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Specifications Table

Subject Marine Geology

Specific subject area Hydrothermal activity

Type of data Tables and Microsoft Excel

How data were acquired Turbidity data was collected by MAPR sensors. ORP data was obtained by ORP
sensor. Underwater position data was derived from USBL.

Data format Raw

Parameters for data collection Fieldwork for this dataset was stimulated by initial indications of hydrothermal
activity along the EPR detected during Chinese cruise DY115-17.

Description of data collection All the data were collected during Chinese research cruises between 2008 and
2011.

Data source location Key Laboratory of Submarine Geosciences, SOA & Second Institute of
Oceanography, MNR, Hangzhou, 310,012, China.

Data accessibility http://dx.doi.org/10.17632/jckyj5vyjx.1

Related research article Sheng Chen, Chunhui Tao, Christopher R. German, Abundance of

low-temperature axial venting at the equatorial East Pacific Rise. Deep-Sea
Research I. DOI:http://dx.doi.org/10.1016/j.dsr.2020.103426

Value of the Data

 These data on hydrothermal plume distributions are from an understudied portion of the East
Pacific Rise (1.9°N to 4.9°S) collected over multiple expeditions. Making these data available
will facilitate comparison with other hydrothermal data-sets, worldwide.

» The data will be of value to those working on hydrothermal activity, particularly when con-
sidering heat flow, water volume fluxes, mineralization and biogeochemical cycles.

« This dataset can be used in further research pursuing data synthesis and/or regional compar-
isons on multiple spatial and/or temporal scales.

« These data fill a gap for the equatorial EPR in the international InterRidge data-base and
provide the potential to investigate the importance of low temperature axial venting to geo-
physical fluxes and geochemical equilibrium.

1. Data Description

This Data in Brief article provides figures and data sets of hydrothermal plume investigations
of the equatorial East Pacific Rise (EPR), collected during Chinese research cruises between 2008
and 2011.

Hydrothermal plume sensor data are presented for 26 deep-tow survey lines (Table 1), in-
cluding MAPR (Miniature Autonomous Plume Recorders) data, ORP (Oxidation-Reduction Poten-
tial) data and underwater position data, which can all be downloaded at http://dx.doi.org/10.
17632/jckyj5vyjx.1. The data for each line are placed together in a common folder. All survey
lines are grouped together in separate folders associated with each of the ridge segments stud-
ied, such as “Segment 1”7, “Segment 2-1”. All the data are stored in separate Microsoft Excel
spreadsheets. Each survey line is briefly summarized in Table 1, including organizational names
initially assigned during the research cruises, starting longitude, starting latitude, end longitude,
end latitude, line name in the associated research article, starting time and end time. Table 2
provides calculations of the effective survey lengths of each line listed in Table 1. The track lines
for each of these surveys are also published in map form in “Fig. 1" of the associated research
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Table 1
Catalog of all survey track lines reported.

