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Abstract Looking to nature, animals frequently utilize tails to work alongside or in place of
their legs to maneuver, stabilize, and/or propel to achieve highly agile motions. Although the
single-link robotic tail shows its dynamical superiority and practical effectiveness in mobile
platform maneuvering, most tails observed in nature have multi-link structures. Therefore,
to investigate this novel tail structure, bio-inspired and biomimetic multi-link robotic tails
were proposed and implemented. However, due to the lack of a whole-body dynamic model,
previous research focused on investigating the tail subsystem independently without consid-
ering the mobile platform’s motions, which introduces deficiencies on both analysis and
control. To bridge this theoretical gap, this paper presents a unified dynamics model that
incorporates both the quadruped and the tail subsystems as a complete coupled dynamic
system. Classical multibody dynamics formulation based on the principle of virtual work is
utilized to derive the dynamic model. Based on the new whole-body dynamic model, three
typical tail structures, including a single-link pendulum tail, a multi-link rigid tail, and a
multi-link flexible tail are evaluated. The results indicate that by using a center of mass-
based benchmark, the multi-link tail structure is dynamically equivalent to the single-link
tail structure for bending motion. However, for rolling motions, the multi-link structure il-
lustrates noticeable dynamical benefits compared to a single-link structure due to its higher
inertia. In addition, a multi-link flexible structure shows significant oscillations and uncon-
trollable dynamic behaviors due to its under-actuation feature, which may limit its usage for
highly dynamic applications.
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1 Introduction

The animal kingdom has always been an important source for engineering inspiration and
innovation. For instance, inspired by animal tail [10], robotic tails [1–3, 6, 9, 11–13, 16,
18, 23, 27, 36, 37] are used to maneuver or stabilize a mobile platform. However, if we
take a closer look at existing research and natural counterparts, it could be easily found that
these robotic tails all have a single-link structure while the animal tails usually have multi-
link structures. The reasons as to why animals require multi-link tails are believed to be
due to their unique benefit of being versatile and dexterous, i.e., multi-link tails satisfy both
the static (support and manipulation) and the dynamic (maneuvering and stabilization) re-
quirements simultaneously for animal locomotion. For instance, depending on the situation,
squirrel monkeys [35] may use their tails to grab on branches or to balance while walking.
Kangaroos [5, 21] and kangaroo rats [8] are both found to use their tails as an additional
support during static locomotion while using their tails to maneuver and stabilize during
dynamic locomotion. Therefore, investigating animal-like multi-link robotic tails has both
engineering and biological meanings.

Several multi-link [15, 17, 26, 28, 29] and continuum (infinite links) [20, 30, 32] robotic
tails have been developed. Theoretical research [24] and experimental evaluation [15, 17,
26, 28, 29] both show that coupled multi-link structures (adjacent links that are coupled
mechanically) have the benefit of generating higher inertia loading and volumetric center of
mass (COM) workspace. Hardware in the loop experiments and simulations [25] were also
conducted to investigate the stabilization and maneuvering control of legged robot locomo-
tion by using these tails. However, previous theoretical research is either unclear (modeling
the tail subsystem and the quadruped subsystem separately [15, 17, 26, 28, 29]) or not com-
prehensive enough (evaluating planar tail [24] and pendulum tail [14] only). This leads to
two corresponding modeling issues: (1) the coupling effect between the tail subsystem and
the mobile platform is not included, and (2) the general quadruped model with spatial multi-
link tails is missing.

In addition, as the first step, previous control trails [25] focused on using decoupled
control methods to maneuver and stabilize the legged robotic platform. This approach es-
sentially treats the tail subsystem and the mobile platform (base) subsystem separately and
injects tail dynamical loading into the base dynamics through constraint forces, which re-
sults in significant control deficiencies since in practice the tail motion is affected by the
base motion. The reason for doing so is partially due to the lack of a whole-body dynamics
model.

Moreover, since the success of a robotic tail focusing on agile behaviors relies heavily
on its dynamic performance, the dynamics-based tail synthesis (e.g. optimal design) is more
preferable than a kinematics-based synthesis. Due to the coupled motion between the mobile
platform and the tail, a whole-body dynamics is required for the dynamics design. However,
considering the vast design parameters and the different tail types, the traditional multibody
dynamics software (e.g., MSC Adams) is neither effective nor efficient for this type of task.
As a result, most of the existing tails were designed either based on empirical methods
or based solely on the tail dynamics [27]. With the help of the whole system dynamics
incorporating both the mobile platform subsystem and the tail subsystem, the tail synthesis
task could be solved more reasonably and effectively.

Therefore, motivated by addressing the modeling issues and control deficiency for cur-
rent multi-link robotic tail research, this paper aims to develop and analyze a unified dy-
namic model that incorporates both the multi-link tail dynamics and the legged robot dy-
namics. This new model could be used as a platform to investigate different tail structures
and help with dynamics-based tail synthesis.
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It is worth to note that to avoid the effects of the discontinuous ground contact and focus
the research on the comparative study of the tail subsystems, the model in this paper fixes the
four feet of the quadruped to the ground, which makes the quadruped essentially become a
parallel mechanism (like a 6 degrees of freedom flight simulator). For parallel mechanisms,
instead of using the floating base model [19, 22, 31] and contact constraint equations, vir-
tual work principle-based approaches [33, 34] are more commonly used due to their easier
inverse kinematics (which allows solving the closed kinematic chain in advance). Therefore,
a similar virtual work-based approach is applied in this paper as the formulation framework
for the quadruped-tail dynamic model.

The major contributions of this paper could be summarized into two parts. First, a novel
unified dynamic model that incorporates both a quadruped and a multi-link tail is estab-
lished. Because of a similar problem setting to parallel robots, virtual work-based framework
and techniques are utilized for modeling. Second, based on the unified dynamic model, com-
parative study of three representative tail structures, namely, a single-link pendulum tail, a
decoupled rolling multi-link tail, and a coupled rolling multi-link tail, is conducted. The
results provide important information for future robotic tail synthesis and controller devel-
opment.

This paper is organized as follows. Section 2 formulates the modeling framework based
on the virtual work principle. Section 3 calculates the required kinematic terms for the
quadruped subsystem and the tail subsystem. Section 4 computes the corresponding dy-
namic loadings and assembles the inverse and forward dynamic models. Section 5 imple-
ments the numerical experiments and conducts the comparative study for different tail struc-
tures. Section 6 summarizes the main results of this paper and provides an outline for future
work.

2 Formulation of the unified dynamics framework using virtual work
principle

This section formulates the overall dynamic modeling framework of a general 6 degrees
of freedom (DOF) quadruped with three different tails using virtual work principle. Based
on the virtual work principle, for an N rigid body system, the equations of motion may be
expressed as in Eq. (1) where Fi , Mi , Ii , vi , and ωi are the active force, active moment,
inertia matrix, linear velocity, and angular velocity of body i, respectively. The “∼” symbol
above a vector indicates the skew-symmetric expansion of this vector.

