is absent (or at least weak)
due to rapid decay, RFLO fails.

6. Discussion

We have presented a framework for conceptually unifying many recent advances in efficient
online training of recurrent neural networks. These advances come from multiple perspec-
tives: pure machine learning, biologically plausible machine learning, and computational
neuroscience. We started by articulating a crucial distinction, (a) past facing vs. future

24



A Unified Framework of Online Learning Algorithms

facing, that divides algorithms by what exactly they calculate. We then presented a few
other properties that characterize each new technique: (b) the tensor structure of the algo-
rithm, (c) whether its update requires explicit randomness, and (d) whether its update can
be derived in closed form from the relations (5)–(7) or must be approximated with SGD or
some other numerical approach. Along the way, we clarified the relationship between some
of the modern online approximations and exact methods. Further, we showed it is possible
to create new algorithms by identifying unexplored combinations of properties (a)–(d).

We empirically validated our mathematical intuitions using simple synthetic tasks, solv-
able using a vanilla RNN architecture and basic gradient descent optimization. The advan-
tage of using these tasks is that they succinctly capture two crucial challenges for training
RNNs: calculating credit assignment over long delays (Add) and learning to implement
complex, high-dimensional computations (Mimic). Moreover, they allow for parametric
variation of the degree of these challenges. Using our synthetic tasks, we found that differ-
ent algorithms responded to these two challenges differently: stochastic algorithms generally
handle credit assignment challenges better (in Add) while deterministic algorithms behave
better in high dimensions (in Mimic). We hypothesize that biased algorithms have difficulty
propagating credit assignment information over long periods of time, due to error accumu-
lation. Conversely, an unbiased stochastic estimate may perform poorly in high dimensions
due to variability not averaging out as easily as in low dimensions.

Following common practice, we used the pairwise vector alignments of the (approximate)
gradients calculated by each algorithm as a way to analyze the precision of different ap-
proximations. This similarity turned out to reflect the natural clustering of the algorithms
along the axes proposed here. In particular, past-facing approximations had stronger align-
ment with the exact past-facing gradients calculated by RTRL compared to the exact (up
to truncation) future-facing gradients calculated by F-BPTT, and vice versa for the future-
facing approximation, DNI. Reassuringly, KeRNL and RFLO, which have the same tensor
structure, featured strong alignment.

Importantly, the angular alignment of the gradients did not account for task perfor-
mance: UORO and R-KF performed quite well despite their weak alignment with RTRL
and BPTT, while KeRNL performed relatively poorly despite its strong alignment with
RTRL and BPTT. Analyzing the magnitudes of the gradients partially explained this ob-
servation, as UORO and R-KF aligned with RTRL more strongly when their gradients
were larger in norm. However, this effect was subtle, so probably not enough to account
for the performance differences. This exposes a limitation of current ways of analyzing this
class of algorithms. There clearly is a need for better similarity metrics that go beyond
time-point-wise gradient alignment and instead compare long-term learning trajectories.

Notably, it is the stochastic algorithms that have particularly weak alignment with
RTRL. UORO and R-KF barely align positively with RTRL on average despite outper-
forming many other algorithms on Add, and KF-RTRL has only modest average alignment
with RTRL despite performing as well as the exact algorithms on both tasks. The answer
to this puzzle may lie in how the averages are computed. Over many time steps of learn-
ing, corresponding to many samples of ν, these stochastic methods do contain complete

information about M
(t)
kij in expectation, but at any one time point the alignment is heavily

corrupted by the explicit randomness. In contrast, deterministic approximations, such as
KeRNL, RFLO and DNI, may partially align with exact methods by construction, but their

25



Marschall, Cho, Savin

a

RTRL

UORO
b

KeRNL

RTRL

Figure 9: Cartoon illustrating how alignment with RTRL and performance might dissociate.
a) UORO’s noisy estimates of the true gradient are almost orthogonal with RTRL
at each time point, but the errors average out over time and allow UORO to find a
similar solution. b) KeRNL aligns more strongly with RTRL at each time point,
but errors do not average out, so KeRNL converges to a worse solution.

errors have no reason to average out, hence their inability to find the same minima as exact
methods (Fig. 9). This may also explain why stochastic approximations do not align with
each other despite their conceptual similarity.

With the exception of KF-RTRL and R-KF, all of the algorithms discussed here can
in principle be generalized to arbitrary RNN architectures, which makes them applicable
to large-scale, real-world problems. For the purpose of our review, we did not include al-
gorithms that are specific to a particular architecture, because mathematically comparing
them to other methods is inherently difficult. However, such approaches hold great poten-
tial. As an example, Ororbia et al. (2017, 2018) propose a specialized neural architecture
(Temporal Neural Coding Network), whose learning algorithm (Discrepancy Reduction) is
naturally online and efficient, due to the network structure. As another example, Bellec
et al. (2019) adapt what is effectively RFLO to a biologically motivated network architec-
ture involving spiking units and time-varying thresholds. More generally, we believe the
mathematical intuitions we provide for general-purpose methods can be leveraged to aid
these efforts in designing new architecture-specific learning algorithms.

