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ABSTRACT: Machine-learning-based methods that identify drought in three-dimensional space–time are applied to

climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics

for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this

context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models

project that there will be large increases in the persistence and severity of droughts over the coming century, but with little

change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent

and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear

inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydro-

climate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe

droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses

and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projec-

tions. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their

spatiotemporal characteristics and provide constraints on future changes to those characteristics.

KEYWORDS: Drought; Climate change; Paleoclimate; Climate models; Climate variability; Other artificial intelligence/

machine learning

1. Introduction
Projecting regional hydroclimate over the coming century

necessitates the use of coupled general circulation models

(CGCMs). Such projections are of utmost importance to

society’s ability to plan for the risks associated with climate

change. A central question is thus whether CGCMs provide

useful information for this purpose, which requires that they

realistically simulate responses to anthropogenic forcing and

natural climate variability. While the need to accurately rep-

resent natural climate variability can be less clear it is never-

theless critical for regional hydroclimate projections in places

like the Northern Hemisphere (NH) extratropics, where the

magnitude of natural hydroclimate variability is large on the

decadal-to-centennial time scales typical of future projec-

tions (Stine 1994; Cook et al. 2016a; see also below). Where

natural variability is large, it has the potential to significantly

mitigate or exacerbate the response to anthropogenic forc-

ing, and therefore will have implications for societally rele-

vant hydroclimatic risks. Importantly, the instrumental

interval is too short to properly characterize the longest of

these time scales of variability. A confident validation of the

ability of CGCMs to project extratropical regional hydro-

climate thus requires a longer record of climate against which

to compare.

One such record comes from tree rings, which have been

used to produce annually resolved and spatially complete (with

up to 0.58 spatial resolution) reconstructions of hydroclimate

covering at least the last 1000 years (Cook et al. 2007, 2010, 2016a;

E. Cook et al. 2015). Over the North American Southwest

(NASW; 328–408N, 1258–1058W), tree-ring reconstructions

suggest that decadal-scale droughts have occurred regularly

over the last millennium (e.g., Cook et al. 2016a) and that

there is centennial-scale variability in the characteristics of

these features. For instance, the five most persistent and severe

droughts of the last millennium all occurred during theMedieval

ClimateAnomaly (MCA;Coats et al. 2016a,b; Ault et al. 2018), a

period in which the spatial extent of drought may have been

greater (Cook et al. 2014b; Coats et al. 2015b) and the seasonality

of drought may have been different (Coats et al. 2015c) com-

pared to our present climate. Importantly, CGCMs can capture

many of the aforementioned characteristics of these droughts,

providing confidence that they can quantify the contribution of

natural variability to future hydroclimate change (Coats et al.

2013, 2015a; Stevenson et al. 2015, 2018).

While persistent and severe droughts in the NASW in sim-

ulations of the last millennium appear to result predominantly

from internal variability (Coats et al. 2013, 2015a; Stevenson

et al. 2015, 2018), which may be consistent with the real world

(Coats et al. 2016a,b; Ault et al. 2018; Steiger et al. 2019), the

hydroclimate response to anthropogenic forcing in the NASW

reduces the contribution of natural variability to future drought

risk (Cook et al. 2014a;Deser et al. 2014;Ault et al. 2016; Lehner

et al. 2018). Specifically, increases in evaporative demand drive

hydroclimate conditions in the region to nearly permanent

drought conditions, regardless of the large intermodel spread inCorresponding author: S. Coats, scoats@hawaii.edu
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projected precipitation changes in the region (Cook et al. 2015x;

Ault et al. 2016). This change may result, at least in part, from

the choice of hydroclimate metric used for analysis (Milly and

Dunne 2016; Swann et al. 2016; Berg et al. 2017; Scheff et al.

2017; Mankin et al. 2017, 2018; Berg and Sheffield 2018; Yang

et al. 2019) and may not occur globally, because evaporative

demand increases are smaller or compensated by increased

precipitation in other regions [e.g., Mongolia (Hessl et al. 2018)

and parts of theAmazon basin (Duffy et al. 2015)]. The potential

regionality and metric dependence of future drought risk

suggests a need to expand upon previous analyses.

To do so, we use a set of tree-ring-based PDSI reconstruc-

tions covering 58% of land area in the NH extratropics at 2.58
resolution (Cook et al. 2007, 2010, 2016a; E. Cook et al. 2015),

forced transient simulations of the last millennium from state-

of-the-art CGCMs, and novel machine-learning-based tech-

niques that allow for drought identification and characteriza-

tion in three dimensions (latitude, longitude, and time; Fu et al.

2012), to analyze hydroclimate variability continuously over

the last millennium and into the future, with a focus on per-

sistent and severe droughts in the NH extratropics regardless

of their location. While it is expected that for some regions and

variables, future drought projections will be dominated by the

response to anthropogenic forcing (e.g., the nearly permanent

drought conditions in the NASW; B. Cook et al. 2015), for

regions and variables with a weaker anthropogenically forced

response, and before the full emergence of that response, ac-

curately projecting future drought also requires that CGCMs

simulate realistic natural variability. For instance, if a period

like the MCA occurs in the future because of internal or nat-

urally forced variability, drought risk will be much higher than

if the climate system is on a different trajectory. Capturing the

full range of potential outcomes is necessary to provide confident

risk projections (e.g., Coats and Mankin 2016), and thus using

CGCMs to project risk requires that they capture such variability.

Our analysis expands on previous research in three regards:

1) Droughts are analyzed over the majority of the NH extra-

tropics; 2) the ability of CGCMs to simulate persistent and

severe droughts is evaluated within the same methodological

framework in which future projections are analyzed; and 3) the

spatial and temporal characteristics of these droughts are si-

multaneously analyzed within one methodological framework.

The fundamental questions that are addressed are these: 1)

Can CGCMs simulate persistent and severe droughts across

the NH extratropics that are consistent with the paleoclimate

record? 2) If so, do CGCMs suggest that the characteristics of

these droughts will change in the future? Critically, our novel

and comprehensive approach to assessing future drought risk

provides new insights into the physical mechanisms underlying

persistent and severe droughts and the ability of state-of-the-

art CGCMs to reproduce them.

2. Methods

a. Paleoclimate record
We employ the North American Drought Atlas (NADA;

Cook et al. 2007, 2016a), Monsoon Asia Drought Atlas

(MADA; Cook et al. 2010; Baek et al. 2017), and Old World

Drought Atlas (OWDA; E. Cook et al. 2015), which collec-

tively comprise tree-ring-based reconstructions of the June–

August (JJA) average Palmer drought severity index (PDSI;

Palmer 1965) on at least a 2.58 latitude–longitude grid for 58%

of the terrestrial NH going back to at least 1000 CE. The

drought atlases (e.g., the 0.58 resolution NADA) are regridded

to a 1.98 3 2.58 latitude–longitude grid common to the model

simulations from the National Center for Atmospheric

Research (NCAR). Although the combined drought atlases

are a reconstruction of hydroclimate with associated uncer-

tainties, they have been demonstrated to robustly reflect pat-

terns of hydroclimate variability on seasonal to multidecadal

time scales and subregional to multiregional spatial scales

(Baek et al. 2017), and thus provide a useful ground truth for

comparison with CGCM simulations. It is important to note,

however, that fewer tree-ring records are available back in

time for all three Drought Atlas reconstructions. As such, in-

dividual grid point reconstructions will share a greater amount

of the same spatial information back in time, particularly

outside of western North America and the Mediterranean and

prior to 1500 CE. While it is not possible to determine exactly

how this uncertainty will propagate through the methodology

employed herein, the spatial extent of reconstructed droughts

may be greater during the early parts of the last millennium

because of sampling density issues. Hereinafter the combined

drought atlases will be referred to as the paleoclimate record.

b. Model simulations
For comparison to the paleoclimate record, only CGCMs

with continuous forced transient simulations spanning the

last millennium (850–1849 CE), historical (1850–2005 CE), and

future [2006–2100 CE, using representative concentration

pathway (RCP) 8.5] intervals are analyzed. The output of the

simulations must additionally include all variables necessary to

calculate Penman–Monteith (Penman 1948) potential evapo-

transpiration (PET) for use in the PDSI calculations. Only six

simulations, performed with three unique CGCMs, meet these

analysis requirements: four from the NCARCommunity Earth

System Model 1 (CESM1) Last Millennium Ensemble (LME)

project (hereinafter CESM; Otto-Bliesner et al. 2016), one

from the NCAR Community Climate System Model 4

(CCSM4, hereinafter simply CCSM; Landrum et al. 2013), and

one from the Institute Pierre Simon Laplace (IPSL) CM5A

low-resolution (LR) Earth system model (hereinafter IPSL).