N∑

i=1

[
δxT

i (Fi − mv̇i ) + δθT
i (Mi − Iiω̇i − ω̃iIiωi )

] = 0 (1)

Expressing the virtual displacements δxi and δθ i by using generalized coordinates q and
rearranging the force terms in Eq. (1) yields Eq. (2), in which Ji,x and Ji,ω are the Jacobian
matrices defined by δxi = Ji,xδq and δθ i = Ji,ωδq, respectively. We have

N∑

i=1

(
JT

i,xFi + JT
i,ωMi

) =
N∑

i=1

[
JT

i,xmv̇i + JT
i,ω(Iiω̇i + ω̃iIiωi )

]
(2)

Since the left hand side of Eq. (2) contains all the non-inertia forces and the right hand
side contains all the inertia forces, this equation essentially means that the system input
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(the “actuation”) equals the system output (the “motion”), i.e. the “actuation” generates the
“motion”.

Based on Eq. (2), the quadruped-tail dynamics can be formulated as in Eq. (3), where τ qa

is the actuation torque for the quadruped and τ ta is the actuation torque/force for the tail.
τ b , τ l,i and τ t are the generalized torques (includes inertia, elastic, damping loadings, etc.)
contributed by the traveling plate (or torso), the ith leg, and the tail, respectively. JT

qa and JT
ta

are the corresponding Jacobian matrices for the actuation torques/forces. We have

JT
qaτ qa + JT

taτ ta = τ b +
4∑

i=1

τ l,i + τ t (3)

It is worth to note that Eq. (3) might be over-actuated or under-actuated, depending on
the tail structure. For the over-actuated cases, namely, the pendulum tail case and the roll–
revolute–revolute robotic tail (R3RT) [29] case, Moore–Penrose inverse might be used to
invert the actuation Jacobian.

3 Kinematic analyses of the quadruped and tail subsystems

This section substantiates the modeling framework by developing the subsystem kinematic
models of the quadruped (Sect. 3.1) and the tails (Sect. 3.2).

3.1 Quadruped subsystem kinematics

To investigate the tail’s dynamical effects on a mobile platform, a full mobility (6 DOF)
quadruped is proposed for general modeling purposes. However, to avoid the influence of
the discontinuous ground contact on the tail motion, the quadruped is assumed to be standing
on the ground on its four feet at all times. This specific setting avoids the discussion on
complicated hybrid dynamics during locomotion, and thus makes the dynamic model a good
platform to analyze the tail behaviors closely and thoroughly. The only cost of this approach
is that the quadruped now becomes a parallel mechanism, for which the forward kinematics
and dynamics are usually difficult to obtain.

The kinematic configuration of the tailed quadruped is shown in Fig. 1, where the robot
consists of one torso, one tail, and four identical legs. To be consistent with the traditional
parallel mechanism terminology, the torso is also referred to as the traveling plate in this
paper. Each leg consists of a SRRR kinematic chain in which the universal joint on the hip
is decomposed into two intersecting revolute joints and the feet are modeled as spherical
joints. ΣS := (S,xs ,ys , zs) is the inertial frame on the ground and ΣP := (P,xp,yp, zp) is
the body fixed frame of the traveling plate, with its origin at the traveling plate center P and
its orientation along with the traveling plate edges.

The tail subsystem is connected to the body at point T and will be substantiated
in Sect. 3.2 by actual tail models. Since there are 6 DOF for the quadruped, q =
[pT φT qT

t ]T is chosen as the independent generalized coordinate set, where p is the
position vector of point P , and φ = [φx φy φz ]T are the rotational angles of the travel-
ing plate with respect to xs , ys , and zs , respectively. qt represents the generalized coordinate
of the tail with m components, i.e. the tail subsystem has m DOFs. Therefore, the rotation
matrix SRP from frame ΣP to ΣS could be calculated by Eq. (4), where the notations “c”



Dynamic modeling, analysis, and comparative study of a quadruped. . . 199

Fig. 1 The kinematic
configuration of a quadruped
with a multi-link tail

Fig. 2 Kinematic parameters of
leg i

and “s” are the abbreviated form for the cosine and sine functions, respectively.

SRP =
⎡

⎣
cφzcφy cφzsφysφx − sφzcφx cφzsφycφx + sφzsφx

sφzcφy sφzsφysφx + cφzcφx sφzsφycφx − cφzsφx

−sφy cφysφx cφycφx

⎤

⎦ (4)

The angular velocity and angular acceleration of the traveling plate in the inertial frame ΣS

could then be obtained using Eq. (5) and Eq. (6):

ω = [
φ̇x φ̇y φ̇z

]T
(5)

ω̇ = [
φ̈x φ̈y φ̈z

]T
(6)

3.1.1 Position analysis of leg i

Since the quadruped is essentially a parallel mechanism consisting of four closed chains, the
inverse kinematics need be solved first. For each leg, the joint angles are defined as in Fig. 2,
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where θha,i , θhb,i ∈ (−π/2,π/2) and θk,i ∈ (−π/2,0). Based on the kinematic configuration
in Fig. 1, the vector loop constraint of leg i is given by Eq. (7).

bi + ci = di − p − ai (7)

Express Eq. (7) in frame ΣP and denote si = P di − P p − P ai . Since si is a known vector
and P bi , P ci contain the three unknown revolute joint angles θha,i , θhb,i and θk,i , Eq. (7) is
fully defined and may be solved as

θha,i = tan−1 six

siz

(8)

θhb,i = cos−1 L2
th + ‖si‖2 − L2

sh

2Lth‖si‖ + sin−1 siy

‖si‖ (9)

θk,i = cos−1 L2
th + L2

sh − ‖si‖2

2LthLsh
− π (10)

where six , siy , and siz are the x, y, and z component of si , respectively.

