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ABSTRACT

A scale-independent model for the interaction between multivariant phase transformations (PTs) and dis-
crete shear bands is advanced and utilized to simulate plastic strain-induced PTs at high pressure. The
model includes a scale-free phase-field theory for martensitic PTs. The localized shear bands are intro-
duced via a contact problem formulation. That is, the continuous distribution of sliding displacements
along the prescribed slip surfaces is modeled to reproduce the plastic-strain-induced stress concentrators
necessary for nucleation of a high-pressure phase (HPP). The strain-induced PTs in the bi/polycrystalline
samples subjected to compression and shear are studied. The simulations show a severe reduction in
the PT pressure by the plastic shear in comparison to a hydrostatic condition, even below the phase
equilibrium pressure, like in known experiments. Transformation kinetics versus shear strain for each
martensitic variant and the volume fraction of the HPP in individual grains and the entire aggregate are
determined. The stationary volume fraction of the HPP is the same for polycrystals consisting of 13 and
38 grains, and a further shearing does not cause PT. The local phase equilibrium condition based on the
transformation-work criterion is satisfied at almost all stationary phase interfaces. A similar phase equi-
librium condition in terms of stresses averaged over the entire polycrystal or HPP is fulfilled. These results
are important for the development of the microscale kinetic equations and modeling the sample behav-
ior in traditional and rotational diamond anvils during the high-pressure torsion, ball milling, friction,

and other deformation-transformation processes.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The interaction between PTs and plasticity considerably impacts
mechanical properties [1]. Experimental studies in rotational ce-
ramic/diamond anvils show that the superposition of large plastic
shear and high pressure results in the production of new phases,
which cannot be seen under hydrostatic conditions [2-8]. While
many exciting phenomena, such as appearance of new phases
and retaining of metastable phases at normal pressure, occur dur-
ing shearing under high-pressure [3,4], a significant reduction in
the PT pressure is the focus of the current study. As reported in
[7,9-12], in comparison to the hydrostatic loading, the transforma-
tion pressure for various PTs (e.g., from hexagonal BN to super-

* Corresponding author at: Department of Aerospace Engineering, lowa State Uni-
versity, Ames, IA 50011, USA.
E-mail address: vlevitas@iastate.edu (V.1. Levitas).

https://doi.org/10.1016/j.actamat.2020.06.059

1359-6454/© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

hard wurtzitic BN [10], and from « to 8 phase in Zr and its alloys
[11-13]) can be reduced by a factor of 2 to 10 due to plastic de-
formations. A more dramatic reduction in the PT pressure, by two
orders of magnitude, is observed for graphite to diamond PT in
[14] due to an applied plastic shear.

The critical point to understanding this phenomenon is that
there is a primary distinction between stress or pressure-induced
PTs from one side and plastic strain-induced PTs under a high-
pressure condition from the other side [3,4]. Pre-existing defects
usually trigger the former. Since the number of these stress con-
centrators remains limited, the applied pressure must be increased
significantly to activate nucleation sites with a lower potency
(stress concentration). For plastic strain-induced PTs, nucleation of
martensite or HPP occurs at the defects (shear-bands, shear-band
and twin intersections, and dislocation pileups), generated in the
course of the plastic straining.
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The effective mechanism of reducing the PT pressure by plas-
tic shear due to the concentration of all stress components at the
tip of the dislocation pileups is justified analytically in [3,4]. The
magnitude of all stress components is proportional to the number
of dislocations in pileups, which can be increased substantially by
increasing the plastic strain at a constant applied pressure. A more
accurate and detailed description of the interaction between dis-
crete dislocations and PT is presented in [15-17] by employing a
nanoscale phase-field approach (PFA).

As a major difficulty in a traditional PFA, one needs to numer-
ically resolve the interface widths and the dislocation core (which
are around 1 nm). The mesh-independent solutions are numeri-
cally obtained by introducing at least 4-5 FEs across the interfaces.
This requirement computationally restricts the PFA to sample sizes
smaller than 1 pm, which is significantly smaller than a realistic
grain size (i.e.,, 10-1000 wm or even larger). To overcome this com-
putational issue, some theories were developed [18] in which the
interface width is artificially widened by three orders of magni-
tude (i.e., from 1 nm to 1 wm) while the interface energy remains
the same. As a consequence, the stress/temperature hysteresis is
proportionally reduced [19], and for the perfect crystals, barrierless
nucleation starts near the phase equilibrium stress. The reduction
in the stress hysteresis contrasts with the considerable pressure
and stress hysteresis in the experiments for many PTs, especially at
high pressures. As an example, for a graphite-diamond PT at zero
temperature and hydrostatic pressure [14], the equilibrium pres-
sure (2.45 GPa) is approximately two orders of magnitude smaller
than the lattice instability and the PT pressure (250 GPa) for an
ideal graphite crystal. In quasi-hydrostatic experiments, the pres-
sure required to transform a real (defective) graphite crystal to di-
amond, 70 GPa, is also much higher than the phase equilibrium
pressure.

A microscale PFA approach to study the martensitic PT was ini-
tially proposed in [20,21] and advanced in [19]. This model has
been applied to reproduce discrete martensitic microstructures in
samples greater than 100 nm with no upper limits. In this study,
the volume fraction of the martensite, c, is the order parameter
which is responsible for the material instability due to strain soft-
ening. This instability leads to the transformation strain localiza-
tion, and consequently a discrete martensitic microstructure. This
is opposed to the traditional micromechanical or phenomenologi-
cal models [22,23], in which a smeared distribution of martensite
is obtained due to the lack of material instabilities. The volume
fractions of martensitic variants are just internal variables and not
the order parameters, i.e., no interfaces between martensitic vari-
ants are reproduced. One can expect a highly mesh-dependent so-
lution as a result of dropping the gradient term to make the model
scale-independent. However, as examined in [19], this scale-free
model is practically mesh-independent since unstable regions are
limited to narrow interfaces between phases with the width of a
single FE. We utilize this approach to describe the transformational
part of our model, which is developed to examine the interaction
between the PT and discrete dislocations. A summary of formula-
tions for this part of the model can be found in the supplemental
material [24].

Concerning the PFA to perfect dislocations, upscaling [25,26] is
done by increasing the dislocation height while the Burgers vector
is fixed. This assumption, however, decreases the stress concen-
tration and the transformation shear proportionally. The coupling
between discrete dislocations and martensitic transformations was
described within a nanoscale PFA [15-17,27,28] in a nano-sized
bicrystal.

