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Abstract

Representation learning of graph-structured data is challenging because both graph
structure and node features carry important information. Graph Neural Networks
(GNNs) provide an expressive way to fuse information from network structure
and node features. However, GNNs are prone to adversarial attacks. Here we
introduce Graph Information Bottleneck (GIB), an information-theoretic principle
that optimally balances expressiveness and robustness of the learned representation
of graph-structured data. Inheriting from the general Information Bottleneck
(IB), GIB aims to learn the minimal sufficient representation for a given task by
maximizing the mutual information between the representation and the target, and
simultaneously constraining the mutual information between the representation
and the input data. Different from the general IB, GIB regularizes the structural as
well as the feature information. We design two sampling algorithms for structural
regularization and instantiate the GIB principle with two new models: GIB-Cat and
GIB-Bern, and demonstrate the benefits by evaluating the resilience to adversarial
attacks. We show that our proposed models are more robust than state-of-the-
art graph defense models. GIB-based models empirically achieve up to 31%
improvement with adversarial perturbation of the graph structure as well as node
features.

1 Introduction

Representation learning on graphs aims to learn representations of graph-structured data for down-
stream tasks such as node classification and link prediction [1, 2]. Graph representation learning is a
challenging task since both node features as well as graph structure carry important information [3,4].
Graph Neural Networks (GNNs) [1, 3, 5–7] have demonstrated impressive performance, by learning
to fuse information from both the node features and the graph structure [8].

Recently, many works have been focusing on developing more powerful GNNs [8–13], in a sense
that they can fit more complex graph-structured data. However, at present GNNs still suffer from a
few problems. For example, the features of a neighborhood node can contain non-useful information
that may negatively impact the prediction of the current node [14]. Also, GNN’s reliance on message
passing over the edges of the graph also makes it prone to noise and adversarial attacks that target at
the graph structure [15, 16].

Here we address the above problems and rethink what is a “good” representation for graph-structured
data. In particular, the Information Bottleneck (IB) [18, 19] provides a critical principle for represen-
tation learning: an optimal representation should contain the minimal sufficient information for the
downstream prediction task. IB encourages the representation to be maximally informative about
the target to make the prediction accurate (sufficient). On the other hand, IB also discourages the
representation from acquiring additional information from the data that is irrelevant for predicting the
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Y : The target, D: The input data (= (A,X))
A: The graph structure, X: The node features
Z: The representation

Graph Information Bottleneck:

min
P(Z|D)∈Ω

GIBβ(D, Y ;Z) , [−I(Y ;Z) + βI(D;Z)]

Figure 1: Graph Information Bottleneck is to optimize the representation Z to capture the minimal sufficient
information within the input data D = (A,X) to predict the target Y . D includes information from both the
graph structure A and node features X . When Z contains irrelevant information from either of these two sides,
it overfits the data and is prone to adversarial attacks and model hyperparameter change. Ω defines the search
space of the optimal model P(Z|D). I(·; ·) denotes the mutual information [17].

target (minimal). Based on this learning paradigm, the learned model naturally avoids overfitting and
becomes more robust to adversarial attacks.

However, extending the IB principle to representation learning on graph-structured data presents
two unique challenges. First, previous models that leverage IB assume that the training examples
in the dataset are independent and identically distributed (i.i.d.). For graph-structured data, this
assumption no longer holds and makes model training in the IB principle hard. Moreover, the
structural information is indispensable to represent graph-structured data, but such information is
discrete and thus hard to optimize over. How to properly model and extract minimal sufficient
information from the graph structure introduces another challenge that has not been yet investigated
when designing IB-based models.

We introduce Graph Information Bottleneck (GIB), an information-theoretic principle inherited from
IB, adapted for representation learning on graph-structured data. GIB extracts information from both
the graph structure and node features and further encourages the information in learned representation
to be both minimal and sufficient (Fig. 1). To overcome the challenge induced by non-i.i.d. data, we
further leverage local-dependence assumption of graph-structure data to define a more tractable search
space Ω of the optimal P(Z|D) that follows a Markov chain to hierarchically extract information
from both features and structure. To our knowledge, our work provides the first information-theoretic
principle for supervised representation learning on graph-structured data.

We also derive variational bounds for GIB, making GIB tractable and amenable for the design and
optimization of GNNs. Specifically, we propose a variational upper bound for constraining the
information from the node features and graph structure, and a variational lower bound for maximizing
the information in the representation to predict the target.

We demonstrate the GIB principle by applying it to the Graph Attention Networks (GAT) [5], where
we leverage the attention weights of GAT to sample the graph structure in order to alleviate the
difficulty of optimizing and modeling the discrete graph structure. We also design two sampling
algorithms based on the categorical distribution and Bernoulli distribution, and propose two models
GIB-Cat and GIB-Bern. We show that both models consistently improve robustness w.r.t. standard
baseline models, and outperform other state-of-the-art defense models. GIB-Cat and GIB-Bern
improve the classification accuracy by up to 31.3% and 34.0% under adversarial perturbation,
respectively.
Project website and code can be found at http://snap.stanford.edu/gib/.

2 Preliminaries and Notation

Graph Representation Learning. Consider an undirected attributed graph G = (V,E,X) with n
nodes, where V = [n] = {1, 2, ...n} is the node set, E ⊆ V × V is the edge set and X ∈ Rn×f
includes the node attributes. Let A ∈ Rn×n denote the adjacency matrix of G, i.e., Auv = 1 if
(u, v) ∈ E or 0 otherwise. Also, let d(u, v) denote the shortest path distance between two nodes
u, v (∈ V ) over A. Hence our input data can be overall represented as D = (A,X).

In this work, we focus on node-level tasks where nodes are associated with some labels Y ∈ [K]n.
Our task is to extract node-level representations ZX ∈ Rn×f ′ from D such that ZX can be further

2

http://snap.stanford.edu/gib/


𝑌
𝑍#
(%)

𝐴

𝑍(
()) 𝑍(

(*)

𝑍#
()) 𝑍#

(*)

… 𝑍#
(+) ,𝑌

Compression
Prediction

structural information flow
feature information flow

=𝑋

v

u1u2

u3
𝑍#,0
(12))

𝑍#,3!
(12))𝑍#,3"

(12))

𝑍#,3#
(12)) v

u1u2

u3The original
structure 𝐴

Local extraction of
structural info. : 𝑍((1)

v

u1u2

u3

Local extraction of
feature info.:
𝑍#,0
(12))→ 𝑍#,0

(1)

𝑍"
($%&)

𝑍"
($%()

𝑍"
($)

Figure 2: Our GIB principle leverages local-dependence assumption. (a) The Markov chain defines the search
space Ω of our GIB principle, of which each step uses a local-dependence assumption to extract information from
the structure and node features. The correlation between node representations are established in a hierarchical
way: Suppose local dependence appears within 2-hops given the structure A. (b) In the graph, given the
representations Z

(l)
X of the blue nodes and A that conveys the structural information that the blue nodes lie

within 2-hops of the black node, the representations Z(l+1)
X are independent between the black node and the

white nodes. However, the correlation between them may be established in Z
(l+2)
X .

used to predict Y . We also use the subscript with a certain node v ∈ V to denote the affiliation with
node v. For example, the node representation of v is denoted by ZX,v and its label is denoted by Yv .

Notation. We do not distinguish the notation of random variables and of their particular realizations
if there is no risk of confusion. For any set of random variables H , we use P(H), Q(H), ... to
denote joint probabilistic distribution functions (PDFs) of the random variables in H under different
models. P(·) corresponds to the induced PDF of the proposed model while Q(H) and Qi(H),
i ∈ N correspond to some other distributions, typically variational distributions. For discrete
random variables, we use generalized PDFs that may contain the Dirac delta functions [20]. In this
work, if not specified, E[H] means the expectation over all the random variables in H w.r.t. P(H).
Otherwise, we use EQ(H)[H] to specify the expectation w.r.t. other distributions denoted by Q(H).
We also use X1 ⊥ X2|X3 to denote that X1 and X2 are conditionally independent given X3. Let
Cat(φ), Bernoulli(φ) denote the categorical distribution and Bernoulli distribution respectively with
parameter φ (∈ R1×C

≥0 ). For the categorical distribution, φ corresponds to the probabilities over
different categories and thus ‖φ‖1 = 1. For the Bernoulli distribution, we generalize it to high
dimensions and assume we have C independent components and each element of φ is between 0
and 1. Let Gaussian(µ, σ2) denote the Gaussian distribution with mean µ and variance σ2. µ and σ2

could be vectors with the same dimension, in which case the Gaussian distribution is with the mean
vector µ and covariance matrix Σ = diag(σ2). Let Φ(· : µ, σ2) denote its PDF. We use [i1 : i2] to
slice a tensor w.r.t. indices from i1 to i2 − 1 of its last dimension.