While there are 13 CESM LME simulations available, only the

four that are run continuously for the last millennium through

the end of the twenty-first century are used herein. The CCSM

and IPSL simulations are from phase 3 of the Paleoclimate

Modeling Intercomparison Project (PMIP3), a part of phase 5 of

the Coupled Model Intercomparison Project (CMIP5; Taylor

et al. 2012). For the future projections, 20 additional simulations

from CMIP5 CGCMs that did not produce last millennium

simulations meeting our analysis requirements are analyzed us-

ing the historical and future (RCP8.5) intervals (Table 1). The

RCP8.5 emissions scenario was chosen for the future projections

to maximize the climate change signal. All model outputs are

monthly and regridded to a 1.98 3 2.58 latitude–longitude grid

common to the model simulations from the NCAR.
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For all simulations, JJA average PDSI is calculated follow-

ing Cook et al. (2014a) using the 1931–90 CE period as the

standardization interval (as was used in the NADA). While

JJA average PDSI is technically a metric of NH summer

drought, PDSI has roughly annual persistence and thus reflects

an integrated signal of drought across seasons. The JJA PDSI

should thus be interpreted as characteristic of interannual

and longer time scale drought and the same analyses com-

puted with annually averaged PDSI produce similar results

(not shown). The integrated nature of JJA PDSI is also why it is

compared to annual averages of other hydroclimate variables

(see below). Hereinafter, use of the termPDSI will refer to JJA

average PDSI. The PET used to calculate PDSI comes from

the Penman–Monteith formulation for a reference crop with

constant stomatal conductance. While it is clear that neglecting

the impact of anthropogenic greenhouse gasses on stomatal

conductance can make offline metrics like PDSI unreliable

when estimating the characteristics of future drought (Milly

and Dunne 2016; Swann et al. 2016; Berg et al. 2017; Scheff

et al. 2017; Mankin et al. 2017, 2018; Berg and Sheffield 2018;

Yang et al. 2019), the use of this metric is necessary here as it

allows for a direct comparison of the CGCMs with the paleo-

climate record. Nevertheless, annually averaged soil moisture

(SM) over the top 30 cm and 2m of the soil column and pre-

cipitationminus evaporation (P2E) are additionally analyzed

to assess the consistency of results using offline metrics, such as

PDSI, with those using online metrics (i.e., prognostic model

variables like SM, precipitation, and evaporation). To provide

a climate dynamical understanding of biases that impact the

simulation of hydroclimate, surface temperature for the three

CGCMs that ran simulations of the last millennium is used to

calculate indices of the Atlantic multidecadal oscillation [AMO;

following Trenberth and Shea (2006)], the Pacific decadal os-

cillation [PDO; following Mantua et al. (1997)], and El Niño–
Southern Oscillation (ENSO; using the Niño-3.4 index; surface

temperature average over 58S–58N, 1208–1708W).

c. Drought identification algorithm
Droughts are identified in space–time using a method based

on Markov random fields (MRFs). In climate science the

Markov property is typically considered between adjacent time

steps at a single spatial location. In this case, the MRF means

that the Markov property is considered between adjacent time

steps and adjacent spatial locations (Fu et al. 2012). The

drought identification problem is formulated as finding the

most likely configuration of a binaryMRF, where a space–time

grid point is given a value of one if it is in a drought state

(the converse, or normal state, is assigned a value of zero).

Superficially, this characterization can be accomplished by

assigning a space–time grid point with a value of PDSI lower

(drier) than a specified drought threshold to a drought state

independently of the characteristics of all other grid points.

However, such an approach would require additional methods

to identify unique drought features—disparate drought fea-

tures are likely to be connected by randomly (i.e., not climat-

ically connected) dry space–time grid points. The MRF-based

drought identification leverages the known spatiotemporal

consistency of drought (Herrera-Estrada et al. 2017) by

considering a drought threshold while simultaneously en-

couraging neighboring grid points in both space and time to

take the same state. This maximum a posteriori (MAP) infer-

ence results in identified droughts that are contiguous and

distinct ‘‘clouds’’ of ones that traverse space–time.

The MAP inference is equivalent to the following:

x* 2 argmax
x2f0,1g

(
�
u2E

f
u
(x

u
)1 �

(u,y2V)

f
uy
(x

u
, x

y
)

)
,

where u2E are all space–time grid points, and (u, y)2V are all

pairs of neighboring grid points in space. For a given year t at a

grid point u, there are three potential functions. The first takes

the form of the log-likelihood of two Gaussian distributions,

one for if a space–time grid point is assigned to a drought state

and one for a normal state (see example in Fig. 2b):

f tu(x
t
u 5 1)5 logN(ytujm,threshold

u ,s2
u),

f tu(x
t
u 5 0)5 logN(ytujm.threshold

u ,s2
u),

where m,threshold
u is the mean PDSI of all years with PDSI less

than one standard deviation below the mean of PDSI at grid

point u between 1850 and 1929 CE, m.threshold
u is the mean PDSI

for all other years, and s2
u is the standard deviation of PDSI at

grid point u between 1850 and 1929 CE. This potential function

encourages space–time grid points with anomalously dry con-

ditions to be assigned to a drought state.

The second and third potential functions are of nearly the

same form:

f t21,t
u (xt21

u , xtu)5 fC
2
. 0, if xt21

u 5 xtu,

which encourages the same spatial grid point in subsequent

years to take the same state, and

f tuy(x
t
u, x

t
y)5 fC

1
. 0, if xtu 5 xty ,

which encourages neighboring grid points in space to take

the same value in the same year. The parameters C2 and C1

are user-defined, with larger values encouraging greater tem-

poral and spatial consistency, respectively. The neighborhood

TABLE 1. CGCMs and simulations analyzed herein.

CGCM Historical/future Last millennium

ACCESS1.0 31 —

CCSM4 36 31

CNRM-CM5 33 —

CanESM2 35 —

GISS-E2-R 31 —

IPSL-CM5A-LR 31 31

MIROC-ESM-CHEM 31 —

MIROC-ESM 31 —

NorESM1-M 31 —

NorESM1-ME 31 —

INM-CM4 31 —

CESM1 34 34
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structure in Fig. 1c shows the space and time adjacency (de-

pendency) for the MRF.

The term x* is the assignment (ones and zeros assigned to

space–time grid points) that maximizes the sum of these three

potential functions across all space–time grid points. Figure 2

provides an example of the impact of the first potential func-

tion on this sum for a randomly chosen space–time grid point in

the example domain (Fig. 1c). The functional form of the two

log-likelihood equations is such that there is a linearly in-

creasing ‘‘penalty’’ (the black line, or difference between the

equations) for assigning a space–time grid point drier than the

drought threshold to a normal state. The drought threshold

herein is one standard deviation below the mean PDSI at a

spatial grid point between 1850 and 1929 CE. At the randomly

chosen space–time grid point (38.88N,21158E in 1778 CE), the

difference in the log-likelihood equations is 22.0, a large

penalty because its 23.52 PDSI is well below the drought

threshold (22.2 PDSI). Nevertheless, consider the possibility

that the four neighboring spatial grid points (those to the north,

south, east, and west; Fig. 1c) and the same spatial grid point in

the previous year (1777 CE) are anomalously wet (positive

PDSI). In that case, there would still be a high probability that

the space–time grid point will be assigned to a normal state

despite the large penalty. Specifically, if the space–time grid

point and its neighbors are all assigned to a normal state then

the sum of the potential functions increases by 4 times C1 (as

there are four spatial neighbors all in a normal state) plusC2 (as

the previous year was assigned a normal state). Reasonable

values of these parameters (C2 and C1) range from approxi-

mately 0.3 to 1.5 and thus this assignment would produce a

large increase in the sum of the potential functions.

TheMAP estimation problem involves balancing these local

dependencies, as quantified by the potential functions, but on

the scale of the full dataset. Solving such a problem explicitly is

not possible because it would require 2N distinct calculations,

where N is the number of space–time grid points, in order to

compare the sum of the potential functions for every possible

combination of ones and zeros in the space–time grid. Proximal

methods are thus implemented using the algorithm of Fu et al.

