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a b s t r a c t 

A scale-independent model for the interaction between multivariant phase transformations (PTs) and dis- 

crete shear bands is advanced and utilized to simulate plastic strain-induced PTs at high pressure. The 

model includes a scale-free phase-field theory for martensitic PTs. The localized shear bands are intro- 

duced via a contact problem formulation. That is, the continuous distribution of sliding displacements 

along the prescribed slip surfaces is modeled to reproduce the plastic-strain-induced stress concentrators 

necessary for nucleation of a high-pressure phase (HPP). The strain-induced PTs in the bi/polycrystalline 

samples subjected to compression and shear are studied. The simulations show a severe reduction in 

the PT pressure by the plastic shear in comparison to a hydrostatic condition, even below the phase 

equilibrium pressure, like in known experiments. Transformation kinetics versus shear strain for each 

martensitic variant and the volume fraction of the HPP in individual grains and the entire aggregate are 

determined. The stationary volume fraction of the HPP is the same for polycrystals consisting of 13 and 

38 grains, and a further shearing does not cause PT. The local phase equilibrium condition based on the 

transformation-work criterion is satisfied at almost all stationary phase interfaces. A similar phase equi- 

librium condition in terms of stresses averaged over the entire polycrystal or HPP is fulfilled. These results 

are important for the development of the microscale kinetic equations and modeling the sample behav- 

ior in traditional and rotational diamond anvils during the high-pressure torsion, ball milling, friction, 

and other deformation-transformation processes. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The interaction between PTs and plasticity considerably impacts

mechanical properties [1] . Experimental studies in rotational ce-

ramic/diamond anvils show that the superposition of large plastic

shear and high pressure results in the production of new phases,

which cannot be seen under hydrostatic conditions [2–8] . While

many exciting phenomena, such as appearance of new phases

and retaining of metastable phases at normal pressure, occur dur-

ing shearing under high-pressure [3,4] , a significant reduction in

the PT pressure is the focus of the current study. As reported in

[7,9–12] , in comparison to the hydrostatic loading, the transforma-

tion pressure for various PTs (e.g., from hexagonal BN to super-
∗ Corresponding author at: Department of Aerospace Engineering, Iowa State Uni- 

versity, Ames, IA 50011, USA. 
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ard wurtzitic BN [10] , and from α to β phase in Zr and its alloys

11–13] ) can be reduced by a factor of 2 to 10 due to plastic de-

ormations. A more dramatic reduction in the PT pressure, by two

rders of magnitude, is observed for graphite to diamond PT in

14] due to an applied plastic shear. 

The critical point to understanding this phenomenon is that

here is a primary distinction between stress or pressure-induced

Ts from one side and plastic strain-induced PTs under a high-

ressure condition from the other side [3,4] . Pre-existing defects

sually trigger the former. Since the number of these stress con-

entrators remains limited, the applied pressure must be increased

ignificantly to activate nucleation sites with a lower potency

stress concentration). For plastic strain-induced PTs, nucleation of

artensite or HPP occurs at the defects (shear-bands, shear-band

nd twin intersections, and dislocation pileups), generated in the

ourse of the plastic straining. 

https://doi.org/10.1016/j.actamat.2020.06.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2020.06.059&domain=pdf
mailto:vlevitas@iastate.edu
https://doi.org/10.1016/j.actamat.2020.06.059
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The effective mechanism of reducing the PT pressure by plas-

ic shear due to the concentration of all stress components at the

ip of the dislocation pileups is justified analytically in [3,4] . The

agnitude of all stress components is proportional to the number

f dislocations in pileups, which can be increased substantially by

ncreasing the plastic strain at a constant applied pressure. A more

ccurate and detailed description of the interaction between dis-

rete dislocations and PT is presented in [15–17] by employing a

anoscale phase-field approach (PFA). 

As a major difficulty in a traditional PFA, one needs to numer-

cally resolve the interface widths and the dislocation core (which

re around 1 nm). The mesh-independent solutions are numeri-

ally obtained by introducing at least 4–5 FEs across the interfaces.

his requirement computationally restricts the PFA to sample sizes

maller than 1 μm , which is significantly smaller than a realistic

rain size (i.e., 10–10 0 0 μm or even larger). To overcome this com-

utational issue, some theories were developed [18] in which the

nterface width is artificially widened by three orders of magni-

ude (i.e., from 1 nm to 1 μm ) while the interface energy remains

he same. As a consequence, the stress/temperature hysteresis is

roportionally reduced [19] , and for the perfect crystals, barrierless

ucleation starts near the phase equilibrium stress. The reduction

n the stress hysteresis contrasts with the considerable pressure

nd stress hysteresis in the experiments for many PTs, especially at

igh pressures. As an example, for a graphite-diamond PT at zero

emperature and hydrostatic pressure [14] , the equilibrium pres-

ure (2.45 GPa) is approximately two orders of magnitude smaller

han the lattice instability and the PT pressure (250 GPa) for an

deal graphite crystal. In quasi-hydrostatic experiments, the pres-

ure required to transform a real (defective) graphite crystal to di-

mond, 70 GPa, is also much higher than the phase equilibrium

ressure. 

A microscale PFA approach to study the martensitic PT was ini-

ially proposed in [20,21] and advanced in [19] . This model has

een applied to reproduce discrete martensitic microstructures in

amples greater than 100 nm with no upper limits. In this study,

he volume fraction of the martensite, c , is the order parameter

hich is responsible for the material instability due to strain soft-

ning. This instability leads to the transformation strain localiza-

ion, and consequently a discrete martensitic microstructure. This

s opposed to the traditional micromechanical or phenomenologi-

al models [22,23] , in which a smeared distribution of martensite

s obtained due to the lack of material instabilities. The volume

ractions of martensitic variants are just internal variables and not

he order parameters, i.e., no interfaces between martensitic vari-

nts are reproduced. One can expect a highly mesh-dependent so-

ution as a result of dropping the gradient term to make the model

cale-independent. However, as examined in [19] , this scale-free

odel is practically mesh-independent since unstable regions are

imited to narrow interfaces between phases with the width of a

ingle FE. We utilize this approach to describe the transformational

art of our model, which is developed to examine the interaction

etween the PT and discrete dislocations. A summary of formula-

ions for this part of the model can be found in the supplemental

aterial [24] . 

Concerning the PFA to perfect dislocations, upscaling [25,26] is

one by increasing the dislocation height while the Burgers vector

s fixed. This assumption, however, decreases the stress concen-

ration and the transformation shear proportionally. The coupling

etween discrete dislocations and martensitic transformations was

escribed within a nanoscale PFA [15–17,27,28] in a nano-sized

icrystal. 