The search for special architectures that make learning easy is particularly relevant for
computational neuroscience. In the brain, cortical architecture and synaptic plasticity rules
have evolved together under physical constraints that require plasticity to be local. Still,
the details of how local plasticity rules interact with neural circuits remain mysterious and
are a current focus of research (Guerguiev et al., 2017; Sacramento et al., 2018; Bellec et al.,
2019; Lillicrap and Santoro, 2019). Exploring which architectures allow locality to manifest
as a consequence, rather than a constraint, of learning is a potentially fruitful point of
interaction between artificial intelligence and computational neuroscience.

Acknowledgments

We thank Guangyu Yang and James Murray for helpful conversations. This work was
supported by a Google faculty award, and NRT-HDR grant 1922658. KC thanks NVIDIA
and eBay for their support.

26



A Unified Framework of Online Learning Algorithms

Appendix A. Lemma for Generating Rank-1 Unbiased Estimates

For completeness, we state the Lemma from Tallec and Ollivier (2017) in components
notation. Given a decomposition of a matrix M ∈ Rn×m into r rank-1 components

Mij =

r∑
k=1

AikBkj , (29)

a vector of i.i.d. random variables ν ∈ Rr with E[νk] = 1, E[νkνk′ ] = δkk′ , and a list of r
positive constants ρk > 0, then

M̃ij =

(
r∑

k=1

ρkνkAik

)(
r∑

k=1

ρ−1
k νkBkj

)
(30)

is a rank-1, unbiased estimate of Mij over the choice of ν.

Appendix B. Implementation details

For reproducibility, we describe in fuller detail our implementation configurations for each
simulation. Table 2 shows hyperparameter/configuration choices that apply across all algo-
rithms. Table 3 shows the algorithm-specific hyperparameter choices we made for each task.
In Table 2, we reference sub-matrices of W = [wrec,win,brec] and Wout = [wout,brec], since
they are initialized differently.

hyperparameter value explanation

learning rate 10−4 learning rate for SGD w.r.t. W and Wout

n 32 number of hidden units in the network

φ tanh nonlinearity used in RNN forward dynamics

init. win ∼ N (0, 1/
√
nin) initial value for input weights

init. wrec rand. orth. initial value for recurrent weights

init. brec 0 initial value for recurrent bias

init. wout ∼ N (0, 1/
√
n) initial value for output weights

init. bout 0 initial value for output bias

init. WFB ∼ N (0, 1/
√
nout) value for fixed feedback weights used in DNI(b)

init. brec
targ. ∼ N (0, 0.1) initial value for target recurrent bias in Mimic

init. bout
targ. ∼ N (0, 0.1) initial value for target output bias in Mimic

Table 2: Default hyperparameter choices for the RNN independent of learning algorithm.

Some miscellaneous implementation details below:

• For the Add task in the α = 1 condition, we changed the DNI/DNI(b) learning rate
to 5 × 10−2 for Ali and 10−2 for Jij (DNI(b)). In other cases, the learning rates for
Ali and Jij are identical.

• There are two appearances of the synthetic gradient weights Ali in Eq. (26). Although
we wrote them as one matrix A for brevity, in implementation we actually keep two
separate values, A and A∗, the latter of which we use for for the right-hand appearance

27



Marschall, Cho, Savin

algorithm initial values ν dist. LR pert. σ T

UORO A
(0)
k ∼ N (0, 1), B

(0)
ij ∼ N (0, 1) unif. {−1, 1}

KF-RTRL A
(0)
j ∼ N (0, 1), B

(0)
ki ∼ N (0, 1) unif. {−1, 1}

R-KF A
(0)
i ∼ N (0, 1), B

(0)
kj ∼ N (0, 1) unif. {−1, 1}

KeRNL A
(0)
ki = δki, B

(0)
ij = 0, α

(0)
i = α 1/σ 10−7

DNI A
(0)
li ∼ N (0, 1/

√
m′) 10−3

DNI(b) A
(0)
li ∼ N (0, 1/

√
m′),J (0)

ij = W rec
ij 10−3

F-BPTT 10

Table 3: Hyperparameter choices specific to individual algorithms.

Al′m (specifically to calculate the bootstrapped estimate of the SG training label). We
update A every time step but keep A∗ constant, replacing it with the latest value of
A only once per τ ∈ N time steps. This integer τ introduces another hyperparameter,
which we choose to be 5. (Inspired by an analogous technique used in deep Q-learning
from Mnih et al., 2015.)