(2012), who have shown that MRF methods with a linear

programming relaxation, where the binary classification re-

quirement is relaxed to allow for the assignment of fractional

values between 0 and 1, are capable of efficiently identifying

major droughts over the instrumental interval. The parameters

used herein exactly follow Fu et al. (2012) with the exception

of C1 5 0.5 and C2 5 0.5, which were chosen using sensitiv-

ity tests based on the ability of the algorithm to identify known

droughts over the instrumental interval. In particular, a smal-

ler value of C1 was required because Fu et al. (2012) identified

droughts using precipitation, which has less temporal

FIG. 1. (a) An example of a traditional approach (and statistical technique) for analyzing drought. (top) The spatial grid corresponding

to the NADA is shownwith the NASW (328 to 408N,21258 to21058E) boundaries superimposed. (bottom) The average of reconstructed

PDSI over the NASW is shown as the time series with an example drought identified by the orange shading (interannual variability are the

gray bars and the 10-yr low-pass filtered values, using a 10-point Butterworth filter, are shown as the thick black line). (b) A composite of

reconstructed PDSI during the example drought, a traditional approach to analyzing the spatial characteristics of drought. (c) Three-

dimensional grid showing only those grid points assigned a drought state by the drought identification algorithm (section 2)—this drought

will also be used in Figs. 2 and 5. This grid fully encompasses the example drought and the NASW region (arrows) but is larger in both

space and time. The dependency structure (neighborhood structure) of the MRF from the drought identification algorithm is shown for a

randomly chosen space–time grid point in the example drought (highlighted in red).
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persistence than PDSI. With regard to the linear programming

methodology, the Bregman divergence is set as the KL diver-

gence, alpha is set to 1, beta is set to 2, and 500 is set as the

maximum number of iterations (Fu et al. 2012).

As was noted above, the drought threshold value of PDSI is

one standard deviation below the mean PDSI at each spatial

grid point between 1850 and 1929 CE. This time interval

was chosen as it is common to all CGCM simulations and the

paleoclimate record and should not contain a large anthropogenic

signal. The latter point is important because emergence of an

anthropogenic signal during this interval would change the

mean of PDSI and thus inflate or deflate the drought threshold.

This has the potential to bias the results, in particular, by altering

the drought identification such that drought characteristics over

the last millennium are a function of the anthropogenic signal,

and thus not purely natural. Figure 3 demonstrates that the

1850–1929 CE interval does not contain a large anthropogenic

signal. Specifically, between 1850 and 1929 CE the 81-yr trend

FIG. 2. (a) A (left) three-dimensional and (right) two-dimensional view of the year 1778 CE

with colors indicating the PDSI values at each spatial grid point. (b)A visualization of how the

first potential function encourages space–time grid points with more negative PDSI values

(anomalously dry conditions) to be assigned a drought state. The functional form of the two

log-likelihood equations for the circled grid point [from the year 1778 CE in (a), with the

location being 38.88N, 21158E] are shown with the difference in these plotted as the solid

black line. For PDSI values more negative than the zero crossing of the solid black line the

potential function encourages the spatial grid point in a given year to be assigned a drought

state. The actual value of PDSI for the year 1778 CE at this spatial grid point is shown as the

dashed line with the much larger value of the log-likelihood of drought than normal suggesting

that the potential function will strongly encourage the assignment of a drought state.
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in PDSI at each spatial grid point was calculated and the 5th

and 95th percentile of the distribution of these values is plotted

in Fig. 3 for each interval and region. The largest (95th per-

centile) and smallest (5th percentile) values are approximately

60.5 PDSI, and these values are stationary through time (the

lines are flat) until the intervals centered after 1990 CE. This

suggests that any interval centered before 1990 CE is not at risk

of having a large anthropogenic signal (as would be evidenced

by systematic trends). More generally, results are not highly

sensitive to the choice of this interval or any of the afore-

mentioned parameters.

d. Drought definition and characteristics
The drought identification algorithm is applied between

1000 and 2000 CE for the paleoclimate record, between 1000

and 2100 CE for the CGCMs with simulations of the last mil-

lennium, and between 1900 and 2100 CE for the additional

CMIP5 simulations. While the CGCM simulations of the last

millennium actually extend to 850 CE, the analyses are limited

to 1000 CE because of the temporal limitations of the paleo-

climate record (the MADA and OWDA only extend to 1000

CE). Droughts in each of the individual drought atlas regions

[North America (NA), Old World (OW), and Monsoon Asia

(MA)] are identified separately (the fixed spatial domains

corresponding to each region are shown in Fig. 4a).

As noted in the introduction, to accurately project drought

risk requires that CGCMs simulate these features as well as

centennial-scale natural variability in their characteristics.

Likewise, characterizing natural variability helps to provide

confidence that future drought characteristics (i.e., those over the

next century) are distinct from those over the last millennium.

Given this motivation, we require robust statistics of the charac-

teristics of persistent and severe droughts and how these charac-

teristics vary on centennial time scales. To do this, after drought

identification we determine which droughts occur within each

100-yr interval. Specifically, we take the year associated with all

space–time grid points in each identified drought and calculate

themedian of these values. If themedian year falls within the start

and end year of a 100-yr interval, then the drought occurs within

that interval. The 10 most severe droughts within each 100-yr

interval are chosen for further analysis, with severity defined as

the sum of PDSI over all space–time grid points in each identified

drought (Fig. 5a). The identification of 10 droughts for each 100-yr

interval allows for an assessment of the statistics of their char-

acteristics, preventing outliers from dominating the results.

Four additional metrics are defined to describe the total

spatiotemporal extent and location of each drought. The first

three metrics are termed spatiotemporal extent, spatial ex-

tent, and temporal extent and the definitions are outlined in

Figs. 5a–c. Spatiotemporal extent is the total number of space–

time grid points in each identified drought (Fig. 5a), spatial

extent is the maximum number of spatial grid points in any

year of the drought (Fig. 5b), and temporal extent is the

maximum number of years that any spatial grid point is in a

drought state during the drought (Fig. 5c). Drought location is

defined as the area-weighted average of the spatial locations

(latitude and longitude) of the space–time grid points assigned

to a drought state in each identified drought. Hereinafter the

FIG. 3. The (top) 5th and (bottom) 95th percentiles of spatial grid point trends in each region for a sliding 81-yr interval (length of the

standardization interval for PDSI and the interval used to define the drought threshold PDSI value for the drought identification algo-

rithm). For instance, the values at the year 1895 represent the trends for the period 1855–1935 CE. The timing of the actual standardization

interval for PDSI and the interval used to define the drought threshold PDSI value for the drought identification algorithm are plotted as

black and gray dashed lines, respectively. Values are plotted for both the paleoclimate record and themean and range of the 20CMIP5 and

6 PMIP3 last millennium simulations. All trends are estimated from a linear least squares fit.

9888 JOURNAL OF CL IMATE VOLUME 33

Brought to you by Columbia University | Unauthenticated | Downloaded 03/29/21 06:40 PM UTC



FIG. 4. (a) Fixed grid corresponding to theNA,MA, andOW,with eachblack dot being a

spatial grid point. This fixed grid is used for both the paleoclimate record and CGCM sim-

ulations inall analyses.Mean (b) spatial extent, (c) temporal extent, (d) spatiotemporal extent,

and (e) severity of the top10most severe droughts in each region for each 100-yr interval. The

dashedblack lines represent the full range in these values for thepaleoclimate recordbetween

1000 and 2000 CE, with the solid black line representing the actual time histories. The gray

shaded regions denote 50%–100%, 100%–150%, and 150%–200% of this full range. Each

color represents a different last millennium simulation. For the four CESM last millennium

simulations the blue line is the mean and the blue shaded region spans the maximum and

minimum values. The orange line is the mean and the orange shaded region spans the

maximum and minimum values of the 20 CMIP5 historical and 6 PMIP3 last millennium

simulations from the historical interval into the future.
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four metrics will be referred to as the drought characteristics.

Results are not highly sensitive to the choice of characteristics,

drought definition (i.e., 10most severe droughts for each 100-yr

interval), or the length of the analyzed intervals (i.e. 50-yr vs

100-yr intervals).

e. Method validation
Figure 6 compares the composite of PDSI and the fraction of

years at each spatial grid point assigned to a drought state by

the drought identification algorithm for a randomly chosen

drought among the 20 most severe in each of the three regions

between 1000 and 2000 CE. The qualitative similarity between

these two fields provides a validation that the drought identi-

fication algorithm successfully identifies persistent and severe

droughts. This is the case for both the paleoclimate record

and the CGCM simulations. The demonstrated similarities are

not dependent on the selected droughts: the same qualitative

similarly exists over many different random drought selections.