In this paper, we elaborate on a scale-free model for the in-

eraction between PT and localized plasticity, which has been in-

roduced recently in [29] , and implement it for several detailed

imulations of the relevant model problems. The key innovation of
his model is a scale-free replication of the dislocation pileup-like

tress concentrators as the main mechanism for the nucleation and

volution of the plastic-strain-induced martensitic phase. To this

nd, we propose a contact problem formulation to simulate gen-

ration and continuous evolution of multiple dislocations in pile-

ps along the prescribed slip surfaces, in combination with the

cale-free PFA from [19–21] . The same formalism is applied if in-

tead of dislocation pileups [30] one treats thin twines [31] , shear

ands [32] , or shear cracks [33] . ABAQUS FE code is used to imple-

ent our model through the user subroutines for defining material

nd frictional behaviors [34] . It is demonstrated that although the

odel presented herein is much simpler than the nanoscale PFA

odels in [15–17,27,28] , it is fully able to reproduce the stress field

f a single dislocation and the microstructure evolution of HPP at

volving dislocations in a bicrystal sample subjected to compres-

ion and shear. The model does not possess a characteristic size

hat should be resolved with several finite elements, and is conse-

uently scale-free, and can be implemented to a sample size from

ens of nm to km, e.g., for geophysical applications. For geometri-

ally similar bicrystal samples, the model produces similar stress

elds, evolution and stationary state of the HPP morphology, and

he relative sliding (i.e., number of dislocations within each slip

ystem) proportional to the sample size. For the nanoscale bicrys-

al, our much simpler scale-free model produces very similar re-

ults to the single-variant nanoscale PFA in [15–17] . After showing

he efficiency of the new model, we solve problems on the inter-

ction between two-variant PT and localized plasticity in a poly-

rystalline aggregate under compression and shear. The shape and

rientation of the grains were generated by utilizing DREAM.3D

35] and MTEX [36] . This work illuminates how localized plastic

eformation drastically reduces the PT pressure in known experi-

ents [7,9–14] . Our preliminary results with a simplified version

f the model and a polycrystalline aggregate with 3 times smaller

umber of grains are published in [29] . 

Here, vectors and tensors are designated with boldface letter;

 · B and A: B represent the contraction and double contractions

f two tensors, respectively; subscript s designates the symmetric

art of the tensor; ˜ A stands for the average of A over the grain; and
¯
 defines the average of A over the whole sample. All grain orien-

ations are specified in the Bunge-Euler convention [37] , and crys-

als are initially defect-free. Moreover, two Bunge angles ϕ = 135 ◦

nd ϕ 2 = 0 ◦ are constant in this study, and ϕ1 (describing rotation

bout the out-of-plane normal) varies for each grain and are iden-

ified for each example. 

. Dislocations via contact problem 

According to the definition expressed in [30,31] , a dislocation is

roduced by a relative sliding of two sides of a cut (slip plane)

n an elastic continuum, by a Burgers vector b , while the nor-

al components of the displacement and the traction across the

ut remain continuous. Along the same line, one can define multi-

le continuously distributed dislocations by the relative sliding u s 

long the same slip surface. Similar continuity conditions for the

ormal components of the displacement and the traction across

he contact surface are applied for the relative sliding in a contact

roblem between the two deformable bodies [34,38] . This was the

eason for us [29] to propose a model with a continuous distribu-

ion of dislocations by solving the contact problem. Previously, the

ontact problem was used in [39,40] to model dislocations along

he fixed or moving semicoherent phase interface. A similar proce-

ure, but for single dislocation, called “cut-displace-glue” was re-

ently analyzed in [41] . 

While in [29] , the simplest sliding rules were given, here we

resent a more general formulation. Within a slip plane i , the slid-

ng u s 
i j 

occurs along the specific slip directions ji determined by
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crystallography, and the sliding rate is determined by Schmid’s law

and the flow rule: 

˙ u 

s 
i j = 

{
0 if | τi j | ≤ τ c 

i j 
(u 

s 
i j 
, σ i 

n ) 

q i j (| τi j | , u 

s 
i j 
, σ i 

n ) sign (τi j ) if | τi j | > τ c 
i j 
(u 

s 
i j 
, σ i 

n ) , 
(1)

where τ ij is the resolved shear stress, τ c 
i j 

is the athermal resistance

to sliding, σ i 
n is the normal stress at the i th slip plane, and q ij is a

function determined from experiments. Sliding displacements u s 
kl 

for the other slip systems can be also arguments in functions in

Eq. (1) . 

Continuity of the normal displacements and traction is ex-

pressed as 

u 

n 1 
i = u 

n 2 
i ; σ i 

n 1 = σ i 
n 2 ; τττ i 

1 = τττ i 
2 , (2)

where τττ i is the shear stress vector at the i th slip plane. When the

effect of viscosity is neglected, Eq. (1) is substituted with its rate-

independent counterpart: 

˙ u 

s 
i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if | τi j | < τ c 
i j 
(u 

s 
i j 
, σ i 

n ) or | τi j | = τ c 
i j 
(u 

s 
i j 
, σ i 

n ) 

and sign (τi j ) ̇ τi j ≤ ˙ τ c 
i j 
(u 

s 
i j 
, σ i 

n ) ;
| ̇ u 

s 
i j 
| sign (τi j ) � = 0 if | τi j | = τ c 

i j 
(u 

s 
i j 
, σ i 

n ) 

and sign (τi j ) ̇ τi j = ˙ τ c 
i j 
(u 

s 
i j 
, σ i 

n ) , 

(3)

where | ̇ u s | is determined from the consistency condition

sign (τi j ) ̇ τi j = ˙ τ c 
i j 
(u s 

i j 
, σ i 

n ) . The rate-independent formulation as-

sumes that the shear stress relaxation to τ c happens instantly

and the kinetics of dislocation motion is very fast until the

equilibrium configuration is reached. In combination with finite-

rate PT kinetics, this means that the motion of dislocation and

plastic relaxation processes are much faster than PT. Equation

| τi j | = τ c 
i j 
(u s 

i j 
, σ i 

n ) resembles the local equilibrium equation be-

tween the resolved shear stresses and athermal resistance to slip

for continuously distributed dislocations [30,31] . 

When we neglect the dependence of τ c 
i j 

on u s 
i j 

and σ i 
n , i.e., for

constant τ c 
i j 
, Eq. (3) reduces to 

˙ u 

s 
i j = 

{ 

0 if | τi j | < τ c 
i j 

or | τi j | = τ c 
i j 

and sign (τi j ) ̇ τi j < 0 ;
| ̇ u 

s 
i j 
| sign (τi j ) � = 0 if | τi j | = τ c 

i j 
and ˙ τi j = 0 . 

(4)

Finally, for the current 2D applications, for which there is only one

slip direction for each slip plane, we simplify Eq. (4) to 

˙ u 

s 
i = 

{
0 if | τi | < τ c 

i 
or | τi | = τ c 

i 
and sign (τi ) ̇ τi < 0 ;

| ̇ u 

s 
i 
| sign (τi ) � = 0 if | τi | = τ c 

i 
and ˙ τi = 0 . 

(5)

For multiphase materials, the critical resolved shear stress τ c 
i j 

de-

pends on phases, and if a certain portion of the slip plane is lo-

cated along the phase interface, the smallest τ c 
i j 

is used. 

A similar presentation is valid for thin twins along the twin-

ning plane i with shear direction j , which can be modeled by the

motion of partial (twinning) dislocations [31] . The number of dis-

locations (complete or partial) along each slip direction is deter-

mined by n i j = | u s 
i j 
| / | b b b i j | . Since shear cracks can also be presented

as dislocation pileups [33] , they can be included in our formulation

as well. Similar, macroscopic shear bands, which may not coincide

with crystallographic slip planes and directions [32] , are also in-

cluded in the current formalism. 