3 Graph Information Bottleneck

3.1 Deriving the Graph Information Bottleneck Principle

In general, the graph information bottleneck (GIB) principle, inheriting from the principle of infor-
mation bottleneck (IB), requires the node representation ZX to minimize the information from the
graph-structured data D (compression) and maximize the information to Y (prediction). However,
optimization for the most general GIB is challenging because of the correlation between data points.
The i.i.d. assumption of data points is typically used to derive variational bounds and make accurate
estimation of those bounds to learn IB-based models [21, 22]. However, for the graph-structured
data D, this is impossible as node features, i.e., different rows of X , may be correlated due to the
underlying graph structure A. To fully capture such correlation, we are not allowed to split the whole
graph-structured data D w.r.t. each node. In practice, we typically have only a large network, which
indicates that only one single realization of P(D) is available. Hence, approximating the optimal ZX
in the general formulation GIB seems impossible without making additional assumptions.

Here, we rely on a widely accepted local-dependence assumption for graph-structured data: Given
the data related to the neighbors within a certain number of hops of a node v, the data in the rest
of the graph will be independent of v. We use this assumption to constrain the space Ω of optimal
representations, which leads to a more tractable GIB principle. That is, we assume that the optimal
representation follows the Markovian dependence shown in Fig. 2. Specifically, P(ZX |D) iterates
node representations to hierarchically model the correlation. In each iteration l, the local-dependence
assumption is used: The representation of each node will be refined by incorporating its neighbors
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w.r.t a graph structure Z(l)
A . Here, {Z(l)

A }1≤l≤L is obtained by locally adjusting the original graph
structureA and essentially controlling the information flow fromA. Finally, we will make predictions
based on Z(L)

X . Based on this formulation, the objective reduces to the following optimization:

min
P(Z

(L)
X |D)∈Ω

GIBβ(D, Y ;Z
(L)
X ) ,

[
−I(Y ;Z

(L)
X ) + βI(D;Z

(L)
X )

]
(1)

where Ω characterizes the space of the conditional distribution of Z(L)
X given the data D by following

the probabilistic dependence shown in Fig. 2. In this formulation, we just need to optimize two series
of distributions P(Z

(l)
X |Z

(l−1)
X , Z

(l)
A ) and P(Z

(l)
A |Z

(l−1)
X , A), l ∈ [L], which have local dependence

between nodes and thus are much easier to be parameterized and optimized.

Variational Bounds. Even using the reduced GIB principle and some proper parameterization
of P(Z

(l)
X |Z

(l−1)
X , Z

(l)
A ) and P(Z

(l)
A |Z

(l−1)
X , A), l ∈ [L], exact computation of I(Y ;Z

(L)
X ) and

I(D;Z
(L)
X ) is still intractable. Hence, we need to introduce variational bounds on these two terms,

which leads to the final objective to optimize. Note that variational methods are frequently used in
model optimization under the traditional IB principle [21]. However, we should be careful to derive
these bounds as the data points now are correlated. We introduce a lower bound of I(Y ;Z

(L)
X ), which

is reproduced from [22, 23], and an upper bound of I(D;Z
(L)
X ), as shown in Propositions 3.1 and 3.2.

Proposition 3.1 (The lower bound of I(Y ;Z
(L)
X )). For any distributions Q1(Yv|Z(L)

X,v) for v ∈ V
and Q2(Y ), we have

I(Y ;Z
(L)
X ) ≥ 1 + E

[
log

∏
v∈V Q1(Yv|Z(L)

X,v)

Q2(Y )

]
+ EP(Y )P(Z

(L)
X )

[∏
v∈V Q1(Yv|Z(L)

X,v)

Q2(Y )

]
(2)

Proposition 3.2 (The upper bound of I(D;Z
(L)
X )). We choose two groups of indices SX , SA ⊂ [L]

such that D ⊥ Z
(L)
X |{Z

(l)
X }l∈SX

∪ {Z(l)
A }l∈SA

based on the Markovian dependence in Fig. 2, and
then for any distributions Q(Z

(l)
X ), l ∈ SX , and Q(Z

(l)
A ), l ∈ SA,

I(D;Z
(L)
X ) ≤ I(D; {Z(l)

X }l∈SX
∪ {Z(l)

A }l∈SA
) ≤

∑
l∈SA

AIB(l) +
∑
l∈SX

XIB(l),where (3)

AIB(l) = E

[
log

P(Z
(l)
A |A,Z

(l−1)
X )

Q(Z
(l)
A )

]
,XIB(l) = E

[
log

P(Z
(l)
X |Z

(l−1)
X , Z

(l)
A )

Q(Z
(l)
X )

]
, (4)

The proofs are given in Appendix B and C. Proposition 3.2 indicates that we need to select a group of
random variables with index sets SX and SA to guarantee the conditional independence between D
and Z(L)

X . Note that SX and SA that satisfy this condition have the following properties: (1) SX 6= ∅,
and (2) suppose the greatest index in SX is l and then SA should contain all integers in [l + 1, L].

To use GIB, we need to model P(Z
(l)
A |Z

(l−1)
X , A) and P(Z

(l)
X |Z

(l−1)
X , Z

(l)
A ). Then, we choose some

variational distributions Q(Z
(l)
X ) and Q(Z

(l)
A ) to estimate the corresponding AIB(l) and XIB(l) for

regularization, and some Q1(Yv|Z(L)
X,v) and Q2(Y ) to specify the lower bound in Eq. (2). Then, plug-

ging Eq. (2) and Eq. (3) into the GIB principle (Eq. (1)), one obtains an upper bound on the objective
to optimize. Note that any model that parameterizes P(Z

(l)
A |Z

(l−1)
X , A) and P(Z

(l)
X |Z

(l−1)
X , Z

(l)
A ) can

use GIB as the objective in training. In the next subsection, we will introduce two instantiations of
GIB, which is inspired by GAT [5].

3.2 Instantiating the GIB Principle

The GIB principle can be applied to many GNN models. As an example, we apply it to the Graph
Attention Network model [5] and present GIB-Cat and GIB-Bern. Algorithm 1 illustrates the base
framework of both models with different neighbor sampling methods shown in Algorithm 2 and 3. In
each layer, GIB-Cat and GIB-Bern need to first refine the graph structure using the attention weights
to obtain Z(l)

A (Step 3) and then refines node representations Z(l)
X by propagating Z(l−1)

X over Z(l)
A
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(Steps 4-7). Concretely, we design two algorithms for neighbor sampling, which respectively use
the categorical distribution and the Bernoulli distribution. For the categorical version, we view the
attention weights as the parameters of categorical distributions to sample the refined graph structure
to extract structural information. We sample k neighbors with replacement from the pool of nodes
Vvt for each node v, where Vvt includes the nodes whose shortest-path-distance to v over A is t. We
use T as an upper limitation of t to encode the local-dependence assumption of the GIB principle,
which also benefits the scalability of the model. For the Bernoulli version, we model each pair of
node v and its neighbors independently with a Bernoulli distribution parameterized by the attention
weights. Note that here we did not normalize it with the softmax function as in the categorical version,
however, we use the sigmoid function to squash it between 0 and 1. Here we do not need to specify
the number of neighbors one node sample (k in the categorical version). Step 4 is sum-pooling of the
neighbors, and the output will be used to compute the parameters for a Gaussian distribution where
the refined node representations will be sampled. Note that we may also use a mechanism similar to
multi-head attention [5]: We split Z̃(l−1)

X into different channels w.r.t. its last dimension, perform
Steps 2-7 independently for each channel and then concatenate the output of different channels to
obtain new Z

(l)
X . Moreover, when training the model, we adopt reparameterization trick for Steps

3 and 7: Step 3 uses Gumbel-softmax [24, 25] while Step 7 uses Ẑ(l)
X,v = µ

(l)
v + σ

(l)
v � z where

z ∼ Gaussian(0, I), z ∈ R1×f ′ and � is element-wise product.