3.1.2 Joint Jacobian matrices of leg i

Since the actuators are directly attached to the leg joints, the joint Jacobian matrices for
each leg are required to map the actuator inputs onto the generalized force space. These
Jacobians may be obtained by differentiating the joint angles directly. That is, differentiating
Eqs. (8) and (10) yield the Jacobian matrices of θha,i and θk,i , as given in Eqs. (11) and (12),
respectively, where js,i is the Jacobian of si .

jha,i = cos2 θha,i

s2
iz

[siz,0,−six]js,i (11)

jk,i = − sT
i js,i

LthLsh sin θk,i

(12)

Direct differentiation of θhb,i is more challenging due to the addition of two inverse trigono-
metric functions. Instead, the y component of Eq. (7) maybe used to derive the Jacobian of
θhb,i , which is expanded as

Lth sin θhb,i + Lsh sin(θk,i + θhb,i ) = siy (13)

Differentiating Eq. (13) and substituting the known Jacobians yield

jhb,i = [0,1,0]js,i − Lsh cos(θk,i + θhb,i )jk,i

Lth cos θhb,i + Lsh cos(θk,i + θhb,i )
(14)

As for js,i , differentiating Ssi yields

SRP ṡi = −v + (di − p) × ω (15)

where v is the linear velocity of point P . Rearranging Eq. (15) and collecting v and ω result
in the Jacobian of si ,

js,i = [−P RS
P RS(d̃i − p̃)

]
(16)
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Fig. 3 Kinematic parameters of
the pendulum tail

3.1.3 Acceleration relationships and point Jacobian matrices

Hip and knee point accelerations and Jacobians are required to compute the leg inertia load-
ings in Sect. 4.1. To find the hip point velocity vh,i and acceleration v̇h,i , the first and second
order differentiation of Hi may be calculated as

vh,i = v + ω × ai (17)

v̇h,i = v̇ + ˜̇ωai + ω̃2ai (18)

For the Jacobians, collecting v and ω from Eq. (17) yields

Jh,i = [
I −ãi 03×m

]
(19)

Similarly, the velocity, acceleration, and Jacobian matrix of point Ki are obtained by
Eq. (20)–(23) where Eq. (23) defines the intermediate matrix Qk,i . We have

vk,i = v − (ai + bi ) × ω + SRP
P ḃi (20)

v̇k,i = v̇ + ( ˜̇ω + ω̃2)
(ai + bi ) + 2ω̃SRP

P ḃi + SRP
P b̈i (21)

Jk,i =
[[

I −ãi − b̃i

] + SRP Qk,i

[
jha,i

jhb,i

]
03×m

]
(22)

P ḃi = Lth

⎡

⎣
−cθha,icθhb,i sθha,isθhb,i

0 cθhb,i

sθha,icθhb,i cθha,isθhb,i

⎤

⎦
[

θ̇ha,i

θ̇hb,i

]
= Qk,i

[
θ̇ha,i

θ̇hb,i

]
(23)

3.2 Tail subsystem kinematics

This section models the kinematics of the tail subsystem. Three typical tail structures are
considered in this paper – namely, a single-link pendulum tail, a decoupled rolling multi-
link rigid tail, and a coupled rolling multi-link flexible tail. These three types represent the
most commonly used robotic tail categories in terms of controllability configuration.

3.2.1 Pendulum tail kinematics

As shown in Fig. 3, the pendulum tail consists of only one ideal bar TN (an ideal bar is an
evenly distributed line mass). The tail connects to the quadruped at point T by a universal
joint which is decomposed into two intersecting revolute joints, namely the pitch joint with
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Fig. 4 (a) Kinematic configuration of the R3 tail, (b) kinematic definitions for link i

rotation angle θta and the yaw joint with rotation angle θtb. The corresponding generalized
coordinate is qt = [

θta θtb

]T
. Therefore, with parameters defined in Fig. 3, the position of

the tail tip N is obtained straightforwardly by Eq. (24) and Eq. (25), where the tail vector
t = SRP

P t, and Rx(θta) and Rz(θtb) are the principal rotation matrices with respect to x axis
and z axis, respectively. We have

pn = p + r + t (24)

P t = Rx(θta)Rz(θtb)[0,−Lt,0]T (25)

The velocity and acceleration of point N are obtained using Eqs. (26)–(28):

vn = v − (r + t) × ω + SRP
P ṫ (26)

v̇n = v̇ + ( ˜̇ω + ω̃2)
(r + t) + 2ω̃SRP

P ṫ + SRP
P ẗ (27)

P ṫ = Lt

⎡

⎣
0 cθtb

sθtacθtb cθtasθtb

−cθtacθtb sθtasθtb

⎤

⎦
[

θ̇ta

θ̇tb

]
= Kn

[
θ̇ta

θ̇tb

]
(28)

The Jacobian matrix of point N can be obtained accordingly using Eq. (29). Note that the
Jacobian and acceleration of point T can be obtained easily by replacing ai by r in Eqs. (18)–
(19).

Jn = [
I −r̃ − t̃ SRP Kn

]
(29)

3.2.2 R3 tail kinematics

The kinematic configuration for the R3 tail [29] is shown in Fig. 4, which consists of one
base link and twelve serially articulated links. The first six links (i = 1 : 6) constitute one
independent segment and the remaining six links (i = 7 : 12) constitute another indepen-
dent segment. The base link connects to the quadruped torso by a revolute joint (roll α) at
point T . Since the twelve joint axes are all parallel, the tail itself is a planar mechanism.
The gears between links are used to evenly distribute the rotations among the joints in each
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segment. That is, a rotation of βj (j = 1 or 2) degrees in joint i generates a net rotation of
6βj degrees for segment j . In summary, the R3 tail has three DOFs in total – namely, one
overall rolling DOF, one planar bending DOF for the first segment, and one planar bend-
ing DOF for the second segment. The corresponding generalized coordinate is chosen as
qt = [

α β1 β2
]T

. The body fixed frames for each link are defined as follows. Frame∑
T := (T , x0,y0, z0) is attached on the base link with x0 coinciding the joint 1 axis and y0

coinciding yp . Frame
∑

Ji := (Ji, xi ,yi , zi ) is attached on link i with its origin Ji locating
on the joint i axis, xi coinciding joint i axis, and yi pointing along link i. Due to the decou-
pled rolling and bending mobility, the R3 tail is regarded as a representative of decoupled
rolling-bending multi-link tail structure. More details on the R3 tail can be found in [29].

With the above kinematic definitions, the orientation for each link is obtained from
Eq. (30) where the base link is regarded as link 0.

