
1.  Introduction
As the human population and the impending magnitude of global climate change both continue to grow, 
there is an imperative to better understand the function of cities as ecosystems and their resilience to cli-
mate-driven disturbances. Floods are prominent disturbances to urban ecosystems (Grimm et  al.,  2017; 
Rentschler et al., 2019), and their meteorological drivers—including extreme precipitation, sea level rise, 
and coastal storms—are projected to increase in coming decades (Y. Chen et al., 2018). Numerical models 
are essential tools for understanding floods and their associated risks. But despite recent advances in com-
putational resources, existing flood models remain limited in their capability to represent integrated flood-
ing processes in urban areas and provide credible, quantitative information needed to support risk assess-
ment and resilience practice. In this commentary, we discuss the potential value of urban flood modeling 
for urban resilience and limitations of existing modeling approaches. We then present a research agenda 
and vision for the future of urban flood modeling, realized through collaboration between researchers and 
practitioners.

We define urban flood models (UFMs) as numerical models that are capable of representing the features of ur-
ban ecosystems and the mechanisms of flooding that impact them. Cities are Social-Ecological-Technological 
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Systems (SETS; Markolf et al., 2018; McPhearson et al., 2016), and urban flooding results from the dynamics 
of their social institutions, natural ecosystems, and built infrastructure systems in response to meteorological 
drivers. UFMs must be able to represent all three SETS components and their contributions to flood response.

UFMs also must be capable of representing a variety of flooding mechanisms. The most widely studied of 
these is fluvial flooding, which occurs when rivers or streams rise out of their banks in response to precip-
itation (Kundzewicz et al., 2010). But the hydrology of highly urbanized environments is often dominated 
by sewer drainage and, as a result, precipitation-driven flooding frequently results from other mechanisms, 
or combinations of multiple flooding mechanisms within an event or season (A. S. Chen et al., 2010). These 
can include pluvial flooding, which occurs when intense precipitation exceeds the rate of natural and en-
gineered drainage (Rosenzweig et al., 2018), and groundwater flooding, which occurs when the water table 
rises above the land surface (Macdonald et al., 2012). In coastal cities, flooding can also result from high 
tide conditions and storm surge, or combinations of these mechanisms with heavy or intense precipitation 
(Moftakhari et al., 2017; Zscheischler et al., 2018). While validated, high-skill models for coastal and fluvial 
flooding are available for research and practice (Georgas & Blumberg, 2010; Kauffeldt et al., 2016), models 
for pluvial and groundwater flooding remain in early stages of development.

Urban flooding already presents substantial socioeconomic risk. Between 1980 and 2018, direct economic 
losses due to floods have exceeded $1 trillion globally (US, 2018 values), with hundreds of thousands of lives 
lost (Munich, 2018; Winsemius et al., 2015). These socioeconomic losses tend to be concentrated in urban-
ized areas, where properties and assets are densely exposed (Peduzzi, 2017). In the absence of aggressive 
climate change mitigation, annual losses due to urban flooding are projected to increase more than tenfold 
by 2080 (Hallegatte et al., 2013; Winsemius et al., 2015).

UFMs can play a key role in flood risk assessment, facilitating the geospatial analysis of flood hazard, the 
probability that a flood of a given severity will occur at a site, with severity typically measured by hydraulic pa-
rameters such as flood depth or velocity (Arrighi & Campo, 2019; Crichton, 1999). Once flood hazard is delin-
eated, UFM results can be utilized to evaluate populations and properties that would potentially be exposed to 
flooding, as well as to evaluate resulting damages and financial losses (Hammond et al., 2015; Tsakiris, 2014).

Along with flood risk assessment, operational UFMs can play an essential role in real-time urban flood 
warning and emergency response (Hapuarachchi et al., 2011). UFMs are incorporated into these systems 
in two ways: In the first, scenarios of meteorological conditions are run in advance, and used to identify 
thresholds that result in impactful flooding (Collier, 2007); In the second, meteorological forecasts are as-
similated in real time, or near-real time, into UFMs and are used to provide warning for emergency respond-
ers and the general public (Hapuarachchi et al., 2011). The effectiveness of these systems is dependent on 
the type of model used, the availability and quality of input data, and the integration of the modeling results 
into city operations (Henonin et al., 2013).