The only difference between all these mechanisms is in the

specific sliding rules in Eq. (1) , while the continuity conditions

Eq. (2) apply to all of them. Since the evolution of the continuously

distributed dislocations or localized shears along discrete slip sur-

faces is now formulated as the contact problem in continuum me-

chanics, well-developed FEM algorithms and codes [34,38] for the

solution of contact problems are available. 
The Burgers vector or, more generally, sliding displacement

 

s 
i j 

is the only spatial scale parameter in the contact problem.

n contrast to the nanoscale PFA to dislocations [15–17,42] , for

hich characteristic length should be resolved with 4–6 integra-

ion points, displacement u s 
i j 

should not be resolved and can be

ignificantly smaller than the size of a single element. Thus, this

odel is scale-independent and therefore can be used for arbitrary

arge samples. Our scale-free PFA for multivariant martensitic PTs

19–21] is presented in the supplementary material [24] . 

. Numerical results and discussion 

The simplest formulation of the model is utilized in the sim-

lations. The phase transformations between body-centered cubic

bcc) low-pressure phase (LPP) and body-centered tetragonal (bct)

igh-pressure phase (HPP) along with dislocation slip are studied.

ince temperature does not change during shearing in rotational

iamond anvils due to small sample thickness and high thermal

onductivity of diamonds, isothermal processes at room tempera-

ure are considered. 

A complete system of equations and material parameters are

resented in the supplemental material. Similar to all previous

tudies on this topic [3,4,15–17,29] , we consider a generic model

aterial. To work with a specific material, significant coupled high-

ressure-shear and microstructural experiments with the multi-

cale theory should be performed for parameter identification, see

8] . That is why we use the simplest model, in particular with

mall elastic strain and linear elasticity. The most important mate-

ial parameters are as follows: the thermal energy difference be-

ween HPP and LPP �G 

θ = 1 . 0 GPa ( θ is the temperature); the

hase equilibrium pressure between HPP and LPP p e = 10 GPa; the

attice instability pressure for the LPP p cr = 20 GPa, and the trans-

ormation strains are ε tx = ε ty = −0 . 05 and ε txy = 0 . 2 . We assume

hat the critical resolved shear stress, τc = 1 . 0 GPa for the bicrystal

roblems and τc = 0 . 3 GPa for a polycrystal, is the same for all slip

ystems for the LPP and both martensitic variants of the HPP. 

A complete numerical simulation should consider a 3-D poly-

rystalline aggregate with a minimum of a thousand grains which

ave various orientations with respect to the sample frame. The

ody centered-cubic lattice includes more than 12 equivalent slip

ystems, each should be introduced in the simulation by a distinct

ontact surface. However, involving the contact and the strain-

oftening dramatically increases nonlinearities of the formulation,

hich leads to numerical convergence issues and very long simu-

ation time. That is why, similar to [29] , we consider multiple 2-D

xamples for bicrystal and a polycrystalline aggregate and a limited

umber of active slip systems as the best compromise between

omputationally cost-effective formulation and a physical adequate

ne. 

The model is implemented in FE code ABAQUS [34] using user

aterial (UMAT) subroutine. The shear crack definition in ABAQUS

ives us the capability to introduce contact pairs in the middle of

ur samples and in many regions without defining several parts in

ontact. ABAQUS FRIC subroutine allows us to implement the cho-

en contact friction formulation. Also, the proper mesh, the grain

tructures and orientations, and the corresponding slip systems

re produced by MTEX [36] and DREAM.3D [35] . Quadratic plane

train elements are utilized in order to improve the convergence

or straight edge dislocations that we have considered for sev-

ral problems. Finding active slip systems is a hotly debated topic

n the plastic deformation of bcc crystals. {110} < 111 > is the

ost preferred deformation mode; however, sliding along other

lip systems, {112} < 111 > and {123} < 111 > are also observed

43] . The transmission electron microscopy investigations revealed

hat plastic deformation mainly occurs along {110} < 111 > and

112} < 111 > slip systems [44] . Considering the plane strain con-
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Fig. 1. A comparison of the stress fields near a dislocation obtained in our FE sim- 

ulation and the analytical solution from [30] . 
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Fig. 2. The stationary solution for a bicrystal under compression and shear at γ = 

0 . 2 . The interaction between the dislocation pileup and the grain boundary in the 

left grain leads to the phase transformation from LPP (blue) to HPP (red) in the 

right grain. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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itions implemented in this study, {112} < 111 > slip systems

ust be selected, which are assumed to be inherited by the bct

rystal during PT. 

Stress fields near a single dislocation. A single dislocation is in-

roduced by prescribing homogeneous sliding displacement u s =
 u s | = | b b b | along a contact line in a half of a relatively large sam-

le. Linear quadrilateral elements with the mesh size of 0.3 b are

tilized. Numerical results for shear and normal stresses are in a

ood agreement with the analytical solution [30] (see Fig. 1 ) for

 distance larger than 0.3 b from the dislocation position, which is

ell within the dislocation core. This consistency confirms the fea-

ibility of representing dislocations by the contact definition as a

ractical approach. 

.1. Strain-induced phase transformation in a bicrystal 

Sample. To begin with, we solve a problem on PT induced by

he dislocation pileup in a bicrystal, similar to that in [15] , where

n advanced nanoscale PFA was applied to study the evolution of

oth HPP and dislocations. Respecting the same conditions as in

15] for the sake of comparison, we consider a sample with the

ize of 50 × 30 which consists of (see Fig. 2 ): (a) two rectangular

rains with the size of h × L = 25 × 20 each, in which PT and/or

he sliding problem (to imitate the dislocation pileup on the grain

oundary) are solved; here h and L are the height and widths of

he grains; (b) two rectangles above and below the bicrystal hav-

ng the size of 50 × 5, which are simulating the elastic accom-

odation of the surrounding grains. In these two regions, only the

lastic problem is studied. 

Two types of loading are considered. 

• Type-1: the PT is allowed in the right grain after reaching the

tationary state for the dislocation solution in the left grain. 

• Type-2: PT and dislocations are evolving simultaneously from

he beginning of applying the shear strain. 

Pressure-induced nucleation at a single dislocation. A single dis-

ocation as a nucleation site was introduced at the center of the

ample by producing uniform shear along the contact surface. A

omogeneous normal stress was applied along all the external sur-

aces reproducing the hydrostatic loading of a crystal. The mini-

um hydrostatic pressure for nucleation of the HPP is p = 14 . 70
h 
Pa. This nucleation pressure is not far from p h = 15 . 75 GPa re-

orted in [15] by utilizing a nanoscale PFA. 

Bicrystal under compression and shear. In Fig. 2 , the top side

f the bicrystal system is under a constant uniformly distributed

auchy (true) stress σ n and a homogeneous horizontal displace-

ent, u , expressed by macroscopic shear strain γ = u/h . Periodic

oundary conditions for displacements are implemented at the

ateral sides, and a zero displacement is applied at the bottom

ide. Initially, the both grains are completely in LPP, and we study

he PT without plasticity in the right grain, and plasticity with-

ut PT in the left grain, along a horizontal contact line as an ac-

ive slip system. For analysis of the PT, the 2D version of pressure,

p = −0 . 5(σx + σy ) , is used, since for ε tz = ε ty and plane strain con-

itions, it contributes to the transformation work. Before applying

he shear, the vertical stress σn = 3 . 05 GPa is applied which pro-

uces an averaged pressure of 2.0 GPa in each grain. The loading

ype-1 is considered. At constant σ n , during a gradual application

f the shear strain γ to the top edge, the contact surfaces start

lipping when the shear stress along the slip direction reaches τ c .

his leads to relative displacements of upper and lower sides of

he contact surface, which produce pairs of dislocations with dif-

erent signs. With increasing γ , more pairs of dislocations nucleate.

he motion of these dislocations to the grain boundaries produces

 pileup at the middle of the grain boundary, and steps from both

ides of the sample. For γ = 0 . 2 , the stationary state with the rel-

tive displacement corresponding to 7| b | appears, which indicates

 pileup with the same number of dislocations as reported in [15] .