Seg Locations Organised_Name Start_Lat Start_Lon End_Lat End_Lon Line_Name Start_Time End_Time
S1 1.9°N-1.2°N Line 01 1.88 -102.28 1.59 -102.26 22VIII-L06 2011/10/04 06:20 2011/10/05 02:58
S2-1 1.2°N- Line 02 117 -102.27 1.07 -102.28 22VIII-L01 2011/09/22 16:20 2011/09/23 02:14
0.7°N Line 03 1.18 —102.16 1.08 -102.18 22VIII-L02 2011/09/23 05:00 2011/09/23 17:07
Line 04 1.08 -102.18 0.90 -102.21 22VIII-L03 2011/09/24 11:00 2011/09/25 05:14
S2-3 1.2°S- Line 05 -1.37 —102.50 -135 —102.50 20I11-L05 2008/08/22 10:30 2008/08/22 16:14
1.5°S Line 06 -1.36 -102.48 -139 -102.41 20111-L06 2008/08/22 20:30 2008/08/23 08:03
S2-4 1.5°S- Line 07 -2.02 —102.68 -2.01 -102.56 20111-L09 2008/08/25 05:00 2008/08/25 18:49
2.8°S Line 08 -2.02 -102.62 -2.02 -102.58 20I1I-L13 2008/08/28 09:45 2008/08/28 19:08
Line 09 -2.05 -102.67 -2.09 -102.61 20111-L12 2008/08/27 22:20 2008/08/28 09:19
Line 10 -217 -102.67 -213 -102.62 20I11-L11 2008/08/26 05:54 2008/08/26 11:31
Line 11 -2.27 —102.66 -2.20 -102.59 20I1I-L07a 2008/08/23 23:15 2008/08/24 03:04
Line 12 -2.27 —102.66 -2.20 -102.59 20111-L07b 2008/08/24 03:05 2008/08/24 08:57
Line 13 -2.22 —102.66 -2.23 -102.64 20111-L08 2008/08/24 11:30 2008/08/25 02:29
Line 14 -2.51 -102.71 -2.69 -102.62 22VI-L10 2011/07/17 18:00 2011/07/18 20:11
S2-5 2.8°S- Line 15 —-2.93 —102.55 -3.03 -102.45 22VI-L09 2011/07/16 22:17 2011/07/17 11:16
4.0°S Line 16 -3.03 -102.55 -3.33 -102.64 22VI-L04&L05 2011/07/14 01:45 2011/07/14 16:56
Line 17 -3.13 —102.60 -3.24 -102.55 22VI-L06 2011/07/14 18:12 2011/07/15 04:11
Line 18 -3.13 -102.56 -3.10 —-102.55 22VI-L07 2011/07/15 18:12 2011/07/16 06:28
Line 19 -312 -102.56 -3.21 -102.58 22VI-L08 2011/07/16 06:30 2011/07/16 20:17
Line 20 —-3.60 -102.72 -3.64 —-102.60 22VI-L03 2011/07/13 06:30 2011/07/13 18:30
Line 21 -3.09 -102.57 -311 —-102.54 22VI-L18 2011/07/24 09:45 2011/07/24 16:43
Line 22 =311 -102.58 =311 -102.52 22VI-L19 2011/07/24 17:00 2011/07/25 00:18
Line 23 -311 -102.57 -3.12 -102.54 22VI-121 2011/07/27 20:00 2011/07/28 02:40
S3 3.7°S-4.1°S Line 24 -3.77 —-103.68 -3.90 -103.74 22VI-L14 2011/07/21 11:10 2011/07/22 00:45
S4 3.9°8- Line 25 —4.15 —104.64 -4.20 -106.43 22VI-L15 2011/07/22 04:50 2011/07/22 14:35

4.9°S Line 26 -4.17 —104.55 -4.31 —106.34 22VI-L16 2011/07/22 14:55 2011/07/23 04:30

075901 (020T) €€ Jorg ut vIDQ /UDULID YD pup ODL ) ‘UAYD 'S
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Table 2
Calculation of effective survey lengths.
Organized MAPR track length(km) ORP track length(km) Segment
Seg Name . . length (km) %*
Original Subtract overlap Original Subtract overlap
S1 Line 01 32.05 32.05 32.05 32.05 84.4 37.97%
S2- Line 02 1118 0.00 1118 0.00 473 88.38%
1 Line 03 10.75 10.75 10.75 10.75
Line 04 19.88 19.88 19.88 19.88
S2-2 - - - - - 2239 0
S2- Line 05 1.53 1.53 1.53 1.53 28.6 38.37%
3 Line 06 9.44 9.44 9.44 9.44
S2- Line 07 13.58 13.58 13.58 13.58 151.4 47.10%
4 Line 08 5.44 0.00 5.44 0.00
Line 09 7.61 761 7.61 761
Line 10 6.21 6.21 6.21 6.21
Line 11 431 431 431 431
Line 12 8.69 8.69 8.69 8.69
Line 13 2.88 2.88 2.88 2.88
Line 14 22.60 22.60 22.60 22.60
S2- Line 15 15.05 15.05 15.05 15.05 127 82.65%
5 Line 16 33.20 33.20 0.00 0.00
Line 17 1417 14.17 0.00 0.00
Line 18 3.41 0.00 3.41 0.00
Line 19 10.23 0.00 10.23 10.23
Line 20 14.87 14.87 14.87 14.87
Line 21 3.64 0.00 0.00 0.00
Line 22 6.71 0.00 0.00 0.00
Line 23 3.69 0.00 0.00 0.00
S3 Line 24 15.38 15.38 15.38 15.38 27.79 55.33%
S4 Line 25 1213 1213 1213 1213 67.96 42.58%
Line 26 16.81 16.81 0.00 0.00
Total 305.42 261.14 22721 207.19 758.35 22.33%

*The percentage of segment covered by the unique tow length used for Fs calculations.

