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a b s t r a c t 

The stationary motion of shuffle screw and 60 ◦ dislocations in silicon when the applied shear, τap , is 

much below the static Peierls stress, τ max 
p , is proved and quantified through a series of molecular dy- 

namics (MD) simulations at 1 K and 300 K, and also by solving the continuum-level equation of motion, 

which uses the atomistic information as inputs. The concept of a dynamic Peierls stress, τ d 
p , below which 

a stationary dislocation motion can never be possible, is built upon a firm atomistic foundation. In MD 

simulations at 1 K, the dynamic Peierls stress is found to be 0 . 33 GPa for a shuffle screw dislocation and 

0 . 21 GPa for a shuffle 60 ◦ dislocation, versus τ max 
p of 1 . 71 GPa and 1 . 46 GPa, respectively. The critical ini- 

tial velocity v c 0 (τap ) above which a dislocation can maintain a stationary motion at τ d 
p < τap < τ max 

p is 

found. The velocity dependence of the dissipation stress associated with the dislocation motion is then 

characterized and informed into the equation of motion of dislocation at the continuum level. A station- 

ary dislocation motion below τ max 
p is attributed to: (i) the periodic lattice resistance smaller than τ max 

p 

almost everywhere; and (ii) the change of a dislocation’s kinetic energy, which acts in a way equivalent 

to reducing τ max 
p . The results obtained here open up the possibilities of a dynamic intensification of plas- 

tic flow and defects accumulations, and consequently, the strain-induced phase transformations. Similar 

approaches can be applicable to partial dislocations, twin and phase interfaces. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

As the intrinsic lattice resistance to a dislocation motion, the 

eierls stress is the minimum stress required to start the motion 

f a static straight dislocation at zero temperature [1] . This is a 

ey controlling parameter in many mesoscale models such as crys- 

al plasticity [2] and dislocation dynamics [3–5] . Extensive research 

as been devoted to determining the Peierls stress for different 

aterials using first principle calculations [6–11] , molecular dy- 

amics (MD) [12–18] , as well as the Peierls-Nabarro model [19–

1,21–24] . In different constitutive equations, it is often assumed 

hat below the Peierls stress dislocation motion is impossible [2–

,13,25] . Here we found that the Peierls stress should be exceeded 

or starting the motion of a dislocation, but not to maintain its sta- 

ionary motion. This concept can be understood through an anal- 
∗ Corresponding author. 
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sis of the equation of motion of dislocations at the continuum 

evel. The energy balance equation for describing the motion of a 

islocation [26] reads as 

ap bv = 

dW p (s, τap ) 

dt 
+ 

dK 

dt 
+ F (v ) v ; K = 0 . 5 m v 2 , (1)

here τap is the applied shear stress acting on the dislocation 

ithin the slip plane along the slip direction, b is the magnitude of 

he Burgers vector, v = d s/d t is the dislocation velocity, W p (s, τap )

nd τp = 

1 
b 

dW p (s,τap ) 

ds 
are the Peierls energy per unit length and the 

attice resistance stress, respectively, which are periodic along the 

islocation path s and dependent on the applied stress τap , K and 

 are the kinetic energy and effective mass of a dislocation per 

nit length, F (v ) is the dissipation force per unit length induced 

y the electron/phonon drag and the wave radiation from a fast 

oving dislocation. For τap = const, with 

dW p (s,τap ) 

dt 
= 

dW p (s,τap ) 

ds 
ds 
dt 

= 

dW p (s,τap ) 

ds 
v = τp bv , and 

dK 
dt 

= m v dv 
dt 

, Eq. (1) can be re-written as 

ap b = τp b + m 

dv 
dt 

+ F (v ) . (2) 

https://doi.org/10.1016/j.actamat.2021.116623
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.116623&domain=pdf
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It is clear from Eq. (2) that, at a zero initial velocity, v 0 = 0 , a

islocation does not move until τap > τmax 
p . That is why the Peierls 

tress τmax 
p is considered as a counterpart of the dry friction, as- 

uming that the stationary dislocation motion at τap < τmax 
p is im- 

ossible. 