Algorithm 1: Framework of GIB-Cat and GIB-Bern
Input: The dataset D = (X,A);
T : An integral limitation to impose local dependence;
k: The number of neighbors to be sampled.
τ : An element-wise nonlinear rectifier.
Initialize: Z(0)

X ← X; For all v ∈ V, t ∈ [T ],
construct sets Vvt ← {u ∈ V |d(u, v) = t};
Weights: a ∈ RT ×4f ′ , W (1) ∈ Rf×2f ′ ,
W (l) ∈ Rf ′×2f ′ , for l ∈ [2, L], Wout ∈ Rf ′×K .
Output: Z(L)

X , Ŷv = softmax(Z
(L)
X,vWout)

1. For layers l = 1, ..., L and For v ∈ V , do:
2. Z̃

(l−1)
X,v ← τ(Z

(l−1)
X,v )W (l)

3. Z
(l)
A,v ← NeighborSample(Zl−1

X , T , Vvt, a)

4. Z̄
(l)
X,v ←

∑
u∈Z(l)

A,v

Z̃
(l−1)
X,v

5. µ
(l)
v ← Z̄

(l)
X,v[0 : f ′]

6. σ
2(l)
v ← softplus(Z̄(l)

X,v[f
′ : 2f ′])

7. Z
(l)
X,v ∼ Gaussian(µ

(l)
v , σ

2(l)
v )

Properties. Different from traditional
GNNs, GIB-Cat and GIB-Bern depend
loosely on the graph structure since A is
only used to decide the potential neigh-
bors for each node, and we perform mes-
sage passing based on ZA. This prop-
erty renders our models extremely ro-
bust to structural perturbations/attacks
where traditional GNNs are sensitive
[15, 16]. Both our models also keep ro-
bustness to the feature perturbation that
is similar to other IB-based DNN mod-
els [21, 26]. Moreover, the proposed
models are invariant to node permuta-
tions as we may show that for any per-
mutation matrix Π ∈ Rn×n, with per-
muting A → AΠ = ΠAΠT , X →
XΠ = ΠX , the obtained new node rep-
resentations Z(L)

X,Π and ΠZ
(L)
X share the

same distribution (proof in Appendix E).
Permutation invariance is known to be
important for structural representation learning [13].

Algorithm 2: NeighborSample (categorical)
Input: ZlX , T , Vvt, a, as defined in Alg. 1;
Output: Z(l+1)

A,v

1.For t ∈ [T ], do:
2. φ

(l)
vt ← softmax({(Z̃(l−1)

X,v ⊕ Z̃
(l−1)
X,u )aT }u∈Vvt

)

3. Z(l+1)
A,v ← ∪Tt=1{u ∈ Vvt|u

iid∼ Cat(φ(l)
vt ), k times}

Algorithm 3: NeighborSample (Bernoulli)
Input: ZlX , T , Vvt, a, as defined in Alg. 1;
Output: Z(l+1)

A,v

1.For t ∈ [T ], do:
2. φ

(l)
vt ← sigmoid({(Z̃(l−1)

X,v ⊕ Z̃
(l−1)
X,u )aT }u∈Vvt

)

3. Z(l+1)
A,v ← ∪Tt=1{u ∈ Vvt|u

iid∼ Bernoulli(φ(l)
vt )}

Objective for training. To optimize the parameters of the model, we need to specify the bounds
for I(D;Z

(L)
X ) as in Eq. (3) and I(Y ;Z

(L)
X ) as in Eq. (2), and further compute the bound of the

GIB objective in Eq. (1). To characterize AIB(l) in Eq. (3), we assume Q(Z
(l)
A ) is a non-informative

distribution [24, 25]. Specifically, we use the uniform distribution for the categorical version: ZA ∼
Q(ZA), ZA,v = ∪Tt=1{u ∈ Vvt|u

iid∼ Cat( 1
|Vvt| )} and ZA,v ⊥ ZA,u if v 6= u; and we also adopt a

non-informative prior for the Bernoulli version: ZA,v = ∪Tt=1{u ∈ Vvt|u
iid∼ Bernoulli(α)}, where

α ∈ (0, 1) is a hyperparameter. The difference is that, unlike the categorical distribution, we have an
additional degree of freedom provided by α. After the model computes φ(l)

vt according to Step 4, we

5



get an empirical estimation of AIB(l):

ÂIB
(l)

= EP(Z
(l)
A |A,Z

(l−1)
X )

[
log

P(Z
(l)
A |A,Z

(l−1)
X )

Q(Z
(l)
A )

]
,

which is instantiated as follows for the two versions,

ÂIBC
(l)

=
∑

v∈V,t∈[T ]

KL(Cat(φ(l)
vt )||Cat(

1

|Vvt|
))

ÂIBB
(l)

=
∑

v∈V,t∈[T ]

KL(Bernoulli(φ(l)
vt )||Bernoulli(α))

To estimate XIB(l), we set Q(Z
(l)
X ) as a mixture of Gaussians with learnable parameters [27].

Specifically, for any node v, ZX ∼ Q(ZX), we set ZX,v ∼
∑m
i=1 wiGaussian(µ0,i, σ

2
0,i) where

wi, µ0,i, σ0,i are learnable parameters shared by all nodes and ZX,v ⊥ ZX,u if v 6= u. We estimate
XIB(l) by using the sampled Z(l)

X :

X̂IB
(l)

= log
P(Z

(l)
X |Z

(l−1)
X , Z

(l)
A )

Q(Z
(l)
X )

=
∑
v∈V

[
log Φ(Z

(l)
X,v;µv, σ

2
v)− log(

m∑
i=1

wiΦ(Z
(l)
X,v;µ0,i, σ

2
0,i))

]
.

Therefore, in practice, we may select proper sets of indices SX , SA that satisfy the condition in
Proposition 3.2 and use substitution

I(D;Z
(L)
X )→

∑
l∈SA

ÂIB
(l)

+
∑
l∈SX

X̂IB
(l)

(5)

To characterize Eq. (2), we may simply set Q2(Y ) = P(Y ) and Q1(Yv|Z(L)
X,v) = Cat(Z(L)

X,vWout).
Then, the RHS of Eq. (2) reduces to the cross-entropy loss by ignoring constants, i.e.,

I(Y ;Z
(L)
X )→ −

∑
v∈V

Cross-Entropy(Z
(L)
X,vWout;Yv) (6)

Other choices of Q2(Y ) may also be adopted and yield the contrastive loss [22, 28] (Appendix D).
However, in our case, we use the simplest setting to illustrate the benefit of the GIB principle.
Plugging Eq. (5) and Eq. (6) into Eq. (1), we obtain the objective to train our models.

Other Formalizations of the GIB Principle. There are also other alternative formalizations of the
GIB principle, especially when modeling P(Z

(l)
A |Z

(l−1)
X , A). Generally speaking, any node-pair

representations, such as messages over edges in MPNN [29], can be leveraged to sample structures.
Applying the GIB principle to other architectures is a promising direction for future investigation.

4 Related Work

GNNs learn node-level representations through message passing and aggregation from neighbors
[1, 3, 29–31]. Several previous works further incorporate the attention mechanism to adaptively learn
the correlation between a node and its neighbor [5, 32]. Recent literature shows that representations
learned by GNNs are far from robust and can be easily attacked by malicious manipulation on
either features or structure [15, 16]. Accordingly, several defense models are proposed to increase
the robustness by injecting random noise in the representations [33], removing suspicious and
uninformative edges [34], low-rank approximation of the adjacency matrix [35], additional hinge loss
for certified robustness [36]. In contrast, even though not specifically designed against adversarial
attacks, our model learns robust representations via the GIB principle that naturally defend against
attacks. Moreover, none of those defense models has theoretical foundations except [36] that uses
tools of robust optimization instead of information theory.