SRi =
⎧
⎨

⎩

SRP Ry(α), i = 0
SRP Ry(α)Rx(iβ1), 1 ≤ i ≤ 6
SRP Ry(α)Rx(6β1 + (i − 6)β2), 7 ≤ i ≤ 12

(30)

The COM position of link i (point Ci in Fig. 4) in inertia frame
∑

S may be calculated
using Eq. (31) and (32), where pi,com, pi,jnt , and pi,J2C denotes the position vector of Ci , Ji ,
and the vector from Ji to Ci , respectively. Note that the base link COM (C0) position p0,com

is given separately as p0,com = p + p0,P 2C , where p0,P 2C is the vector from point P to C0:

pi,com = pi,jnt + pi,J2C (31)

pi,jnt =
{

p + r, i = 1
pi−1,jnt + pi−1,J2J , i > 1

;
{

pi,J2C = −LJ2Cyi

pi,J2J = −LJ2J yi
(32)

The angular velocity propagation formula is obtained by Eq. (33) and the linear velocity is
derived by differentiating Eq. (31), as shown in Eq. (34). vi,jnt and vi,J2C are calculated by
differentiating Eq. (32). The velocity of the base link COM is given as v0,com = v + ω ×
p0,P 2C . We have

ωi =
⎧
⎨

⎩

ω + α̇y0, i = 0
ωi−1 + β̇1x0, 1 ≤ i ≤ 6
ωi−1 + β̇2x0, 7 ≤ i ≤ 12

(33)

vi,com = vi,jnt + vi,J2C (34)

vi,jnt =
{

v + ω × r, i = 1
vi−1,jnt + vi−1,J2J , i > 1

;
{

vi,J2C = ωi × pi,J2C

vi,J2J = ωi × pi,J2J
(35)

Then the Jacobian matrices Ji,ω and Ji,com for the angular and linear velocities can be ob-
tained recursively by isolating the coefficients in front of the generalized coordinates from
Eqs. (33)–(35). um,n represents the m dimensional unit column vector with 1 on the nth
entry, i.e. uT

m,n is the trivial Jacobian of the nth generalized coordinate of q. We have

Ji,ω =

⎧
⎪⎨

⎪⎩

[
03×3 I3×3 03×3

] + y0uT
9,7, i = 0

Ji−1,ω + x0uT
9,8, 1 ≤ i ≤ 6

Ji−1,ω + x0uT
9,9, 7 ≤ i ≤ 12

(36)

Ji,com = Ji,jnt + Ji,J2C (37)
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Fig. 5 (a) Kinematic configuration of the USRT tail, (b) kinematic definitions for link i

Ji,jnt =
{[

I3×3 −r̃ 03×3
]
, i = 1

Ji−1,jnt + Ji−1,J2J , i > 1
;

{
Ji,J2C = −p̃i,J2CJi,ω

Ji,J2J = −p̃i,J2J Ji,ω
(38)

The linear velocity Jacobian for the base link COM is given separately by Eq. (39):

J0,com = [
I3×3 −p̃0,P 2C 03×3

]
(39)

The angular and linear acceleration propagation can be obtained by differentiating Eqs. (33)–
(35):

ω̇i =
⎧
⎨

⎩

ω̇ + α̈y0 + α̇ω0 × y0, i = 0
ω̇i−1 + β̈1x0 + β̇1ω0 × x0, 1 ≤ i ≤ 6
ω̇i−1 + β̈1x0 + β̇1ω0 × x0, 7 ≤ i ≤ 12

(40)

v̇i,com = v̇i,jnt + v̇i,J2C (41)

v̇i,jnt =
{

v̇ + ˜̇ωr + ω̃2r, i = 1
v̇i−1,jnt + v̇i−1,J2J , i > 1

;
{

v̇i,J2C = ˜̇ωipi,J2C + ω̃2
i pi,J2C

v̇i,J2J = ˜̇ωipi,J2J + ω̃2
i pi,J2J

(42)

The acceleration of the base link COM is given by Eq. (43):

v̇0,com = v̇ + ˜̇ωp0,P 2C + ω̃2p0,P 2C (43)

3.2.3 USRT kinematic modeling

The Universal Spatial Robotic Tail (USRT) [26] is another typical multi-link tail structure
whose adjacent links are connected by universal joints. This way, the rolling DOF is coupled
with the bending DOF, i.e. the rolling motion is achieved by combining the pitch bending
and the yaw bending. Due to the elastic elements (elastic backbone and extension springs)
used, the USRT is also a representative of flexible tails. The kinematic configuration of
the USRT is shown in Fig. 5a where the tail consists of six serially connected universal
joints. The first three links constitute the first segment, and the rest three links constitute the
second segment. The first segment is driven by two cables j = {A,B} from the three cables
set {1,2,3} and the second segment is driven by two cables j = {C, D} from another three
cables set {4,5,6}. For link i, the body fixed frame

∑
Ji := (Ji, xi ,yi , zi ) is attached at the
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center of joint i (Ji ) with yi along with link i axis, and xi , zi coinciding the two rotation
axes of the universal joint i. pi,jnt is the position vector of Ji , and pi,com is the position vector
of link i COM (Ci ). More details about the USRT can be found in [26].

Based on the above definitions, link i orientation with respect to both link i − 1 (i−1Ri )
and the global frame (SRi ) are calculated in Eq. (44), where ϕi and θi are the decomposed
pitch and yaw rotation of the universal joint i (referring to Fig. 5a).

i−1Ri = RX(ϕi)RZ(θi); SRi =
{

SRP , i = 0
SRi−1 · i−1Ri , i > 0

(44)

The generalized coordinate is chosen as qt = [
θ1 ϕ1 · · · θ6 ϕ6

]T
accordingly. With

these orientations, the joint positions pi,jnt and the COM positions pi,com can be calculated
recursively using the same formulations as in Eqs. (31)–(32), except replacing the R3RT
terms LJ2C , LJ2J with the corresponding USRT ones. The linear velocities, Jacobians, and
accelerations of link i could be also calculated using the same formulations as in Eqs. (34)–
(35), Eqs. (37)–(38), and Eqs. (41)–(42), respectively. However, the angular propagation
formulation is changed due to the different link connections (the USRT uses 2-DOF uni-
versal joint while the R3 tail uses 1-DOF revolute joint). Therefore, the angular velocities,
Jacobians, and accelerations of the USRT links are calculated according to Eqs. (45)–(47).
We have

ωi =
{

ω, i = 0
ωi−1 + ϕ̇ixi−1 + θ̇izi , i > 0

(45)

Ji,ω =
{[

03×3 I3×3 03×12
]
, i = 0

Ji−1,ω + xi−1uT
18,2i+6 + ziuT

18,2i+5, i > 0
(46)

ω̇i =
{

ω̇, i = 0
ω̇i−1 + ϕ̈ixi−1 + ϕ̇iω̃i−1xi−1 + θ̈izi + θ̇iω̃izi , i > 0

(47)

Besides the above basic kinematic terms, supplementary kinematic analysis is required to
compute the elastic, damping, and the actuation loadings of the USRT. For the compression
springs in the center, the net bending angle of each universal joint is obtained by using
Eq. (48) where y0 = yp . We have

σi = cos−1
(
yT

i−1yi

) ⇒ cosσi = cos θi cosϕi (48)

For the extension springs, ‖ipi,AB‖ is required and obtained by Eq. (49). Similarly, Eq. (50)
provides the cable routing vector ipi,DD that is required for the actuation Jacobian calcula-
tions:

ipi,AB = −LJ2J ey + ipi,JB − ipi−1,JA (49)

ipi,j,DD = −LJ2J ey + ipi,j,JD − ipi−1,j,JD (50)

