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ABSTRACT: This paper addresses the mechanism for rectifica- e LEE T
tion in molecular tunneling junctions based on alkanethiolates _&E%‘f 1004 Co Mn

terminated by a bipyridine dpEon complexed with a metal ion, that W Ga,0, 5§ 2 Fe  Recifier

is, having the structure Au™-S(CH,),,BIPY-MCl, (where M = Co == Y ¢ “

or Cu) with a eutectic indium— gallium alloy top contact (EGaln, o o o o £ *‘% s

75.5% Ga 24.5% In). Here, Au”>-S(CH,),,BIPY is a self-assembled Vs & e} HE& 3

rr¥on0.la'yer (SAM) of an alkanethiolate with 4-I.nethyl-2,2’- CA) ‘3.“ :. L..L ‘L = E Norreciifier
blpyTrsldme (BIPY) heac.l groups, on template—strlp})ed gold o 2 e —
(Au™). When the SAM is exposed to cobalt(II) chloride, SAMs LA % X 1 i _Sicaeedy |
of the form Au"S-S(CH,),;BIPY-CoCl, rectify current with a ka ~k_L\.~ C' " 2 1 -0 09 08

rectification ratio of r* = 82.0 at +1.0 V. The rectification, however, — HOMO (eV vs. Au)
disappears (r* = 1.0) when the SAM is exposed to copper(1l)

chloride instead of cobalt. We draw the following conclusions from our experimental results: (i) Au’*-S(CH,);;BIPY-CoCl,
junctions rectify current because only at positive bias (+1.0 V) is there an accessible molecular orbital (the LUMO) on the BIPY-
CoCl, moiety, while at negative bias (—1.0 V), neither the energy level of the HOMO or the LUMO lies between the Fermi levels of
the electrodes. (i) Au-S(CH,);;BIPY-CuCl, junctions do not rectify current because there is an accessible molecular orbital on
the BIPY-CuCl, moiety at both negative and positive bias (the HOMO is accessible at negative bias, and the LUMO is accessible at
positive bias). The difference in accessibility of the HOMO levels at —1.0 V causes charge transfer—at negative bias—to take place
via Fowler—Nordheim tunneling in BIPY-CoCl, junctions, and via direct tunneling in BIPY-CuCl, junctions. This difference in
tunneling mechanism at negative bias is the origin of the difference in rectification ratio between BIPY-CoCl, and BIPY-CuCl,
junctions.

B INTRODUCTION why tunneling currents differ between BIPY-CoCl, junctions
and BIPY-CuCl, junctions.

When ch through lecul ted by tw
on chage passes TAPUEH a molecn e connected by WO SAMs based on metal complexes of BIPY are an excellent

electrodes, if the rate of charge transport (CT) in one direction . . . i
is different than in the opposite direction (at the same model system to investigate molecular rectifiers classified as

magnitude of applied voltage), the molecular junction rectifies having an asymmetrically positioned chromop hore' n th'e1r
current, and is relevant to the subject of molecular rectifiers. 2 molecular structure (e.g.,, molecules composed of an insulating

Rectification is especially useful in mechanistic studies of charge alkyl chain termma.ted bya more conducting, aromatic moiety)
. . for two reasons. First, the ability for BIPY to form complexes
transport through molecular junctions because the same ) . X . . i
S . . with transition metal ions makes it possible to modify the
junction is used to measure tunneling currents at both positive fronti levels of the BIPY-MCI A fth
and negative bias voltage. The commonality reduces errors due rontier energy fevels ot the “Vih group. A survey of the

to junction-to-junction variability in the measurement of effects of different metal ions (Cr, Mn, Fe, Co, Ni, or Cu)
current. 32! showed that BIPY-CoCl, and BIPY-CuCl, junctions exhibited

We previously reported that molecular junctions composed of
BIPY-terminated n-alkanethiol-based self-assembled mono-
layers (SAMs) on template-stripped metal surfaces rectify
current.””>* We have observed that the conductive properties Received: December 4, 2020
(including rectification) of these BIPY junctions can change Published: January 22, 2021
drastically upon exposure to metal ions. This paper describes the
rectification of tunneling currents at +1.0 Vin junctions with the
structure Au'S-S(CH,),,BIPY-M//GaO,/EGaln, where M =
Co or Cu (Figure 1). The objective of this paper is to understand

pronounced differences in rectification. The differences in
rectification between BIPY-CoCl, and BIPY-CuCl, junctions
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Figure 1. Schematic images of the molecular junction with the structures of Au"S-S(CH,),,;BIPY-MCl,//GaO,/EGaln. XPS results show a 1:1 ratio
between the metal and the 2,2’-bipyridine group. In reality, interfaces at EGaln are rough, and the Au surface is not perfectly flat. Detailed descriptions
of molecular structure are summarized in the Supporting Information.