Fig. 1. The plot of turbidity and ORP anomaly of Line 01 (22VIII-L06) on segment 1. Letters A-D and numbers 1-8 refer
to the hydrothermal anomaly regions discussed in the text.
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publication by Chen et al. (2020) [1] with color coding (red, black) to indicate which of the sur-
veys did or did not reveal evidence of seafloor fluid flow, respectively. Here, Figs. 1-15 present
plots of optical sensor and redox sensor responses along the track line (amplitude vs distance).
These are the primary data used for the analysis presented in Chen et al. (2020) [1].

2. Experimental Design, Materials and Methods
2.1. Instrument deployments

With the advent of in situ water column sensing for hydrothermal plumes, water col-
umn surveys for axial hydrothermal activity have advanced from a reliance upon discrete
single-cast CTD profiles at regular spacing along axis [2] to continuous along-axis surveys
[3]. Such studies can include continuous raising and lowering of an instrumented package
through the water column in "tow-yo" mode as a ship proceeds along a set path across the
seafloor or, when conducting co-registered geological/geophysical investigations, by attaching
multiple sensors along the same cable as the deep-tow package so that the sensors are de-
ployed at known and fixed offsets above the deep-tow package as that deep-tow package is
raised and lowered to maintain a constant survey altitude over the underlying terrain [4].
In both examples, continuous strings of time-series sensor data can be used to reconstruct
2-dimensional sections of hydrothermal water column anomalies overlying the mid-ocean ridge
seafloor.

In this study, all data were collected using the second approach.

2.2. Choice of sensors

2.2.1. Optical backscatter sensors

MAPR instrument packages include a pressure sensor, a temperature sensor and a sensor de-
tect that detects optical back-scatter all of which are recorded within the MAPR instrument at
a predetermined frequency for recover aboard ship at the end of each deployment. For all sur-
veys reported here the variable sampling rate for the MAPR instruments was set to 5 s [5]. The
presence of particles in the water column (whether mineralogical, organic or microbiological
in origin) can cause an increase in light-scattering and, hence, an increase in the optical back-
scatter voltage which can readily be converted to Nephelometric Turbidity Unit (NTU) values.
In the deep ocean, far from continental dust and riverine inputs, suspended particle loads are
typically low - except for benthic boundary layers that can form close to the seafloor, especially
so in thickly sedimented areas. Mid-ocean ridges, by definition, tend to be located toward the
centers of ocean basins and, further, characterized by young seafloor that is characterized by lit-
tle to no sediment cover. Consequently, particle-laden hydrothermal plumes which reach levels
of neutral buoyancy at narrowly-defined depth horizons, 100 m or more above the seafloor, can
provide clear evidence for on-axis hydrothermal venting compared to the otherwise low-NTU
oceanographic background [3]. It is on this basis that NTU anomalies have routinely been used
to prospect for particle plumes along mid-ocean ridges where they are assumed to be sourced
from high-temperature hydrothermal venting through precipitation of Fe oxy-hydroxides and/or
polymetallic sulfides [3,6-7]. The approach also relies on the fact that particle enrichments that
are imparted to hydrothermal plumes can be detected, readily, above background values as these
plumes are dispersed many kilometers through the water column. Consequently, the MAPR in-
strument packages do not need to be towed directly over an active vent-site to be able to de-
termine that there is high temperature hydrothermal venting along any given section of ridge
crest. For the East Pacific Rise, the typical rise-height that has been observed for dispersing,
non-buoyant hydrothermal plumes are ~100 m above the depth of the ridge-axis seafloor where
venting occurs.
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2.2.2. Oxidation reduction potential (ORP) sensors

ORP sensors are electrode-based and can detect when the sensor encounters waters that are
out of redox equilibrium even though they cannot determine which chemical species, in any
given setting, are responsible for the signal that is detected. In prior work using autonomous
underwater vehicles, it has been shown that ORP sensors can detect the presence of chemi-
cally reduced species within the relatively "fresh" portions of dispersing hydrothermal plumes,
out to ~1km away from a high temperature submarine vent-source [8-9]. When deployed close
above the seafloor (5-50m), ORP sensors can also detect low-temperature fluid flow, both in
hydrothermal settings at mid-ocean ridges [10-12], and in association with cold seeps at con-
tinental margins [13-16]. In our surveys, the ORP sensor was mounted on a deep-tow package
deployed ~5m above the seafloor.