This result is also consistent with previous research suggesting

that the drought identification algorithm successfully identifies

the most prominent droughts in observations of precipitation

(Fu et al. 2012), which is also true of PDSI over the instru-

mental interval (not shown). Collectively, these experiments

suggest that the drought identification algorithm provides a

consistent framework for identifying and analyzing persistent

and severe droughts over the last millennium and into

the future.

f. Linear inverse modeling
Future drought risk will be determined by the hydroclimate

response to anthropogenic forcing and natural hydroclimate

variability, with the characteristics of the variability itself po-

tentially changing in response to anthropogenic forcing. Of

particular interest is natural variability on the decadal-to-

centennial time scales over which hydroclimate is typically

projected by CGCMs. There are multiple approaches for

testing whether CGCMs, because of their biases, are likely to

over- or underestimate variability on these time scales (over-

or underdispersive). One is to run large initial condition en-

sembles with a single CGCM (e.g., the NCAR CESM large

FIG. 5. (a) Space–time grid points assigned a drought state by the drought identification algorithm with each grid point colored cor-

responding to its PDSI value. The severity and spatiotemporal extent metrics and definitions are shown for the identified drought.

(b) Spatial extent and definition using the identified drought as an example. The orange box highlights the year 1782 CE with 55 spatial

grid points in drought conditions, which is the spatial extent value for the identified drought. (c) Temporal extent and definition using the

identified drought as an example. The spatial grid points highlighted in orange are those with 6 years in a drought state, which is the

temporal extent value for the identified drought.

9890 JOURNAL OF CL IMATE VOLUME 33

Brought to you by Columbia University | Unauthenticated | Downloaded 03/29/21 06:40 PM UTC



ensemble; Kay et al. 2015) to characterize the range of tra-

jectories of the CGCM-simulated climate system for a single

time interval (e.g., the instrumental interval). A second ap-

proach is to run a single CGCM for a long interval of time (e.g.,

the last millennium) such that there are sufficient samples by

which to characterize longer time scales of variability [e.g., the

PMIP3 last millennium ensemble simulations used herein and

the preindustrial control simulations used in Karnauskas et al.

(2012)]. Both approaches are limited by computational ex-

pense, with only a few modeling centers choosing to produce

such simulations, and the first approach is additionally limited

by the single observed-climate trajectory (the instrumental

interval) against which to compare the CGCM simulations. For

the modeling centers that did produce last millennium through

future simulations we will use the second approach and com-

pare the variability in the CGCMs to that of the paleoclimate

record. Nevertheless, because of variable and simulation

availability this only allows for the analysis of three CGCMs,

two of which come from the same modeling center (NCAR).

To test the additional CMIP CGCMs and associated simula-

tions, we produce an ensemble of surrogate climate trajectories

using a linear inverse model (LIM) following Ault et al. (2018),

but applied to the CMIP5 CGCMs and including the full

NA, OW, and MA regions. Analyzing the variability in these

surrogate climate trajectories is equivalent to the first

approach, although limited in a number of ways relative to the

use of actual simulations fromCGCMs. Nevertheless, the same

LIM-based techniques can be applied to observations to

produce a range of climate trajectories consistent with the in-

strumental interval, which can then be compared to the CGCM

LIM results. Importantly, none of these approaches test how

CGCM biases impact the hydroclimate response to anthro-

pogenic forcing—although these results can indirectly inform

those impacts.

The full details of the LIM approach can be found in Ault

et al. (2018), but we will briefly describe the method, with a

focus on the unique details of the approach used herein.

Using anLIM toproduce surrogate climate trajectories is similar

to modeling a time series as red noise to evaluate statistical

significance against autocorrelation. An LIM, however, allows

for the simultaneous treatment of both spatial and temporal

autocorrelation and produces spatiotemporal outputs (in this

case latitude, longitude, and time). Functionally an LIM

has the form

dX

dt
5LX1 z ,

where X is the state vector, L is the deterministic feedback

matrix, and z is the white noise forcing term. The inputs to an

FIG. 6. For a randomly chosen drought among the 20 most severe in each of the three regions between 1000 and

2000 CE, the composite of PDSI and the fraction of years at each space–time grid point assigned to a drought state.

This was done for the six last millennium simulations and the paleoclimate record. Inset years next to each region

show the time period that is covered by the composite. The black dots mark the area-weighted average drought

location of the randomly chosen drought for each region, defined as described in section 2c.
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LIM are temporally smoothed gridded spatiotemporal data,

with the temporal smoothing required because the LIM is

by construction linear. In this case, and more generally, the

smoothing window is chosen to be three months, with the ra-

tionale that the climate system is approximately linear on

greater than seasonal time scales up to the centennial time

scales being analyzed herein.

To construct the LIM (i.e., to form X) we use linearly de-

trended monthly sea surface temperature (SST) anomalies

globally (608S–808N), regridded to a common 58 3 58 latitude–
longitude grid, and linearly detrended monthly PDSI over the

NA, OW, and MA regions (see grids in Fig. 4) from 1951 to

2000 CE. This was done for all CGCMs (and each individual

simulation) listed in Table 1, and for observations with the

observation-based PDSI data from Sheffield et al. (2006) and

SST data from Kaplan et al. (1998). As in Ault et al. (2018),

principal components were used to decrease the dimensional-

ity of the LIM inputs and thus to increase computational effi-

ciency. The first 17 EOFs were retained from the monthly SST

anomalies (a range of 58% to 76% variance explained across

the datasets) and 22 EOFs from the monthly PDSI, with the

EOFs calculated independently for each of the three regions (a

range of 85% to 93%, 86% to 94%, and 75% to 83% variance

explained across the datasets for NA, OW, and MA, respec-

tively). As in Ault et al. (2018), the PDSI portion of X was

down-weighted by three orders of magnitude such that SSTs

can impact PDSI in L but PDSI cannot impact SSTs, which

assumes that SST variability can drive hydroclimate variability

but not the other way around. All additional choices used to

construct the LIM are consistent with those in Ault et al.

(2018); further details for calculating L and integrating the LIM

can be found therein. We run each LIM 100 times over 100

years and then analyze the range of possible 100-yr climate

trajectories. Each iteration produces a spatiotemporal

hydroclimate trajectory that is consistent with the sta-

tionary linear lagged covariance statistics of the simulated

or observed climate system from 1951–2000 CE. Drought

identification in, and analysis of, these surrogate climate

trajectories follows the methods in the previous subsections.

3. Results

a. Drought characteristics in the paleoclimate record

To validate that CGCMs realistically simulate persistent and

severe droughts, simulations are compared to the paleoclimate

record over a common period (1000–2000 CE) with the ex-

pectation that there is broad consistency in both the average

characteristics of these droughts and their natural variability

on centennial time scales. Consistency in average drought

characteristics is represented in Figs. 4b–e by the time histories

of drought characteristics in CGCMs falling between the two

dashed lines and particularly being centered between these

lines, which represent the range of natural variability on cen-

tennial time scales in the paleoclimate record. Falling below

(above) the bottom (top) line for a drought characteristic

indicates that the CGCM has a smaller (larger) value of

that drought characteristic than the paleoclimate record.

Consistency in natural variability on centennial time scales is

represented by the CGCM simulations fully traversing the

space between the two dashed lines (but not extending well

beyond this space). If the actual time histories of drought

characteristics in the simulations are in phase it could suggest

that the variability on centennial time scales is externally

forced, although it may also arise from randomness given the

small number of analyzed models. If not, either internal vari-

ability is larger than the variability imposed by external forcing

in the CGCMs, or the individual CGCMs are responding dif-

ferently to external forcing. Additionally, if the time histories

are consistent between the CGCMs and the paleoclimate re-

cord then it is possible that the real-world natural variability on

centennial time scales is externally forced and the CGCMs are

realistically responding to external forcing. Nevertheless, this

consistency could also arise from randomness given the large

number of analyzed years

In the following subsections we describe the drought char-

acteristics in the CGCMs and the paleoclimate record. Focus

will be on the spatiotemporal extent and severity of droughts,

with spatial extent and temporal extent being used to better

understand the spatiotemporal extent results. For instance,

droughts can be large because they are temporally persistent

or spatially extensive, making it important to distinguish be-

tween these characteristics. The results in the following

subsection are all based on results in Figs. 4b–e unless

otherwise noted.