For the sake of comparison, the results for the same bicrystal

nd loading in [15] are exhibited in Fig. 3 (a) and (b). In Fig. 4 (a),

he evolution of martensite microstructure in the right grain is

resented. Because of the high stress concentrations at the tip of

islocation pileups, two HPP regions are nucleating and growing.

ince two pileups are quite close to each other, these HPP plates

tart interacting which results in a coalescence and a morpholog-

cal transition with the final averaged concentration of the HPP

˜  = 0 . 58 (versus ˜ c = 0 . 51 in [15] ). Moreover, a close similarity be-

ween the HPP morphology achieved by the current method and

he one in [15] (see Fig. 3 (a) and (b)) is evident. This resemblance

roves that the current scale-independent model is effectively able

o simulate the results by a far more sophisticated PFA, which is

omputationally restricted to nanoscale samples. 

It should be noted that experimentally, the averaged pressure

nd shear over the sample are measured after the completion of

T. Therefore, at the stationary state of the PT and due to a vol-

me reduction in the right grain, the pressure averaged over both

rains is dropped to p̄ = 0 . 07 GPa, i.e., more than 100 times lower
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Fig. 3. Comparisons between the evolution of the HPP and dislocations in the right grain for the results reported in [15] (rows a and c ), and the results presented in this 

study (rows b and d ). The applied shear strain γ = 0 . 2 , loading type-1, and ϕ 1 = 69 . 7 ◦ . In (a) and (b) solutions are without dislocations in the right grain, and in (c) and (d) 

with dislocations. 
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than p h = 14 . 7 GPa for the hydrostatic conditions. Thus, our model

describes the severe PT pressure reduction due to a plastic shear

in the experimental results, by one order of magnitude in [7,9–

12] and even two orders of magnitude for PT from graphite to cu-

bic diamond [14] . Note that PT pressure under shear is also sig-

nificantly below the phase equilibrium pressure under hydrostatic

conditions, 10 GPa, like in some experiments [7,13] . 

In Fig. 3 (c) and (d), the dislocation activities are involved in the

right grain by introducing two slip systems with ± 15 ◦ to the x

axis, to replicate the geometry presented by [15] . Also, we allow

the PT and sliding in the right grain just after dislocations reach

a stationary configuration in the left grain. Due to instantaneous

dislocation kinetics Eq. (4) , dislocation evolution and stress relax-

ation are significantly faster than the PT, i.e., the PT are suppressed.

This is the main reason for the difference in HPP evolutions in

Fig. 3 (c) [15] and the current result in Fig. 3 (d). Instead of two

nuclei in Fig. 3 (d) at the tips of the dislocation pileup in the ad-

joining grains, only one nucleation is observed. However, two other

nuclei appeared in the regions with extra atomic planes and high

compressive stresses at dislocation pileups in the same grains. The

transformed regions do not pass the slip planes due to the ather-

mal resistance to the interface motion, which is produced by the

tensile stresses caused by missing atomic planes. In total, the HPP

is much smaller than one in Fig. 2 (a). Still, like in the nanoscale

PFA [15,16] , it is possible to produce such pressure-shear loadings

that PT takes over the dislocation plasticity. The results essentially

depend on the orientation of grains. 

Fig. 4 ( b) presents a loading scenario for which PT and disloca-

tions are included from the beginning of applying the shear (load-

ing type-2). The prescribed shear, γ , applied normal stress, σ n , at

the top, and all the boundary conditions are the same as in the

above example. The different morphology for this loading condi-

tion can be understood by making a comparison of the stress field

near the dislocation pileup for both cases (see Figs. 6 and 7 ). It

is evident that the stress concentration at the pileup is initially
maller than the corresponding values for the loading type-1. In

ig. 7 , the evolutions of pressure and shear for the right grain are

resented by isolines for the loading type-2. Because dislocations

n the left grain are not in their stationary states yet, the stress

oncentrators at the pile up are less effective than for the loading

ype-1 scenario. However, when both dislocations in the left grain,

nd HPP in the right grain reach their stationary states, the stress

eld is approximately similar to the one presented in Fig. 6 . As

 result, for the loading type-2, the HPP concentration ( ̃ c = 0 . 56 ),

nd the pressure averaged over the both grains ( ̄p = 0 . 1 GPa) are

nsignificantly different from those for the loading type-1. 

To illustrate the effect of changing the sample size on the

artensitic microstructure and the number of dislocations, in

ig. 5 , we consider one, two, and three orders of magnitude larger

amples in length and height with the same boundary and loading

onditions as explained in Fig. 2 , as well as the same Burgers vec-

or. The microstructure evolution of HPP for all of these samples

s exactly the same; in Fig. 5 , one of them is demonstrated as a

epresentative of all the cases. As a result of the same stationary

olution for the HPP, the average pressure, shear, volume fraction

f martensite, and transformation work are the same. As one may

ee in the Fig. 5 , the maximum number of dislocations, and the

cale factor are in a proportional relationship. This can be inter-

reted as the only reason that the same morphology of the HPP

s produced. Also, in Fig. 5 , the distribution profiles of the dislo-

ations along the slip plane are exactly the same at the stationary

tate for all the sample sizes. All these results confirm that our

odel is scale-independent. 

A change in the orientation of the right grain is not changing

he stationary dislocation configuration in the left grain; however,

rom a comparison between Fig. 4 (a) and (c) (both subjected to

he loading type-1), a profound effect of the grain orientation on

he HPP morphology is visible. In Fig. 4 (d), we include the plastic-

ty with the PT in the right grain ( ϕ 1 = 89 . 7 ◦) by predefining two

lip systems with a ± 35.26 ◦ angle with respect to the x axis (the
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Fig. 4. (a): HPP nucleation and evolution for ϕ 1 = 69 . 7 ◦ and loading type-1. (b): HPP nucleation and evolution for ϕ 1 = 69 . 7 ◦ and loading type-2. (c): HPP nucleation 

and evolution for ϕ 1 = 89 . 7 ◦ and loading type-1. (d): Concurrent nucleation and evolution of the dislocations and HPP for ϕ 1 = 89 . 7 ◦ and loading type-1. Bottom row: 

transformation work contour lines. White isolines for stationary solutions represent the equilibrium transformation work, σ : ε t = �G θ (θ ) = 1 . 0 GPa. Since they are very 

close to the most of interfaces, the local phase interface thermodynamic equilibrium condition is met. 
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oordinate system is defined in Fig. 2 ). Due to a rate-independent

inetics for dislocations in Eq. (4) , they nucleate and grow faster

han PT in this case, and the stress relaxation is more related to

islocation motions than to the PT. HPP nuclei appear initially at

he pileups, and two of them coalesce. There is a small region of

PP in the left side of the right grain which is due to the disloca-

ion pileup which resulted from the appearance of the dislocations

ear a small region. Since the nucleation of the dislocations intro-

uces an athermal friction for the HPP evolution, microstructures

re confined near the slip planes [42,45] . The source of this ather-

al interface friction is tensile stresses in the region where atomic

lanes are missing. However, from the other side of the slip planes,

xtra planes producing dislocations provide considerable compres-

ive stress concentrators, i.e., they promote the nucleation and sta-

ilization of HPP as the new nucleation sites. The concentration

f the HPP in Fig. 4 (d) ( ̃ c = 0 . 35 ) is lower than Fig. 4 (c) ( ̃ c = 0 . 48 )