However, in contrast to the constant dry friction along the glide 

lane, the lattice resistance stress, τp , is periodic along s . It is 

maller than τmax 
p almost everywhere, changes the sign, and may 

dd to τap along the half of the period. Besides, as long as the ini-

ial dislocation velocity and kinetic energy are high enough, for the 

islocation under a shear stress of τap < τp + F /b, a change of the

inetic energy dK 
dt 

in Eq. (1) may effectively overcome the Peierls 

tress. These two features allow the following phenomenon: a sta- 

ionary dislocation motion at τap � τmax 
p . Here the stationary dis- 

ocation motion refers to a state in which the dislocation velocity 

s a time-independent periodic function of s with a period of b. 

ere the minimum τap when a stationary motion becomes possible 

s defined as the dynamic Peierls stress , τ d 
p . In a pioneering work, 

hrough including the radiation of elastic waves into the elastic- 

ty theory for dislocation motion, Al’shitz et al. [27] analytically 

redicted that the stationary motion of a dislocation under a frac- 

ion of the Peierls stress is possible as long as its velocity exceeds 

 critical value. Similarly, in an independent work with a simple 

tomic scale model, Crowley et al. also analytically showed that 

 stationary dislocation motion in materials under a shear below 

he static Peierls stress might happen and the external strain re- 

uired for such phenomenon would strongly depend on the shape 

f the interatomic potential [28] . Note that the dynamic Peierls 

tress [27,28] was considered as a function of dislocation veloc- 

ty, which is just a dissipation stress. Here we define the dynamic 

eierls stress, τ d 
p , as the minimum τap at which a stationary mo- 

ion is possible. The existence of τ d 
p and whether it is significantly 

ower than the traditional Peierls stress, τmax 
p , was not discussed in 

he literature. Later on, in a simple 2D lattice, such a phenomenon 

as confirmed through computer simulations at the atomic scale. 

he elastic wave emitted from a moving dislocation was charac- 

erized by Koizumi et al. in MD [29] . In contrast, at the contin-

um level, the dynamics of fast moving dislocations in materials 

30] under high strain-rate deformation is usually studied through 

n extension of the Peierls-Nabarro model. Those models either in- 

orporate the static Peierls stress [25,31] as one controlling param- 

ter into the mobility law by assuming that a negligible drag has 

een induced by the elastic wave radiating from the moving dislo- 

ations, or simply approximate it as a viscous drag [32,33] . 

There obviously exists a need to perform the large-scale atom- 

stic simulations of the motion of a dislocation below the Peierls 

tress in realistic materials, especially high-Peierls-barrier materi- 

ls, such as silicon or other materials with covalent or ionic bonds. 

n particular, how far below the Peierls stress is a stationary dislo- 

ation motion possible and what are the conditions for its realiza- 

ion? For a continuum study of the high strain rate plastic defor- 

ation below the Peierls stress at the meso- and macro-scales, one 

eeds a set of the constitutive equations for a single dislocation to 

e justified and calibrated by atomistic simulations or experiments. 

his will lead to an explicit incorporation of the concept of the dy- 

amic Peierls stress, τ d 
p , into the mesoscale computer models and 

n turn, a significant expansion of their predictive capability. 

In this paper, to confirm the existence of τ d 
p and to study the 

islocation motion in a stress range of τ d 
p < τap < τp , we perform 

 series of MD simulations of the motion of shuffle screw and also 

0 ◦ dislocations in silicon at 1 K and 300 K. Taking the dissipa- 

ion force, F (v ) , calibrated from the MD simulations as an input, 

he numerical solution of Eq. (1) is also pursued. In this way, an 

terative loop of linking the atomistic and continuum-level analysis 

s developed and closed. Surprisingly, the dynamic Peierls stresses 

[

2 
t 1 K is 5–7 times smaller than the static Peierls stress. We also 

ound that the critical initial velocity v c 
0 
(τap ) above which a dis- 

ocation can maintain a stationary motion at τ d 
p < τap < τmax 

p . Af- 

er a calibration of all the material parameters in the constitutive 

quation (1) , it well describes the MD simulation results. 