1) DROUGHT SEVERITY

For drought severity there is broad consistency in the aver-

age drought characteristics and centennial-scale natural vari-

ability in these characteristics between the CGCMs and the

paleoclimate record, although there are some differences

across models and regions. The IPSL simulation in Fig. 4e, for

instance, has droughts that are not as severe on average as the

paleoclimate record over NA (purple line is largely over the

dashed line representing the paleoclimatic minimum), with

essentially no natural variability on centennial time scales. This

is not the case, however, over the MA and OW regions where

both average drought severity and its centennial-scale natural

variability are more realistic, although the latter is still muted.

Over all three regions, the CCSM and CESM simulations have

average drought severity that is consistent with the paleo-

climate record and large natural variability on centennial time

scales. Drought severity is also largely consistent between the

two CGCMs, which may not be surprising given that they are

from the same NCAR lineage and driven by the same external

forcing reconstructions.

Of particular interest is that some of the natural variability

on centennial time scales is in phase across the CGCMs. For

instance, all three CGCMs show high drought severity be-

tween 1400 and 1500 CE over OW, which is broadly consis-

tent with the paleoclimate record (Fig. 4e). The two NCAR

CGCMs, including all four individual CESM simulations,

show a minimum in drought severity over NA at the end of

the paleoclimate record (;1900 CE). Likewise, these CGCMs

show a maximum in drought severity over NA at the begin-

ning of the last millennium.While this could suggest a role for

external forcing in driving drought severity during all three
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periods in the simulations, it may also arise simply from

chance.

The decreasing trend in drought severity through the last

millennium in the NCAR CGCMS in Fig. 4e is also broadly

consistent with the paleoclimate record, where the time period

between approximately 900–1300 CE has been termed the

MCA, in part, because of a clustering ofmegadroughts over the

NASW (e.g., Coats et al. 2016a,b; Ault et al. 2018; Steiger et al.

2019). Nevertheless, previous studies have found no preference

for the simulation of megadroughts over the NASW during the

MCA and little role for external forcing in driving NASW

hydroclimate over the last millennium in CGCMs (Coats et al.

2013, 2015a; Stevenson et al. 2015), although recently a weak

role for radiative forcing during the MCA has been identified

by Steiger et al. (2019). This discrepancy may result from in-

termodel differences (e.g., high drought severity during the

MCA is not found in the IPSL simulation) or from the small

number of model simulations analyzed herein, or may be due

to the analysis of subregional average hydroclimate time series

in previous studies. During the MCA, droughts are more se-

vere in CCSM and CESM over NA because they are larger

(Fig. 4d), with the increase in spatiotemporal extent driven by

increases in spatial extent (Fig. 4b). The average location of

droughts in these simulations does shift southwestward during

the MCA (not shown), but the droughts are increasing in

spatial extent and not temporal extent (Fig. 4c). The corre-

sponding severity increase is thus not apparent when analyzing

hydroclimate time series averaged for the NASW, as much of

the increase in spatiotemporal extent occurs outside of the

region. All of these changes are true of the paleoclimate record

but the droughts also increase in temporal extent. For this

reason the corresponding severity increase is apparent when

analyzing hydroclimate time series averaged for the NASW in

the paleoclimate record.

2) SPATIOTEMPORAL EXTENT OF DROUGHTS

The interpretation of both average spatiotemporal extent of

droughts and centennial-scale natural variability in this char-

acteristic are largely the same as for drought severity, with

the exception of the spatiotemporal extent of droughts over

MA, where droughts are too small and do not exhibit enough

centennial-scale natural variability in any simulations but

CCSM (Fig. 4d). There are, however, clear regional biases in

the temporal extent (Fig. 4c) and spatial extent (Fig. 4b) of

droughts in CGCMs. These aremost prevalent over OWwhere

droughts are too short and too spatially extensive in CGCMs as

compared to the paleoclimate record, suggesting that CGCMs

simulate droughts with realistic spatiotemporal extent for the

wrong reasons. Over MA, biases in the spatiotemporal extent

of droughts appear to result from simulating droughts that are

too short and not spatially extensive enough, although the

biases in the temporal extent of droughts are qualitatively

more severe. Importantly, the IPSL simulation does not in-

clude land use–land cover changes, which could play a part in

these biases. Nevertheless, the bias in IPSL looks similar to that

in the NCAR CGCMs, suggesting the possibility of a common

bias source.

3) ATTRIBUTING BIASES IN DROUGHT

CHARACTERISTICS

It is important to better understand the origin of the biases in

the spatiotemporal extent of droughts (Figs. 4b–d). Focus in

this subsection will be limited to biases in average drought

characteristics despite clear projection of these biases onto the

ability of CGCMs to simulate realistic centennial-scale natural

variability (e.g., simulating droughts that are on average too

small tends to coincide with not simulating enough centennial-

scale natural variability in the spatiotemporal extent of

droughts).

FIG. 7. The scaling exponent of spectral density (b) calculated between 1000–1849 CE at each spatial grid point

for the paleoclimate record and the six last millennium simulations. The value of b is calculated using linear least

squares in log power–log frequency space on spectra estimated using Thomson’s multitaper method (Thomson

1982; see also section 2).
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Figure 7 shows the scaling exponent of spectral density, or b,

calculated at each space–time grid point in the paleoclimate

record and the CGCMs. The term b is a measure of the pro-

portion of variance in low frequencies relative to high frequencies

in a time series, with positive b values indicating that low fre-

quencies contribute more to the total variance (e.g., Huybers

and Curry 2006; Ault et al. 2013). To calculate b, the power

spectral density (PSD) of PDSI at each spatial grid point

(Fig. 4a) between 1000 and 1849 CE in the CGCMs and pale-

oclimate record was calculated using the Thomson’s multitaper

method (Thomson 1982). The PSD values corresponding to the

lowest 1% of frequencies were then removed, with the re-

maining PSD values and their frequencies base-10 log trans-

formed. The log-transformed PSD values were binned and

averaged into equal log frequency bins before calculating a

linear least squares fit. The slope of this fit is defined as b. To

test the sensitivity of b to the length of the analysis interval, the

calculation was additionally performed for sliding 100-yr in-

tervals between 1000 and 1849 CE. Results are largely con-

sistent between any 100-yr interval and those for the full

analysis interval, indicating relatively stationary temporal

estimates of b and therefore justifying an analysis based on the

full interval.

The value ofb is smaller in CGCMs than in the paleoclimatic

record in all six simulations over OW and MA, consistent with

simulating droughts that are too short. This does not appear to

be a general feature of CGCMs, as the b values are consistent

FIG. 8. (top two rows)Average absolute value of correlation coefficients between the (left) ENSO, (center)AMO, and (right) PDO and

spatial grid point PDSI. These are calculated over the MA and OW regions for every 136-yr interval between 1000–2005 CE in the last

millennium simulations (length of the instrumental interval used for comparison), with the box plots representing the mean, 25th–75th

percentiles, and full range. The dashed line is the samemetric between 1870 and 2005 CE using the paleoclimate record andENSO,AMO,

and PDO indices calculated from HadISST (Rayner et al. 2003). (bottom three rows) Spectra of the ENSO, AMO, and PDO for every

136-yr interval between 1000 and 2005 CE in the last millennium simulations (mean and range) and for HadISST between 1870–2005 CE.

Spectra are estimated using the Thomson’s multitapermethod (Thomson 1982). The ENSO index is the average of SSTs over theNiño-3.4
region (58S–58N, 908–1508W), the AMO index is calculated following Trenberth and Shea (2006), and the PDO index is calculated

followingMantua et al. (1997). All indices are annually averaged. For the spectra, only one simulation is shown for CESMas the results are

nearly identical across the four simulations.

TABLE 2. Correlation between 1000 and 1849 CE of PDSI av-

eraged over the West (328N–348N, 108W–08), East (368–418N, 208–
378E), and MidEast (308–348N, 338–478E) boxes from Cook et al.

(2016b). Values are shown for the paleoclimate record and the six

simulations of the last millennium.

West and

East

West and

MidEast

East and

MidEast

Drought Atlas 0.22 20.01 20.12

CCSM 0.45 0.32 0.43

IPSL 0.44 0.24 0.39

CESM 1 0.36 0.31 0.40

CESM 2 0.37 0.15 0.34

CESM 3 0.45 0.31 0.46

CESM 4 0.37 0.18 0.36
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(and the temporal extent of droughts more consistent) over

NA. This is important because it has been suggested that the

paleoclimate record may contain nonclimatic, and thus erro-

neous, low-frequency variability [e.g., Franke et al. 2013;

however, the opposite has also been suggested (e.g., Cook et al.