ue to the stress relaxation mechanism introduced by the slip sys-

ems. In other words, the plasticity plays two opposite roles: it

rovides dislocation pileups which are strong stress concentrators

eading to the nucleation of the HPP regions; on the other hand,

t relaxes the stresses formed during the evolution of dislocations

n the slip systems. Depending on the deformation mechanisms,

rientation of the grains, crystal lattices of the parent and prod-

ct phases, and the loading conditions, the plasticity effects can be

ontrolled [15,16] . 
The contour lines of the pressure and the shear stress evolu-

ions are drawn in Fig. 6 and Fig. 7 for different microstructures

resented in Fig. 4 (a) and (b), including stationary solutions at the

nd. For the pressure distribution, the first distinguishable point is

hat there are both negative and positive pressures around the tip

f pileups which can cause direct and reverse PT. In Fig. 6 , there

re negative (tensile) pressures in the most regions of the grain,

ue to the relatively high volume reductions during the PT, and

 positive pressure in the LPP near the corners. At the beginning,

he transformed regions are surrounded by high negative pressures

 −7 < p < −5 GPa); however, at the stationary solutions, they are

urrounded by lower negative pressures ( −3 < p < −2 GPa). On the

ther hand, in Fig. 7 , the phase interface is close to the positive

ressure at the beginning, and because of a considerable volume

eduction in the HPP, they are embraced by negative pressures at

he end. Also, in Fig. 6 , the shear stress and pressure remain almost

he same near the pileups since in Fig. 4 (a), the loading of type-1

s applied, in contrast to Fig. 7 in which the shear stress concen-

ration increases during the loading. While pressure is well below

he phase equilibrium pressure and is even tensile, very large shear

tresses contribute to the phase equilibrium condition at the phase

nterfaces. 

The local thermodynamic phase equilibrium condition for any

aterial point belonging to the sharp interface in elastoplastic ma-

erial is X = 0 , where X is the thermodynamic driving force for in-
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Fig. 5. The effect of changes in the size of the sample on the number of disloca- 

tions, n . Loading scenario (type-1), boundary conditions, and the morphology of the 

HPP remain the same as presented in Fig. 2 . The legend shows the scale factor for 

each sample. 
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terface motion. For neglected surface energy, X is the Eshelby driv-

ing force minus plastic work at the interface, see [46–48] . When

also the elastic properties of both phases are the same, equation

for X simplifies to X = σ : ε t − �G 

θ (θ ) . Then the local thermody-

namic phase equilibrium condition for a material point that be-

longs to the sharp interface looks like 

σ : ε t = �G 

θ (θ ) = 1 . 0 GP a. (6)

Here, σ: ε t is the transformation work (mechanical part of the

driving force for the PT). The transformation work isolines for the

stationary solution for several cases are plotted in the last row

of Fig. 4 . As one can see, the LPP-HPP interfaces are mostly co-

inciding with the σ : ε t = 1 . 0 GPa isolines, which is in agreement

with the nanoscale PFA containing gradient energy [16,17] . One can

surprisingly observe from Eq. (6) that the plastic strain does not

contribute explicitly to the local phase equilibrium condition, but

it is involved indirectly by changing the local stresses. Thus, ne-

glecting the gradient energy in the current scale-free model for

PT does not introduce an additional athermal resistance to the in-

terface motion. In addition, the thermodynamic equilibrium condi-

tions for the interfaces within the nanoscale and scale-free PFA are

the same. 

The evolution of the volume fraction of HPP, c ∈ [0, 1], and

the pressure averaged over the right and both grains are depicted

in Fig. 8 for ϕ = 89 . 7 ◦. For the case with excluded plasticity in
1 

Fig. 6. Evolution of pressure and shear stress isolines in the transformed grain in Fig
he right grain, Fig. 8 (a), the average pressure over both grains de-

reases from 2 GPa to a value close to zero ( ̄P = 0 . 11 GPa). A clear

orrelation can be recognized by seeing ˜ c and P̄ curves. The nu-

leation and growth of the HPP significantly reduce the pressure

veraged over the entire sample due to a considerable reduction

n the volume in the right grain during the PT. This happens be-

ause the volumetric transformation strain is compressive, and any

ncrease in the volume fraction of the HPP leads to the volume re-

uction in the grain. Due to the shear stress relaxation in the right

rain for the case with plasticity, Fig. 8 (b), and consequently less

PP, the average pressure over both grains is not being reduced as

rastic as in the previous case. Two different stages are clearly seen

n Fig. 8 : burst-like nucleation and growth, during which a major

ortion of the HPP appears and a drastic drop in pressure occurs,

ollowed by a slow evolution toward the stationary solutions. 

.2. Phase transformation in a polycrystalline aggregate under 

ompression and shear caused by dislocation pileups 

For a further study of the present model, we implement it to

 200 × 160 polycrystalline aggregate with 38 grains. The crystal

rientation angles ϕ1 are shown inside each grain in Fig. 9 (a). Two

ertical edges are subjected to a displacement-periodic boundary

ondition, and the bottom edge of the sample is constrained from

isplacing in x and y directions. At the top edge, a prescribed

ormal stress, σn = 6 . 05 GPa, and a low macroscopic shear strain

ate, ˙ γ = 0 . 004 s −1 , are applied. The most active slip systems in

ach grain can be seen in Fig. 10 , and the critical resolved shear

tress on these contact surfaces is τc = 0 . 3 GPa. The arbitrarily

etermined location, quantity, and spacing of the active slip sys-

ems are due to the initial microstructure heterogeneities and in-

ernal stresses. Since grains are distributed by various sizes, orien-

ations, and locations, there is a very heterogeneous distribution

f the HPP, which is observed in Fig. 9 (d) for four randomly cho-

en grains. The lowest averaged volume fraction of the HPP ap-

ears in the corner of grain #24, and the most transformed grains

re #4 and #5 at the top middle of the sample. Moreover, reverse

T happens in some grains despite the monotonous shearing. In

ig. 9 (b) and (c), a comparison between the pressure, shear, and

olume fractions of the HPP and the corresponding variants aver-

ged over the entire aggregates with 13 grains [29] and 38 grains

re shown. 

For the sample with 38 grains in Fig. 9 (c), the averaged volume

raction of two variants are close to each other before γ � 0.15,

owever, by increasing γ , c̄ 2 becomes larger than c̄ 1 . On the other

and, for the aggregate with 13 grains, the volume fraction of the

ariant 1 is always larger than variant 2. While in most grains both

ariants are activated, just one variant is mostly dominant in a
. 4 (a). White regions and lines represent diffuse (finite-width) phase interfaces. 
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Fig. 7. Evolution of pressure and shear stress isolines in the transformed grain in Fig. 4 (b). 