. Definition of the driving force for the motion of a 

islocation 

In contrast to the quasi-static processes, the definition of a driv- 

ng force for the motion of a dislocation under dynamic loading is 

ontrivial because it is not equal to the averaged shear stress over 

he sample or external surface. Based on Weertman’s analysis [34] , 

he force per unit dislocation length in the direction of the Burger’s 

ector can be calculated as follows: 

ap b = 

∫ ∞ 

−∞ 

τb (y ) 
∂�u 

∂y 
dy. (3) 

ere τb is the stress distribution along the dislocation Burger’s di- 

ection within the slip plane, �u is the jump of displacements 

long the dislocation Burger’s direction across the slip plane (see 

igs. 3 -5 in [26] ), and the dislocation is placed at the point y = 0 .

ince ∂�u 
∂y 

is not zero in the vicinity of a dislocation core only, 

 ⊂ [ −a ; a ] , a small portion of the stress distribution in the in-

erval [ −a ; a ] will participate in the integral. Let us also assume 
∂�u (−y ) 

∂y 
= 

∂�u (y ) 
∂y 

. Then Eq. (3) can be simplified as 

ap b = 

∫ 0 

−a 

τzx (y ) 
∂�u 

∂y 
dy + 

∫ a 

0 

τzx (y ) 
∂�u 

∂y 
dy. (4) 

tilizing the mean value theorem for the integration, we con- 

inue 

ap b = τ−
b 

∫ 0 

−a 

∂�u 

∂y 
dy + τ+ 

b 

∫ a 

0 

∂�u 

∂y 

dy = (τ−
b 

+ τ+ 
b 

) 

∫ 0 . 5 b 

0 

d�u = 0 . 5(τ−
b 

+ τ+ 
b 

) b, (5) 

here τ−
b 

and τ+ 
b 

are the averaged shear stresses in the intervals 

 −a ; 0] and [0 ; a ] , respectively, and the total jump �u = b in the

nterval [ −a ; a ] . Simulation results showed that τap converges with 

n increase of a, and we choose a and τap after a full convergence 

s reached. Thus, 

ap = 0 . 5(τ−
b 

+ τ+ 
b 

) . (6) 

ince the self-stresses of a moving dislocation is antisymmetric 

bout y = 0 , they do not contribute to τap . For the static dislo-

ation under a homogeneous external stress τ̄ , the local stresses 

ithout considering the self-stresses are τ−
b 

= τ+ 
b 

= τ̄ , and we ar- 

ive at the well-known equation. In this paper, the driving shear 

tress τap for the motion of a dislocation is calculated using Eq. (6) . 

t provides that, for constant τap , the dislocation motion arrives 

t a stationary state with its velocity oscillating around a constant 

alue, while the averaged shear stress changes. 

. Molecular dynamics simulations 

Here, silicon (Si) is chosen as a representative material for ver- 

fying the possibility of a stationary dislocation motion below the 

tatic Peierls stress and the definition of a dynamic Peierls stress. 

he simulations are started at a low initial temperature of ( 1 K) 

sing a Nos ́e -Hoover thermostat [35] to exclude the effect of the 

nite temperature on the dislocation motion. The atomic interac- 

ions are described using the Stillinger-Weber (SW) potential [36] , 

hich correctly describes the un-dissociated shuffle dislocations 

12,37] , the amorphous phase [38] and the GB structure in silicon 

39–41] . The time step for all simulations is 1 f s . All simulations 
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Fig. 1. The atomistic computer model set-up for simulating the single dislocation motion in single crystalline Si. The atomic displacement field corresponding to a simple 

shear strain εxz for a screw dislocation is applied in the x − y shear plane and εyz = 

√ 

3 εxz for a shuffle 60 ◦ dislocation to produce a shear stress. The bottom of the sample 

is fixed as rigid and the top of it is displaced. A stress concentration is introduced on the edge of the sample when a dislocation carrying a high initial velocity needs to be 

generated. The inset pictures show the boundary conditions applied for a shuffle screw and 60 ◦ dislocation, respectively.. 
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re carried out using the Large-scale Atomic/Molecular Massively 

arallel Simulator (LAMMPS) [42] . 