2.3. Data reduction

2.3.1. Optical backscatter sensor data

Optical backscatter anomalies are routinely used to detect deep-sea hydrothermal particle
plumes along Mid-Ocean Ridge axes (see reviews by [3,6-7]). A particularly effective method
has been used to calculate the parameter ANTU (the NTU value in excess above the ambient
water-column background voltage, where NTU represents the nominal turbidity unit - a dimen-
sionless unit). Following that approach, the optical back-scatter data presented in this paper has
been processed as follows to generate ANTU values. First, we filtered the data, to remove voltage
"spikes" generated from interactions of the light beam with large transient particulate organic
flocs (identified as single point anomalies that exhibit 4+-1 sd departure from an 11-point running
average: [17]). Next, for each MAPR, on each deployment, we calculated the average and stan-
dard deviation of the NTU values recorded from the sensor during its descent to the seafloor
between 1500 and 2000 m - the most optically clean component of the water column. The NTU
values from this deep-ocean layer define the background for each MAPR survey. While average
NTU values vary across the multi-year multi-deployment data-set, arising from both seasonal
and inter-instrumental variability, standard deviations all fall within +1. We have subtracted the
background average NTU value from each MAPR data-set (on a deployment by deployment ba-
sis) to calculate time-series ANTU values for each MAPR from each deployment. We have then
taken the conservative approach of defining statistically significant optical back-scatter anoma-
lies as those in which above-background anomalies exhibit values of ANTU > 5.

2.3.2. Oxidation-Reduction potential (ORP) sensor data

Oxidation-Reduction Potential sensors can remain stable while being deployed at near con-
stant depth to within 1 mV for periods of several hours [8]. For this study, we conservatively
define a statistically significant ORP anomaly as one that exhibits a rapid decrease of > 5mV,
before beginning recovery toward its pre-anomaly voltage, and that extends for <1km across
the seabed.

2.3.3. Calculating effective seafloor survey lengths

In total, we conducted a cumulative length of ~305km of deep-tow surveys between 1.9°N
and 4.9°S, EPR (Table 1 - See also, Fig. 1 in Chen et al.,, 2020). Much of this region was surveyed
by single survey-lines along axis, but some surveys included repeat tows through the same re-
gion (for example, the 11.18 km of Line 02 was conducted to the west of Lines 03 & 04 along the
same length of ridge segment). Wherever this has occurred the length of any overlapping survey
has been omitted when calculating the effective length of ridge crest surveyed (Table 2). Accord-
ingly, the ~305 km of along-track surveys conducted (Table 1) reduces to 261 km of unique sec-
tions of ridge-axis that were surveyed using optical back scatter sensors and the corresponding
ridge-lengths for ORP surveys are 227 km and 207 km, respectively (Table 2).
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Table 3
The methodology for assigning different source types.
Optical Sensor ORP Interpretation Annotation
Midwater Seafloor Seafloor (Chen et al., 2020) (Figs 1-15)
J J J High Temperature H
Vv J X High Temperature H
N4 X v High Temperature H
N X X High Temperature H
X N v Low Temperature L
X X v Low Temperature L
v Vv multiple Undifferentiated u
J X multiple Undifferentiated §)
X J X Suspected S

2.3.4. Combined analysis

Once the data for each sensor have been manipulated, different permutations of the combina-
tions of anomalies observed have been used to ascribe a specific style (H, L, U, S) of vent-source
(Table 3).

2.4. Results

2.4.1. Segment 1 (EPR 1.9-1.20°N)

Segment 1 is located between the PCG Triple Junction and the PNG Triple Junction and was
investigated for hydrothermal activity by a 32-km-long deep-tow Line O1. In addition to the
near-bottom ORP sensor, this deployment included two MAPRs placed at 100 m and 250 m above
the deep-tow package (Fig. 1). Extensive non-buoyant particle plume anomalies are observed at
~100m altitude along almost the entire length of the segment, punctuated by two hiatuses.
Plume ‘A’ extends from 1.88°N-1.79°N and is centered close to 1.85°N. Plume depths are 2770-
2900 m with no associated ORP anomalies: source type H (n=1). Plume area 'B’ extends from
1.76 —1.65°N at ~2770-2820 m depth. Extensive near-bottom ORP anomalies were observed dur-
ing this portion of the survey, all more than 1km apart: source types H (n=1) and U (n=4).
Continuing south, a major ORP anomaly (#6) is observed close to 1.65°N (Region C): source type
L (n=1). An additional particle plume extends from 1.64-1.60°N at water depth 2760-2850 m
(Region D) with further ORP anomalies (#7) and (#8) more than 1km apart: source types H
(n=1)and U (n=1).