Fig. 8. Evolution of the volume fraction of HPP, c , in the right grain, and the pressure averaged over the right grain and both grains for the cases (a) in Fig. 4 (c), and (b) in 

Fig. 4 (d), for γ = 0 . 2 . 
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ouple of them, which can be explained by the specific grain orien-

ations (e.g., grain 26 in Fig. 10 ). For the sample with 38 grains, in

ig. 9 (b), P̄ rises to ~ 5.0 GPa before the HPP is being experimen-

ally detectable ( ̄c � 0 . 05 , see [13] ), and after that, the averaged

ressure reduces to ~ 1.8 GPa as a consequence of a significant re-

uction of the volume during the PT. Interestingly, the same trend

an be seen for the aggregate with 13 gains. The averaged shear

tress, τ̄ , increases to ~ 2.9 GPa for 38 grains and 1.9 GPa for 13

rains because of the number of the dislocations (dislocation den-

ity) and back stresses from the dislocation pileups at grain bound-

ries. While our model for the single crystal corresponds to the

erfect plasticity with τc = 0 . 3 GPa, the stochastic grain orienta-

ion and increasing energy of internal (back) stresses produce sig-

ificant work hardening. A higher yield strength for the 38-grains

ggregate than the value for the 13-grains one mimics the grain-

ize effect. Indeed, a larger number of grains in the samples of the

ame size results in a relatively smaller grain size and hinders the

islocation motion. However, this effect strongly depends on the

rescribed strain, and we do not have sufficient data to quantify it

n terms of the strain-dependent Hall-Petch equation. 

Since the magnitude of the volumetric transformation strain of

.1 is two times smaller than the shear transformation strain of

.2, based on Fig. 9 (b), the initial contribution of the pressure p̄ to

he transformation work is significantly larger than the contribu-
ion of the shear stress τ̄ . However, for γ � 0.25, the shear stress

ffect becomes comparable, and with further straining, the shear

tress contributes to a larger portion of the transformation work

han the pressure, even more than a factor of 2 for 38 grains at

= 0 . 33 . 

Kinetic curves for c̄ show that for 13 grains the phase transfor-

ation occurs faster than the case of 38 grains, despite the fact

hat the averaged pressure p̄ and the shear stress τ̄ , and conse-

uently, the transformation work are larger for 38 grains. Proba-

ly, with larger grains, (a) longer dislocation pileups can be ac-

ommodated within the grain producing stronger stress concen-

rators for nucleation, and (b) relatively a smaller grain-boundary

rea produces a smaller overall resistance to the phase-interface

otion. However, surprisingly, for both samples the stationary (i.e.,

ndependent of shear) volume fraction of HPP, c̄ = 0 . 7 , exists for

arge shears and is independent of the number of grains. Fig. 9 d

onfirms that while the entire HPP is in a stationary state, each

artensitic variant in the entire sample is also practically in the

tationary state, but the HPP and each martensitic variant reaches

he stationary state in some grains. 

The existence of stationary two-phase and multiphase solutions

or the volume fraction of the strain-induced HPP is predicted and

nalyzed based on the microscale kinetic model [4,49] for the case

hen the minimum pressure for the direct strain-induced PT to
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Fig. 9. (a) A schematic view of the polycrystalline aggregate under σn = 6 . 05 GPa and ˙ γ = 0 . 004 s −1 ; grain structures and their orientations presented by ϕ1 angle are shown 

in each grain along with the grain # in parentheses; (b) evolutions of the averaged pressure and shear for aggregates with 13 [29] and 38 grains, versus the macroscopic 

shear strain; (c) evolution of the overall volume fraction of the HPP for aggregates with 13 [29] and 38 grains, and (d) evolution of averaged volume fraction of the HPP, ˜ c , 

in several randomly-selected grains, and the corresponding martensitic variants, ˜ c 1 and ˜ c 2 , versus the prescribed shear strain. 
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the HPP is smaller than the maximum pressure for the reverse

strain-induced PT to the LPP. This means that the effect of plastic

strain on such a PT is very strong. Stationary states in [4,49] are

uniquely determined by the applied pressure and they are inde-

pendent of the process history in terms of pressure-plastic strain

loading paths. There is a recent experimental confirmation of the

kinetic equation from [4,49] for Zr [13] , but a reverse PT did not

occur in [13] and PT to the HPP is complete. Also, the existence

of a stationary incompletely transformed solution and its loading

history-independence are confirmed experimentally in [50] . The

existence of the two-phase stationary solution also means that

further shearing is pointless from the point of view of increas-

ing the amount of HPP. This is one more illustration of the fact

[4,5,8,49,51] that the plastic shear should be large enough but also

optimal, thus, not as large as possible. 

It can be seen from Fig. 10 that the HPP usually nucleates close

to the extra atomic planes producing dislocations and also near the

tip of the dislocation pileups in the adjoining grains. Kinetic curves

for the volume fraction of the entire HPP and the martensitic vari-
 t
nts in the individual grains ( Fig. 9 (d)) possess multiple plateaus

nd fast-growth stages. Plateaus correspond to the increasing the

umber of dislocations accommodating the increasing prescribed

hear. When new dislocations join dislocation pileups and increase

he local stress concentrations, the fast-growth stages occur, in-

luding coalescence of different HPP regions. 

.3. Transformation-work based analysis 

Local transformation work at interfaces. The stationary state of

he microstructure and isolines of the equilibrium transformation

ork (see Eq. (6) ) are drawn in Figs. 10 and 4 for various cases. Al-

hough there are some deviations between interfaces and the local

quilibrium PT work contour lines Eq. (6) (mostly near the high-

tress concentrators, at slip surfaces, and around significant curva-

ures), they perfectly or closely coincide with each other in most

egions of the various samples. This is more obvious in the bicrys-

al samples because there is a very small number of stress concen-

rations, i.e. pileups. This result has the following consequences: 
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Fig. 10. Microstructure evolution of the martensite, and two martensitic variants as well as the dislocations under the prescribed vertical stress σn = 6.05 GPa and ˙ γ = 

0 . 004 s −1 at the top edge of the sample in Fig. 9 . 
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(a) Due to the lack of the gradient term, theoretically, the PT in

ach point should occur independently of PT in the other points,

hen the peak stress at the stress-strain curve is reached [19–21] ,

ather than at the phase equilibrium (Maxwell) stress described

y Eq. (6) . That is why fulfillment of the phase equilibrium con-

itions, Eq. (6) , at interfaces means that, in a discretized form, our

radient-free model behaves like the traditional nanoscale phase

eld models with a gradient term [16,17,28] . While this is a topic

or a separate study, we assume that the large gradient of the

ransformation strain within a diffuse interface containing one or

ew finite elements, produces large elastic stresses and energy

ithin the interface (i.e., an interface energy), which plays the

ame part as the interface energy produced by the gradient en-

rgy term. Thus, while we do not penalize the gradient of the vol-

me fraction of the HPP in the analytical equations, it is penalized

n discrete equations due to the finite interface width and elastic

nergy. This assumption explains the fulfillment of Eq. (6) at sta-

ionary interfaces and the closeness of the results of the current

cale-free model and nanoscale models [16,17,28] . 

(b) Note that in some sharp-interface based works [52,53] the

otal work σσσ : : : ε ε ε (i.e., the Eshelby driving force for the interface

ropagation) was utilized for elastoplastic materials, while in our

apers [46–48,51] the phase equilibrium criterion (6) was derived.

urrent results support excluding plastic work from the phase

quilibrium conditions, declared in [46–48,51] . 