Recently several works have applied contrastive loss [28] as a regularizer for GNNs. The idea
is to increase the score for positive samples while decrease the score for negative samples. This
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can be further formulated as a mutual information maximization term that aims to maximize the
mutual information between representations of nodes and their neighbor patches [37], between
representations of sub-structures and the hidden feature vectors [38], between representations of
graphs and their sub-structures [39]. In contrast, our model focuses on the compression of node
features and graph structure while at the same time improves prediction, which is orthogonal to these
previous works on unsupervised representation learning with information maximization.

Another line of related work is representation learning with the IB principle. DVIB [21] first applies
IB [18] to deep neural networks, and shows increased robustness of learned representations. Other
methods apply IB to various domains [40,41]. The difference is that we develop information-theoretic
modeling of feature, structure and their fusion on graph-structured data. Furthermore, several works
on GNNs [37–39] leverage information maximization [42] for unsupervised learning. However, we
focus on learning robust representations by controlling the information in supervised learning setting.

5 Experiments

The goal of our experiments is to test whether GNNs trained with the GIB objective are more
robust and reliable. Specifically, we consider the following two questions: (1) Boosted by GIB,
does GIB-Cat and GIB-Bern learn more robust representations than GAT to defend against attacks?
(2) How does each component of GIB contribute to such robustness, especially, to controlling the
information from one of the two sides — the structure and node features?

We compare GIB-Cat and GIB-Bern with baselines including GCN [3] and GAT [5], the most
relevant baseline as GIB-Cat and GIB-Bern are to impose the GIB principle over GAT. In addition,
we consider two state-of-the-art graph defense models specifically designed against adversarial
attacks: GCNJaccard [34] that pre-processes the graph by deleting the edges between nodes with low
feature similarity, and Robust GCN (RGCN) [33] that uses Gaussian reparameterization for node
features and variance-based attention. Note that RGCN essentially includes the term XIB (Eq. (3)) to
control the information of node features while it does not have the term AIB (Eq. (3)) to control the
structural information. For GCNJaccard and RGCN, we perform extensive hyperparameter search as
detailed in Appendix G.3. For GIB-Cat and GIB-Bern, we keep the same architectural component as
GAT, and for the additional hyperparameters k and T (Algorithm 1, 2 and 3), we search k ∈ {2, 3}
and T ∈ {1, 2} for each experimental setting and report the better performance. Please see Appendix
G for more details.

We use three citation benchmark datasets: Cora, Pubmed and Citeseer [43], in our evaluation. In
all experiments, we follow the standard transductive node classification setting and standard train-
validation-test split as GAT [5]. The summary statistics of the datasets and their splitting are shown in
Table 4 in Appendix F. For all experiments, we perform the experiments over 5 random initializations
and report average performance. We always use F1-micro as the validating metric to train our model.

5.1 Robustness Against Adversarial Attacks

In this experiment, we compare the robustness of different models against adversarial attacks. We use
Nettack [15], a strong targeted attack technique on graphs that attacks a target node by flipping the
edge or node features. We evaluate the models on both evasive and poisoning settings, i.e. the attack
happens after or before the model is trained, respectively. We follow the setting of Nettack [15]: for
each dataset, select (i) 10 nodes with highest margin of classification, i.e. they are clearly correctly
classified, (ii) 10 nodes with lowest margin but still correctly classified and (iii) 20 more nodes
randomly, where for each target node, we train a different model for evaluation. We report the
classification accuracy of these 40 targeted nodes. We enumerate the number of perturbations from 1
to 4, where each perturbation denotes a flipping of a node feature or an addition or deletion of an edge.
Since Nettack can only operate on Boolean features, we binarize the node features before training.

Table 1 shows the results. We see that compared with GAT, GIB-Cat improves the classification
accuracy by an average of 8.9% and 14.4% in Cora and Pubmed, respectively, and GIB-Bern improves
the classification accuracy by an average of 8.4% and 14.6% in Cora and Pubmed, respectively, which
demonstrates the effectiveness of the GIB principle to improve the robustness of GNNs. Remarkably,
when the number of perturbation is 1, GIB-Cat and GIB-Bern boost accuracy over GAT (as well as
other models) by 31.3% and 34.0% in Pubmed, respectively. GIB-Cat also outperforms GCNJaccard
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Table 1: Average classification accuracy (%) for the targeted nodes under direct attack. Each number
is the average accuracy for the 40 targeted nodes for 5 random initialization of the experiments. Bold
font denotes top two models.

Model Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

C
or

a

GCN 80.0±7.87 51.5±4.87 38.0±6.22 31.0±2.24 26.0±3.79 47.5±7.07 39.5±2.74 30.0±5.00 26.5±3.79

GCNJaccard 75.0±5.00 48.5±6.75 36.0±6.51 32.0±3.25 30.0±3.95 47.0±7.37 38.0±6.22 33.5±3.79 28.5±3.79

RGCN 80.0±4.67 49.5±6.47 36.0±5.18 30.5±3.25 25.5±2.09 46.5±5.75 35.5±3.70 29.0±3.79 25.5±2.73

GAT 77.8±3.97 48.0±8.73 39.5±5.70 36.5±5.48 32.5±5.30 50.5±5.70 38.0±5.97 33.5±2.85 26.0±3.79

GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95

GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

Pu
bm

ed

GCN 82.6±6.98 39.5±4.81 32.0±4.81 31.0±5.76 31.0±5.76 36.0±4.18 32.5±6.37 31.0±5.76 28.5±5.18

GCNJaccard 82.0±7.15 37.5±5.30 31.5±5.18 30.0±3.95 30.0±3.95 36.0±3.79 32.5±4.67 31.0±4.87 28.5±4.18

RGCN 79.0±5.18 39.5±5.70 33.0±4.80 31.5±4.18 30.0±5.00 38.5±4.18 31.5±2.85 29.5±3.70 27.0±3.70

GAT 78.6±6.70 41.0±8.40 33.5±4.18 30.5±4.47 31.0±4.18 39.5±3.26 31.0±4.18 30.0±3.06 25.5±5.97

GIB-Cat 85.1±6.90 72.0±3.26 51.0±5.18 37.5±5.30 31.5±4.18 71.0±4.87 48.0±3.26 37.5±1.77 28.5±2.24

GIB-Bern 86.2±6.54 76.0±3.79 50.5±4.11 37.5±3.06 31.5±1.37 72.5±4.68 48.0±2.74 36.0±2.85 26.5±2.85

C
ite

se
er

GCN 71.8±6.94 42.5±7.07 27.5±6.37 18.0±3.26 15.0±2.50 29.0±7.20 20.5±1.12 17.5±1.77 13.0±2.09

GCNJaccard 72.5±9.35 41.0±6.75 32.5±3.95 20.5±3.70 13.0±1.11 42.5±5.86 30.5±5.12 17.5±1.76 14.0±1.36

RGCN 73.5±8.40 41.5±7.42 24.5±6.47 18.5±6.52 13.0±1.11 31.0±5.48 19.5±2.09 13.5±2.85 5.00±1.77

GAT 72.3±8.38 49.0±9.12 33.0±5.97 22.0±4.81 18.0±3.26 38.0±5.12 23.5±4.87 16.5±4.54 12.0±2.09

GIB-Cat 68.6±4.90 51.0±4.54 39.0±4.18 32.0±4.81 26.5±4.54 30.0±9.19 14.0±5.76 9.50±3.26 6.50±2.24

GIB-Bern 71.8±5.03 49.0±7.42 37.5±7.71 32.5±4.68 23.5±7.42 35.0±6.37 19.5±4.81 11.5±3.79 6.00±2.85

Table 2: Average classification accuracy (%) for the ablations of GIB-Cat and GIB-Bern on Cora
dataset.