2016a; Smerdon et al. 2016)]. While that may still be the case,

the comparisons in Fig. 7 suggest that the paleoclimate record

and CGCMs can have similar low-frequency variability.

To better understand the potential dynamical origins of

these b differences, Fig. 8 characterizes the dominant modes of

NH atmosphere–ocean variability and their teleconnections to

hydroclimate over OW and MA. NA is not shown because of

the relatively similar low-frequency variability as compared to

the paleoclimate record. The hydroclimate impacts of ENSO, a

relatively high-frequency mode of variability, are exaggerated

in CGCMs over OW and MA and the mode itself appears to

have too much high-frequency variability compared to obser-

vations (e.g., Bellenger et al. 2014; Otto-Bliesner et al. 2016;

Stevenson et al. 2016). Both biases are consistent with simu-

lating droughts that are too short over these regions (Stevenson

et al. 2018). Likewise, the much lower-frequency AMO has

hydroclimate impacts that are weaker than in observations.

The PDO, which is also associated with relatively low fre-

quencies, has a connection to hydroclimate over OW and MA

that is too strong in most CGCMs, while having weaker vari-

ability that is biased toward higher frequencies than the ob-

served PDO. Although the latter comparisons are limited by

the length of the instrumental interval, for which there are

few degrees of freedom for the AMO and PDO, these biases

are all consistent with simulating droughts that are too short.

Interestingly, simulating exaggerated hydroclimate impacts of

the Pacific over MA may also help to explain why CGCMs

simulate droughts that are not spatially extensive enough, as

the ENSO and PDO teleconnections in this region are a

northwest-to-southeast-tilted tripole (not shown) that would

limit the total number of space–time grid points in drought

conditions when under the Pacific’s influence. Over OW, these

exaggerated Pacific hydroclimate impacts would act in the

opposite sense, as the teleconnections are a dipole with only

weak correlations over the northern grid points and corre-

lations that are too strong and homogenous over the

Mediterranean (not shown). Indeed, correlation coefficients

FIG. 9. (a) Area-weighted average drought location in each region for the historical interval

(1901–2000 CE), defined as described in section 2c. The orange shaded region represents the

geographical range in this metric for the historical interval in the 20 CMIP5 and 6 PMIP3 last

millennium simulations. For comparison, the contours represent the area-weighted average

drought location for all 100-yr intervals in the paleoclimate record between 1000 and 2000

CE. (b) Area-weighted average drought location in each region for the historical (1901–2000

CE) and future (2001–2100 CE) intervals. The orange shaded region represents the geo-

graphical range in this metric for the historical interval in the 26 CMIP5 simulations and the

crosses represent each individual simulation for the future interval. (c) For average drought

locations computed using PDSI, annually averaged SM integrated over the top 30 cm and 2m

(orange, gray, and black, respectively), and annually averaged P 2 E (blue): the base of the

arrow (center indent) represents the ensemblemean (20CMIP5 and 6 PMIP3 lastmillennium

simulations) of the area-weighted average drought location for the historical interval and the

tip of the arrow represents the ensemble mean for the future interval.
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FIG. 10. As in Fig. 4, but for a fixed grid in the year 1500 [the grid is shown in (a)].
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between hydroclimate variability in commonly defined regions

over OW are too large and positive in all three CGCMs as

compared to the paleoclimate record (Table 2). This suggests

that hydroclimate variability is too homogeneous (i.e., in phase)

in CGCMs as compared to the paleoclimate record, particularly

over the drought-prone Mediterranean region (e.g., Cook et al.

2016b), and this may help to explain the tendency for CGCMs to

simulate droughts that are too spatially extensive over OW.

b. Drought characteristics in the historical interval and the
future
We now turn to the characteristics of droughts in the his-

torical interval (1901–2000 CE) and the future. Recent re-

search suggests that hydroclimate in CGCMs is consistent with

the paleoclimate record over much of the last millennium, but

that CGCMs overestimate the impact of rising temperatures

on hydroclimate over the past century (Ljungqvist et al. 2016).

Within the framework presented herein, the drought charac-

teristics in CGCMs during the historical interval have not

emerged from centennial-scale natural variability (Fig. 4).

In the future, CGCMs suggest that droughts over all three

regions become more severe than at any time over the last

millennium (Fig. 4e). By the end of the century, droughts are

nearly 400% as severe as those in the paleoclimate record in

some regions (e.g., OW), consistent with a shift in hydroclimate

over large parts of these regions toward permanent drought

conditions (B. Cook et al. 2015; Ault et al. 2016). It is worth

noting that the ‘‘step’’ in drought severity after the 100-yr in-

terval centered on 2000 CE marks the first 100-yr interval

containing a drought that persists through the end of the simu-

lation (2100 CE). These droughts are a consequence of hydro-

climate over a subregion drying in response to anthropogenic

forcing such that all subsequent years at those spatial grid points

are assigned to a drought state.

The increase in severity in Fig. 4e is driven, in part, by an

increase in the spatiotemporal extent of droughts (Fig. 4d).

Nevertheless, this increase is not large enough to explain the

increased severity, suggesting that future droughts will bemore

severe than past droughts of equivalent spatiotemporal extent.

Interestingly, the increase in spatiotemporal extent is driven

FIG. 11. All results are for the NA region. The box plots represent the average, 25th–75th percentiles, and full

range of (a) drought severity, (c) spatiotemporal extent, (e) spatial extent, and (g) temporal extent for all 100-yr

intervals between 1000 and 1900 CE in the last millennium simulations and the paleoclimate record (as in Fig. 4).

The circle and cross symbols represent the drought severity, spatiotemporal extent, temporal extent, and spatial

extent for the historical (1901–2000 CE) and future (2001–2100 CE) intervals. For comparison to the PDSI results

the drought severity, spatiotemporal extent, temporal extent, and spatial extent are also plotted using annually

averaged SM integrated over the top 30 cm or 2m and P 2 E, subject to data availability. For each hydroclimate

metric the droughts are identified for each region using the same drought identification algorithm (see section 2c),

with all methodological choices being the same (e.g., the standardization interval, potential functions).

(b),(d),(f),(h) The range in the change in drought severity, spatiotemporal extent, temporal extent, and spatial

extent, respectively, from the historical (1901–2000 CE) to future (2001–2100 CE) intervals for each hydroclimate

metric. The box plots represent the average, 25th–75th percentiles, and full range for each characteristic. The plots

(vertical axis) show (a),(b) the sum of standardized departures, (c),(d) the number of spatiotemporal grid points,

(e),(f) the number of temporal grid points, and (g),(h) the number of spatial grid points.

15 NOVEMBER 2020 COAT S ET AL . 9897

Brought to you by Columbia University | Unauthenticated | Downloaded 03/29/21 06:40 PM UTC



largely by an increase in the temporal extent of droughts

(Fig. 4c), with no change in their spatial extent in the future

(Fig. 4b). While this may seem counterintuitive, droughts over

the last millennium already extend over a large portion of the

spatial domain and because of the constraints of ocean and

imposed boundaries (e.g., between OW and MA) these

droughts have little room to increase in space. By contrast,

drought persistence is not limited in the future, except by the

end of the simulations.

Surprisingly, there is little change in drought locations in

the historical interval (1901–2000 CE; Fig. 9a) or the future

(Fig. 9b), which may also result from the aforementioned ar-

guments on the spatial extent of these features—the most

persistent and severe droughts may already be so spatially

extensive that there is little room for their location to shift.

Nevertheless, there does appear to be a shift in future drought

locations over NA, with these features shifting northwest rel-

ative to the historical interval. In particular, there is a much

higher occurrence of droughts in the Alaska portion of the

domain in the future (not shown). This result could be due to

the use of PDSI as the hydroclimate metric, as PDSI can

struggle to represent variability at high-latitude locations like

Alaska (e.g., Alley 1984). It may also result from the fixed

spatial grid that is used herein, as the fixed spatial grid is

missing much of southern and central Canada (Fig. 4a).