4 Assembly of the dynamics model

Based on the kinematic information obtained (position, velocity, and accelerations), this
section calculates the dynamic loading components of Eq. (3) and formulates the forward
dynamic model based on the inverse model.
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Fig. 6 (a) One leg with its foot
touching the ground, (b) the
velocity distribution on a rigid
bar

4.1 Quadruped loadings

The quadruped loading calculation includes computing the loading of the torso and the load-
ing of the four legs. For the torso, the loading calculation is straightforward and is given in
Eq. (51), in which mb is the traveling plate mass and g is the gravity constant. The inertia
matrix of the traveling plate is calculated as Ib = SRP

P Ib
P RS . Jacobian matrices Jb,x and

Jb,ω have the form given by Eq. (52):

τ b = JT
b,xmb(v̇ + gzs) + JT

b,ω(Ibω̇ + ω̃Ibω) (51)

Jb,x = [ I3×3 03×3 03×m ]; Jb,ω = [03×3 I3×3 03×m ] (52)

For the legs, since each thigh and shank is regarded as an ideal bar, the loading may be
calculated using the technique in [4]. That is, the virtual work of an ideal bar can be lumped
on its two endpoints. As shown in Fig. 6b, for an ideal bar, the virtual work due to the inertia
force can be computed by the integral defined in Eq. (53), where the linear interpolations
of the virtual displacement δ1, δ2, and the acceleration v̇1, v̇2 along the bar are defined by
Eq. (54). L is the length of the bar. We have

δW =
∫ L

0
δ(x) · v̇(x)mdx/L (53)

δ(x) = (1 − x/L)δ1 + x/Lδ2; v̇(x) = (1 − x/L)v̇1 + (x/L)v̇2 (54)

Evaluating Eq. (53) yields Eq. (55), where q is the generalized coordinate vector, J1 and
J2 are the corresponding Jacobian matrices for the two endpoints (which implies δ1 = J1δq
and δ2 = J2δq). We have

δW = δqT m

3

(
JT

1 v̇1 + JT
2 v̇2 + JT

2 v̇1 + JT
1 v̇2

2

)
(55)

Applying this formula on the thigh and shank of each leg (Fig. 6a) yields the virtual work
δWinr,i of leg i due to inertia force, as given in Eq. (56), where mth and msh are the mass of
the thigh and shank, respectively.

δWinr,i = δqT

[
JT

k,i

(
mth + msh

3
v̇k,i + mth

6
v̇h,i

)
+ JT

h,i

(
mth

3
v̇h,i + mth

6
v̇k,i

)]
(56)
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The virtual work δWgrv,i due to gravity is obtained by Eq. (57) and all joints are mod-
eled to be frictionless (including the foot-ground spherical joints). Therefore, the dynamic
loading for leg i is obtained by combining Eq. (56) and Eq. (57), as given in Eq. (58):

δWgrv,i = δqT

(
JT

k,i

mth + msh

2
+ JT

h,i

mth

2

)
[0,0,−g]T (57)

τ l,i =JT
k,i

(
mth + msh

3
v̇k,i + mth

6
v̇h,i + mth + msh

2
gzs

)

+ JT
h,i

(
mth

3
v̇h,i + mth

6
v̇k,i + mth

2
gzs

)
(58)

4.2 Tail loadings

For the single-link pendulum tail, the dynamic loading is calculated using the same ideal
bar assumption, as shown in Eq. (59), where Jt and v̇t are the Jacobian and acceleration
of point T , respectively. For the R3 tail, the overall dynamic loading is the sum of the
dynamic loadings of each link, as provided in Eq. (60), where mi,r3 is the ith link mass
and Ii,r3 = SRi

iIi,r3
iRS is the ith link inertia. Due to its relatively small contribution on the

dynamic loading (note that the R3RT has bearings on each joint), the frictions of both the
pendulum tail and the R3 tail are neglected in the modeling. We have

τ t = JT
t

mt

6
(2v̇t + v̇n + 3gzs) + JT

n

mt

6
(2v̇n + v̇t + 3gzs) (59)

τ t =
12∑

i=0

JT
i,commi,r3(v̇i,com + gzs) + JT

i,ω(Ii,r3ω̇i + ω̃iIi,r3ωi ) (60)

Similarly, the dynamic loading for the USRT could be obtained by adding up the loadings
for each link, except that the USRT loading needs to include the additional elastic loadings
and the damping loading. Therefore, the total loading of the USRT is calculated by Eq. (61),
where the subscripts “inr”, “grv”, “cmp”, “ext” and “dmp” represent “inertia”, “gravity”,
“compression”, “extension” and “damping”, respectively.

τ t =
6∑

i=1

(τ i,inr + τ i,grv + τ i,cmp + τ i,ext + τ i,dmp) (61)

Due to the shared kinematic terms, the inertia loading and gravity loading are combined
together and are given in Eq. (62), where musrt and Ii,usrt = SRi

iIusrt
iRS are the mass and

inertia matrix of the ith link, respectively:

τ i,inr + τ i,grv = JT
i,commusrt(v̇i,com + gez) + JT

i,ω(Ii,usrtω̇i + ω̃iIi,usrtωi ) (62)

The damping and compression spring loadings are both determined by the joint net bend-
ing σi . Therefore, τ i,cmp and τ i,dmp are derived as

δWi,cmp = ki,cmpσiδσi ⇒ τ i,cmp = jTi,σ ki,cmpσi (63)

δWi,dmp = ci,dmpσ̇iδσi ⇒ τ i,dmp = jTi,σ ci,dmpσ̇i (64)
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where ji,σ (defined by δσi = ji,σ δq and obtained by differentiating Eq. (48)) is the Jacobian
matrix for σi . ki,cmp and ci,dmp are the bending stiffness and the damping coefficient of joint
i, respectively. The virtual work of the extension spring loading is

δWi,ext = ki,ext

(∥∥ipi,AB

∥∥ − Li,ext

)
i p̂i,AB · δipi,AB (65)

where ki,ext and Li,ext are the stiffness and the unloaded length of spring i. i p̂i,AB represents
the unit vector of ipi,AB. The virtual displacement δipi,AB may be obtained using Eq. (66),
where ex = [1 0 0 ]T and ez = [0 0 1 ]T . We have

δipi,AB = −δipi−1,JA = (δϕiex + δθiez) × ipi−1,JA (66)

Therefore, the extension spring loading is obtained as in Eq. (67), where uT
18,2i+6 is the trivial

Jacobian matrix of ϕi (defined by δϕi = uT
18,2i+6δq):

τ i,ext = u18,2i+6ki,ext

(∥∥ipi,AB

∥∥ − Li,ext

)
i p̂T

i,ABẽx
ipi−1,JA (67)