UFMs also have the potential to play a critical role in development of urban flood resilience strategies. They 
can be used to evaluate scenarios of flood management strategy implementation under a variety of potential 
urbanization, weather and climate pathways. In combination with flood vulnerability assessment models 
(Hammond et al., 2015), results from UFMs can be used to evaluate the costs and benefits of flood resilience 
strategies (Lerer et al., 2017). However, use of UFMs to support resilience planning is heavily dependent on 
the capability of the model to represent both current conditions and the function of various management 
strategies, such as land use planning or the construction of gray and green infrastructure, under realistic 
operating conditions (Hemmati et al., 2020; Kaykhosravi, et al., 2018; Niazi et al., 2017). As cities plan multi-
billion dollar flood resilience initiatives (Aerts, Botzen, Moel, & Bowman, 2013; City of Copenhagen, 2012; 
NYCDEP/Ramboll, 2017), development and use of robust UFMs present a great value to support the opti-
mized design of these infrastructure and their operation.

2.  Limitations of Existing Urban Flood Modeling Frameworks
2.1.  Technical Limitations: Representation of Urban Flooding Processes

Existing UFMs vary in complexity, ranging from simple terrain-based routing models to hydrodynamic 
models that utilize physically based equations of fluid motion (Teng et al., 2017). Comprehensive reviews of 
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these models are provided by Bach et al. (2014), Salvadore et al. (2015), and WEF (2020). There are benefits 
and limitations associated with each approach: simpler models have fewer input data requirements and 
computational requirements, but are limited in their capability to accurately represent many urban flooding 
processes. More complex models are often limited by availability of input data for parameterization or in 
their capability to run rapidly enough to support real-time forecasting and warning (Costabile et al., 2020; 
Zanchetta & Coulibaly, 2020).

The recommended baseline UFM approach for flood risk assessment and resilience planning is a dual-drain-
age model that couples a one-dimensional hydrodynamic model of the stormwater drainage network with 
a two-dimensional hydrodynamic model of overland flow and inundation (Figure 1; Costabile et al., 2020; 
Vojinovic & Tutulic, 2009). Within each modeling component, water flow is represented by partial differen-
tial equations based on mass and momentum conservation principles and solved using numerical methods. 
Many dual-drainage modeling packages are commercially available; MIKE, Infoworks, and PCSWMM are 
examples of widely used models (Teng et al., 2017). However, licensing fees for these models can be prohib-
itively expensive for municipalities and researchers operating with limited budgets. These models can also 
require substantial computational resources, both in terms of capacity and computing time, particularly for 
studies of entire cities or when simulating longer duration events.

While dual-drainage models are primarily used to represent pluvial flooding processes, they can also be uti-
lized to represent coastal and riverine flooding, with varying complexity. For example, flow in streams and 
small rivers can be directly represented as part of a 1D drainage network, with overbank flow propagated 
in 2D space. Alternatively, large rivers and coastal waterways can be represented as boundary conditions 
at outfalls or the shoreline (Apel et al., 2016; Tanim & Goharian, 2020). However, nearly all dual-drainage 
models used today remain limited in their capability to represent key flooding processes, particularly those 
related to groundwater or the built environment. For example, infiltration of groundwater into stormwa-
ter drainage sewers can significantly impact their capacity to convey stormwater; this condition also can 
exacerbate flooding during intense rain events (Cahoon & Hanke, 2017). Groundwater flooding can also 
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Figure 1.  A graphic representation of coupling of two-dimensional overland flow and inundation with one-dimensional flow in the subterranean sewer 
network in a dual drainage model.
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result in direct inundation when the water table rises above the land surface, either due to tidal forcing 
or precipitation conditions (Sukop et al., 2018). Few existing dual-drainage models support coupling with 
a dynamic groundwater flow model, and those that do are limited in their representation of the interac-
tion of groundwater and subterranean infrastructure (Saksena et al., 2020) and the performance of infiltra-
tion-based green infrastructure (Massoudieh et al., 2017; Zhang & Chui, 2018).

In addition, although buildings and other structures can make up a substantial fraction of the area of dense 
urban watersheds, representation of their role in rainfall-runoff, flow routing, and storage remains simplistic 
in existing dual-drainage models (Bruwier et al., 2020; Chang, Wang, & Chen, 2015; Leandro & Martins, 2016). 
Existing dual drainage models are also rarely capable of representing system operations and societal practices 
that can influence flooding processes. For example, behaviors such as littering or improper disposal of clog-
ging substances in sewers can significantly increase flood risk (Alda-Vidal et al., 2020; Armitage, 2007), while 
infrastructure maintenance can play a key role in flood mitigation. Simulation of these processes using the 
parameterizations provided in existing UFMs remains challenging (Tscheikner-Gratl et al., 2019).