Model Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

XIB 76.3±2.90 57.0±5.42 47.5±7.50 39.5±6.94 33.0±3.71 54.5±2.09 41.0±3.79 36.0±5.18 31.0±4.54

AIB-Cat 78.7±4.95 62.5±5.86 51.5±5.18 43.0±3.26 36.0±3.35 60.5±3.26 47.5±5.00 36.0±3.35 31.5±6.27

AIB-Bern 79.9±3.78 64.0±4.50 51.5±6.50 42.0±5.40 37.0±5.70 58.5±3.80 46.0±4.50 39.0±4.20 30.0±3.10

GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95

GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

and RGCN by an average of 10.3% and 12.3% on Cora (For GIB-Bern, it is 9.8% and 11.7%), and
by an average of 15.0% and 14.6% on Pubmed (For GIB-Bern, it is 15.2% and 14.8%), although
GIB-Cat and GIB-Bern are not intentionally designed to defend attacks. For Citeseer, GIB-Cat
and GIB-Bern’s performance are worse than GCNJaccard in the poisoning setting. This is because
Citeseer has much more nodes with very few degrees, even fewer than the number of specified
perturbations, as shown in Table 13 in Appendix J. In this case, the most effective attack is to connect
the target node to a node from a different class with very different features, which exactly matches
the assumption used by GCNJaccard [34]. GCNJaccard proceeds to delete edges with dissimilar
node features, resulting in the best performance in Citeseer. However, GIB does not depend on such
a restrictive assumption. More detailed analysis is at Appendix J.

Ablation study. To see how different components of GIB contribute to the performance, we perform
ablation study on Cora, as shown in Table 2. Here, we use AIB-Cat and AIB-Bern to denote the
models that only sample structures with ÂIB (Eq. (5)) in the objective (whose NeighborSample()
function is identical to that of GIB-Cat and GIB-Bern, respectively), and use XIB to denote the model
that only samples node representations with X̂IB (Eq. (5)) in the objective. We see that the AIB
(structure) contributes significantly to the improvement of GIB-Cat and GIB-Bern, and on average,
AIB-Cat (AIB-Bern) only underperforms GIB-Cat (GIB-Bern) by 0.9% (0.4%). The performance
gain is due to the attacking style of Nettack, as the most effective attack is typically via structural
perturbation [15], as is also confirmed in Appendix J. Therefore, next we further investigate the case
that only perturbation on node features is available.

5.2 Only Feature Attacks

To further check the effectiveness of IB for node features, we inject random perturbation into the
node features. Specifically, after the models are trained, we add independent Gaussian noise to each
dimension of the node features for all nodes with increasing amplitude. Specifically, we use the
mean of the maximum value of each node’s feature as the reference amplitude r, and for each feature
dimension of each node we add Gaussian noise λ · r · ε, where ε ∼ N(0, 1), and λ is the feature
noise ratio. We test the models’ performance with λ ∈ {0.5, 1, 1.5}. Table 3 shows the results. We
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Table 3: Classification F1-micro (%) for the trained models with increasing additive feature noise.
Bold font denotes top 2 models.

Dataset Model Feature noise ratio (λ)
0.5 1 1.5

Cora

GCN 64.0±2.05 41.3±2.05 31.4±2.81

GCNJaccard 61.1±2.18 41.2±2.28 31.8±2.63

RGCN 57.7±2.27 39.1±1.58 29.6±2.47

GAT 62.5±1.97 41.7±2.32 29.8±2.98

AIB-Cat 67.9±2.65 49.6±5.35 38.4±5.06

AIB-Bern 68.8±1.85 49.0±2.87 37.1±4.47

GIB-Cat 67.1±2.21 49.1±3.67 37.5±4.76

GIB-Bern 69.0±1.91 51.3±2.62 38.9±3.38

Pubmed

GCN 61.3±1.52 50.2±2.08 44.3±1.43

GCNJaccard 62.7±1.25 51.9±1.53 45.1±2.04

RGCN 58.4±1.74 49.0±1.65 43.9±1.29

GAT 62.7±1.68 50.2±2.35 43.7±2.43

AIB-Cat 64.5±2.13 50.9±3.83 43.0±3.73

AIB-Bern 61.1±2.70 47.8±3.65 42.0±4.21

GIB-Cat 67.1±4.33 57.2±5.27 51.5±4.84

GIB-Bern 64.9±2.52 54.7±1.83 48.2±2.10

Citeseer

GCN 55.9±1.33 40.6±1.83 32.8±2.19

GCNJaccard 56.8±1.49 41.3±1.81 33.1±2.27

RGCN 51.4±2.00 36.5±2.38 29.5±2.17

GAT 55.8±1.43 40.8±1.77 33.8±1.93

AIB-Cat 55.1±1.26 43.1±2.46 35.6±3.19

AIB-Bern 55.8±2.01 43.3±1.67 36.3±2.47

GIB-Cat 54.9±1.39 42.0±1.92 34.8±1.75

GIB-Bern 54.4±5.98 50.3±4.33 46.1±2.47

see across different feature noise ratios, both GIB-Cat and GIB-Bern consistently outperforms other
models without IB, especially when the feature noise ratio is large (λ = 1.5), and the AIB models
with only structure IB performs slightly worse or equivalent to the GIB models. This shows that GIB
makes the model more robust when the feature attack becomes the main source of perturbation.

6 Conclusion and Discussion

In this work, we have introduced Graph Information Bottleneck (GIB), an information-theoretic prin-
ciple for learning representations that capture minimal sufficient information from graph-structured
data. We have also demonstrated the efficacy of GIB by evaluating the robustness of the GAT
model trained under the GIB principle on adversarial attacks. Our general framework leaves many
interesting questions for future investigation. For example, are there any other better instantiations of
GIB, especially in capturing discrete structural information? If incorporated with a node for global
aggregation, can GIB break the limitation of the local-dependence assumption? May GIB be applied
to other graph-related tasks including link prediction and graph classification?

Broader Impact

Who may benefit from this research: Graphs have been used to represent a vast amount of real-
world data from social science [44], biology [45], geographical mapping [46], finances [47] and
recommender systems [48], because of their flexibility in modeling both the relation among the data
(structures) and the content of the data (features). Graph neural networks (GNN), naturally entangle
both aspects of the data in the most expressive way, have attracted unprecedented attention from both
academia and industry across a wide range of disciplines. However, GNNs share a common issue
with other techniques based on neural networks. They are very sensitive to noise of data and are
fragile to model attacks. This drawback yields the potential safety problems to deploy GNNs in the
practical systems or use them to process data in those disciplines that heavily emphasize unbiased
analysis. The Graph Information Bottleneck (GIB) principle proposed in this work paves a principled
way to alleviate the above problem by increasing the robustness of GNN models. Our work further
releases the worries about the usage of GNN techniques in practical systems, such as recommender
systems, social media, or to analyze data for other disciplines, including physics, biology, social
science. Ultimately, our work increases the interaction between AI, machine learning techniques and
other aspects of our society, and could achieve far-reaching impact.
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Who may be put at disadvantage from this research: Not applicable.

What are the consequences of failure of the system: Not applicable.

Does the task/method leverage biases in the data: The proposed GIB principle and the GIB-GAT
model as an instantiation of GIB leverage the node features and structural information which in
general are not believed to include undesirable biases. The datasets to evaluate our approaches are
among the most widely-used benchmarks, which in general are not believed to include undesirable
biases as well.
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Appendix
A Preliminaries for Information Bottleneck

Here we briefly review the Information Bottleneck (IB) principle and its application to representation
learning.

Given the input data D and target Y , and an stochastic encoding Z of D by P(Z|D) that satisfies the
Markov chain Z −D − Y , IB has the following objective:

min
P(Z|D)

IBβ(D, Y ;Z) := [−I(Y ;Z) + βI(D;Z)] (7)

It also has an equivalent form:
max

P(Z|D):I(D;Z)≤Ic
I(Y ;Z) (8)

Intuitively, Eq. (7) or (8) encourages the representation Z to maximally capture the information in Y ,
while controlling the complexity of the representation in terms of I(D;Z). When increasing β from
0 to some large value, we are essentially using a straight line with slope β to sweep out the Pareto
frontier of I(Y ;Z) vs. I(X;Z) as given by Eq. (8).