4.3 Generalized actuation force

Based on Eq. (3), the actual actuation forces are mapped into the generalized force space by
multiplying the actuation Jacobians. For the quadruped, the generalized actuation force is
obtained:

JT
qaτ qa =

4∑

i=1

(
jTha,i,augτha,i + jThb,i,augτhb,i + jTk,i,augτk,i

)
(68)

where τha,i , τhb,i , and τk,i are the torques applied on the hip and knee joints of leg i, respec-
tively. jha,i,aug, jhb,i,aug, and jk,i,aug are the corresponding actuation Jacobian matrices. The
subscript “aug” means that these matrices are augmented from the joint Jacobian matrices
(given in Eqs. (11), (12) and (14)) by concatenating 01×m to their end. Equation (69) defines
the actuation Jacobians for each leg joint:

jha,i,aug = [
jha,i 01×m

]

jhb,i,aug = [
jhb,i 01×m

]

jk,i,aug = [
jk,i 01×m

]
(69)

For the tail subsystem, the generalized actuation force of the pendulum tail is straight-
forward since the actuation torque applies directly on the generalized variable, as shown in
Eq. (70):

JT
taτ ta = u8,7τta + u8,8τtb (70)

For the R3 tail, the generalized actuation is contributed by three parts, namely the driven
torque τα for the rolling joint, the driven cable tension Tβ1 for the first segment and the
driven cable tension Tβ2 for the second segment, as given in Eq. (71), where Jβ1 and Jβ2 are
the corresponding actuation Jacobian matrices.

JT
taτ ta = u9,7τα + JT

β1Tβ1 + JT
β2Tβ2 (71)

To compute Jβ1 and Jβ2, the virtual works of the first segment and the second segment cable
tensions are derived as in Eqs. (72) and (73), where Rcbl represents the radius of the circular
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cable route (referring to Fig. 4b). Note that δWβ2 is not affected by β1 due to the decoupling
design of the cable routing [29]. We have

δWβ1 = Tβ16Rcblδβ1 ⇒ JT
β1 = 6Rcblu9,8 (72)

δWβ2 = Tβ26Rcblδβ2 ⇒ JT
β2 = 6Rcblu9,9 (73)

Similarly, the generalized actuation force of the USRT is given in Eq. (74), where the first
three cable tensions (j = 1,2,3) act on the first segment and the last three cable tensions
(j = 4,5,6) act on the second segment. μj is the switching function to decide whether the
driving cable is active or not. Then

JT
taτ ta =

6∑

j=1

μj JT
tj Tj (74)

Therefore, to obtain the actuation Jacobians, the virtual work of each cable tension is derived
as

δWtj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3∑

i=1

δWtij , j = 1,2,3

6∑

i=1

δWtij , j = 4,5,6

(75)

where δWtij = Tj
i p̂i,j,DD · δipi,j,DD is the virtual work of the j th cable on the ith link. The

cable virtual displacement δipi,j,DD is calculated further as

δipi,j,DD = −δipi−1,j,JD = (δϕiex + δθiez) × ipi−1,j,JD (76)

Therefore, the actuation Jacobians are obtained:

JT
tj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3∑

i=1

JT
tij , j = 1,2,3

6∑

i=1

JT
tij , j = 4,5,6

(77)

where

JT
tij = u18,2i+5

(
i p̂T

i,j,DDẽz
ipi−1,j,JD

) + u18,2i+6
(
i p̂T

i,j,DDẽx
ipi−1,j,JD

)
(78)

4.4 Forward dynamics

Although Eq. (3) fully defines the system dynamics, it is in an implicit form of q̈, which
is not ready for numerical integration yet. To write Eq. (3) into the form with explicit q̈,
i.e. the forward dynamics, the method in [7] (pages 102–103) may be used. That is, if the
inverse dynamics is known as a function τ = ID(model,q, q̇, q̈), the forward dynamics may
be obtained using Eq. (79) where M is the system inertia matrix and τ is the generalized
actuator force.

Mq̈ = τ − ID(model,q, q̇,0) (79)
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The system inertia matrix could be found using the Composite–Rigid–Body algorithm
(CRBA) [7], and it may take the form of Eqs. (80)–(83), where mtail and Ii,tail are the inertial
properties of the ith link for each tail. n, in this case, denotes the link number. For instance,
for USRT, mtail = musrt, Ii,tail = Ii,usrt, and n = 6. We have

M = Mb +
4∑

i=1

Ml,i +
n∑

i=1

Mi,tail (80)

Mb = mbJT
b,xJb,x + JT

b,ωIbJb,ω (81)

Ml,i = mth

3

(
JT

h,iJh,i + JT
k,iJk,i + JT

h,iJk,i

) + msh

3
JT

k,iJk,i (82)

Mi,tail = mtailJT
i,comJi,com + JT

i,ωIi,tailJi,ω (83)

Although the CRBA is efficient and analytical, programming of this algorithm is time
consuming and error prone. Instead, an easier way is to take advantage of the existing inverse
dynamics function. That is, the αth column of M could be numerically obtained by passing
a unit acceleration vector δα to the inverse dynamics function and finding its difference
with the zero acceleration case, as shown in Eq. (84). δα has 1 on the αth entry and zeros
elsewhere. This approach is not as efficient as the CRBA due to its multiple call of the inverse
dynamic function, but it is straightforward and usually easy to implement. Therefore, in this
paper, we applied the inverse dynamic approach for the pendulum case and the R3RT case
due to its easier programming, and applied the CRBA approach for the USRT case due to
its higher efficiency. We have

mα = ID(model,q, q̇, δα) − ID(model,q, q̇,0) (84)

5 Comparative study of robotic tail structures through numerical
experiments

This section uses the established unified dynamics to investigate the dynamic performance
of the three typical tail structures. Table 1 summarizes the constants used in the numerical
experiments. Dw and Dl are the width and length of the torso rectangle. ki,ext and Li,ext are
given in row vector forms. To make the three tails have the same overall properties, the
mass, inertia, and spring stiffness of the USRT are scaled accordingly. Note that the index i

has different meanings in different contexts. For instance, i represents the leg number in the
quadruped modeling but denotes the link number in the multi-link tail modeling. Therefore,
the di vectors define the quadruped feet positions, while the ipi,JA, ipi,JB, and ipi,j,JD vectors
belong to the USRT parameters.

The numerical calculations are all implemented in MATLAB, where the built-in solver
ode45 is used to integrate the forward dynamics. This solver uses single step Runge–Kutta
(4,5) method as the numerical integrator and applies variable step scheme to control the
error. In this work, the solver accuracy is set to 1e−8 for absolute tolerance and 1e−6 for
relative tolerance. The modeling framework in this paper was also cross validated using a
commercial software MSC/Adams [14].