In this paper, we elaborate on a scale-free model for the in-
teraction between PT and localized plasticity, which has been in-
troduced recently in [29], and implement it for several detailed
simulations of the relevant model problems. The key innovation of

this model is a scale-free replication of the dislocation pileup-like
stress concentrators as the main mechanism for the nucleation and
evolution of the plastic-strain-induced martensitic phase. To this
end, we propose a contact problem formulation to simulate gen-
eration and continuous evolution of multiple dislocations in pile-
ups along the prescribed slip surfaces, in combination with the
scale-free PFA from [19-21]. The same formalism is applied if in-
stead of dislocation pileups [30] one treats thin twines [31], shear
bands [32], or shear cracks [33]. ABAQUS FE code is used to imple-
ment our model through the user subroutines for defining material
and frictional behaviors [34]. It is demonstrated that although the
model presented herein is much simpler than the nanoscale PFA
models in [15-17,27,28], it is fully able to reproduce the stress field
of a single dislocation and the microstructure evolution of HPP at
evolving dislocations in a bicrystal sample subjected to compres-
sion and shear. The model does not possess a characteristic size
that should be resolved with several finite elements, and is conse-
quently scale-free, and can be implemented to a sample size from
tens of nm to km, e.g., for geophysical applications. For geometri-
cally similar bicrystal samples, the model produces similar stress
fields, evolution and stationary state of the HPP morphology, and
the relative sliding (i.e.,, number of dislocations within each slip
system) proportional to the sample size. For the nanoscale bicrys-
tal, our much simpler scale-free model produces very similar re-
sults to the single-variant nanoscale PFA in [15-17]. After showing
the efficiency of the new model, we solve problems on the inter-
action between two-variant PT and localized plasticity in a poly-
crystalline aggregate under compression and shear. The shape and
orientation of the grains were generated by utilizing DREAM.3D
[35] and MTEX [36]. This work illuminates how localized plastic
deformation drastically reduces the PT pressure in known experi-
ments [7,9-14]. Our preliminary results with a simplified version
of the model and a polycrystalline aggregate with 3 times smaller
number of grains are published in [29].

Here, vectors and tensors are designated with boldface letter;
A - B and A: B represent the contraction and double contractions
of two tensors, respectively; subscript s designates the symmetric
part of the tensor; A stands for the average of A over the grain; and
A defines the average of A over the whole sample. All grain orien-
tations are specified in the Bunge-Euler convention [37], and crys-
tals are initially defect-free. Moreover, two Bunge angles ¢ = 135°
and ¢, = 0° are constant in this study, and ¢ (describing rotation
about the out-of-plane normal) varies for each grain and are iden-
tified for each example.

2. Dislocations via contact problem

According to the definition expressed in [30,31], a dislocation is
produced by a relative sliding of two sides of a cut (slip plane)
in an elastic continuum, by a Burgers vector b, while the nor-
mal components of the displacement and the traction across the
cut remain continuous. Along the same line, one can define multi-
ple continuously distributed dislocations by the relative sliding us
along the same slip surface. Similar continuity conditions for the
normal components of the displacement and the traction across
the contact surface are applied for the relative sliding in a contact
problem between the two deformable bodies [34,38]. This was the
reason for us [29] to propose a model with a continuous distribu-
tion of dislocations by solving the contact problem. Previously, the
contact problem was used in [39,40] to model dislocations along
the fixed or moving semicoherent phase interface. A similar proce-
dure, but for single dislocation, called “cut-displace-glue” was re-
cently analyzed in [41].

While in [29], the simplest sliding rules were given, here we
present a more general formulation. Within a slip plane i, the slid-
ing u?j occurs along the specific slip directions ji determined by
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crystallography, and the sliding rate is determined by Schmid’s law
and the flow rule:

3 0 if
us. = o .
Y qij(|ij . w3, op)sign(ry) - if

where t;; is the resolved shear stress, ‘L'I.s. is the athermal resistance

7] < 755, o)

75| > 75 (. o).

(1)

to sliding, o/} is the normal stress at the ith slip plane, and gij is a
function determined from experiments. Sliding displacements uj},
for the other slip systems can be also arguments in functions in
Eq. (1).

Continuity of the normal displacements and traction is ex-
pressed as

nl _ ,n2.
ui _ui N

Oy = Opy; Ty =15, (2)

where t! is the shear stress vector at the ith slip plane. When the

effect of viscosity is neglected, Eq. (1) is substituted with its rate-
independent counterpart:

0 if |7;| < 7(uj;, o) or |w;l = 75(u5;, o)
o and sign(t;j)t; < fiﬁ(ufj,o,j); )
T luglsign(ry) £ 0 if |1y = Th(u. o))
and sign (i)t = t5(u5;, o)),

where [i°| is determined from the consistency condition
sign(r,vj)r',-j:fé(ufj,o,i). The rate-independent formulation as-
sumes that the shear stress relaxation to 7. happens instantly
and the kinetics of dislocation motion is very fast until the
equilibrium configuration is reached. In combination with finite-
rate PT kinetics, this means that the motion of dislocation and
plastic relaxation processes are much faster than PT. Equation
|7ij] :rig(ufj,a,i) resembles the local equilibrium equation be-
tween the resolved shear stresses and athermal resistance to slip
for continuously distributed dislocations [30,31].

When we neglect the dependence of rlﬁ. on ufj and o}, i.e., for
constant tﬁ, Eq. (3) reduces to

. 0 if |5l < T or |7ij| = TS and sign(t;;)t; < 0; ()
U, =
ij . . . .
|u§j|51gn(t,-j) #0 if || = rl.‘j. and t; =0.

Finally, for the current 2D applications, for which there is only one
slip direction for each slip plane, we simplify Eq. (4) to

N 0 if |5| < 7f or |5l =7f and sign(z;)7; < 0;
i = (5)

w|sign(t;) #0 if |t;| =1° and 7; =0.
1 1

For multiphase materials, the critical resolved shear stress ti‘j de-
pends on phases, and if a certain portion of the slip plane is lo-
cated along the phase interface, the smallest 7} is used.

A similar presentation is valid for thin twins along the twin-
ning plane i with shear direction j, which can be modeled by the
motion of partial (twinning) dislocations [31]. The number of dis-
locations (complete or partial) along each slip direction is deter-
mined by n;; = |ufj|/|bij|. Since shear cracks can also be presented
as dislocation pileups [33], they can be included in our formulation
as well. Similar, macroscopic shear bands, which may not coincide
with crystallographic slip planes and directions [32], are also in-
cluded in the current formalism.

The only difference between all these mechanisms is in the
specific sliding rules in Eq. (1), while the continuity conditions
Eq. (2) apply to all of them. Since the evolution of the continuously
distributed dislocations or localized shears along discrete slip sur-
faces is now formulated as the contact problem in continuum me-
chanics, well-developed FEM algorithms and codes [34,38] for the
solution of contact problems are available.

The Burgers vector or, more generally, sliding displacement
ufj is the only spatial scale parameter in the contact problem.
In contrast to the nanoscale PFA to dislocations [15-17,42], for
which characteristic length should be resolved with 4-6 integra-
tion points, displacement uf; should not be resolved and can be
significantly smaller than the size of a single element. Thus, this
model is scale-independent and therefore can be used for arbitrary
large samples. Our scale-free PFA for multivariant martensitic PTs
[19-21] is presented in the supplementary material [24].