Figure. 1 shows the computer model set-up of a single crys- 

alline silicon with the xy plane parallel to the (111) glide plane. 

n the x -direction, a periodicity length is L x ≈ 2 nm which is larger

han the cutoff distance of SW potential. The dimension of the 

ample along the L x direction has been varied from 2 nm to 30 nm .

he results are found to be independent of the dimension along 

he sample thickness direction, where a periodic boundary con- 

ition has been applied. Along the other two dimensions, free 

oundary conditions are applied. L y is the sample width along the 

islocation migration direction, and has been varied from 120 nm 

o 10 0 0 nm to exclude the size effect on the steady-state disloca-

ion motion. L z is fixed as a sample height of 40 nm . The model

onsists of ≈ 40 0 , 0 0 0 to 32,0 0 0,0 0 0 atoms. 

To drive the motion of a single dislocation, with a few atomic 

ayers on the bottom of the sample being fixed, a displacement- 

ontrolled boundary condition is imposed on the top ( Fig. 1 ). Two 

ypes of dislocations (one is shuffle 60 ◦ and the other is shuf- 

e screw) have been considered. For the motion of a single shuf- 

e screw dislocation, a displacement of U x = H εxz along x direc- 

ion is applied ( Fig. 1 a), where H is the height of the sample

long the z direction. For the motion of the shuffle 60 ◦ disloca- 

ion, a displacement of U x = H εxz together with a displacement of 

 y = H εyz = 

√ 

3 H εxz along both x and y directions are applied. For

oth dislocations U z = 0 . During the dislocation motion, the ap- 

lied shear stress, τap , is calculated using Eq. (6) . 

In our MD simulations, for both shuffle 60 ◦ and shuffle screw 

islocations, we implement two methods to initiate dislocation 

otion, referred to as static loading and dynamic loading. For 

tatic loading, we drive an initially non-moving dislocation by 

radually increasing the applied shear stress until it starts to move, 

.e., until τap > τmax 
p . A static dislocation was inserted in the mid- 

le of the sample by imposing the displacement field of disloca- 

ions [43] . After the inclusion of the dislocation, the shear strain 

as then increased until the dislocation start to move. The ap- 

lied shear stress τap , above which the dislocation starts to move 

s noted as the traditional static Peierls stress [12,43] . This method 

as been applied in measuring the Peierls stress for dislocations 

n silicon [12] and characterizing the dislocation core structure 

44,45] in silicon. 

For dynamic loading, we use the applied shear loading to main- 

ain the motion of a single dislocation, which emits from a stress 

oncentration site as shown in Fig. 1 . In this dynamic loading sce- 

ario, similar to the approach in [46] , the dislocation acquires a 

igh initial velocity by introducing a strong stress concentration. 

irstly, in order to nucleate the single perfect shuffle dislocation 
t  

3 
ith certain initial velocities [46–48] , the constant ramped veloci- 

ies along the x and y directions are imposed on the several layers 

f atoms located at the right boundary above and below the cen- 

ral glide plane in opposite directions with V y = 

√ 

3 V x for the shuf- 

e 60 ◦ dislocation and V x for the shuffle screw dislocation ( Fig. 1 ).

n all simulations, V x = 0 . 001 nm/ps and the central glide plane is

et between the two shuffle sets; the top right edge of the sample 

s displaced by 0 . 5 b along the positive x direction and the bottom 

ight edge by 0 . 5 b along the negative x direction. The directions of 

he Burgers vector, the applied shear displacement, and the applied 

hear stress τap coincide. Thereafter, the rigidly displaced atoms 

n the left edge of the sample remain to be fixed. Clearly, such 

 loading strategy is controlled by displacement rather than stress. 

here exists a high local stress concentration due to the velocity 

ump across the middle plane on the edge of sample. The maxi- 

um shear stress required by shearing a perfect crystal is at level 

f the theoretical yield strength and is much larger than the static 

eierls stress. 