Figure 7 shows three configurations of the three quad-tail models. For all simulations,
the initial position and orientation of the quadruped are set to be p = [0 0 0.4 ]T and
φ = [0 0 0 ]T , respectively. The quadruped input torque is calculated as

τ qa = [
0 1.63 7.7 0 1.63 7.7 0 1.9 7.16 0 1.9 7.16

]T
N m (85)
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Table 1 Quadruped-tail model properties

Var. Value Var. Value

Lth 0.25 m g 9.8 m · s−2

Lsh 0.25 m P Ib diag(D2
l
,D2

w,D2
l

+ D2
w) mb/12

Dw 0.3 m LJ2J R3 : 0.04 m, USRT : 0.08 m

Dl 0.5 m LJ2C R3 : 0.0327 m, USRT : 0.0466 m

mb 12 kg 0I0,r3 diag(4.33,3.67,4.04)10−5 kg m2

mth 1.2 kg m{1−12},r3 0.0759 kg

msh 1.2 kg iI{1−12},r3 diag(8.13,16.26,18.68)10−5 kg m2

Lt 0.48 m iIusrt diag(17.41,8.3,16.6)10−5 kg m2

mt 1 kg ki,cmp 20 N · m/rad

Rcbl 0.025 m ci,dmp 1 N · m · s/rad

m0,r3 0.0897 kg kext (2921.2,2921.2,1369.4,910.6,245.2,245.2) N/m

musrt 0.17 kg Lext (38.35,38.35,36.83,36.83,37.59,37.59) mm

Rhl 0.0325 m ipi,JA [ 0 0 0.0305 ]T
γj 120◦j − 90◦ ipi,JB [ 0 0.0225 0.021 ]T
εi 90◦i − 45◦ ipi,j,JD Rhl[ cosγj 0.0035 sinγj ]T

di

√
2/2[Dw cos εi Dl sin εi 0 ]T

Fig. 7 Three quadruped models with (a) the pendulum tail, (b) the R3 tail, and (c) the USRT

by the inverse dynamics, to make the quadruped overcome the gravity and maintain rela-
tive stability during the simulation. Note that other than the input in Eq. (85), there is no
additional torque (such as the feedback torque coming from a feedback controller) applied
on the quadruped, which makes the quadruped subsystem essentially an open-loop control
system. The reason for this is that, since this paper aims to investigate the dynamic effects
of different tail structures, using a controller on the quadruped will make it impossible to
determine if the quadruped response is due to the tail motion or the controller. To be consis-
tent with previously reported results in [24] and [14], most simulation durations are chosen
to be 0.3 seconds.

The pendulum tail motion is planned as a point-to-point trajectory in the joint space
using cubic interpolation, and a simple PD controller is used to track the trajectory (with
tracking errors less than 0.5 degrees). To compare the tail performances due to different
structures, the tail motions are planned to have the same COM trajectory. This way, the
dynamic effect due to different motions could be minimized. Therefore, the R3RT and the
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Fig. 8 Illustration of the COM
bending angle of an arc

USRT need to prescribe their curvature bending motion so that their COM would always
have the same rotation angle as the pendulum tail case. Referring to Fig. 8, using simple
geometry, the formula to compute the COM rotation angle θcom for a curvature bending arc
(non-extensible evenly distributed mass) is given in Eq. (86), where αc is the central angle.
We have

tan(θcom) = αc − sinαc

1 − cosαc

(86)

5.1 Single-link tail structure versus multi-link tail structure

One critical argument for using the multi-link structure for robotic tail is that this structure
can generate higher inertia loading than a single-link structure. Existing evidence supporting
this argument includes the theoretical analysis in [24] and the experimental exploration in
[29]. However, due to the restricted scenarios (only yaw bending) considered in [24] and the
tail-only experiments in [29], both research efforts are considered incomplete. Therefore,
this section continues the analysis by comparing the pendulum tail (Fig. 7a) and the R3 tail
(Fig. 7b) performances on a quadruped, using the more complete quad-tail model established
in this paper.

Two sets of experiments were designed to compare the difference: one is a pure bending
motion of the tail (mainly used for maneuvering tasks) and one is a pure rolling motion of
the tail (mainly used for stabilization tasks). Figure 9 shows the torso responses for two pure
bending cases: a 40 degrees yaw bending and an 80 degrees yaw bending. For the R3RT,
to execute the yaw bending motion, the roll joint is rotated by −90 degrees first so that the
tail bending plane could go from the sagittal plane to the transverse plane. In this and the
following figures, “PT” stands for the pendulum tail case, “R3” stands for the R3 tail case,
and “USRT” stands for the USRT case. From the torso responses, it is found that the torso
roll is significantly affected by the yaw bending even though there is no input for the rolling
motion. This is because the tail COM moves to the right side and results in more weight
on the right side during bending. This effect becomes more significant for larger bending
angles, e.g. the roll angle increases for the 80 degrees bending case. However, the torso pitch
is not severely affected. The results also indicate that, if the COM rotation angle (instead of
the first link rotation angle used in previous research [24]) is used as the benchmark, the
one segment (the R3 tail in this experiment is treated as one segment by letting β1 = β2)
curvature bending of the multi-link structure exhibits similar behavior as the single-link
structure. In other words, the curvature bending of the multi-link structure is dynamically
similar to a single-link pendulum during bending if COM criterion is used. To justify this
statement more rigorously, more yaw bending cases with 10 degrees interval were tested.
The results are illustrated in Fig. 10, where the pendulum tail and the R3 tail share similar
trends with small differences. From Fig. 10, it is also found that the multi-link structure (R3
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Fig. 9 Torso responses for a 40 degrees yaw bending case and an 80 degrees yaw bending case where the
left column shows the orientation angles while the right column illustrates the corresponding angular rate

Fig. 10 Torso net yaw rotation
with respect to different tail
bending angles

tail) even generates less torso yaw rotation than the single-link structure (pendulum tail) for
more than 50 degrees bending cases. This is due to the fact that, for multi-link structures,
the last link tends to meet the first link (roll-up) when the bending angle is large, which will
make the COM closer to the first link and thus decrease the generated momentum.