2.4.2. Segment 2-1 (EPR 1.20-0.70°N)

Segment 2-1 extends from the PNG triple junction to the first OSC at 0.70°N. No particle
anomalies were observed by the +250m MAPR but the +100m MAPR detected intense NTU
anomalies (up to 30 mV) between 1.04-0.98°N and lower intensity anomalies at the same depth
range (2750-2900m) as far as 0.91°N: a cumulative length of > 15km (Fig. 2). ORP Anomalies
(#1, #2) were observed to the north of the particle plume (Region E): source type L (n=2).
An ORP anomaly (#3) coincides with the northern limit of the NTU anomalies at 1.04°N and
multiple further sets of ORP anomalies (#4, #5, #6,) occur at 1.02°N-1.00°N (Region F) source
types H (n=1) and U (n=3). Isolated ORP anomalies also occur at 0.98°N (Region G): source
type L (n=1) and at 0.95°N (Region H): source type L (n=1).

2.4.3. Segment 2-3 (EPR 1.20-1.50°S)

Segment 2-3 is a short 2nd order ridge segment that includes the volcanic seamount
Niaochao (trans: Bird’s Nest). Line 06 passed directly over the summit of Niaochao from NW to
SE. MAPRs at +20m and +70 m recorded distinct particle anomalies as they were raised upward
to clear the inward facing SE wall of the crater (102.45°W) and a strongest ORP anomaly was
detected at the same location (Region I): source type H (n=1) (Fig. 3).
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Fig. 2. The plot of turbidity and ORP anomaly of Line 04 (22VIII-L03) on segment 2-1. Letters E-H and numbers 1-8
refer to the hydrothermal anomaly regions discussed in the text.

Fig. 3. The plot of turbidity and ORP anomaly of Line 06 (20I1I-L06) on segment 2-3. Letter I refers to the hydrothermal
anomaly region discussed in the text.

2.44. Segment 2-4 (EPR 1.50-2.80°S)

One set of surveys in segment 2-4 were focused at 2.00°S - 2.02°S. Line 07 (Fig. 4) identified
deep NTU anomalies at 102.59-102.56°W (Region ]): source type S (n=1) and optical backscat-
ter sensor anomalies in the mid-water at both 102.60°W and at 102.61 —102.62°W. Partially
overlapping line 08 did not reveal a coincident ORP anomaly at Region K: source type S (n=1)
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Fig. 4. The plot of turbidity anomaly of Line 07 (20III-L09) on segment 2-4. Letters J-L refer to the hydrothermal
anomaly regions discussed in the text.

Fig. 5. The plot of turbidity and ORP anomaly of Line 08 (20III-L13) on segment 2-4. Letters J-L refer to the hydrother-
mal anomaly regions discussed in the text.

but did record a co-registered ORP anomaly at 102.62°W in Region L: source type H (n=1)
(Fig. 5).

Further south in Segment 2-4, Line 09 (Fig. 6) detected a weak ORP signal with a co-located
mid-water optical back-scatter anomaly at ~102.635°W (Region M): source type H. An even
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Fig. 6. The plot of turbidity and ORP anomaly of Line 09 (20III-L12) on segment 2-4. Letters M & N refer to the hy-
drothermal anomaly regions discussed in the text.

Fig. 7. The plot of turbidity and ORP anomaly of Line 10 (20Il-L11) on segment 2-4. Letters O&P refer to the hydrother-
mal anomaly regions discussed in the text.

more pronounced set of ORP anomalies and coincident mid-water optical backscatter anoma-
lies are also observed further east at ~102.625°W (Region N): source type H (n>1).

Line 10 (Fig. 7), near 2.15°S, revealed a broad ORP anomaly close to 102.62°W, coincident
with prominent NTU anomalies at 2600-2870 m water depth (Region O): source type H (n=1). A
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Fig. 8. The plot of turbidity and ORP anomaly of Line 12 (201II-LO7b) on segment 2-4. Letters Q-S refer to the hydrother-
mal anomaly regions discussed in the text.

second broad ORP anomaly (Region P) was observed closer to 102.63°W, with particle-anomalies
in the overlying water column at +50m, +100m and +150m: source type U (n=1).