Nevertheless, a more complete fixed spatial grid corresponding

to the tree-ring record in 1500 (Fig. 10a) also suggests that there

is a northward (though less westward) shift in future drought lo-

cations over NA (not shown). Importantly, all results for the fu-

ture and historical interval are consistent for this more complete

fixed spatial grid (Figs. 10b–e), as well as shorter time intervals

(e.g., 50-yr instead of 100-yr intervals; not shown). Note that the

missing spatial grid points and the large number of future droughts

over Alaska explain the presence of average drought locations in

somemodels over thePacific. Specifically, if the locations of the 10

most persistent and severe droughts in the future are largely split

between Alaska and the western and central continental United

States, the average drought location can occur over the ocean.

c. Consistency of results across hydroclimate metrics

Importantly, discrepancies between drought characteristics

and hydroclimate change asmeasured by different hydroclimate

metrics are expected as they are measuring different climatic

phenomena: P2 E should approximately measure runoff, while

PDSI is a soil moisture metric. Nevertheless, PDSI has well-

documented issues when used as ametric of future hydroclimate

change, and while it is necessary to use PDSI for a direct com-

parison of theCGCMswith the paleoclimate record, these issues

are expected to impact some of the results presented herein. To

specifically test whether the results presented in the previous

subsection are consistent across hydroclimate metrics, the

characteristics of droughts defined using different hydroclimate

metrics are compared in Fig. 11. For each hydroclimate metric

the droughts in Fig. 11 are identified for each region using the

same drought identification algorithm (see section 2c), with all

methodological choices being the same (e.g., the standardization

interval, potential functions, spatiotemporal grid points, etc.);

nevertheless, the individual droughts being identified for each

metric will be different. Because the metrics displayed in Fig. 11

are either an integration of standardized departures from the

mean of a common interval (e.g., severity) or an emergent

feature of droughts described in a common geographical

framework (e.g., spatiotemporal extent), all results are directly

comparable across the different hydroclimate metrics. For

simplicity, only results for NA are presented in Fig. 11, as the

results are largely consistent with those derived for the OW

and MA regions. Nevertheless, there are regional differences

that will be described qualitatively in the following subsection.

The results for PDSI (Figs. 4b–e) are consistent with those

for SM over NA and OW, with large increases in drought se-

verity (Fig. 11b) and spatiotemporal extent (Fig. 11d) in the

future and little change in the spatial extent of these features

(Fig. 11h). Shallow (30 cm) and deep (2m) SM changes in

the future over these regions are largely consistent, at least

as measured by the severity of droughts (Fig. 11b). Future

changes in PDSI thus appear to be consistent with those for

SM, not just at shallow depths as has been suggested previously

(e.g., Cheng et al. 2016; Ault et al. 2016; Berg et al. 2017; Swann

et al. 2016).

Interestingly, however, the results for PDSI are not consis-

tent with SM over MA, particularly in the CESM simulations

where drought severity for SM does not increase in the future

(not shown). More generally, the CMIP simulations suggests

bimodality across CGCMs with respect to changes in future

drought severity for SM over MA—approximately half of

CGCMs suggest large increases in severity at 2-m depth, while

increases occur across nearly all CGCMs for PDSI. Diagnosing

the reasons for this bimodality is difficult given the available

CGCM outputs, and the lack of ensembles for each CGCM.

Nevertheless, the four CESM simulations allow for a qualita-

tive diagnosis of PDSI and SM decoupling over MA within a

single CGCM. InCESM the biggest differences between future

PDSI and SM are in the northeastern portion of theMA region

(not shown). In that subregion there is a large increase in

snowfall from December–March, which is partially compen-

sated by decreases in April and May. We hypothesize that this

increase in total winter snowfall produces a delayed recharge

of summer SM that can compensate for increased atmospheric

demand formoisture. PDSI does not capture snowfall, and thus

does not have this delayed recharge effect, and by consequence

may overestimate the impact of future increases in atmo-

spheric moisture demand over the northeastern subre-

gion of MA.

For P2 E, on average, there are increases in future drought

severity across all three regions, largely driven by the spatio-

temporal extent of these features, with the exception of the

CESM simulations over OW. Nevertheless, these increases

are much smaller than for PDSI or SM (Fig. 11b), although

they do rise above the range of centennial-scale natural vari-

ability (the last millennium) in the CESM simulations over NA

(Fig. 11a) and MA. Interestingly, unlike for PDSI and SM,

future increases in the spatiotemporal extent ofP2E droughts

over NA (Fig. 11d) include a role for increases in the spatial

extent of droughts (Fig. 11h), although the spatiotemporal

extent increases are much smaller overall for P 2 E than for

the other hydroclimate metrics.
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Perhaps the biggest difference between the hydroclimate

metrics is the change in drought locations from the historical

interval into the future (Fig. 9c). Of particular interest is the

change in drought locations for P 2 E, which are much larger

than those for PDSI or SM. Likewise, while they tend to be in

the same direction as for PDSI and SM over OW (westward)

and for SM over NA (eastward), they are actually in the op-

posite direction over MA (westward vs eastward). As was

noted previously, drought location changes for PDSI are gen-

erally small, with the exception of over NA where there is a

large increase in the occurrence of droughts in the Alaska

portion of the domain. This same shift in drought locations

does not occur for SM, further suggesting that it results from

issues with PDSI as a hydroclimate metric at high latitudes

(e.g., Alley 1984). More generally, while the future changes to

drought characteristics are consistent between PDSI and SM,

this is less true for changes in the locations of these features.

For SM, the drought location changes are in the same di-

rection at both depths, but are larger for 2-m than for 30-cm

SM. To better understand this discrepancy, we analyze the

spatial pattern of end-of-century changes (2081–2100 CE averages

relative to preindustrial) in moisture supply (precipitation) and

demand (PET) as compared to SM in the four CESM simula-

tions (not shown). The discrepancy is consistent with 2-m SM

responding to moisture supply changes more closely than 30-cm

SM (e.g., Cheng et al. 2016), while the surface soil moisture layers

respond more closely to moisture demand. The actual drought

location changes, however, involve a complex interplay between

subregional changes inmoisture supply and demand. For instance,

over MA drying is projected for the northwest and southeast

subregions. The drying in the northwest is dominated bymoisture

demand (large PET increases), leading to greater and more spa-

tially extensive drying for 30 cmSM.The drying in the southeast is

dominated by moisture supply (large precipitation decreases),

leading to greater drying for 2-mSM.For both 30-cmand 2-mSM,

drought locations are shifting toward the southeast, but for 30-cm

SM there is also an increase in the occurrence of droughts in the

northwest. This makes the total drought location changes, an

average of all drought locations, less southeast shifted for 30-cm

SM. Similar arguments can be made for the drought location

changes for 30-cm and 2-m SM over the NA and OW regions.

d. Will CGCM biases cause systematic biases in drought

risk projections?
The risk of a future drought will necessarily involve

anthropogenically forced changes and natural variability.

While anthropogenic forcing can itself change natural vari-

ability and thus its contribution to future drought risk, it is still

useful to validate that CGCMs simulate the full range of nat-

ural variability in the absence of this forcing. With this in

mind, a comparison of the paleoclimate record to CGCMs,

suggests that they can either vastly underestimate (IPSL over

NA) or slightly overestimate (CCSM over NA) centennial-

scale natural variability in the characteristics of persistent and

severe drought (Figs. 4b–e). Nevertheless, only a limited

number of CGCMs were available for this comparison, pre-

cluding confident statements on systematic behavior across

CGCMs. In the following subsection we focus specifically on

natural variability over NA because of the clear overestimate

(CCSM) and underestimate (IPSL) split across CGCMs.

To better understand if CGCMs systematically over or un-

derestimate centennial-scale natural variability in drought

characteristics we use the LIM-based framework to produce

100-member ensembles of surrogate climate trajectories for

each CGCM simulation. The range of drought characteristics

for each 100-member ensemble are shown in Fig. 12. While

CGCMs can both under- or overestimate the range in drought

severity as compared to a similar observation-based ensemble

of the instrumental interval, the majority of CGCMs under-

estimate these ranges and thus are likely to underestimate

natural contributions to drought risk (22 of 25 LIMs have a

narrower range, shown as the bar width in Fig. 12, as compared

to the observation-based ensemble). This result is consistent

with previous research suggesting that hydroclimate in

CGCMs may be underdispersive as compared to the paleo-

climate record [Ault et al. 2013; Parsons et al. 2017; however, it

has been argued that the paleoclimate record may be biased;

see Franke et al. (2013)] but these statements can now be ex-

panded to droughts specifically as compared to observations,

and with spatiotemporal context.