Table 1. Elemental Ratios in the Au™-S(CH,),;BIPY-CoCl, and Au"5-S(CH,),,;BIPY-CuCl, Junctions Characterized by XPS“

Junctions Sulfur:Nitrogen Sulfur:Nitrogen (corrected for thickness of SAMs) Metal:Nitrogen Metal:Chloride
BIPY-CoCl, 1:2.7 + 0.05 1:1.8 + 0.04 1:1.8 + 0.14 1:1.8 + 0.06
BIPY-CuCl, 1:2.7 + 0.08 1:1.8 + 0.05 1:1.9 + 0.12 1:1.7 £ 0.16

“Raw data is in the Supporting Information. Experiments were replicated a total of nine times, and uncertainty values represent the standard
deviation.

suggests that rectification is determined purely by the electronic species of anion could affect the change of energy levels in
structure of the molecular junction, as opposed to (a) molecular junctions. The averaged J(V) traces measured in
asymmetry in the nature of the two electrodes (Au bottom- BIPY-CoCl, and BIPY-CuCl, junctions which complexed with
electrode and EGaln top-electrode), (b) asymmetry in the top other halide anions, however, still showed no significant change
and bottom contacts (covalent Au—S bond at bottom-electrode in rectification (Figure S4).
and a van der Waals contact with the EGaln), (c) redox BIPY-CoCl, junctions rectify current while BIPY-CuCl,
reactions involving EGaln, or (d) the oxide layer of EGaln. junctions do not. Figures 2a and b show averaged J(V) curves
Second, BIPY-MC, junctions, in principle, have the same recorded on BIPY-CoCl, (548 traces on 26 junctions) and
supramolecular structure, which eliminates the uncertainty BIPY-CuCl, junctions (357 traces on 17 junctions) using the
associated with differences in packing density, orientation, and EGaln measurement system. We report the rectification ratio, r¥,
conformation. as the ratio of current density at a given positive and negative
bias (r* = IJ(+V)I/IJ(=V)I at =1 V). As shown in Figure 2c,
B RESULTS AND DISCUSSION BIPY-CoCl, junctions rectified tunneling current with a
BIPY-CoCl, and BIPY-CuCl, SAMs both have 1:1 rectification ratio (r*) of 82.0. In BIPY-CuCl, junctions,
(M:BIPY) binding ratios. X-ray photoelectron spectroscopy however, we did not f)bserV e.rectif}cation (r"=10at+1.0V).
(XPS) was employed to characterize the elemental composition The d'fferenc'e in _reCt'flcatlon between .BIPY'COCZIZ
of the BIPY-MCl, SAMs, using a total of nine samples. The and_ BIPY-CuC!z Junctions is the result of a'dlffefence in
atomic ratio of nitrogen to sulfur in the SAMs was determined to their mechanisms of tunneling at negative bias. The
1.8 ++ 0.04 for BIPY-CoCl, SAMs and 1.8 + 0.0S for BIPY-CuCl, largest difference in the magnitude of J(V) occurs at negative
SAMs, after correcting for attenuation of the sulfur signal due to bias, where BIPY-CuCl, junctions have a 33X larger tunneling
the SAM thickness (Table 1; see Supporting Information for current than BIPY-CoCl, junctions. At positive bias, the
details). These values agree with the ratio measured for BIPY difference in the rate of charge tunneling between BIPY-CoCl,
SAMs (1.79 + 0.04),”* demonstrating BIPY-CoCl, and BIPY- and BIPY-CuCl, is much smaller (the rate of tunneling is only
CuCl, SAMs have a similar ratio of nitrogen to sulfur relative to ~2x larger in BIPY-CoCl, junctions).*” This observation—that
one another, and to uncomplexed BIPY SAMs. These complexation with copper increases the rate of tunneling at
observations indicate that the core structure of the SAMs negative bias—led us to hypothesize that an additional
remain unchanged upon metal complexation. The ratios of conduction path (the HOMO) may be accessible at negative
nitrogen to metal were 1.8 + 0.14 for BIPY-CoCl, junctions and bias in BIPY-CuCl,, but not in BIPY-CoCl, junctions. To assess