𝒟 𝑌

minimal sufficient info.
irrelevant info.

optimal 𝑍

+ overfitting

Figure 3: Information diagram for the Information Bottleneck (IB). Also plotted are the minimal
sufficient information as covered by I(D;Y ) and overfitting part that occupies parts of H(D|Y ).

Using the information diagram (Fig. 3), where we represent the information of D, Y as circles and
their shared part as the overlapping region of the circles, then IB encourages Z to cover as much of
the I(D;Y ) as possible, and cover as little of H(D|Y ) (the irrelevant information part) as possible.
An optimal representation is defined as the minimal sufficient representation [49] that only covers
I(D;Y ). In practice, due to the expressiveness of the models and different choices of β in Eq. (7),
this optimal information can hardly be reached, and may only be approached. It is an interesting
future direction to study that when sweeping β, how near it is to the optimal representation on the
diagram of I(Y ;Z) vs. I(X;Z).

B Proof for Proposition 3.1

We restate Proposition 3.2: For any PDFs Q1(Yv|Z(L)
X,v) for v ∈ V and Q2(Y ), we have

I(Y ;Z
(L)
X ) ≥ 1 + E

[
log

∏
v∈V Q1(Yv|Z(L)

X,v)

Q2(Y )

]
+ EP(Y )P(Z

(L)
X )

[∏
v∈V Q1(Yv|Z(L)

X,v)

Q2(Y )

]
(9)

Proof. We use the Nguyen, Wainright & Jordan’s bound INWJ [22, 23]:

Lemma B.1. [22, 23] For any two random variables X1, X2 and any function g : g(X1, X2) ∈ R,
we have

I(X1, X2) ≥ E [g(X1, X2)]− EP(X1)P(X2) [exp(g(X1, X2)− 1)] .

We use the above lemma to (Y,Z
(L)
X ) and plug in g(Y,Z

(L)
X ) = 1 + log

∏
v∈V Q1(Yv|Z(L)

X,v)

Q2(Y ) .
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C Proof for Proposition 3.2

We restate Proposition 3.2: For any groups of indices SX , SA ⊂ [L] such that D ⊥
Z

(L)
X |{Z

(l)
X }l∈SX

∪{Z(l)
A }l∈SA

, and for any probabilistic distributions Q(Z
(l)
X ), l ∈ SX , and Q(Z

(l)
A ),

l ∈ SA,

I(D;Z
(L)
X ) ≤ I(D; {Z(l)

X }l∈SX
∪ {Z(l)

A }l∈SA
) ≤

∑
l∈SX

XIB(l) +
∑
l∈SA

AIB(l),where (10)

AIB(l) = E

[
log

P(Z
(l)
A |A,Z

(l−1)
X )

Q(Z
(l)
A )

]
,XIB(l) = E

[
log

P(Z
(l)
X |Z

(l−1)
X , Z

(l)
A )

Q(Z
(l)
X )

]
, (11)

Proof. The first inequality I(D;Z
(L)
X ) ≤ I(D; {Z(l)

X }l∈SX
∪ {Z(l)

A }l∈SA
) directly results from the

data processing inequality [17] and the Markov property D ⊥ Z(L)
X |{Z

(l)
X }l∈SX

∪ {Z(l)
A }l∈SA

.

To prove the second inequality, we define an order “≺” of random variables in {Z(l)
X }l∈SX

∪
{Z(l)

A }l∈SA
such that 1) for two different integers l, l′, Z(l)

X , Z
(l)
A ≺ Z

(l′)
X , Z

(l′)
A ; 2) For one integer l,

Z
(l)
A ≺ Z

(l)
X . Based on the order, define a sequence of sets

H
(l)
A = {Z(l1)

X , Z
(l2)
A |l1 < l, l2 < l, l1 ∈ SX , l2 ∈ SA},

H
(l)
X = {Z(l1)

X , Z
(l2)
A |l1 < l, l2 ≤ l, l1 ∈ SX , l2 ∈ SA}.

We may decompose I(D; {Z(l)
X }l∈SX

∪ {Z(l)
A }l∈SA

) with respect to this order

I(D; {Z(l)
X }l∈SX

∪ {Z(l)
A }l∈SA

) =
∑
l∈SA

I(D;Z
(l)
A |H

(l)
A ) +

∑
l∈SX

I(D;Z
(l)
X |H

(l)
X ).

Next, we bound each term in the RHS

I(D;Z
(l)
A |H

(l)
A )

1)
≤ I(D, Z(l−1)

X ;Z
(l)
A |H

(l)
A )

2)
= I(Z

(l−1)
X , A;Z

(l)
A |H

(l)
A ) + I(X;Z

(l)
A |H

(l)
A , A, Z

(l−1)
X )

3)
= I(Z

(l−1)
X , A;Z

(l)
A |H

(l)
A ) + 0

4)
≤ I(Z

(l−1)
X , A;Z

(l)
A )

5)
= AIB(l) − KL(P(Z

(l)
A )||Q(Z

(l)
A )) ≤ AIB(l)

I(D;Z
(l)
X |H

(l)
X )

1)
≤ I(D, Z(l−1)

X , Z
(l)
A ;Z

(l)
X |H

(l)
X )

2)
= I(Z

(l−1)
X , Z

(l)
A ;Z

(l)
X |H

(l)
X ) + I(D;Z

(l)
X |H

(l)
X , Z

(l−1)
X , Z

(l)
A )

3)
= I(Z

(l−1)
X , Z

(l)
A ;Z

(l)
X |H

(l)
X ) + 0

4)
≤ I(Z

(l−1)
X , Z

(l)
A ;Z

(l)
X )

5)
= XIB(l) − KL(P(Z

(l)
X )||Q(Z

(l)
X )) ≤ XIB(l)

where 1), 2) use the basic properties of mutual information, 3) uses X ⊥ Z
(l)
A |{A,Z

(l−1)
X } and

D ⊥ Z
(l)
X |{Z

(l−1)
A , Z

(l−1)
X }, 4) uses H(l)

A ⊥ Z
(l)
A |{Z

(l−1)
X , A} and H(l)

X ⊥ Z
(l)
X |{Z

(l−1)
X , Z

(l)
A } and

5) uses the definitions of AIB(l) and XIB(l).

D The Contrastive Loss Derived from the Variational Bound Eq. (2)

To characterize Eq. (2), We may also use a contrastive loss [22, 28] which empirically may
sometimes improve the robustness of the model. Concretely, we keep Q1(Yv|Z(L)

X,v) as the
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same as that to derive Eq. (6), i.e., Q1(Yv|Z(L)
X,v) = Cat(Z(L)

X,vWout) and set Q2(Y ) =

EP(Z
(L)
X )P(Z

′(L)
X )

[
∏
v∈V

1
2 (Q1(Yv|Z(L)

X,v) + Q1(Yv|Z
′(L)
X,v ))]. Here, P(Z

′(L)
X ) refers to the distribution

of the last-layer node representation after we replace A with a random graph structure A′ ∈ Rn×n
where A′ is uniformly sampled with the constraint that A′ has the same number of edges as A. When
using this contrastive loss, we simply use the estimation of Q2(Y ) based on the sampled Z(L)

X,v and

Z
′(L)
X,v . Moreover, the last term of Eq. (2) is empirically closed to 1 and thus we ignore it and other

constants in Eq. (2). Overall, we have the substitution for the contrastive loss,

I(Y ;Z
(L)
X )→

∑
v∈V

[
log(h(Yv;Z

(L)
X,v))− log(h(Yv;Z

(L)
X,v) + h(Yv;Z

′(L)
X,v ))

]
, (12)

where h(Yv;ZX,v) =
exp(ZX,vWout[Yv ])∑K
i=1 exp(ZX,vWout[i])

.