Interestingly, however, LIMs trained on different simula-

tions from the same CGCM can fall on either side of this

split—the LIMs trained on CESM simulations 3 and 4 have

drought severity ranges that are over- and underestimated

relative of the range of drought severity from the observation-

based LIM. This apparent discrepancy arises because the

coupled atmosphere–ocean variability during the LIM training

interval (1951–2000 CE) is spurious in CESM simulations 3 and

4. In CESM simulation 3 there is very weak variability in the

tropical Pacific over the 50-yr LIM training interval, including a

near total absence of El Niño events, with the opposite being

true of CESM simulation 4. The ENSO teleconnection to hy-

droclimate in CESM is strong, with a dipolar pattern over

NA that limits the total number of space–time grid points in

drought conditions when under the Pacific’s influence. The

weak variability in the tropical Pacific in simulation 3 during

the LIM training interval leads to incomplete sampling of this

teleconnection. Without the tropical Pacific influence on hy-

droclimate in the LIM, the associated surrogate climate tra-

jectories contain droughts with greater spatial extent and thus

spatiotemporal extent and severity. These results reinforce the

importance of running large ensembles and long simulations

with CGCMs (e.g., Coats and Mankin 2016), as training sta-

tistical models on a single climate trajectory can result in un-

representative behavior and thus erroneous conclusions.

4. Discussion
CGCMs struggle to simulate some characteristics of persis-

tent and severe droughts as compared to the paleoclimate re-

cord, particularly over the OW and MA regions. While this

may limit confidence in future projections of drought risk, by

the end of the century the characteristics of droughts are

dominated by the hydroclimate response to anthropogenic

forcing. More specifically, droughts become at least 300%

more severe by the end of the twenty-first century than at any

time over the last millennium, changes so large that they render
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natural (forced and internal) variability unimportant to the

occurrence of future droughts. Therefore, if CGCMs realisti-

cally simulate the hydroclimate response to anthropogenic

forcing, long-term drought risk projections can be viewed with

more confidence. Of relevance to this, and in contrast to pre-

vious studies (e.g., Ljungqvist et al. 2016), the results presented

herein suggest that CGCMs do not overestimate the re-

sponse of hydroclimate to anthropogenic forcing over the past

century—at least with regard to the characteristics of persistent

and severe droughts. This is critical, because if CGCMs are

already overestimating the hydroclimate response to anthro-

pogenic forcing, the dire future projections are also likely to be

overestimated (Ljungqvist et al. 2016). We find no evidence

that anthropogenic forcing of the characteristics of droughts

has emerged from centennial-scale natural variability in

CGCMs, consistent with the still weak, though nonnegligible,

influence of anthropogenic forcing on persistent and severe

droughts in the real world (e.g., Williams et al. 2015). Recent

research suggests that global ‘‘fingerprints’’ of anthropogenic

forcing are now detectable in hydroclimate, but consistent with

results presented herein this signal cannot yet be detected re-

gionally (Marvel et al. 2019).

Projections of large increases in drought severity across all

three regions are consistent with previous studies of future

drought risk over individual subregions like the NASW (B.

Cook et al. 2015; Ault et al. 2016), suggesting that drought risk

increases are a ubiquitous feature of future hydroclimate over

the NH extratropics. There are important caveats to this in-

terpretation, however, including the use of PDSI as a hydro-

climate metric.While this offlinemetric is consistent with some

online metrics (with the exception of changes in drought lo-

cations), the aforementioned changes are most relevant to SM

(at 30 cm and 2m). For instance, the response of runoff and

vegetation to anthropogenic forcing can be large and in op-

position to those in SM (e.g., Scheff et al. 2017; Mankin et al.

2017, 2018), in part due to the impact of increasing levels of

atmospheric carbon dioxide on vegetation physiology. This is

apparent in future changes to the characteristics of P 2 E

droughts. While P 2 E droughts become more severe in the

future, the projected changes are much smaller than for PDSI

or SM. It is clear from these results that both hydroclimate and

drought must be rigorously defined in future projections, as the

associated uncertainties depend on these definitions. Of

particular interest is whether CGCMs realistically simulate

vegetation responses to anthropogenic forcing (Smith et al.

2016; Mankin et al. 2017, 2018; Trugman et al. 2018), an un-

derstanding that will further untangle the various hydro-

climatic components and how they will change in the future.

FIG. 12. All results are for the NA region. The box plots represent the average, 25th–75th

percentiles, and full range of drought severity, spatiotemporal extent, temporal extent, and

spatial extent based on 100 ensemble members of an LIM trained on PDSI and global SSTs

for the 1951–2000 period from each simulation or the Sheffield et al. (2006) PDSI dataset and

global SSTs from the Kaplan et al. (1998) dataset (section 2). The black boxplots are for the

observations, and the green and purple for the CCSM and IPSL last millennium simulations,

respectively. The blue colors are for the four CESM last millennium simulations and the

orange for the 20 CMIP5 historical simulations.
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Nevertheless, the response of P 2 E to anthropogenic

forcing is not sufficiently large as to render natural variability

unimportant to future climate change. Realistically projecting

drought risk using this and relatedmetrics, like runoff, requires

that CGCMs realistically simulate natural variability, because

it is a more important component of future drought risk.

Therefore, when using these hydroclimate metrics, biases in

the ability of CGCMs to simulate natural variability will limit

confidence in drought risk projections. In this regard, CGCMs

could be under- or overdispersive in representing the full range

of potential future hydroclimate states.With the assumption that

natural PDSI variability is relevant to these metrics, which

should be true even if the PDSI response to anthropogenic

forcing is not, we present two frameworks for determining

if under- or overdispersiveness is more likely. Based on the pa-

leoclimate record and last-millennium simulations, it is clear that

CGCMs struggle to simulate the characteristics of droughts over

OW (and to a lesser extent MA). This causes systematic un-

derdispersiveness in the temporal extent of droughts over OW

and MA, and the spatiotemporal extent of droughts over

MA—with these biases related to modes of NH atmosphere–

ocean variability and their impacts on regional hydroclimate.

Over NA, CGCMs are more successful at simulating the char-

acteristics of droughts. However, an LIM-based framework

applied to a multimodel ensemble of CGCMs suggests that they

are generally underdispersive when it comes to drought severity

over this region. Importantly, it is not clear if under-

dispersiveness results from biases in the simulation of internal

variability, the response to natural forcing, or the imposed nat-

ural forcings themselves. In the latter case, the results presented

herein may not limit confidence in drought risk projections.

Importantly, all of the aforementioned interpretations also

apply to projections of PDSI and SM over the next few decades

(before the greatest anthropogenic impacts on hydroclimate) or

if real-world anthropogenic emissions are reduced relative to the

RCP8.5 scenario that is analyzed herein (see, e.g., Coats and

Mankin 2016; Lehner et al. 2017). Regardless of these caveats,

the end-of-century changes in drought severity projected by

CGCMs are troubling, particularly for societal risks that

track changes in near-surface SM (e.g., wildfire;Westerling and

Bryant 2008; Williams and Abatzoglou 2016). Confidence in

risk projections of other societally relevant hydroclimatic

components will require additional research similar to what we

present herein, that seeks to better understand the ability of

CCGMs to simulate natural variability on the decadal-to-

centennial time scales most relevant to future projections.

5. Conclusions
Here we use a novel framework for analyzing spatiotem-

porally contiguous climatic events to provide critical insights

into how droughts change in response to anthropogenic forcing

in both space and time and how climate model biases impact

these projections. Importantly, this framework can be applied

to other climatic features to provide similar insights. The spe-

cific insights that we have provided are the following:

d We find no evidence that anthropogenic forcing of the

regional characteristics of droughts emerges from natural

variability over the past century (1901–2000).

d Despite this, large increases in drought severity, as measured

by soil moisture metrics, are projected for the twenty-first

century over the Northern Hemisphere extratropics.
d These increases are dominated by changes in the spatiotem-

poral extent of droughts via their temporal extent, with little

increase in their spatial extent.
d There is little change in the location of droughts in the future

for offline soil moisture metrics, but there are changes for

some online soil moisture metrics.
d Small changes in drought severity, as measured by precipi-

tation minus evaporation, are projected for the coming

century. There are, however, large changes in the locations

of these droughts.
d Biases in the ability of climate models to simulate natural

variability undermine confidence in drought risk projections

for: 1) hydroclimate metrics with smaller magnitude re-

sponses to anthropogenic forcing, and 2) for all hydroclimate

metrics over the next few decades.
d These biases lead climate models to be underdispersive

when attempting to simulate the full range of future

hydroclimate states.
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