3. Numerical results and discussion

The simplest formulation of the model is utilized in the sim-
ulations. The phase transformations between body-centered cubic
(bcc) low-pressure phase (LPP) and body-centered tetragonal (bct)
high-pressure phase (HPP) along with dislocation slip are studied.
Since temperature does not change during shearing in rotational
diamond anvils due to small sample thickness and high thermal
conductivity of diamonds, isothermal processes at room tempera-
ture are considered.

A complete system of equations and material parameters are
presented in the supplemental material. Similar to all previous
studies on this topic [3,4,15-17,29], we consider a generic model
material. To work with a specific material, significant coupled high-
pressure-shear and microstructural experiments with the multi-
scale theory should be performed for parameter identification, see
[8]. That is why we use the simplest model, in particular with
small elastic strain and linear elasticity. The most important mate-
rial parameters are as follows: the thermal energy difference be-
tween HPP and LPP AG? =1.0 GPa (6 is the temperature); the
phase equilibrium pressure between HPP and LPP p, = 10 GPa; the
lattice instability pressure for the LPP p, = 20 GPa, and the trans-
formation strains are & = &y = —0.05 and &gy = 0.2. We assume
that the critical resolved shear stress, T = 1.0 GPa for the bicrystal
problems and 7. = 0.3 GPa for a polycrystal, is the same for all slip
systems for the LPP and both martensitic variants of the HPP.

A complete numerical simulation should consider a 3-D poly-
crystalline aggregate with a minimum of a thousand grains which
have various orientations with respect to the sample frame. The
body centered-cubic lattice includes more than 12 equivalent slip
systems, each should be introduced in the simulation by a distinct
contact surface. However, involving the contact and the strain-
softening dramatically increases nonlinearities of the formulation,
which leads to numerical convergence issues and very long simu-
lation time. That is why, similar to [29], we consider multiple 2-D
examples for bicrystal and a polycrystalline aggregate and a limited
number of active slip systems as the best compromise between
computationally cost-effective formulation and a physical adequate
one.

The model is implemented in FE code ABAQUS [34] using user
material (UMAT) subroutine. The shear crack definition in ABAQUS
gives us the capability to introduce contact pairs in the middle of
our samples and in many regions without defining several parts in
contact. ABAQUS FRIC subroutine allows us to implement the cho-
sen contact friction formulation. Also, the proper mesh, the grain
structures and orientations, and the corresponding slip systems
are produced by MTEX [36] and DREAM.3D [35]. Quadratic plane
strain elements are utilized in order to improve the convergence
for straight edge dislocations that we have considered for sev-
eral problems. Finding active slip systems is a hotly debated topic
in the plastic deformation of bcc crystals. {110} < 111 > is the
most preferred deformation mode; however, sliding along other
slip systems, {112} < 111 > and {123} < 111 > are also observed
[43]. The transmission electron microscopy investigations revealed
that plastic deformation mainly occurs along {110} < 111 > and
{112} < 111 > slip systems [44]. Considering the plane strain con-
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Fig. 1. A comparison of the stress fields near a dislocation obtained in our FE sim-
ulation and the analytical solution from [30].

ditions implemented in this study, {112} < 111 > slip systems
must be selected, which are assumed to be inherited by the bct
crystal during PT.

Stress fields near a single dislocation. A single dislocation is in-
troduced by prescribing homogeneous sliding displacement ug =
|us| = |b| along a contact line in a half of a relatively large sam-
ple. Linear quadrilateral elements with the mesh size of 0.3b are
utilized. Numerical results for shear and normal stresses are in a
good agreement with the analytical solution [30] (see Fig. 1) for
a distance larger than 0.3b from the dislocation position, which is
well within the dislocation core. This consistency confirms the fea-
sibility of representing dislocations by the contact definition as a
practical approach.

3.1. Strain-induced phase transformation in a bicrystal

Sample. To begin with, we solve a problem on PT induced by
the dislocation pileup in a bicrystal, similar to that in [15], where
an advanced nanoscale PFA was applied to study the evolution of
both HPP and dislocations. Respecting the same conditions as in
[15] for the sake of comparison, we consider a sample with the
size of 50 x 30 which consists of (see Fig. 2): (a) two rectangular
grains with the size of h x L =25 x 20 each, in which PT and/or
the sliding problem (to imitate the dislocation pileup on the grain
boundary) are solved; here h and L are the height and widths of
the grains; (b) two rectangles above and below the bicrystal hav-
ing the size of 50 x 5, which are simulating the elastic accom-
modation of the surrounding grains. In these two regions, only the
elastic problem is studied.

Two types of loading are considered.

« Type-1: the PT is allowed in the right grain after reaching the
stationary state for the dislocation solution in the left grain.

« Type-2: PT and dislocations are evolving simultaneously from
the beginning of applying the shear strain.

Pressure-induced nucleation at a single dislocation. A single dis-
location as a nucleation site was introduced at the center of the
sample by producing uniform shear along the contact surface. A
homogeneous normal stress was applied along all the external sur-
faces reproducing the hydrostatic loading of a crystal. The mini-
mum hydrostatic pressure for nucleation of the HPP is p, = 14.70

O'ni U

T T
Slip System
(211)[1 11]

L

Fig. 2. The stationary solution for a bicrystal under compression and shear at y =
0.2. The interaction between the dislocation pileup and the grain boundary in the
left grain leads to the phase transformation from LPP (blue) to HPP (red) in the
right grain. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

GPa. This nucleation pressure is not far from p, = 15.75 GPa re-
ported in [15] by utilizing a nanoscale PFA.

Bicrystal under compression and shear. In Fig. 2, the top side
of the bicrystal system is under a constant uniformly distributed
Cauchy (true) stress o, and a homogeneous horizontal displace-
ment, u, expressed by macroscopic shear strain y = u/h. Periodic
boundary conditions for displacements are implemented at the
lateral sides, and a zero displacement is applied at the bottom
side. Initially, the both grains are completely in LPP, and we study
the PT without plasticity in the right grain, and plasticity with-
out PT in the left grain, along a horizontal contact line as an ac-
tive slip system. For analysis of the PT, the 2D version of pressure,
p = —0.5(ox + 0y), is used, since for &, = &y and plane strain con-
ditions, it contributes to the transformation work. Before applying
the shear, the vertical stress o, = 3.05 GPa is applied which pro-
duces an averaged pressure of 2.0 GPa in each grain. The loading
type-1 is considered. At constant o, during a gradual application
of the shear strain y to the top edge, the contact surfaces start
slipping when the shear stress along the slip direction reaches ..
This leads to relative displacements of upper and lower sides of
the contact surface, which produce pairs of dislocations with dif-
ferent signs. With increasing y, more pairs of dislocations nucleate.
The motion of these dislocations to the grain boundaries produces
a pileup at the middle of the grain boundary, and steps from both
sides of the sample. For y = 0.2, the stationary state with the rel-
ative displacement corresponding to 7|b| appears, which indicates
a pileup with the same number of dislocations as reported in [15].