2.2.  Technical Limitations: Data Availability

The predictive skill of any dual drainage model is dependent on the availability of high-quality data on 
the urban sewer network, along with robust digital terrain models (DTMs; Adeogun et al., 2015). But in 
practice, most cities do not have such datasets, and public safety and liability concerns may restrict their 
access (Blumensaat, Wolfram, & Krebs, 2012). In older cities, storm drains may be centuries old, and poor-
ly represented in digitized maps. Even when digitized data of the full storm drain network are available, 
these datasets must be supplemented with information on sewer status in order to represent processes such 
as pipe clogging and deterioration that can significantly influence drainage capacity (Egger et al., 2013; 
Leitao et al., 2015). Also, while LiDAR-derived digital elevation models (DEMs) are becoming increasingly 
available for many cities, flood models are highly sensitive to representation of both the terrain and built 
environment, and thus significant errors remain even in high-resolution DEMs that explicitly represent 
built-environment features (Arrighi & Campo, 2019).

Meteorological data are also essential inputs to UFMs, but observational data are rarely available at finer 
spatial and temporal resolutions needed to accurately represent urban flooding processes. Urbanized wa-
tersheds are characterized by their rapid hydrologic responses to rainfall, and are particularly vulnerable to 
cloudburst events that can occur over small areas (Morin et al., 2009; Smith et al., 2013). Remotely sensed 
Quantitative Precipitation Estimates (QPEs) based on ground-based, dual-polarization radar observations 
offer great potential for enhanced representation of spatially variable rainfall. However, in practice, the 
use of these products in UFM remains limited. Many existing UFMs remain incapable of assimilating ra-
dar-based precipitation inputs and still require point data, or the assumption of uniform rainfall over mod-
eled catchments. Radar coverage remains limited in many countries and, where it is available, data discov-
ery and access can still present challenges for modelers (Seo et al., 2019; Skofronick-Jackson et al., 2017). In 
addition, while the recently available dual-polarization products generally offer improved QPEs compared 
to previous products, continued work is necessary to evaluate their associated uncertainty and develop im-
proved algorithms for use in urban areas (Cunha et al., 2013; Thorndahl et al., 2016).

Development of robust UFMs also depends on availability of observational data to support model calibra-
tion and validation, but direct monitoring of flood inundation extent, depth, and velocity is rarely conducted 
in dense urban areas (Gallien, 2016). As an alternative, a variety of proxies are being increasingly utilized, 
including insurance claim data, social media, or municipal flooding reports (Re et al., 2019; Yu et al. 2016; 
Zischg et  al.,  2018). Physical modeling in a laboratory can also support evaluation of flow processes in 
highly urbanized environments (Mignot et al., 2019). But while both of these approaches are valuable for 
model evaluation, they are an inadequate substitute for hydrologic monitoring of field conditions.

2.3.  Institutional Barriers

Institutional barriers present additional challenges for overcoming technical limitations. Urban flooding 
often does not fit into conventional domains or geographic boundaries of governance. For example, in the 
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United States, most resources for stormwater infrastructure modeling are focused on water quality legis-
lation promulgated by the U.S. Environmental Protection Agency (Bahadur & Samuels, 2020). Most flood 
modeling is conducted to meet requirements of the Federal Emergency Management Agency and has typ-
ically focused only on fluvial or coastal flooding (Knowles & Kunreuther, 2014). As a result, in most U.S. 
cities, the role of the storm sewer system and other dominant SETS components are neglected in this mode-
ling. UFM is primarily conduced on an as-needed basis at the city scale, in the absence of broad institutional 
support and regulatory mandates. Additionally, even within cities, governance is often fragmented with no 
single entity in charge of urban flooding (Casiano Flores et al., 2019). This fragmentation presents challeng-
es for obtaining funding, accessing cross-jurisdictional data, and institutionalization of UFM results into 
flood mitigation practices (Rosenzweig et al., 2019).

3.  A Research Agenda for Urban Flood Modeling
In light of these technical and institutional barriers, we propose the following research agenda to support 
development of UFMs and knowledge systems to facilitate their utilization.

3.1.  Model Development

Most dual drainage models were developed through coupling code for an existing 1D sewer model with that 
of an existing 2D overland flow model using simplified approaches to represent flow through manholes and 
catch basin inlets (A. S. Chen et al., 2016). Recent studies have demonstrated that flood model results are 
sensitive to the approach used to represent these linkages (Chang et al., 2018; Martins et al., 2018). More ro-
bust and flexible options for linking model subdomains should be prioritized in future model development 
(A. S. Chen et al., 2016; Leandro & Martins, 2016).