E Permutation Invariance of GIB-Cat and GIB-Bern

Let Π ∈ Rn×n denote a permutation matrix where each row and each column contains exactly
one single 1 and the rest components are all 0’s. For any variable in GIB-Cat or GIB-Bern, we use
subscript Π to denote the corresponding obtained variable after we permutate the node indices of
the input data, i.e., D = (X,A) → Π(D) = (ΠX,ΠAΠT ). For example, Z(l)

X,Π denotes the node
representations after l layers of GIB-Cat or GIB-Bern based on the input data Π(D). Moreover, the
matrix Π also defines a bijective mapping π : V → V , where π(v) = u iff Πuv = 1. We also use
“ d=” to denote that two random variables share the same distribution.

Now, we formally restate the permutation invariant property of GIB-Cat and GIB-Bern: Suppose Π ∈
Rn×n is any permutation matrix, if the input graph-structured data becomes Π(D) = (ΠX,ΠAΠT ),
the corresponding node representations output by GIB-Cat or GIB-Bern satisfy Z(L)

X,Π
d
= ΠZ

(L)
X

where Z(L)
X is the output node representations based on the original input data D = (X,A).

Proof. We use induction to prove this result. Specifically, we only need to show that for a certain
l ∈ [L], if node representations Z(l−1)

X,Π
d
= ΠZ

(l−1)
X and A → ΠAΠT , then the refined node

representations Z(l)
X,Π

d
= ΠZ

(l)
X . To prove this statement, we go through Algorithm 1 step by step.

• Step 2 implies Z̃(l−1)
X,v,Π

d
= Z̃

(l−1)
X,π(v) because τ is element-wise operation.

• Steps 3: For both NeighborSample (categorical and Bernoulli) by Algorithm 2/3, the
substeps 1-2 imply φ(l)

vt,Π
d
= Πφ

(l)
π(v)t. Here, we useA→ ΠAΠT and thus Vvt → Vπ(v)t, and

assume that φ(l)
vt,Π, φ

(l)
π(v)t are represented as vectors in Rn×1 where their uth components,

φ
(l)
vt,Π,u, φ

(l)
π(v)t,u, are 0’s if π−1(u) /∈ Vvt. Substep 3, implies Z(l)

A,v,Π
d
= π(Z

(l)
A,π(v)) where

π(S) = {π(v)|v ∈ S} for some set S ⊆ V .

• Step 4 implies Z̄(l)
X,v,Π

d
= Z̄

(l)
X,π(v).

• Steps 5-6 imply µ(l)
v,Π

d
= µ

(l)
π(v), σ

2(l)
v,Π

d
= σ

2(l)
π(v).

• Step 7 implies Z(l)
X,v,Π

d
= Z

(l)
X,π(v).

which indicates Z(l)
X,Π

d
= ΠZ

(l)
X and concludes the proof.

F Summary of the Datasets

Table 4 summarizes statistics of the datasets (Cora, Pubmed, Citeseer [43]) we use, as well as the
standard train-validation-test split we use in the experiments.
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Table 4: Summary of the datasets and splits in our experiments.

Cora Pubmed Citeseer
# Nodes 2708 19717 3327
# Edges 5429 44338 4732
# Features/Node 1433 500 3703
# Classes 7 3 6
# Training Nodes 140 60 120
# Validation Nodes 500 500 500
# Test Nodes 1000 1000 1000

G Implementation Details for the GIB-Cat, GIB-Bern and Other Compared
Models

For all experiments and all models, the best models are selected according to the classification
accuracy on the validation set. All models are trained with a total of 2000 epochs. For all experiments,
we run it with 5 random seeds: 0, 1, 2, 3, 4 and report the average performance and standard deviation.
The models are all trained on NVIDIA GeForce RTX 2080 GPUs, together with Intel(R) Xeon(R)
Gold 6148 CPU @ 2.40GH CPUs. We use PyTorch [50] and PyTorch Geometric [51] for constructing
the GNNs and evaluation. Project website and code can be found at http://snap.stanford.edu/
gib/. In Section G.1, G.2 and G.3, we detail the hyperparameter setting for Section 5.1, and in
Section G.4 and G.5, we provide additional details for the experiments.

G.1 Implementation Details for the GIB-Cat and GIB-Bern

The architecture of GIB-Cat and GIB-Bern follows Alg. 1 (and Alg. 2 and 3 for the respective
neighbor-sampling). We follow GAT [5]’s default architecture, in which we use 8 attention heads,
nonlinear activation τ as LeakyReLU, and feature dropout rate of 0.6 between layers. We follow
GAT’s default learning rate, i.e. 0.01 for Cora and Citeseer, and 5×10−3 for Pubmed. As stated in the
main text, the training objective is Eq. (1), substituting in Eq. (5) and (6). To allow more flexibility
(in similar spirit as β-VAE [41]), we allow the coefficient before ÂIB and X̂IB to be different, and
denote them as β1 and β2. In summary, the objective is written as:

L =
∑
v∈V

Cross-Entropy(Z
(L)
X,vWout;Yv) + β1

∑
l∈SA

ÂIB
(l)

+ β2

∑
l∈SX

X̂IB
(l)

(13)

In this work, we set the index set SA = [L] = {1, 2, ...L} and SX = {L − 1}, which satisfies
Proposition 3.2. For X̂IB, we use mixture of Gaussians as the variational marginal distribution
Q(ZX). For the mixture of Gaussians, we use m = 100 components with learnable weights, where
each component is a diagonal Gaussian with learnable mean and standard deviation. This flexible
variational marginal allows it to flexibly approximate the true marginal distribution P(ZX). For the
reparameterization in ÂIB, we use Gumbel-softmax [24, 25] with temperature τ . For GIB-Cat, the
number of neighbors k to be sampled is a hyperparameter. For GIB-Bern, we use Bernoulli(α) as
the non-informative prior, where we fix α = 0.5. To facilitate learning at the beginning, for the first
25% of the epochs we do not impose ÂIB or X̂IB, and gradually anneal up both β1 and β2 during the
25% - 50% epochs of training, and keep them both at their final value afterwards. For the experiment
in Section 5.1 and section 5.2, we perform hyperparameter search of β1 ∈ {0.1, 0.01, 0.001},
β2 ∈ {0.01, 0.1}, T ∈ {1, 2}, τ ∈ {0.05, 0.1, 1}, k ∈ {2, 3} for each dataset, and report the one
with higher validation F1-micro. A summary of the hyperparameter scope is in Table 5. In Table 6
and 7, we provide the hyperparameters that produce the results in Section 5.1, and in Table 8, we
provide hyperparameters that produce the results in Section 5.2.
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Table 5: Hyperparameter scope for Section 5.1 and 5.2 for GIB-Cat and GIB-Bern.
Hyperparameters Value/Search space Type
SA [L] Fixed∗
SX {L− 1} Fixed
Number m of mixture components for Q(ZX) 100 Fixed
β1 {0.1, 0.01, 0.001} Choice†
β2 {0.1, 0.01} Choice
τ {0.05,0.1,1} Choice
k {2, 3} Choice
T {1, 2} Choice
∗Fixed: a constant value
†Choice: choose from a set of discrete values

Table 6: Hyperparameter for adversarial attack experiment for GIB-Cat and GIB-Bern.
Dataset Model β1 β2 τ k T
Cora GIB-Cat 0.001 0.01 1 3 2

GIB-Bern 0.001 0.01 0.1 - 2

Pubmed GIB-Cat 0.001 0.01 1 3 2
GIB-Bern 0.001 0.01 0.1 - 2

Citeseer GIB-Cat 0.001 0.01 0.1 2 2
GIB-Bern 0.001 0.01 0.05 - 2

Table 7: Hyperparameter for adversarial attack experiment for the ablations of GIB-Cat and
GIB-Bern.