For the sake of comparison, the results for the same bicrystal
and loading in [15] are exhibited in Fig. 3(a) and (b). In Fig. 4(a),
the evolution of martensite microstructure in the right grain is
presented. Because of the high stress concentrations at the tip of
dislocation pileups, two HPP regions are nucleating and growing.
Since two pileups are quite close to each other, these HPP plates
start interacting which results in a coalescence and a morpholog-
ical transition with the final averaged concentration of the HPP
¢ =0.58 (versus ¢ =0.51 in [15]). Moreover, a close similarity be-
tween the HPP morphology achieved by the current method and
the one in [15] (see Fig. 3(a) and (b)) is evident. This resemblance
proves that the current scale-independent model is effectively able
to simulate the results by a far more sophisticated PFA, which is
computationally restricted to nanoscale samples.

It should be noted that experimentally, the averaged pressure
and shear over the sample are measured after the completion of
PT. Therefore, at the stationary state of the PT and due to a vol-
ume reduction in the right grain, the pressure averaged over both
grains is dropped to p = 0.07 GPa, i.e., more than 100 times lower
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Fig. 3. Comparisons between the evolution of the HPP and dislocations in the right grain for the results reported in [15] (rows a and c), and the results presented in this
study (rows b and d). The applied shear strain y = 0.2, loading type-1, and ¢; = 69.7°. In (a) and (b) solutions are without dislocations in the right grain, and in (c) and (d)

with dislocations.

than p, = 14.7 GPa for the hydrostatic conditions. Thus, our model
describes the severe PT pressure reduction due to a plastic shear
in the experimental results, by one order of magnitude in [7,9-
12] and even two orders of magnitude for PT from graphite to cu-
bic diamond [14]. Note that PT pressure under shear is also sig-
nificantly below the phase equilibrium pressure under hydrostatic
conditions, 10 GPa, like in some experiments [7,13].

In Fig. 3(c) and (d), the dislocation activities are involved in the
right grain by introducing two slip systems with + 15° to the x
axis, to replicate the geometry presented by [15]. Also, we allow
the PT and sliding in the right grain just after dislocations reach
a stationary configuration in the left grain. Due to instantaneous
dislocation kinetics Eq. (4), dislocation evolution and stress relax-
ation are significantly faster than the PT, i.e., the PT are suppressed.
This is the main reason for the difference in HPP evolutions in
Fig. 3(c) [15] and the current result in Fig. 3(d). Instead of two
nuclei in Fig. 3(d) at the tips of the dislocation pileup in the ad-
joining grains, only one nucleation is observed. However, two other
nuclei appeared in the regions with extra atomic planes and high
compressive stresses at dislocation pileups in the same grains. The
transformed regions do not pass the slip planes due to the ather-
mal resistance to the interface motion, which is produced by the
tensile stresses caused by missing atomic planes. In total, the HPP
is much smaller than one in Fig. 2(a). Still, like in the nanoscale
PFA [15,16], it is possible to produce such pressure-shear loadings
that PT takes over the dislocation plasticity. The results essentially
depend on the orientation of grains.

Fig. 4( b) presents a loading scenario for which PT and disloca-
tions are included from the beginning of applying the shear (load-
ing type-2). The prescribed shear, y, applied normal stress, o, at
the top, and all the boundary conditions are the same as in the
above example. The different morphology for this loading condi-
tion can be understood by making a comparison of the stress field
near the dislocation pileup for both cases (see Figs. 6 and 7). It
is evident that the stress concentration at the pileup is initially

smaller than the corresponding values for the loading type-1. In
Fig. 7, the evolutions of pressure and shear for the right grain are
presented by isolines for the loading type-2. Because dislocations
in the left grain are not in their stationary states yet, the stress
concentrators at the pile up are less effective than for the loading
type-1 scenario. However, when both dislocations in the left grain,
and HPP in the right grain reach their stationary states, the stress
field is approximately similar to the one presented in Fig. 6. As
a result, for the loading type-2, the HPP concentration (¢ = 0.56),
and the pressure averaged over the both grains (p = 0.1 GPa) are
insignificantly different from those for the loading type-1.

To illustrate the effect of changing the sample size on the
martensitic microstructure and the number of dislocations, in
Fig. 5, we consider one, two, and three orders of magnitude larger
samples in length and height with the same boundary and loading
conditions as explained in Fig. 2, as well as the same Burgers vec-
tor. The microstructure evolution of HPP for all of these samples
is exactly the same; in Fig. 5, one of them is demonstrated as a
representative of all the cases. As a result of the same stationary
solution for the HPP, the average pressure, shear, volume fraction
of martensite, and transformation work are the same. As one may
see in the Fig. 5, the maximum number of dislocations, and the
scale factor are in a proportional relationship. This can be inter-
preted as the only reason that the same morphology of the HPP
is produced. Also, in Fig. 5, the distribution profiles of the dislo-
cations along the slip plane are exactly the same at the stationary
state for all the sample sizes. All these results confirm that our
model is scale-independent.

A change in the orientation of the right grain is not changing
the stationary dislocation configuration in the left grain; however,
from a comparison between Fig. 4(a) and (c¢) (both subjected to
the loading type-1), a profound effect of the grain orientation on
the HPP morphology is visible. In Fig. 4(d), we include the plastic-
ity with the PT in the right grain (¢; = 89.7°) by predefining two
slip systems with a =+ 35.26° angle with respect to the x axis (the
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Fig. 4. (a): HPP nucleation and evolution for ¢; = 69.7° and loading type-1. (b): HPP nucleation and evolution for ¢; = 69.7° and loading type-2. (c): HPP nucleation
and evolution for ¢, =89.7° and loading type-1. (d): Concurrent nucleation and evolution of the dislocations and HPP for ¢; = 89.7° and loading type-1. Bottom row:
transformation work contour lines. White isolines for stationary solutions represent the equilibrium transformation work, o : & = AG?(#) = 1.0 GPa. Since they are very
close to the most of interfaces, the local phase interface thermodynamic equilibrium condition is met.

coordinate system is defined in Fig. 2). Due to a rate-independent
kinetics for dislocations in Eq. (4), they nucleate and grow faster
than PT in this case, and the stress relaxation is more related to
dislocation motions than to the PT. HPP nuclei appear initially at
the pileups, and two of them coalesce. There is a small region of
HPP in the left side of the right grain which is due to the disloca-
tion pileup which resulted from the appearance of the dislocations
near a small region. Since the nucleation of the dislocations intro-
duces an athermal friction for the HPP evolution, microstructures
are confined near the slip planes [42,45]. The source of this ather-
mal interface friction is tensile stresses in the region where atomic
planes are missing. However, from the other side of the slip planes,
extra planes producing dislocations provide considerable compres-
sive stress concentrators, i.e., they promote the nucleation and sta-
bilization of HPP as the new nucleation sites. The concentration
of the HPP in Fig. 4(d) (¢ = 0.35) is lower than Fig. 4(c) (¢ = 0.48)
due to the stress relaxation mechanism introduced by the slip sys-
tems. In other words, the plasticity plays two opposite roles: it
provides dislocation pileups which are strong stress concentrators
leading to the nucleation of the HPP regions; on the other hand,
it relaxes the stresses formed during the evolution of dislocations
on the slip systems. Depending on the deformation mechanisms,
orientation of the grains, crystal lattices of the parent and prod-
uct phases, and the loading conditions, the plasticity effects can be
controlled [15,16].