The pure rolling experiments are designed as follows. During each simulation, the R3
tail shape remains unchanged (θ̇com = 0) and rotates only the roll joint from 0 degrees to
45 degrees. Among simulations, the R3 tail shape is changed for different COM angle θcom.
The pendulum tail is planned to execute the same rolling motion while maintaining the same
θcom as the R3 tail. Note that, since the pendulum tail does not have a separate rolling joint,
the rolling motion is achieved by combining the yaw joint rotation and the pitch joint rotation
simultaneously. Figure 11 shows the time responses of the torso orientation and their angular
rate for two R3 tail shapes (θcom = 40◦ and θcom = 80◦). Similar to the yaw bending cases,
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Fig. 11 Torso responses for the two rolling experiments: the first row maintains θcom = 40◦ and the second
row maintains θcom = 80◦

Fig. 12 Torso net roll rotation
with respect to different COM
bending angles

the rolling experiments show the same coupling effects between the tail subsystem and the
quadruped subsystem. For instance, the torso’s yaw and pitch motions are both affected by
the tail’s rolling motion. More specifically, the yaw motion is affected more significantly but
is relatively not sensitive to different tail shapes. The pitch motion, instead, shows strong
correlation with tail shapes, i.e. rolling with larger θcom generates larger pitch rotations. As
for the roll responses, the curvature bending structure (R3 tail) was found to generate larger
(11.6% more) roll rotation than the single-link structure (pendulum tail) for the 40 degrees
tail shape, but generates significantly smaller (41.4% less) roll rotation for the 80 degrees
case. This is thought due to the same tail roll up effect as discussed in the yaw bending
experiments.

Figure 12 applies the same 10 degrees interval for θcom to conduct the pure rolling exper-
iments. The results show that the roll-up effect helps the R3 tail generate more momentum
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Fig. 13 Time-lapses of the coupled rolling experiments for (a) the Quad-PT model and (b) the Quad-R3
model. Each frame has the same time interval of 0.06 s and the transparency increases as time elapses

Fig. 14 Torso responses for the coupled rolling experiments: the left subfigure shows the orientation angles
while the right subfigure illustrates the corresponding angular rate

than the pendulum tail before 50 degrees but undermines the benefits significantly after
50 degrees.

5.2 Decoupled rolling tail structure versus coupled rolling tail structure

Since the R3 tail has a separate roll joint, it is thought that this tail structure is better on the
stabilization tasks. However, a separate roll joint also means that it is not able to generate
the motion perpendicular to the bending plane. To do this, the tail has to rotate the bending
plane to the desired plane first and then bend. This may cause a delayed response and a
more complicated motion planner. In contrast, the universal joint used by the pendulum tail
allows the tail to go in any direction and to achieve rolling motion by combining the pitch
joint rotation and the yaw joint rotation. Therefore, this subsection investigates the dynamic
differences of these two tail mobility configurations.

The tail motion is designed to have a nonlinear combination of yaw motion and pitch
motion. That is, the pitch joint of the pendulum tail moves from 20 degrees to 0 degrees
and the yaw joint moves from 0 degrees to −50 degrees simultaneously. The total effect is
that the tail swings up and left. Note that, since the cubic interpolation is nonlinear and the
interpolation happens in the joint space, the tail’s trajectory in frame

∑
T is not a planar

motion. The corresponding R3 tail trajectory can be generated using Eq. (86).
The simulation results are shown in Figs. 13 and 14, where Fig. 13 illustrates the time-

lapse images of the two case studies and Fig. 14 plots the torso responses. Based on Fig. 14,
the pendulum tail and the R3 tail exhibit very close behaviors for the pitch motion and the
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Fig. 15 Torso and tail curvature
responses for the 20 degrees
pitch bending experiments

yaw motion, but for the rolling motion, the R3 tail generates 33.2% larger torso roll rotation
than the pendulum tail. By comparing this phenomenon with those in Figs. 11 and 12, this
larger rolling rotation for the R3 tail is found due to its larger rolling angle (90 degrees).
Therefore, from solely a dynamics perspective, the decoupled rolling tail structure does not
show a significant difference from the coupled rolling structure.

5.3 Rigid tail structure versus flexible tail structure

The USRT is the multi-link version of the pendulum tail except that it uses elastic compo-
nents (the compression and extension springs) to constrain the hyper-redundant DOFs. This
makes the USRT a flexible robotic tail and makes its dynamics an under-actuated system.
This section explores the dynamic performance of this tail structure.

The tail is designed to execute a pure pitch bending motion using a sine wave with am-
plitude of 20 degrees and period of 1.2 seconds. Figure 15 illustrates the responses of the
torso pitch and the tail curvature for the R3 tail and the USRT cases. The R3 tail and the
USRT qualitatively exhibit similar dynamic effects on the quadruped. However, the R3 tail
generates 4 degrees more (66.6%) rotation than the USRT. The USRT also shows noticeable
oscillations induced by its flexible structure. Figure 16 depicts the curvature tracking errors
for the two case studies. The USRT shows larger and less smooth tracking errors than the R3
tail, which is consistent with the observations in Fig. 15. The mean errors are calculated as
0.07 m−1, 0.07 m−1, −0.57 m−1, and −0.69 m−1 for the R3 tail’s first segment, R3 tail’s sec-
ond segment, USRT’s first segment, and USRT’s second segment, respectively. Apparently,
it is the rigidity in the R3 tail that reduces the oscillation and brings in the higher tracking
accuracy during highly dynamic motions. This suggests that, for future biomimetic tail de-
signs, variable stiffness ability could be introduced to make the tail maintain the compliant-
to-object ability for low dynamic tasks but behave rigidly for highly dynamic tasks. In fact,
guided by this observation, one recent development of the multi-link robotic tails is based
on the rigid link transmission [15]. This special structure enhances the tail rigidity and thus
enables it to bear higher dynamic loading.

6 Conclusions and future work

To investigate the dynamic effects of multi-link tails on a quadruped, a high fidelity unified
dynamic model incorporating both the quadruped subsystem and the tail subsystem was
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Fig. 16 Curvature tracking errors for the R3 tail and the USRT case studies

established in this paper. Due to the modularity of the tail subsystem, virtual work-based
formulation was applied to generate the overall dynamic framework. Dynamic components
of each subsystem were then calculated and assembled into the framework. Based on the new
unified dynamic model, three typical tail structures were studied and compared: a single-link
pendulum tail, a multi-link rigid tail (the R3 tail), and a multi-link flexible tail (the USRT).
Using the COM angle as the benchmark, the comparative study showed that the multi-link
structure does not provide significant benefits in comparison with the single-link structure
for bending motion but do have noticeable better dynamic performances for rolling motions.
The results also showed that the coupled rolling tail structure has no significant differences
from the decoupled rolling structure. The USRT case study illustrated obvious oscillations
induced by the elastic components in the tail. This disadvantage may limit its usage on
highly dynamic applications, but it also suggests that a variable stiffness tail might become
a promising solution for the biomimetic robotic tail design.

To eliminate the influence of the discontinuous locomotion dynamics on the tail analysis,
the unified dynamic model in this paper fixed the quadruped feet on the ground. Therefore,
one important future work is to relieve this constraint and introduce the hybrid dynamics
into the model. This improvement will allow the model to explore more complicated tail
behaviors observed in nature. Moreover, validation of the dynamic model on a physical
platform would be another focus. As stated in the introduction, the new unified dynamic
model will be also used as a tail synthesis platform.
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