• In the original paper, Roth et al. (2019) use (1 − exp(−γi)) rather than αi as a

temporal filter for B
(t)
ij . We made this change so that αi makes sense in terms of the

α in the forward dynamics of the network and RFLO. Of course, these are equivalent
via γi = − log(1 − αi), but the gradient w.r.t. αi must be rescaled by a factor of
1/(1− αi) to compensate.

• For KeRNL, there is a choice for how to update the eligibility trace (Eq. 17): one can

scale the right-hand term φ′(h
(t)
i )â

(t−1)
j by either the learned timescale αi or the RNN

timescale α. We chose the latter because it has stronger empirical performance and
it theoretically recovers the RTRL equation under the approximating assumptions
about A.

• Perturbations for calculating gradients for Aki and αi in KeRNL are sampled i.i.d.
ζi ∼ N (0, σ).

• In our implementation of the Add task, we use nin = nout = 2 for a “one-hot”
representation of the input x(t) ∈ {0, 1} and label y∗(t) ∈ {0.25, 0.5, 0.75, 1}, such that
x(t) = [x(t), 1− x(t)] and y∗(t) = [y(t), 1− y(t)].

• In our implementation of Mimic, the target RNN was initialized in the same way
as the RNNs we train, with the exception of the recurrent and output biases (see
Table 2).

28



A Unified Framework of Online Learning Algorithms

Appendix C. Supplementary Figures

0.50

0.54

0.52

0.50

0.54

0.52

0.007

0.009

0.008

0.006

0.03

0.05

0.04

0.02

0.06

0.1 0.3 1 3 10 30 100

0.1 0.3 1 3 10 30 100 0.1 0.3 1 3 10 300.03

0.1 0.3 1 3 10 300.03

te
st

 lo
ss

te
st

 lo
ss

KeRNL

RFLO

KeRNL learning rate KeRNL learning rate

a

c d

b

Add

Mimic

Figure S1: a) Test loss of KeRNL on Add task (α = 1, t1 = 5, t2 = 9) and RFLO for
different values of the learning rate for Aki and αi. The learning rate used in
the rest of the paper is indicated by the grey dashed line. b) Same for Add with
α = 0.5, t1 = 2, t2 = 4. c) Same for Mimic with α = 1, nh = 32. d) Same for
Mimic with α = 0.5, nh = 32.

29



Marschall, Cho, Savin

0.0

0.4

0.2

0.6

0.0

0.4

0.2

0.6

lin
ea

r

delay (time steps)delay (time steps)
-10 -5 -3 -2 -1-4 0-10 -5 -3 -2 -1-4 0

a b

8
12
16
20
32
64
128
256

0.02

0.03

0.01

te
st

 lo
ss

0
0 1 2 76 84 53 9

truncation horizon (time steps)

8
12
16
20
32
64
128
256

c

0.005

0.01

0 1 2 76 84 53 9
truncation horizon (time steps)

dF-BPTT F-BPTT

Figure S2: a) Linear R2 coefficient between inputs x and labels y∗ at a given time delay
for the Mimic task (α = 1) on various difficulties (shades of gray). b) Same
for α = 0.5. c) Test loss for F-BPTT algorithm on Mimic task (α = 1) as a
function of truncation horizon on various difficulties. d) Same for α = 0.5. For
low difficulties, performance gets worse with higher T . For higher difficulties,
performance saturates around T = 5 or earlier.

30



A Unified Framework of Online Learning Algorithms

0

0.02

0.01

0.03

0

0.02

0.01

0.03

1 2 4 8 16 32 1 2 4 8 16 32

te
st

 lo
ss

latent input dimensionality latent input dimensionality

a b

fixed W

RTRL

UORO
R-KF

RFLO

fixed W

RTRL

UOROR-KF

RFLO

Figure S3: a) Test loss on Mimic (α = 1, nh = 16) as a function of the latent dimensionality
of the inputs, while holding fixed the number of nominal input dimensions to
32 to keep W the same size. As task dimensionality gets larger, performance of
UORO and R-KF diverges from rest of algorithms. DNI, F-BPTT, KF-RTRL
and KeRNL omitted for readability but perform similarly to RTRL and RFLO.
b) Same for nh = 32.

31



Marschall, Cho, Savin

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Ben-
gio. End-to-end attention-based large vocabulary speech recognition. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4945–4949. IEEE, 2016.

Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang
Maass. Biologically inspired alternatives to backpropagation through time for learning in
recurrent neural nets. arXiv preprint arXiv:1901.09049, 2019.