1.9 + 0.12 for BIPY-CuCl, junctions. The ratios strongly this hypothesis, we measured the approximate HOMO energy
suggested that metal and the surface-bound 2,2"-bipyridine form levels of both the BIPY-CoCl, and BIPY-CuCl, junctions, using

a 1:1 BIPY-M** complex. Figure 1 shows the schematic images both cyclic voltammetry (CV) and ultraviolet photoelectron
of the molecular junction (details about possible arrangements spectroscopy (UPS).

are described in the Supporting Information).zs’26 The ratio of The HOMO of BIPY-CuCl,, but not BIPY-CoCl,, lies
chloride to metal in these junctions was measured to be 1.8 + between the Fermi level of the two electrodes at —1.0 V.

0.06 for BIPY-CoCl, junctions and 1.7 + 0.16 for BIPY-CuCl, We first characterized the S(CH,),;BIPY-CoCl, and S-
junctions. The substoichiometric Cl™ ion signal may be the (CH,),,;BIPY-CuCl, SAMs on a Au™® surface with CV (Figure
result of an exchange between CI™ and hydroxide upon contact 3) in 0.1 M aqueous KClO, electrolyte solutions, using a Pt
of the SAM surface with trace water in the atmosphere, or in the counter electrode, and an Ag/AgClI reference electrode. The
ethanolic solution during the preparation of the SAM. The scan rate was 0.1 V/s. For BIPY-CoCl, SAMs, no redox peak was
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S | ‘;.:,;306' (E1)2,NuEpipy-cu) Was 0.60 V, which gave a value for
1004 Exomoppy-co of —5.10 eV. This value of Eygyo for BIPY-
50 CuCl, is —0.80 eV with respect to the Fermi level of Au and is
. thus accessible when —1.0 V is applied to the junction.

A 1 2
Log|r'|
Figure 2. Averaged J(V) traces of (a) BIPY-CoCl, and (b) BIPY-CuCl,

junctions. (c) Histograms of log|r*| of the BIPY-CoCl, and BIPY-CuCl,
junctions at +1.0 V with a Gaussian fit to the histograms.

observed within the potential range of —0.2—1.0 V (vs Ag/AgCl
in 1.0 M KCl (aq)). Outside of this potential window, new peaks
appeared in the CV, which increased in peak height after each
scan—and are thus assumed to be caused by damage to SAM
(Figure SS). For this reason, we limited the voltage applied to
the working electrode to —0.2 to +1.0 V. The BIPY-CuCl,
SAMs, on the other hand, showed well-defined, reversible
anodic (E,, = ~470 mV) and cathodic (E,. = ~350 mV) peaks
within the —0.2 to +1.0 V window (Figure 3). We assume that
these peaks are indicative of oxidation/reduction reactions
between BIPY-Cu?*Cl, + e~ <> BIPY-Cu*ClL>” We observed a
peak separation of approximately ~120 mV between the anodic
and cathodic peaks. For an ideal, reversible redox reaction, the
peak separation should be zero. Previous CV measurements on
similar systems, however, are also characterized by finite values
of peak separation.”®*” The redox process in the CV of the
BIPY-CuCl, SAM is only partially reversible. We believe that a
plausible origin of the irreversibility of the process is the
dissociation of Cu®* cations from the SAMs at rates comparable
with the time scale of the CV experiments.

The energy level of the HOMO (Ejop0) relative to vacuum
can be estimated from the formal half-wave gotential E,
obtained from the cyclic voltammogram (eq 1).”
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We also characterized the HOMO levels of Au’®-
S(CH,),,BIPY-CoCl, and Au™-S(CH,),,BIPY-CuCl, SAMs
using UPS (Figure S6). Based on the UPS results, the HOMO
level of BIPY-CoCl, was —1.11 eV, and that of BIPY-CuCl, was
—0.86 eV, with respect to the Fermi level of Au™S. The energy
level of the HOMO for BIPY-CuCl, determined by UPS (—0.86
eV) was almost equal to the value obtained from CV (—0.80
eV). This result indicates that the HOMO level of the BIPY-
CuCl, moiety is involved (accessible) in the tunneling process at
—1.0 V. Because the HOMO level of BIPY-CoCl,, however, is
more than 1.0 eV below the Fermi level of the Au electrode, it is
not involved (inaccessible) at —1.0 V. These results are consistent
with our original hypothesis, that the accessibility of molecular
orbitals at negative bias is directly correlated with the magnitude
of current density at that bias and the overall rectification ratio.