(c) While plasticity does not explicitly contribute to (6) , dis-

ocations generate internal stresses, which significantly contribute

o the total stresses in (6) . If we separate internal stresses from
he external ones, the transformation work of the internal stresses

an be moved to the right-hand side of (6) . Then it represents

n athermal resistance to the interface motion. This is evident in

igs. 10 and 4 , where interfaces are arrested by the slip planes,

amely by tensile stresses produced by the missing planes of dislo-

ations. Thus, while athermal friction k is not explicitly introduced

n the current examples, it appears in the solution due to the in-

ernal stresses of dislocations. 

Transformation-work averaged over different regions. We assume

hat the interface width is relatively thin in comparison to the

ransformed region in the sample. With this assumption, the trans-

ormation work averaged over the entire volume is defined as fol-

ows: 

 

σ : ε t 〉 0 = c̄ 〈 σ : ε t 〉 M 

+ (1 − c̄ ) 〈 σ : ε t 〉 A , (7) 

n which 〈 . . . 〉 M 

= 

1 
V M 

∫ 
. . . dV M 

, 〈 . . . 〉 A = 

1 
V A 

∫ 
. . . dV A , and 〈 . . . 〉 0 =

1 
V 0 

∫ 
. . . dV 0 indicate averaging over the HPP area, LPP area, and over

he entire transformed sample, respectively. In addition to the ac-

ual solutions, we assume some artificial distribution of the trans-

ormation strain tensor in the LPP. In particular, for single-variant

T in a single crystal, we assume that ε ε ε t = ε ε ε t1 is uniform and the

ame in HPP and LPP. Then Eq. (7) simplifies to 

 

∗
t := 〈 σ〉 0 : ε t1 = ( ̄c 〈 σ〉 M 

+ (1 − c̄ ) 〈 σ〉 A ) : ε ε ε t1 , (8) 

hich is identity because 〈 σσσ 〉 0 = c̄ 〈 σσσ 〉 M 

+ (1 − c̄ ) 〈 σσσ 〉 A . Thus, W 

∗
t is

ome artificial transformation work produced by stresses averaged

ver the entire volume and the transformation strain in the HPP.

e also introduce the actual transformation work per unit total
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Fig. 11. Evolution of the volume fraction of HPP, ˜ c , in the right grain, the average transformation works W t and W 

∗
t over the right grain, and their ratio for the cases (a) in 

Fig. 4 (a) and (b) in Fig. 4 (b). 

Table 1 

Averaged transformation works defined by Eqs. (9) and (8) 

as well as the volume fraction of the HPP for different 

cases at the stationary state. 

W t ( GPa ) W 

∗
t (GPa ) W t /W 

∗
t c̄ 

Fig. 4 (a) 0.590 1.022 0.577 0.588 

Fig. 4 (b) 0.570 1.030 0.553 0.561 

Fig. 4 (c) 0.502 1.002 0.501 0.48 

Fig. 4 (d) 0.381 0.989 0.385 0.35 

Fig. 10 0.696 1.097 0.634 0.7 
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volume, W t , the actual transformation work per unit volume of the

HPP, W M 

, and the artificial transformation work per unit volume of

the LPP, W A , 

 t := 〈 σ : ε t 〉 M ̄

c = 〈 σ〉 M 

: ε t1 c̄ ; (9)

 M 

:= 〈 σ : ε t 〉 M 

= 〈 σ〉 M 

: ε t1 ;
W A := 〈 σ : ε t 〉 A = 〈 σ〉 A : ε t1 (10)

The values for W t , W 

∗
t , W t /W 

∗
t , and c̄ are tabulated in Table 1 to

check out the averaged equilibrium transformational work condi-

tion in the stationary state. The ratio of W t /W 

∗
t is approximately

equal to c̄ for all cases, except for the case with small c̄ due to

the plasticity introduced in the right grain of the bicrystal sample

( Fig. 4 (d)) and the polycrystalline aggregate ( Fig. 10 ). The deviation

for the mentioned cases are expected due to the comparable sizes

of the interface width and the bulk HPP region, which is in con-

trast to our thin interface width assumption. 

As a conclusion of analyzing Table 1 , we can express 

 M 

= 〈 σ〉 M 

: ε t1 	 W 

∗
t = 〈 σ〉 0 : ε t1 	 �G 
⇒ 〈 σ〉 0 	 〈 σ〉 M 

.

(11)

Substituting Eq. (11) in Eq. (8) we also obtain 

 A := 〈 σ〉 A : ε ε ε t1 	 〈 σ〉 M 

: ε ε ε t1 ; 
⇒ 〈 σ〉 A 	 〈 σ〉 M 

	 〈 σ〉 0 . 
(12)

Obtaining the approximate equality of the stresses averaged over

the HPP, LPP, and the entire sample was the reason for introducing

artificial transformation strain in the LPP. 

In Fig. 11 (a) and (b), the evolution of the averaged transforma-

tion works W t and W 

∗
t , their ratio, and the volume fraction of the

HPP over the right grain are presented for the results shown in

Fig. 4 (a) and (b). As mentioned previously, the only difference be-

tween these two cases is in the loading scenario (the macroscopic
hear strain of 0.2 is applied instantaneously in Fig. 11 (a)). As pre-

ented, W t /W 

∗
t in Fig. 11 (a) is not close to the volume fraction of

he HPP at the very beginning due to a small transformed region

nd relatively large interfaces. As expected, especially in Fig. 11 (b),

 t /W 

∗
t increases until the nucleation starts and then it drops and

onverges to ˜ c at the stationary state. Due to the different load-

ng scenario, in Fig. 11 (a), W t /W 

∗
t is initially large and then drops,

hich is resulted from a constant γ . 

For the polycrystalline aggregate with two variants, we artifi-

ially assume that the transformation strain over the entire sample

 ε t ) is the same for both LPP and HPP, which is described as 

 t = c̄ 1 ̄ε t1 + c̄ 2 ̄ε t2 . (13)

ere ε̄ t1 and ε̄ t1 are the transformation strains for each variant

veraged over the entire polycrystalline aggregate with N grains,

hich are defined as 

¯ ti := 

∑ N 
j=1 V j ̃  c j 

i 
ε ti 

j ∑ N 
j=1 V j ̃  c j 

i 

; i = 1 & 2 , (14)

here V j is the volume of the j th grain. By doing the same calcu-

ations as in Eqs. (7) –(12) , and using the results in Table 1 along

ith the definition in Eq. (13) , the same conclusions as Eqs. (11) ,

12) can be also achieved for the polycrystalline aggregate. How-

ver, when we consider each grain separately and use the local

ransformation strain in a grain, the transformation work averaged

ver the volume of each grain is not generally equal to �G , see

ig. 12 . Different definitions of the transformation work generally

ive the different results in Fig. 12 . The reason for the deviations

s that for the entire volume of a bicrystal and polycrystalline,

he macroscopically homogeneous boundary conditions for stresses

nd strains, are prescribed; however, this is not true for each grain.