At the south end of segment 2-4, Line 11 was conducted along the ridge axis from 2.265°S
to 2.240°S while Lines 12 and 13 were conducted across axis to intersect Line 11, oriented
WSW-ENE and WNW-ESE respectively. Three sets of ORP anomalies were observed on Line 12
(Fig. 8). One ORP anomaly was detected near ~102.63°W in an area that also exhibited near-
continuous near-bottom NTU anomalies (Region Q): source type L (n=1). More intense ORP
anomalies were observed crossing the ridge-axis at 102.64°W, coincident with intense NTU
anomalies in the overlying water column (Region R): source type H (n=1). A third, much
weaker ORP anomaly accompanied by intense near-bottom particle anomalies was observed at
~102.655°W (Region S): source type L (n=1). Line 13 passed across the same region of the
ridge axis, at a different orientation and intercepted two of the same combinations of mid-
water and seafloor anomalies as Line 12 (Region R at 102.635-650°W; Region S at ~102.655°W)
(Fig. 9). At the southernmost end of segment 2-4, Line 11 recorded prominent mid-water
particle anomalies along the ridge axis from 2.265°S to 2.240°S (Fig. 10). A pronounced ORP
anomaly coincided with the northern limit of that NTU anomaly (Region T): source type
H(n=1).

24.5. Segment 2-5 (EPR 2.80-4.00°S)

Segment 2-5 extends from 2.8°S to the Quebrada fracture zone and was investigated by
a series of across and along-axis surveys. In the north, Line 15 passed NW-SE across the
ridge axis (Fig. 11). Two sets of ORP anomalies were intercepted close to the ridge axis.
Region U (~102.51°W) was accompanied by high near bottom NTU anomalies: source type
L (n=1). More than 1km further east, Region V was characterized by the same combination
of a pronounced ORP anomaly and deep NTU anomalies close above the seafloor: source type
L(n=1).

Two overlapping survey lines (18, 19) were occupied along axis between 3.00°S and 3.30°S.
Starting in the north (Fig. 12), an ORP anomaly was detected on Line 18 near 3.10°S together
with near-bottom NTU anomalies (Region W): source type L (n=1). The same combination of
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Fig. 9. The plot of turbidity and ORP anomaly of Line 13 (20III-L0O8ab) on segment 2-4. Letter R refers to the hydrother-
mal anomaly region discussed in the text.

Fig. 10. The plot of turbidity and ORP anomaly of Line 11 (20III-L07a) on segment 2-4. Letter T refers to the hydrother-
mal anomaly region discussed in the text.

anomalies was observed at the same latitudes on Line 19 (Fig. 13) together with an additional
ORP anomaly near 3.21°S that did not show corresponding near-bottom NTU anomalies (Region
X): source type L (n=1). At a similar latitude to the region X anomaly, Line 17 (with no ORP
sensor) crossed the ridge axis from NNW to SSE (Fig. 14). No NTU anomalies were observed
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Fig. 11. The plot of turbidity and ORP anomaly of Line 15(22VI-L09) on segment 2-5. Letters U & V refer to the hy-
drothermal anomaly regions discussed in the text.

Fig. 12. The plot of turbidity and ORP anomaly of Line 18(22VI-L07) on segment 2-5. Letter W refers to the hydrother-
mal anomaly region discussed in the text.

where the survey crossed the ridge axis but strong anomalies were detected close above the
seafloor to the east of the ridge axis close to 3.23°S (Region X): source type L (n=1).

At the southern end of Segment 2-5, Line 20 crossed the ridge axis near 3.6°S (Fig. 15).
West of the ridge axis, a set of near-bottom turbidity anomalies were observed near
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Fig. 13. The plot of turbidity and ORP anomaly of Line 19(22VI-L08) on segment 2-5. Letters X&W refers to the hy-
drothermal anomaly region discussed in the text.

Fig. 14. The plot of turbidity anomaly of Line 17(22VI-L06) on segment 2-5. Letter X refers to hydrothermal anomaly
discussed in the text.

102.66°W (Region Y): source type S (n=1). Pronounced ORP anomalies and co-registered
deep-water NTU anomalies were observed just east of the ridge-axis (Region Z): source type
L(n=1).
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Fig. 15. The plot of turbidity and ORP anomaly of Line 20 (22VI-L03) on segment 2-5. Letters Y&Z refers to hydrothermal
anomaly discussed in the text.
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