Temperature Dependence of Tunneling Rates. Tun-
neling is a temperature-independent process, and evidence of
temperature dependence in measurements of charge transport is
generally associated with an electron hopping step. Electron
hopping involves a formal redox process—however fleeting—
and thus requires an energetically accessible molecular orbital.
Thus, variable temperature measurements can be used to
differentiate between a pure tunneling mechanism of charge
transport and a mechanism that involves hopping. In these
experiments, the EGaln tip was gently brought into contact with
the samples and the Au™-S(CH,),,BIPY-MCl,//GaO,/EGaln
junction was encapsulated by a photocurable polymer (Norland
Optical Adhesive 61, Norland Products). Then, we gently lifted
the syringe containing EGaln to form encapsulated BIPY-MCI,

https://dx.doi.org/10.1021/jacs.0c12641
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junctions to allow for transfer to an environmentally controlled
probe station (Lakeshore 1.5K Probe Station).”"

Figure 4 shows the results of variable temperature measure-
ments of charge transport across the BIPY-CoCl, and BIPY-
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Figure 4. Values of current density measured at —1.0 Vand +1.0 Vas a
function of temperature in (a) BIPY-CoCl, junctions and (b) BIPY-
CuCl, junctions. The variable temperature experiments were
performed with a probe station (Lakeshore 1.SK Probe Station) in
vacuum (1 X 107 bar).

CuCl, junctions at —1.0 V and +1.0 V. At +1.0 V, the values of
current density in both BIPY-CuCl, and BIPY-CoCl, junctions
change with temperature. This temperature dependence implies
that there is an accessible molecular orbital at +1.0 V (see
Supporting Information for details). At —1.0 V, however, the
current density in BIPY-CoCl, junctions does not change with
temperature, while in BIPY-CuCl, junctions, it does. This result
supports our previous CV and UPS data on the relative position
of the HOMO levels of BIPY-CoCl, and BIPY-CuCl,, as well as
our mechanistic interpretation that the HOMO of BIPY-CuCl,
is accessible at —1.0 V, while the HOMO of BIPY-CoCl, is
inaccessible. Interestingly, we observed a similar dependence on
temperature for the current densities at both positive and
negative biases for BIPY-CuCl,. This symmetry suggests a
similar activation energy for the hopping step at either bias. We
do not believe that this symmetry must necessarily exist for all
junctions of this type. Moreover, in comparison to the
uncomplexed BIPY junction,” we observed that the BIPY-
CoCl, junction exhibited a difference in the dependence of
current density on temperature (Figure S8).

Mechanism for Differences in Tunneling Currents
between BIPY-MCl, Complexes. Figure Sa and Sb are
schematic representations of the energy level diagrams of the
BIPY-CoCl, and BIPY-CuCl, junctions at —1.0 V and +1.0 V,
based on the results of our experiments. The HOMO and
LUMO are centered on the BIPY-MCI, complex, and are thus
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isolated from the alkyl chain (i.e., the rectangles representing
these MOs do not span the entire width of the barrier) and are in
close contact with the GaO,/EGaln electrode. As a result of
their proximity to the GaO,/EGaln electrode, the HOMO and
LUMO of the junction are coupled to the energy level of the
GaO,/EGaln electrode, a phenomenon known as Fermi level
pinning.15

Our mechanistic proposal suggests that the inaccessible
HOMO of BIPY-CoCl, at —1.0 V and the accessible LUMO at
+1.0 Vis the origin of the rectification in BIPY-CoCl, junctions.
We believe that a MO that is energetically accessible, and is
localized at one end of the molecule, reduces the width of the
barrier by approximately the size of the MO (which in this
system, is located on the BIPY-MCl, complex). This reduction
in barrier width is concomitant with an increased rate of charge
transport.

The Fowler—Nordheim (FN) plots in Figure 6 distinguish
between direct tunneling and FN tunneling across the BIPY-
MCI, junctions and support our mechanistic interpretation of
charge transport in these systems. BIPY-CoCl, and BIPY-CuCl,
show distinctly different graphical features in the FN plots. Most
notably, while BIPY-CuCl, junctions show predominantly direct
tunneling throughout the entire negative bias window, BIPY-
CoCl, junctions have a transition in the conduction mechanism
from direct tunneling to FN tunneling at both negative and
positive bias. That is, above a threshold voltage (known as the
transition voltage),”” they show a clear linear dependence of
In(J/V*) on 1/V.