The contour lines of the pressure and the shear stress evolu-
tions are drawn in Fig. 6 and Fig. 7 for different microstructures
presented in Fig. 4(a) and (b), including stationary solutions at the
end. For the pressure distribution, the first distinguishable point is
that there are both negative and positive pressures around the tip
of pileups which can cause direct and reverse PT. In Fig. 6, there
are negative (tensile) pressures in the most regions of the grain,
due to the relatively high volume reductions during the PT, and
a positive pressure in the LPP near the corners. At the beginning,
the transformed regions are surrounded by high negative pressures
(=7 < p < =5 GPa); however, at the stationary solutions, they are
surrounded by lower negative pressures (—3 < p < —2 GPa). On the
other hand, in Fig. 7, the phase interface is close to the positive
pressure at the beginning, and because of a considerable volume
reduction in the HPP, they are embraced by negative pressures at
the end. Also, in Fig. 6, the shear stress and pressure remain almost
the same near the pileups since in Fig. 4(a), the loading of type-1
is applied, in contrast to Fig. 7 in which the shear stress concen-
tration increases during the loading. While pressure is well below
the phase equilibrium pressure and is even tensile, very large shear
stresses contribute to the phase equilibrium condition at the phase
interfaces.

The local thermodynamic phase equilibrium condition for any
material point belonging to the sharp interface in elastoplastic ma-
terial is X = 0, where X is the thermodynamic driving force for in-
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Fig. 5. The effect of changes in the size of the sample on the number of disloca-
tions, n. Loading scenario (type-1), boundary conditions, and the morphology of the
HPP remain the same as presented in Fig. 2. The legend shows the scale factor for
each sample.

terface motion. For neglected surface energy, X is the Eshelby driv-
ing force minus plastic work at the interface, see [46-48]. When
also the elastic properties of both phases are the same, equation
for X simplifies to X = o : & — AG? (9). Then the local thermody-
namic phase equilibrium condition for a material point that be-
longs to the sharp interface looks like

o:6 = AG’(0) =1.0GPa. (6)

Here, o: &; is the transformation work (mechanical part of the
driving force for the PT). The transformation work isolines for the
stationary solution for several cases are plotted in the last row
of Fig. 4. As one can see, the LPP-HPP interfaces are mostly co-
inciding with the o : &, = 1.0 GPa isolines, which is in agreement
with the nanoscale PFA containing gradient energy [16,17]. One can
surprisingly observe from Eq. (6) that the plastic strain does not
contribute explicitly to the local phase equilibrium condition, but
it is involved indirectly by changing the local stresses. Thus, ne-
glecting the gradient energy in the current scale-free model for
PT does not introduce an additional athermal resistance to the in-
terface motion. In addition, the thermodynamic equilibrium condi-
tions for the interfaces within the nanoscale and scale-free PFA are
the same.

The evolution of the volume fraction of HPP, ¢ € [0, 1], and
the pressure averaged over the right and both grains are depicted
in Fig. 8 for ¢; = 89.7°. For the case with excluded plasticity in

0.66

the right grain, Fig. 8(a), the average pressure over both grains de-
creases from 2 GPa to a value close to zero (P = 0.11 GPa). A clear
correlation can be recognized by seeing ¢ and P curves. The nu-
cleation and growth of the HPP significantly reduce the pressure
averaged over the entire sample due to a considerable reduction
in the volume in the right grain during the PT. This happens be-
cause the volumetric transformation strain is compressive, and any
increase in the volume fraction of the HPP leads to the volume re-
duction in the grain. Due to the shear stress relaxation in the right
grain for the case with plasticity, Fig. 8(b), and consequently less
HPP, the average pressure over both grains is not being reduced as
drastic as in the previous case. Two different stages are clearly seen
in Fig. 8: burst-like nucleation and growth, during which a major
portion of the HPP appears and a drastic drop in pressure occurs,
followed by a slow evolution toward the stationary solutions.

3.2. Phase transformation in a polycrystalline aggregate under
compression and shear caused by dislocation pileups

For a further study of the present model, we implement it to
a 200 x 160 polycrystalline aggregate with 38 grains. The crystal
orientation angles ¢; are shown inside each grain in Fig. 9(a). Two
vertical edges are subjected to a displacement-periodic boundary
condition, and the bottom edge of the sample is constrained from
displacing in x and y directions. At the top edge, a prescribed
normal stress, o, = 6.05 GPa, and a low macroscopic shear strain
rate, = 0.004 s~!, are applied. The most active slip systems in
each grain can be seen in Fig. 10, and the critical resolved shear
stress on these contact surfaces is 7. = 0.3 GPa. The arbitrarily
determined location, quantity, and spacing of the active slip sys-
tems are due to the initial microstructure heterogeneities and in-
ternal stresses. Since grains are distributed by various sizes, orien-
tations, and locations, there is a very heterogeneous distribution
of the HPP, which is observed in Fig. 9(d) for four randomly cho-
sen grains. The lowest averaged volume fraction of the HPP ap-
pears in the corner of grain #24, and the most transformed grains
are #4 and #5 at the top middle of the sample. Moreover, reverse
PT happens in some grains despite the monotonous shearing. In
Fig. 9(b) and (c), a comparison between the pressure, shear, and
volume fractions of the HPP and the corresponding variants aver-
aged over the entire aggregates with 13 grains [29] and 38 grains
are shown.