The obtained local Eq. (6) and averaged Eq. (11) phase equilib-

ium criteria which approximate the equality of stresses averaged

ver HPP, LPP, and the entire sample, are very important for the

evelopment of the coarse-grained theory of the interaction be-

ween phase transformation and plasticity for the entire polycrys-

alline aggregate. Also, the kinetic curves Fig. 9 (b)–(d) are crucial

or the development of a more accurate microscale kinetic equa-

ion for the plastic strain induced phase transformation than those

uggested in [4,49] . This kinetic equation is currently used within

 macroscale computational model for studying the behavior of a

ample under compression and compression-torsion in traditional

nd rotational diamond anvils [54–57] . 
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Fig. 12. Transformation works averaged over each grain of the polycrystalline ag- 

gregate from Fig. 9 (a) based on different definitions (top) and deviations of the 

< σ : εt > M from �G (bottom). 
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. Concluding remarks 

In this work, a scale-independent model for the interactions

etween the evolution of discrete shear bands and multivariant

artensitic PTs is advanced and applied for studying plastic flow

nd PT in a bicrystal and polycrystalline aggregate under high pres-

ure and shear. The model includes a scale-free phase field theory

or multivariant martensitic PTs, which does not possess a gradient

nergy term, and consequently, characteristic size. Still, the solu-

ion is practically mesh independent because the material instabil-

ty localizes within the FE-size width of the interface between LPP

nd HPP. This interface is usually small in comparison to bulk LPP

nd HPP, exhibiting a stable and well-posed behavior [19] . Also,

hile we neglect the gradient of the order parameter (i.e., the

olume fraction of the HPP) in the analytical equations, it is pe-

alized in the discrete equations due to the finite numerical in-

erface width and elastic energy. Indeed, a large gradient of the

olume fraction of the HPP and consequently, the transformation

train within a diffuse interface produces large elastic stresses and

nergy within an interface (i.e., interface energy), which is simi-

ar to the interface energy produced by the gradient energy term.

ithout the gradient energy term, PT in each material point occurs

ndependently of PT in other points when the peak stress at the

tress-strain curve is reached [19–21] . With an “effective” gradient

nergy, a phase interface is at a thermodynamic equilibrium when

q. (6) is met for the interface points, like in traditional nanoscale

FA [16,17,28] with a gradient term. 

Plastic flow in our approach is modelled through continuous

liding along the prescribed discrete slip planes and directions.

his sliding may represent dislocation pileups [30,31] , thin twins

31] , shear cracks [33] , or macroscopic shear bands [32] . The key

oint is that such a discretized plasticity reproduces strong stress

oncentrators at the tip of these defects and in the places of large

radients of sliding displacements, similar to the pileup of discrete

islocations [16,17,28] . These plastic-strain-induced stress concen-

rators serve as nucleation cites for strain-induced PTs, like in a

anoscale PFA [16,17,28] . The advantage of the scale-free PFA is

hat it is not limited to the submicron samples, like nanoscale

FA, but can be applied to an arbitrary sample size exceed-

ng tens of nm up to km (for geophysical applications). Scale-

ndependency of the suggested model is also proved by treating

eometrically similar samples and varying their size by three or-

ers of magnitude. At the same time, our scale-free approach re-
roduces the stress field of a single dislocation and the solutions

or a coupled evolution of dislocations and HPP in a nanoscale

FA [16,17,28] , which is more sophisticated and computationally

xpensive. 

In all problems, periodic boundary conditions for displacements

t the lateral sides of samples are applied, along with normal com-

ressive stresses and shear displacement at the upper surface with

 fixed lower surface. For a bicrystal, dislocation pileup produces

arrierless nucleation and growth of the HPP, including a coa-

escence stage. Dislocation pileup reduces the PT pressure from

4.7 GPa under hydrostatic loading to 0.07 GPa under shear. This

onfirms conceptually the ability of dislocation pileup to describe

xperiments in which plastic shear reduced the PT pressure by

ne order of magnitude [7,9–12] and even two orders of mag-

itude [14] in comparison to the hydrostatic loading. Note that

he PT pressure under shear is also significantly below the phase

quilibrium pressure under the hydrostatic conditions, 10 GPa, like

n some experiments [7,13] . However, dislocations not only pro-

ote PT; in some cases, they also suppress PT by relaxing inter-

al stresses and by producing an athermal threshold to the dis-

ocation motion. While compressive stresses due to extra planes,

hich produce dislocations, promote PT (in addition to the stress

oncentrator at the tip of dislocation pileup), tensile stresses due

o missing planes confine the PT. Thus, in some cases, the phase

nterface coincides with the slip plane. 

Transformation kinetics versus shear strain for each martensitic

ariant and the total volume fraction of the HPP, in each grain and

n the entire polycrystal, are determined for two 2D polycrystalline

ggregates consisting of 13 and 38 grains. The results are not sig-

ificantly different for both aggregates; in particular, the stationary

i.e., independent of shear) volume fraction of the HPP for large

acroscopic shear values, 0.7, is the same for both aggregates. This

bservation reflects the fact that such a relatively small number of

rains provides a representative transformational behavior of the

olycrystal. At the same time, strain hardening is higher for the

ggregate with 38 grains due to the grain-size effect. 

The existence of the incomplete transformation, i.e., the station-

ry volume fraction of HPP independent of the applied shear, was

lso predicted and analyzed based on the microscale kinetic model

4,49] for the case when the effect of plastic strain on the PT is

ery strong. Stationary states in [4,49] are uniquely determined by

he applied pressure and they are independent of the process his-

ory in terms of pressure-plastic strain loading paths. The existence

f a stationary incompletely transformed solution and its loading

istory independence was confirmed experimentally in [50] . Such

 stationary state also demonstrates that the plastic shear should

e optimal rather than just being large, as it was assumed previ-

usly. 

Interestingly, even for complex systems such as the polycrys-

alline aggregate with numerous dislocation bands, the simplest

ocal phase equilibrium condition Eq. (6) is satisfied for almost

ll stationary interfaces. Thus, this equation can be treated as a

eneral result, which explains the closeness of the solutions for

he current scale-free model and nanoscale models [16,17,28] for

 bicrystal. The transformation-based work criterion, which does

ot include plastic work, supports our previously derived criterion

or sharp interfaces [46–48,51] and confronts the total-work (i.e.,

ased on the Eshelby driving force) criterion in [52,53] . 

It is shown that a similar global phase equilibrium condition in

erms of the stresses averaged over the entire polycrystalline sam-

le, or HPP is met. The global phase equilibrium conditions, how-

ver, are not fulfilled for each grain or for non-stationary solutions.

he obtained approximate equality of the stresses averaged over

he entire polycrystal and HPP and LPP, for such complex fields and

arge numbers of grains, is also very nontrivial and an important

esult. 
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While plasticity does not explicitly contribute to the local and

global phase equilibrium condition, dislocations generate internal

stresses, which significantly change the total stresses, and thus

contribute to the phase equilibrium conditions implicitly. In fact,

they represent an athermal resistance to the interface motion due

to the presence of dislocations. 

The major contribution to the averaged transformation work

comes from pressure at the initial stage of PT and from shear stress

at the later stage. This happens because pressure drops due to the

volume reduction and shear stress growth due to the strain hard-

ening caused by the back stresses. This demonstrates that shear

(more generally, deviatoric) stresses should be incorporated in the

microscale kinetics for the strain-induced PTs [4,49] . The acquired

overall kinetics, local and global phase equilibrium conditions, and

equality of the stresses averaged over phases and entire polycrystal

will be utilized for the further advancement of kinetic equations

in [4,49] , especially for the case when pressure (or stress) induced

PTs occur simultaneously with the strain-induced PTs. Such kinet-

ics equations are important for the modeling of the sample be-

havior in traditional and rotational diamond anvils [54–57] , during

high-pressure torsion, ball milling, friction, and other deformation-

transformation processes. 
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