For BIPY-CoCl, junctions, at —1.0 V, the HOMO level
(—4.41 eV) is lower in energy than the Fermi level of the Au
electrode (—4.3 eV) and is thus not involved in the charge
transfer process. The FN plot of the BIPY-CoCl, junctions
shows that, at —1.0 V, the conduction mechanism of BIPY-
CoCl, junctions is FN tunneling (Figure 6a). These two results
are consistent with the energy level diagram in Figure Sa. At
positive bias (+1.0 V), the conduction mechanism for BIPY-
CoCl, is also FN tunneling. This result supports our
interpretation of the variable temperature experiments, because
conventional understanding of band structure (which admit-
tedly may not be complete or accurate) suggests that, for a
system in which the LUMO is localized adjacent to the
ungrounded electrode, FN tunneling at +1.0 V is impossible
without an accessible MO. That is, FN tunneling at +1.0 V
strongly suggests that the LUMO of the BIPY-CoCl, moiety is
energetically accessible for charge transfer at +1.0 V (Figure 6b).

For BIPY-CuCl, junctions, the results of our CV, UPS, and
variable temperature experiments all suggest that the HOMO is
energetically accessible at —1.0 V. The FN plot in Figure 6b
shows only direct tunneling between 0 and —1.0 V, which is
consistent with the energy diagram in Figure 5a involving an
accessible HOMO. This mechanistic interpretation is also
consistent with the higher rate of charge transport in BIPY-
CuCl, junctions than in BIPY-CoCl, junctions, at —1.0 V. Again,
we believe that the accessible HOMO in the BIPY-CuCl,
junction decreases the width of the barrier. At positive bias,
the FN plot for the BIPY-CuCl, junctions (Figure 6b) shows a
transition from direct tunneling to FN tunneling close to the
+1.0 V region (the transition becomes clear when the applied
bias is increased to +1.5 V; see Supporting Information for
details). This result is consistent with the energy diagram in
Figure Sb, which involves an accessible LUMO at +1.0 V. As is
the case at negative bias, due to the accessible LUMO of BIPY-
CuCl, at +1.0 V, the barrier width across the junction is reduced,
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the molecule (i.e., the potential barrier is not a straight line). Here, we use a straight line for visual convenience. Also, the black and red arrows indicate
the tunneling path of charges across the BIPY-CoCl, and BIPY-CuCl, junctions, respectively. The black dashed line in (a) was added to emphasize the
position of the Fermi level of Au with respect to the HOMOs of conducting moieties. Geometry of molecular orbitals calculated by density functional
theory (DFT): HOMO of (c) BIPY-CoCl, and (d) BIPY-CuCl, and LUMO of (e) BIPY-CoCl, and (f) BIPY-CuCl,.

and the rate of charge transport is nearly the same as that at —1.0
V. Thus, we suppose that the accessible HOMO at —1.0 V and
the accessible LUMO at +1.0 V are why no rectification is
observed in BIPY-CuCl, junctions.”

These results, taken together, suggest that, at —1.0 V, the
increased rate of tunneling (X33) of SAMs of BIPY-CuCl,
compared to BIPY-CoCl, is the result of the presence of an
accessible HOMO in the BIPY-CuCl, junction (Figure Sa and
Sb); the corresponding orbital is not accessible in the BIPY-
CoCl, junction. For BIPY-CuCl, junctions, the mechanism
consists of a hopping step to the BIPY-CuCl, unit and then a
direct tunneling step across the alkyl chain. By contrast, for
BIPY-CoCl, junctions, due to the inaccessibility of the HOMO
level, the mechanism consists of FN tunneling across the entire
molecule. At +1.0 V, the decreased rate of tunneling (X2) of
SAMs of BIPY-CuCl, compared to BIPY-CoCl, arises
principally from differences in the barrier height at the alkyl/
BIPY-MCI, interfaces. The mechanism of tunneling in the BIPY-
CoCl, junction consists of FN tunneling across the alkyl chain
(therefore we infer a smaller width of the tunneling barrier),
followed by a hopping step to the EGaln electrode. The
mechanism of tunneling in the BIPY-CuCl, junction consists of
direct tunneling across the alkyl chain followed by a hopping
step to the EGaln electrode.