For the sample with 38 grains in Fig. 9(c), the averaged volume
fraction of two variants are close to each other before y =~ 0.15,
however, by increasing y, ¢, becomes larger than ¢;. On the other
hand, for the aggregate with 13 grains, the volume fraction of the
variant 1 is always larger than variant 2. While in most grains both
variants are activated, just one variant is mostly dominant in a

Fig. 6. Evolution of pressure and shear stress isolines in the transformed grain in Fig. 4(a). White regions and lines represent diffuse (finite-width) phase interfaces.
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Fig. 7. Evolution of pressure and shear stress isolines in the transformed grain in Fig. 4(b).

time (ps)

(a)

time (ps)
(b)

Fig. 8. Evolution of the volume fraction of HPP, ¢, in the right grain, and the pressure averaged over the right grain and both grains for the cases (a) in Fig. 4(c), and (b) in

Fig. 4(d), for y =0.2.

couple of them, which can be explained by the specific grain orien-
tations (e.g., grain 26 in Fig. 10). For the sample with 38 grains, in
Fig. 9(b), P rises to ~ 5.0 GPa before the HPP is being experimen-
tally detectable (¢ <0.05, see [13]), and after that, the averaged
pressure reduces to ~ 1.8 GPa as a consequence of a significant re-
duction of the volume during the PT. Interestingly, the same trend
can be seen for the aggregate with 13 gains. The averaged shear
stress, 7, increases to ~ 2.9 GPa for 38 grains and 1.9 GPa for 13
grains because of the number of the dislocations (dislocation den-
sity) and back stresses from the dislocation pileups at grain bound-
aries. While our model for the single crystal corresponds to the
perfect plasticity with 7. = 0.3 GPa, the stochastic grain orienta-
tion and increasing energy of internal (back) stresses produce sig-
nificant work hardening. A higher yield strength for the 38-grains
aggregate than the value for the 13-grains one mimics the grain-
size effect. Indeed, a larger number of grains in the samples of the
same size results in a relatively smaller grain size and hinders the
dislocation motion. However, this effect strongly depends on the
prescribed strain, and we do not have sufficient data to quantify it
in terms of the strain-dependent Hall-Petch equation.

Since the magnitude of the volumetric transformation strain of
0.1 is two times smaller than the shear transformation strain of
0.2, based on Fig. 9(b), the initial contribution of the pressure p to
the transformation work is significantly larger than the contribu-

tion of the shear stress T. However, for y =~ 0.25, the shear stress
effect becomes comparable, and with further straining, the shear
stress contributes to a larger portion of the transformation work
than the pressure, even more than a factor of 2 for 38 grains at
y =0.33.

Kinetic curves for ¢ show that for 13 grains the phase transfor-
mation occurs faster than the case of 38 grains, despite the fact
that the averaged pressure p and the shear stress T, and conse-
quently, the transformation work are larger for 38 grains. Proba-
bly, with larger grains, (a) longer dislocation pileups can be ac-
commodated within the grain producing stronger stress concen-
trators for nucleation, and (b) relatively a smaller grain-boundary
area produces a smaller overall resistance to the phase-interface
motion. However, surprisingly, for both samples the stationary (i.e.,
independent of shear) volume fraction of HPP, ¢ = 0.7, exists for
large shears and is independent of the number of grains. Fig. 9d
confirms that while the entire HPP is in a stationary state, each
martensitic variant in the entire sample is also practically in the
stationary state, but the HPP and each martensitic variant reaches
the stationary state in some grains.

The existence of stationary two-phase and multiphase solutions
for the volume fraction of the strain-induced HPP is predicted and
analyzed based on the microscale kinetic model [4,49] for the case
when the minimum pressure for the direct strain-induced PT to
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Fig. 9. (a) A schematic view of the polycrystalline aggregate under o, = 6.05 GPa and y = 0.004 s~'; grain structures and their orientations presented by ¢; angle are shown
in each grain along with the grain # in parentheses; (b) evolutions of the averaged pressure and shear for aggregates with 13 [29] and 38 grains, versus the macroscopic
shear strain; (c) evolution of the overall volume fraction of the HPP for aggregates with 13 [29] and 38 grains, and (d) evolution of averaged volume fraction of the HPP, ¢,
in several randomly-selected grains, and the corresponding martensitic variants, ¢; and ¢,, versus the prescribed shear strain.

the HPP is smaller than the maximum pressure for the reverse
strain-induced PT to the LPP. This means that the effect of plastic
strain on such a PT is very strong. Stationary states in [4,49] are
uniquely determined by the applied pressure and they are inde-
pendent of the process history in terms of pressure-plastic strain
loading paths. There is a recent experimental confirmation of the
kinetic equation from [4,49] for Zr [13], but a reverse PT did not
occur in [13] and PT to the HPP is complete. Also, the existence
of a stationary incompletely transformed solution and its loading
history-independence are confirmed experimentally in [50]. The
existence of the two-phase stationary solution also means that
further shearing is pointless from the point of view of increas-
ing the amount of HPP. This is one more illustration of the fact
[4,5,8,49,51] that the plastic shear should be large enough but also
optimal, thus, not as large as possible.

It can be seen from Fig. 10 that the HPP usually nucleates close
to the extra atomic planes producing dislocations and also near the
tip of the dislocation pileups in the adjoining grains. Kinetic curves
for the volume fraction of the entire HPP and the martensitic vari-

ants in the individual grains (Fig. 9(d)) possess multiple plateaus
and fast-growth stages. Plateaus correspond to the increasing the
number of dislocations accommodating the increasing prescribed
shear. When new dislocations join dislocation pileups and increase
the local stress concentrations, the fast-growth stages occur, in-
cluding coalescence of different HPP regions.

3.3. Transformation-work based analysis

Local transformation work at interfaces. The stationary state of
the microstructure and isolines of the equilibrium transformation
work (see Eq. (6)) are drawn in Figs. 10 and 4 for various cases. Al-
though there are some deviations between interfaces and the local
equilibrium PT work contour lines Eq. (6) (mostly near the high-
stress concentrators, at slip surfaces, and around significant curva-
tures), they perfectly or closely coincide with each other in most
regions of the various samples. This is more obvious in the bicrys-
tal samples because there is a very small number of stress concen-
trations, i.e. pileups. This result has the following consequences:
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Fig. 10. Microstructure evolution of the martensite, and two martensitic variants as well as the dislocations under the prescribed vertical stress o, =6.05 GPa and y =

0.004 s~! at the top edge of the sample in Fig. 9.

(a) Due to the lack of the gradient term, theoretically, the PT in
each point should occur independently of PT in the other points,
when the peak stress at the stress-strain curve is reached [19-21],
rather than at the phase equilibrium (Maxwell) stress described
by Eq. (6). That is why fulfillment of the phase equilibrium con-
ditions, Eq. (6), at interfaces means that, in a discretized form, our
gradient-free model behaves like the traditional nanoscale phase
field models with a gradient term [16,17,28]. While this is a topic
for a separate study, we assume that the large gradient of the
transformation strain within a diffuse interface containing one or
few finite elements, produces large elastic stresses and energy
within the interface (i.e.,, an interface energy), which plays the
same part as the interface energy produced by the gradient en-
ergy term. Thus, while we do not penalize the gradient of the vol-
ume fraction of the HPP in the analytical equations, it is penalized
in discrete equations due to the finite interface width and elastic
energy. This assumption explains the fulfillment of Eq. (6) at sta-
tionary interfaces and the closeness of the results of the current
scale-free model and nanoscale models [16,17,28].

(b) Note that in some sharp-interface based works [52,53] the
total work o:g (i.e., the Eshelby driving force for the interface
propagation) was utilized for elastoplastic materials, while in our
papers [46-48,51] the phase equilibrium criterion (6) was derived.
Current results support excluding plastic work from the phase
equilibrium conditions, declared in [46-48,51].