In addition to improved representation of coupling between sewer and overland flow, UFMs should be 
developed to improve representation and linkages with other domains, such as aquifers, coastal waters, 
and built environment. Green infrastructure systems remain particularly limited in their representation in 
UFMs, even though they are increasingly incorporated in flood resilience planning. Improved representa-
tion of green roofs, rain gardens, and cloudburst roads and plazas should be prioritized in future model 
development. In cities, human behavior and societal operations can also play a significant role in urban 
flooding processes, which presents an opportunity for novel development to better represent social systems 
and practices in UFMs.

Any UFM development effort should have dual-priorities of optimizing model performance and increasing 
model accessibility. We recommend that the ultimate goal in this effort should be development of models 
that support sustained, integrated simulation of urban watersheds. Such models could be used to identify 
strategies that provide synergistic benefits for urban water supply and quality management, along with 
flood resilience.

3.2.  Monitoring and Experimental Sewersheds

The foundations of much of modern hydrology were established through experimental watershed studies, 
where long-term, intensive monitoring is conducted on a focused study site (Hewlett et al., 1969). While 
experimental watershed studies have had a major influence on development of both conceptual and numer-
ical hydrologic models (Tetzlaff et al., 2017), few of these studies have been conducted in urban settings, 
particularly those that were highly built-up and dominated by sewer drainage (Belt et al., 2014; Kaushal & 
Belt, 2012). Although resource-intensive, dedicated experimental sewershed studies are necessary to pro-
vide observational data for direct use in model calibration and validation and to advance our conceptual 
understanding of urban hydrologic processes to support UFM development.

The urban environment amplifies many well-known challenges associated with in situ hydrologic data col-
lection (Burt & McDonnell, 2015). In cities, fieldwork must be conducted with minimal disruption to urban 
activities and with consideration of private property restrictions and public safety concerns. Recent advanc-
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es in crowd-sourcing, citizen science, and in situ sensing provide many opportunities to collect needed data, 
while engaging the public in science (Paul et al., 2018). Some urban field sites may involve confined spaces, 
contaminants, and other conditions that are hazardous to researchers and instrumentation. However, de-
velopment of high-skill UFM depends on conducting this work. Research to support development of instru-
mentation and best practices for urban field monitoring should be prioritized to address these challenges.

3.3.  Facilitating Researcher/Practitioner Collaboration

Robust UFM development and monitoring research will depend on development of new approaches to 
facilitate collaboration between practitioners and academic researchers. For example, in the United States, 
academic researchers conducting advanced graduate or postdoctoral work may develop novel UFMs, but 
disconnects often exist between their obligation to publish studies in high-impact journals and the UFM 
development needs of practitioners, which typically require labor-intensive and expensive work that is not 
viewed as novel by many journals and research funders. As a result, there has been limited collobaration 
among academic reseachers and practitioners on developing UFMs for flood risk and resilience assessment 
that can be applicable in cities. Cities often rely on private sector consultants for both UFM development 
and monitoring to support UFM studies. While the private consulting works often respond to direct needs 
of cities in a timely manner, model advancements made during these works are usually exclusive, and not 
available for broader use or to researchers working on UFM improvements.

Some cities, including New York City and Copenhagen, have recently begun exploring “town-gown” 
partnerships involving municipal engineers, private sector consultants, and academic researchers (Mat-
thews, 2013). While these collaborations have been valuable for studies using existing models and play an 
important role in the training of future professionals, they have not yet been utilized to support novel UFM 
development and full institutionalization of novel UFM into urban operations. We recommend building 
on these types of partnerships to establish dedicated UFM collaboration initiatives. Such initiatives would 
serve as hubs for novel UFM development and facilitate critical knowledge generation and sharing and 
the exchange of data, best practices, and experiences with UFM between cities and amongst stakeholders 
(Gan et al., 2020). Initial partnership UFM studies—even if limited by existing institutional barriers—can 
demonstrate the value of UFM and, ideally, the need for broader institutional support for this work.

4.  Conclusions
Urban flood modeling has been recognized as a particularly challenging endeavor for nearly half a century 
(McPherson & Schneider, 1974). Despite substantial advances in computational hardware, environmental 
sensing, and information technology, UFMs remain limited in their capability to support flood resilience 
practice. Research to advance model development, facilitate intensive watershed monitoring for model pa-
rameterization and validation, and support collaboration between researchers and practitioners should be 
prioritized. These initiatives may present a substantial, expensive effort, but will still be of great value as 
society faces the dual challenges of rapid urbanization and climate change in coming decades.
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