Other BIPY-M complexes fit the trend. To support our
hypothesis (i.e., the relative position of the HOMOs in BIPY-
MCI, junctions with respect to the Fermi level of Au electrode

2160

determines the occurrence of rectification and the mechanism of
tunneling in BIPY-MC], junctions), using the EGaln junction,
we characterized the rectification ratio in BIPY-MCI, junctions
with other first row transition metals (M = Cr, Mn, Fe, Ni).
According to our proposed mechanism, SAMs with a HOMO
lower in energy than the Fermi level of Au electrode should
rectify current because only at +1.0 V is there an accessible
molecular orbital (the LUMO) on the BIPY-MCl, moiety and
the width of the tunneling barrier at +1.0 V is smaller than that at
—1.0 V. Those with HOMOs higher in energy than the Fermi
level of Au should not rectify current because there is an
accessible molecular orbital on the BIPY-MCI, moiety at both
negative and positive bias and the widths of tunneling barriers at
+1.0 V are almost identical. In agreement with our proposed
mechanism, the SAMs with HOMO energy levels higher than
the Au surface—BIPY-MnCl, (—1.14 eV), BIPY-FeCl, (—1.10
eV), BIPY-CoCl, (—1.11 eV), and BIPY-NiCl, (—1.11 eV)
junctions—rectified current (Figure 7), while the SAMs with
HOMO energies that are lower than the Au surface—BIPY-
CrCl, (—0.96 €V) and BIPY-CuCl, (—0.86 V) junctions—did
not rectify current (Figure 7).

Moreover, the junctions that rectified current displayed FN
tunneling at —1.0 V (see Supporting Information, Figure S13),
while the junctions that did not rectify current, displayed direct
tunneling (Figure S13). These results show remarkable
consistency with our analysis of the BIPY-CoCl, and BIPY-
CuCl, junctions. The Supporting Information contains details.
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from the current-density data in Figure 2a. A transition in conduction
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voltages (linear decay). (b) Fowler—Nordheim (FN) plots for BIPY-
CuCl,, derived from the current-density data in Figure 2b.
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B CONCLUSIONS

In summary, this work describes the mechanism of charge
tunneling for Au™/S(CH,);;BIPY-MCl,//Ga0O,/EGaln junc-
tions, where M = Co or Cu. The complexation of metal with
2,2'-bipyridine-terminated SAMs changed the nature of
rectification (e.g., rectifier or nonrectifier), and the mechanism
of tunneling (FN tunneling or direct tunneling) at +1.0 V. BIPY-
CoCl, junctions rectify current (r* = 82.0) at +1.0 V, while
BIPY-CuCl, junctions do not (" = 1.0). We assert that the
rectification observed in BIPY-CoCl, junctions originates from
the electronic structure of the molecules.

Based on CV, UPS measurements, DFT calculations,
electrical characterization, and variable temperature experi-
ments, this study reaches four main conclusions:

(i) BIPY-CoCl, junctions rectify current because only at a
positive bias (+1.0 V) is there an accessible molecular

orbital (the LUMO) on the BIPY-CoCl, moiety, while at
negative bias (—1.0 V) neither the energy level of the
HOMO nor that of the LUMO lie between the Fermi
levels of the electrodes.

(ii) BIPY-CuCl, junctions do not rectify current because
there is an accessible molecular orbital on the BIPY-CuCl,
moiety at both negative and positive bias (the HOMO is
accessible at negative bias, and the LUMO is accessible at
positive bias).

(iii) The difference in accessibility of the HOMO at —1.0 V
causes charge transfer—at negative bias—to take place
via Fowler—Nordheim tunneling in BIPY-CoCl, junc-
tions, and via direct tunneling in BIPY-CuCl, junctions.
This difference in tunneling mechanism at negative bias is
the origin of the difference in rectification ratio between
BIPY-CoCl, and BIPY-CuCl, junctions.

(iv) The mechanistic interpretation is also supported by
expanding the types of metals in these BIPY-MCI,
junctions, where M = Cr, Mn, Fe, and Ni. BIPY-M
junctions with a low-lying HOMO with respect to the
Fermi level of Au (M = Cr and Cu) rectified current, and
those with high-lying HOMOs (M = Mn, Fe, Co, and Ni)
did not rectify current.

Reliable rules or guidelines for relationships between
molecular structure and charge transport are uncommon in
the field of molecular electronics. Through a detailed
mechanistic analysis of rectification and charge transport in
BIPY-MCI, junctions, this work isolates the roles of molecular
orbitals on the mechanisms of conductivity through molecular
junctions. Furthermore, the mechanistic details described in this
work are directly applicable to other molecular junctions,
particularly those classified as having an insulating alkane chain
terminated by a conductive moiety (i.e., conjugated aromatic
group), and specifically how the frontier molecular orbitals
influence the mechanism of conduction.
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