(c) While plasticity does not explicitly contribute to (6), dis-
locations generate internal stresses, which significantly contribute
to the total stresses in (6). If we separate internal stresses from

the external ones, the transformation work of the internal stresses
can be moved to the right-hand side of (6). Then it represents
an athermal resistance to the interface motion. This is evident in
Figs. 10 and 4, where interfaces are arrested by the slip planes,
namely by tensile stresses produced by the missing planes of dislo-
cations. Thus, while athermal friction k is not explicitly introduced
in the current examples, it appears in the solution due to the in-
ternal stresses of dislocations.

Transformation-work averaged over different regions. We assume
that the interface width is relatively thin in comparison to the
transformed region in the sample. With this assumption, the trans-
formation work averaged over the entire volume is defined as fol-
lows:

(0:6&)g=C(0:€)y+(1—-0C)(0: &), (7)
in which (...)y = ﬁ cdVy, ()= \}—Af...dVA, and (...)g=
vlo [ ...dV, indicate averaging over the HPP area, LPP area, and over
the entire transformed sample, respectively. In addition to the ac-
tual solutions, we assume some artificial distribution of the trans-
formation strain tensor in the LPP. In particular, for single-variant

PT in a single crystal, we assume that &; = & is uniform and the
same in HPP and LPP. Then Eq. (7) simplifies to

Wi i=(0)g:€n = (C(0)y + (1 -0C)(0),) : €11, (8)

which is identity because (6)y = ¢(0')y + (1 — C)(0)4. Thus, W* is
some artificial transformation work produced by stresses averaged
over the entire volume and the transformation strain in the HPP.
We also introduce the actual transformation work per unit total



440 S. Ehsan Esfahani, I. Ghamarian and V.I. Levitas/Acta Materialia 196 (2020) 430-443

2.5
201
_ 15t Ve
< RN
A h N
P S
. 7=02
ok . . \
0 0.02 004  0.06
time (ns)
(a)

time (ns)

(b)

Fig. 11. Evolution of the volume fraction of HPP, & in the right grain, the average transformation works W; and W;* over the right grain, and their ratio for the cases (a) in

Fig. 4(a) and (b) in Fig. 4(b).

Table 1

Averaged transformation works defined by Eqs. (9) and (8)
as well as the volume fraction of the HPP for different
cases at the stationary state.

Wi (GPa) Wy (GPa) ~ Wi/Wy ¢
Fig. 4(a)  0.590 1.022 0577  0.588
Fig. 4(b)  0.570 1.030 0.553  0.561
Fig. 4(c)  0.502 1.002 0501 048
Fig. 4d)  0.381 0.989 0385 035
Fig. 10 0.696 1.097 0634 07

volume, W;, the actual transformation work per unit volume of the
HPP, Wy, and the artificial transformation work per unit volume of
the LPP, Wy,

Wei=(o:e)yC=(0)y:€nG (9)

Wy = (0 &)y =(0)py: Er1;
Wy i=(0:6t),=(0)s:€n (10)

The values for Wy, Wi, W;/W/*, and ¢ are tabulated in Table 1 to
check out the averaged equilibrium transformational work condi-
tion in the stationary state. The ratio of W;/W;* is approximately
equal to ¢ for all cases, except for the case with small ¢ due to
the plasticity introduced in the right grain of the bicrystal sample
(Fig. 4(d)) and the polycrystalline aggregate (Fig. 10). The deviation
for the mentioned cases are expected due to the comparable sizes
of the interface width and the bulk HPP region, which is in con-
trast to our thin interface width assumption.
As a conclusion of analyzing Table 1, we can express

Wy=(0)y:en =~ Wi=(0)g:en =~ AG = (0)g =~ (0)y -
(11)
Substituting Eq. (11) in Eq. (8) we also obtain

Wy = (0)a: 80 2 (0)y 1 8t1: = (0)4 = (0)y = (0)0.
(12)

Obtaining the approximate equality of the stresses averaged over
the HPP, LPP, and the entire sample was the reason for introducing
artificial transformation strain in the LPP.

In Fig. 11(a) and (b), the evolution of the averaged transforma-
tion works W; and Wy, their ratio, and the volume fraction of the
HPP over the right grain are presented for the results shown in
Fig. 4(a) and (b). As mentioned previously, the only difference be-
tween these two cases is in the loading scenario (the macroscopic

shear strain of 0.2 is applied instantaneously in Fig. 11(a)). As pre-
sented, W;/W;* in Fig. 11(a) is not close to the volume fraction of
the HPP at the very beginning due to a small transformed region
and relatively large interfaces. As expected, especially in Fig. 11(b),
W; /W increases until the nucleation starts and then it drops and
converges to ¢ at the stationary state. Due to the different load-
ing scenario, in Fig. 11(a), W;/W;* is initially large and then drops,
which is resulted from a constant y.

For the polycrystalline aggregate with two variants, we artifi-
cially assume that the transformation strain over the entire sample
(&¢) is the same for both LPP and HPP, which is described as

& =Ci1én+ e . (13)

Here & and &4 are the transformation strains for each variant
averaged over the entire polycrystalline aggregate with N grains,
which are defined as

N 1 oain
_ XjViGen!

i = L i=1&2
Z’]V=1Vjc{

(14)

where V; is the volume of the jth grain. By doing the same calcu-
lations as in Eqs. (7)-(12), and using the results in Table 1 along
with the definition in Eq. (13), the same conclusions as Eqs. (11),
(12) can be also achieved for the polycrystalline aggregate. How-
ever, when we consider each grain separately and use the local
transformation strain in a grain, the transformation work averaged
over the volume of each grain is not generally equal to AG, see
Fig. 12. Different definitions of the transformation work generally
give the different results in Fig. 12. The reason for the deviations
is that for the entire volume of a bicrystal and polycrystalline,
the macroscopically homogeneous boundary conditions for stresses
and strains, are prescribed; however, this is not true for each grain.

The obtained local Eq. (6) and averaged Eq. (11) phase equilib-
rium criteria which approximate the equality of stresses averaged
over HPP, LPP, and the entire sample, are very important for the
development of the coarse-grained theory of the interaction be-
tween phase transformation and plasticity for the entire polycrys-
talline aggregate. Also, the kinetic curves Fig. 9(b)-(d) are crucial
for the development of a more accurate microscale kinetic equa-
tion for the plastic strain induced phase transformation than those
suggested in [4,49]. This kinetic equation is currently used within
a macroscale computational model for studying the behavior of a
sample under compression and compression-torsion in traditional
and rotational diamond anvils [54-57].
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Fig. 12. Transformation works averaged over each grain of the polycrystalline ag-
gregate from Fig. 9(a) based on different definitions (top) and deviations of the
< 0: & > y from AG (bottom).