Model β1 β2 τ k T
AIB-Cat - 0.01 1 3 2
AIB-Bern - 0.01 0.1 - 2
XIB 0.001 - - - 2

Table 8: Hyperparameter for feature attack experiment (Section 5.2) for GIB-Cat and GIB-Bern.
Dataset Model β1 β2 τ k T
Cora GIB-Cat 0.01 0.01 0.1 2 2

AIB-Cat - 0.01 0.1 2 2
GIB-Bern 0.001 0.01 0.05 - 2
AIB-Bern - 0.01 0.05 - 2

Pubmed GIB-Cat 0.001 0.01 1 3 2
AIB-Cat - 0.01 1 3 2
GIB-Bern 0.01 0.01 0.05 - 1
AIB-Bern - 0.01 0.05 - 1

Citeseer GIB-Cat 0.001 0.01 0.1 2 2
AIB-Cat - 0.01 0.1 2 2
GIB-Bern 0.1 0.01 0.05 - 2
AIB-Bern - 0.01 0.05 - 2

G.2 Implementation Details for GCN and GAT

We follow the default setting of GCN [3] and GAT [5], as implemented in https://github.com/
rusty1s/pytorch_geometric/blob/master/examples/gcn.py and https://github.com/
rusty1s/pytorch_geometric/blob/master/examples/gat.py, respectively. Importantly, we
keep the dropout on the attention weights as the original GAT. Whenever possible, we keep the same
architecture choice between GAT and GIB-Cat (and GIB-Bern) as detailed in Section G.1, for a fair
comparison.
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G.3 Implementation Details for RGCN and GCNJaccard

We used the implementation in this repository: https://github.com/DSE-MSU/DeepRobust. We
perform hyperparameter tuning for both baselines for the adversarial attack experiment in Section
5.1. We first tune the latent dimension, learning rate, weight decay for both models. Specifically,
we search within {16, 32, 64, 128} for latent dimension, {10−3, 10−2, 10−1} for learning rate, and
{10−4, 5× 10−4, 10−3} for weight decay. For GCNJaccard, we additionally fine-tune the threshold
hyperparameter which is used to decide whether two neighbor nodes are still connected. We search
threshold within {0.01, 0.03, 0.05}. For RGCN, we additionally fine-tune the β1 within {10−4,
5× 10−4, 10−3} and γ within {0.1, 0.3, 0.5, 0.9}. Please find the best set of hyperparameters for
both models in Table 9, 10 and 11.

Table 9: Hyperparameter of baselines used on Citeseer dataset.
RGCN GCNJaccard

latent dim 64 16
learning rate 10−2 10−2

weight dacay 5× 10−4 5× 10−4

threshold - 5× 10−2

β1 5× 10−4 -
γ 0.3 -

Table 10: Hyperparameter of baselines used on Cora dataset.
RGCN GCNJaccard

latent dim 64 16
learning rate 10−2 10−2

weight dacay 5× 10−4 5× 10−4

threshold - 5× 10−2

β1 5× 10−4 -
γ 0.3 -

Table 11: Hyperparameter of baselines used on Pubmed dataset.
RGCN GCNJaccard

latent dim 16 16
learning rate 10−2 10−2

weight dacay 5× 10−4 5× 10−4

threshold - 5× 10−2

β1 5× 10−4 -
γ 0.1 -

G.4 Additional Details for Adversarial Attack Experiment

We use the implementation of Nettack [15] in the repository https://github.com/DSE-MSU/
DeepRobust with default settings. As stated in the main text, for each dataset we select 40 nodes
in the test set to attack with 10 having the highest margin of classification, 10 having the lowest
margin of classification (but still correctly classified), and 20 random nodes. For each target node, we
independently train a different model and evaluate its performance on the target node in both evasive
and poisoning setting. Different from [15] that only keeps the largest connected component of the
graph and uses random split, to keep consistent settings across experiments, we still use the full graph
and standard split, which makes the defense even harder than that in [15]. For each dataset and each
number of perturbations (1, 2, 3, 4), we repeat the above experiment 5 times with random seeds 0,
1, 2, 3, 4, and report the average accuracy on the targeted nodes (therefore, each cell in Table 1 is
the mean and std. of the performance of 200 model instances (5 seeds × 40 targeted nodes, each
training one model instance). Across the 5 runs of the experiment, the 20 nodes with highest and
lowest margin of classification are kept the same, and the 20 random nodes are sampled randomly
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Table 12: Average classification accuracy (%) for the targeted nodes under direct attack for Cora.
Each number is the average accuracy for the 40 targeted nodes for 5 random initialization of the
experiments. Bold font denotes top two models.

Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

DGI 83.2±4.82 54.5±4.81 41.5±2.24 35.5±5.42 31.0±3.79 53.5±7.42 38.5±4.18 33.0±5.42 29.0±3.79

GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95

GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

and then fixed. We also make sure that for the same seed, different models are evaluated against the
same 40 target nodes, to eliminate fluctuation between models due to random sampling.

G.5 Additional Details for Feature Attack Experiment

As before, for each model to compare, we train 5 instances with seeds 0, 1, 2, 3, 4. After training, for
each seed and each specified feature noise ratio λ, we perform 5 random node feature attacks, by
adding independent Gaussian noise λ · r · ε to each dimension of the node feature, where r is the
mean of the maximum value of each node’s feature, and ε ∼ N(0, 1). Therefore, each number in
Table 3 is the mean and std. of 25 instances (5 seeds × 5 attacks per seed).

H Run time for GIB-Cat and GIB-Bern

The run time of GIB-Cat and GIB-Bern is comparable to GAT with the same underlying architecture.
For example, with 2 layers, GIB-Cat (and similarly GIB-Bern) takes 79s to train 2000 epochs on a
NVIDIA GeForce RTX 2080 GPU, while GAT takes 78s to train on the same device. The similar
run time is due to that they have similar number of parameters and complexity. Compared to GAT,
GIB-Cat and GIB-Bern introduce minimal more parameters. In this work, on the structural side, we
use the attention weights of GAT as parameters to encode structural representation, which keeps
the same number of parameters as GAT. On the feature side, we set SX = {L − 1}, which only
requires to predict the diagonal variance of the Gaussian in addition to the mean, which introduce
small number of parameters. Therefore, in total, GIB-Cat and GIB-Bern have similar complexity
and run time as GAT. We expect that when GIB is applied to other GNNs, the augmented model has
similar complexity and run time.

I Additional experiments for Deep Graph Infomax (DGI)

Here we perform additional experiment for adversarial attacks on Cora using Nettack. The result is in
Table 12. We see that both GIB-Cat and GIB-Bern outperform DGI by a large margin.

J More Detailed Analysis of Adversarial Attack in Section 5.1

Table 13 summarizes the statistics of the target nodes and the adversarial perturbations by Nettack,
for Cora, Pubmed and Citeseer.

Table 13: Statistics of the target nodes and adversarial perturbations by Nettack in Section 5.1.
Cora Pubmed Citeseer

Fraction of degree 1 in target nodes 0.215 0.425 0.500
Fraction of degree ≤ 2 in target nodes 0.345 0.565 0.710
Fraction of degree ≤ 3 in target nodes 0.455 0.630 0.755
Fraction of degree ≤ 4 in target nodes 0.540 0.640 0.810
Fraction of structural attacks 1.000 1.000 0.991
Fraction of added-edge attack in structural attacks 0.890 0.834 0.909
Fraction of different classes in added-edge attacks 1.000 0.993 0.985

We have the following observations:
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• Compared to Cora and Pubmed, Citeseer has much more nodes with degrees less than 1, 2,
3, 4. This explains why in general the 5 models has worse performance in Citeseer than in
Cora and Pubmed.

• Almost all attacks (≥ 99.1%) are structural attacks.
• Within structural attacks, most of them (≥ 83.4%) are via adding edges, with Citeseer

having the largest fraction.
• For the added edges, almost all of them (≥ 98.5%) have different classes for the end nodes.

From the above summary, we see that the target nodes in Citeseer dataset in general have fewest
degrees, which are most prone to added-edge structural attacks by connecting nodes with different
classes. This exactly satisfies the assumption of GCNJaccard [34]. GCNJaccard proceeds by deleting
edges with low feature similarity, so those added edges are not likely to enter into the model training
during poisoning attacks. This is probably the reason why in Nettack poisoning mode in Citeseer,
GCNJaccard has the best performance.
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