Frederik Benzing, Marcelo Matheus Gauy, Asier Mujika, Anders Martinsson, and Angelika
Steger. Optimal kronecker-sum approximation of real time recurrent learning. arXiv
preprint arXiv:1902.03993, 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content
using attention-based encoder-decoder networks. IEEE Transactions on Multimedia, 17
(11):1875–1886, 2015.

Tim Cooijmans and James Martens. On the variance of unbiased online recurrent optimiza-
tion. arXiv preprint arXiv:1902.02405, 2019.

Wojciech Marian Czarnecki, Grzegorz Swirszcz, Max Jaderberg, Simon Osindero, Oriol
Vinyals, and Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neu-
ral interfaces. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 904–912. JMLR. org, 2017.

Li Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho,
John Agapiou, et al. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626):471, 2016.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with
segregated dendrites. ELife, 6:e22901, 2017.

32



A Unified Framework of Online Learning Algorithms

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gra-
dients. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1627–1635. JMLR. org, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain.
Current Opinion in Neurobiology, 55:82 – 89, 2019. ISSN 0959-4388. doi: https://doi.org/
10.1016/j.conb.2019.01.011. URL http://www.sciencedirect.com/science/article/

pii/S0959438818302009. Machine Learning, Big Data, and Neuroscience.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Ran-
dom synaptic feedback weights support error backpropagation for deep learning. Nature
communications, 7:13276, 2016.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149, 2009.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Owen Marschall, Kyunghyun Cho, and Cristina Savin. Evaluating biological plausibility of
learning algorithms the lazy way. 2019.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Eleventh annual conference of the
international speech communication association, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Asier Mujika, Florian Meier, and Angelika Steger. Approximating real-time recurrent learn-
ing with random kronecker factors. In Advances in Neural Information Processing Sys-
tems, pages 6594–6603, 2018.

James M Murray. Local online learning in recurrent networks with random feedback. eLife,
8:e43299, 2019.

Alexander Ororbia, Ankur Mali, C Lee Giles, and Daniel Kifer. Online learning of recur-
rent neural architectures by locally aligning distributed representations. arXiv preprint
arXiv:1810.07411, 2018.

II Ororbia, G Alexander, Patrick Haffner, David Reitter, and C Lee Giles. Learning to
adapt by minimizing discrepancy. arXiv preprint arXiv:1711.11542, 2017.

33

http://www.sciencedirect.com/science/article/pii/S0959438818302009
http://www.sciencedirect.com/science/article/pii/S0959438818302009


Marschall, Cho, Savin

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318, 2013.

Silviu Pitis. Recurrent neural networks in tensorflow 1. r2rt.com/

recurrent-neural-networks-in-tensorflow-i, 2016. Accessed: 2018-11-13.

Christopher Roth, Ingmar Kanitscheider, and Ila Fiete. Kernel RNN learning (keRNL).
In International Conference on Learning Representations, 2019. URL https://

openreview.net/forum?id=ryGfnoC5KQ.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical
microcircuits approximate the backpropagation algorithm. In Advances in Neural Infor-
mation Processing Systems, pages 8721–8732, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Corentin Tallec and Yann Ollivier. Unbiased online recurrent optimization. arXiv preprint
arXiv:1702.05043, 2017.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning,
2012.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3156–3164, 2015.

Paul J Werbos et al. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

34

r2rt.com/recurrent-neural-networks-in-tensorflow-i
r2rt.com/recurrent-neural-networks-in-tensorflow-i
https://openreview.net/forum?id=ryGfnoC5KQ
https://openreview.net/forum?id=ryGfnoC5KQ

	Introduction
	Past- and Future-Facing Perspectives of Online Learning
	Past-Facing Online Learning Algorithms
	Future-Facing Online Learning Algorithms

	Past-Facing Algorithms
	Real-Time Recurrent Learning
	Approximations to RTRL

	Unbiased Online Recurrent Optimization (UORO)
	Kronecker-Factored RTRL (KF-RTRL)
	Reverse KF-RTRL (R-KF)
	Optimal Kronecker-Sum Approximation (OK)

	Kernel RNN Learning (KeRNL)
	Random-Feedback Online Learning (RFLO)

	Future-Facing Algorithms
	Backpropagation Through Time (BPTT)
	Efficient Backpropagation Through Time (E-BPTT)
	Future-Facing Backpropagation Through Time (F-BPTT)

	Decoupled Neural Interfaces (DNI)
	Biological Approximation to DNI


	Experiments
	Setup
	Add Task: Results and Analysis
	Mimic Task: Results and Analysis
	Gradient Similarity Analysis
	RFLO Analysis

	Discussion
	Lemma for Generating Rank-1 Unbiased Estimates
	Implementation details
	Supplementary Figures