4. Concluding remarks

In this work, a scale-independent model for the interactions
between the evolution of discrete shear bands and multivariant
martensitic PTs is advanced and applied for studying plastic flow
and PT in a bicrystal and polycrystalline aggregate under high pres-
sure and shear. The model includes a scale-free phase field theory
for multivariant martensitic PTs, which does not possess a gradient
energy term, and consequently, characteristic size. Still, the solu-
tion is practically mesh independent because the material instabil-
ity localizes within the FE-size width of the interface between LPP
and HPP. This interface is usually small in comparison to bulk LPP
and HPP, exhibiting a stable and well-posed behavior [19]. Also,
while we neglect the gradient of the order parameter (i.e., the
volume fraction of the HPP) in the analytical equations, it is pe-
nalized in the discrete equations due to the finite numerical in-
terface width and elastic energy. Indeed, a large gradient of the
volume fraction of the HPP and consequently, the transformation
strain within a diffuse interface produces large elastic stresses and
energy within an interface (i.e., interface energy), which is simi-
lar to the interface energy produced by the gradient energy term.
Without the gradient energy term, PT in each material point occurs
independently of PT in other points when the peak stress at the
stress-strain curve is reached [19-21]. With an “effective” gradient
energy, a phase interface is at a thermodynamic equilibrium when
Eq. (6) is met for the interface points, like in traditional nanoscale
PFA [16,17,28] with a gradient term.

Plastic flow in our approach is modelled through continuous
sliding along the prescribed discrete slip planes and directions.
This sliding may represent dislocation pileups [30,31], thin twins
[31], shear cracks [33], or macroscopic shear bands [32]. The key
point is that such a discretized plasticity reproduces strong stress
concentrators at the tip of these defects and in the places of large
gradients of sliding displacements, similar to the pileup of discrete
dislocations [16,17,28]. These plastic-strain-induced stress concen-
trators serve as nucleation cites for strain-induced PTs, like in a
nanoscale PFA [16,17,28]. The advantage of the scale-free PFA is
that it is not limited to the submicron samples, like nanoscale
PFA, but can be applied to an arbitrary sample size exceed-
ing tens of nm up to km (for geophysical applications). Scale-
independency of the suggested model is also proved by treating
geometrically similar samples and varying their size by three or-
ders of magnitude. At the same time, our scale-free approach re-

produces the stress field of a single dislocation and the solutions
for a coupled evolution of dislocations and HPP in a nanoscale
PFA [16,17,28], which is more sophisticated and computationally
expensive.

In all problems, periodic boundary conditions for displacements
at the lateral sides of samples are applied, along with normal com-
pressive stresses and shear displacement at the upper surface with
a fixed lower surface. For a bicrystal, dislocation pileup produces
barrierless nucleation and growth of the HPP, including a coa-
lescence stage. Dislocation pileup reduces the PT pressure from
14.7 GPa under hydrostatic loading to 0.07 GPa under shear. This
confirms conceptually the ability of dislocation pileup to describe
experiments in which plastic shear reduced the PT pressure by
one order of magnitude [7,9-12] and even two orders of mag-
nitude [14] in comparison to the hydrostatic loading. Note that
the PT pressure under shear is also significantly below the phase
equilibrium pressure under the hydrostatic conditions, 10 GPa, like
in some experiments |[7,13]. However, dislocations not only pro-
mote PT; in some cases, they also suppress PT by relaxing inter-
nal stresses and by producing an athermal threshold to the dis-
location motion. While compressive stresses due to extra planes,
which produce dislocations, promote PT (in addition to the stress
concentrator at the tip of dislocation pileup), tensile stresses due
to missing planes confine the PT. Thus, in some cases, the phase
interface coincides with the slip plane.

Transformation kinetics versus shear strain for each martensitic
variant and the total volume fraction of the HPP, in each grain and
in the entire polycrystal, are determined for two 2D polycrystalline
aggregates consisting of 13 and 38 grains. The results are not sig-
nificantly different for both aggregates; in particular, the stationary
(i.e., independent of shear) volume fraction of the HPP for large
macroscopic shear values, 0.7, is the same for both aggregates. This
observation reflects the fact that such a relatively small number of
grains provides a representative transformational behavior of the
polycrystal. At the same time, strain hardening is higher for the
aggregate with 38 grains due to the grain-size effect.

The existence of the incomplete transformation, i.e., the station-
ary volume fraction of HPP independent of the applied shear, was
also predicted and analyzed based on the microscale kinetic model
[4,49] for the case when the effect of plastic strain on the PT is
very strong. Stationary states in [4,49] are uniquely determined by
the applied pressure and they are independent of the process his-
tory in terms of pressure-plastic strain loading paths. The existence
of a stationary incompletely transformed solution and its loading
history independence was confirmed experimentally in [50]. Such
a stationary state also demonstrates that the plastic shear should
be optimal rather than just being large, as it was assumed previ-
ously.

Interestingly, even for complex systems such as the polycrys-
talline aggregate with numerous dislocation bands, the simplest
local phase equilibrium condition Eq. (6) is satisfied for almost
all stationary interfaces. Thus, this equation can be treated as a
general result, which explains the closeness of the solutions for
the current scale-free model and nanoscale models [16,17,28] for
a bicrystal. The transformation-based work criterion, which does
not include plastic work, supports our previously derived criterion
for sharp interfaces [46-48,51] and confronts the total-work (i.e.,
based on the Eshelby driving force) criterion in [52,53].

It is shown that a similar global phase equilibrium condition in
terms of the stresses averaged over the entire polycrystalline sam-
ple, or HPP is met. The global phase equilibrium conditions, how-
ever, are not fulfilled for each grain or for non-stationary solutions.
The obtained approximate equality of the stresses averaged over
the entire polycrystal and HPP and LPP, for such complex fields and
large numbers of grains, is also very nontrivial and an important
result.
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While plasticity does not explicitly contribute to the local and
global phase equilibrium condition, dislocations generate internal
stresses, which significantly change the total stresses, and thus
contribute to the phase equilibrium conditions implicitly. In fact,
they represent an athermal resistance to the interface motion due
to the presence of dislocations.

The major contribution to the averaged transformation work
comes from pressure at the initial stage of PT and from shear stress
at the later stage. This happens because pressure drops due to the
volume reduction and shear stress growth due to the strain hard-
ening caused by the back stresses. This demonstrates that shear
(more generally, deviatoric) stresses should be incorporated in the
microscale kinetics for the strain-induced PTs [4,49]. The acquired
overall kinetics, local and global phase equilibrium conditions, and
equality of the stresses averaged over phases and entire polycrystal
will be utilized for the further advancement of kinetic equations
in [4,49], especially for the case when pressure (or stress) induced
PTs occur simultaneously with the strain-induced PTs. Such kinet-
ics equations are important for the modeling of the sample be-
havior in traditional and rotational diamond anvils [54-57], during
high-pressure torsion, ball milling, friction, and other deformation-
transformation processes.
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