In this way, the stress concentration ahead of the tip of the 

isplacement discontinuity will produce dislocations with an ini- 

ial velocity migrating towards into the simulation cell. Afterwards, 

he dislocation reaches a stationary velocity within 3 nm, similar 

o [46,49,50] . Such a loading procedure has been used for investi- 

ating supersonic dislocations in tungsten [46] . Similar stress con- 

entrators are ubiquitous in real materials, such as steps at free 

urface [39,51] , grain boundaries [52] , interfaces between different 

hases [53] , and the dislocation pileup against a strong obstacle or 

 crack [41] . 

. Results and discussion 

The mobility of both the initially non-moving dislocation in a 

tatic loading scenario and the dislocation carrying a high initial 

elocity in a dynamic loading scenario has been studied in great 

etails here. The stationary dislocation velocity v st versus the ap- 

lied shear stress τap is shown in Fig. 2 . It is clear that both static

nd dynamic loading generate the same dislocation velocity for τap 

arger than the static Peierls stress, which was determined as the 

pplied shear stress for initiating the motion of a resting disloca- 

ion. The static Peierls stress is 1 . 46 GPa for shuffle 60 ◦ dislocation

nd 1 . 71 GPa for shuffle screw dislocation. Both Peierls stresses are 

onsistent with values from the previous studies [12,22] . However, 

igure. 2 also shows that the dislocation can be at a stationary 

otion even for τap much lower than the static Peierls stress, if 

ts initial velocity is high enough. Here the minimum τap that can 

ause the stationary dislocation motion, which we define here as 

he dynamic Peierls stress, τ d 
p , is 0 . 33 GPa for a shuffle screw dis-
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Fig. 2. The stationary dislocation velocity v st versus the applied shear τap for 60 ◦

and screw dislocations. 
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t

ocation and is 0 . 21 GPa for a shuffle 60 ◦ dislocation. It should be

lso mentioned that the normal stress due to the fixed horizon- 

al boundaries along the z direction in all the present simulations 

s much smaller than the shear stress and is thus neglected here. 

lso, to exclude the size effect on the dislocation motion, several 

imulations with L y ≈ 1 μm, the largest of which contains around 

2,0 0 0,0 0 0 atoms, are carried out for τap = 0 . 4 GPa . Both the shuf-

e screw and 60 ◦ dislocations generated from the stress concentra- 

ion at one end of the sample move to the other end of a sample

ith the same constant velocity as that observed in the small sam- 

les. 

Since it is impossible with MD to determine the variation of 

he dislocation velocity within one Burger’s vector along its glide 

irection, here we solve Eq. (1) to show a clear physical picture of 

he dynamic Peierls stress. To solve this equation, firstly, the climb- 

ng image nudged elastic band (CINEB) method [22,54–56] is used 

o determine the Gibbs-type energy W̄ p (τap , s ) = W p (τap , s ) − τap bs

nder various τap . Figure 3 shows that the energy barrier de- 

reases with the increase of τap . In details, for a shuffle screw 

islocation, the energy barrier decreases from 0 . 37 eV/nm at τ = 0 

o 0 . 02 eV/nm at τ = 1 . 6 GPa . Through a linear extrapolation, the

eierls stress of the shuffle screw dislocation from our CINEB cal- 

ulations is 1 . 68 GPa . Similarly, for the shuffle 60 ◦ dislocation, the

nergy barrier decreases from 0 . 29 eV/nm at τ = 0 to 0 . 04 eV/nm

t τ = 1 . 2 GPa, and the Peierls stress is 1 . 39 GPa . The calculated

eierls stress corresponding to the disappearance of the barrier 

grees well with that from our MD simulations. 

In addition to the Peierls stress and Peierls barrier, the dissipa- 

ion force F (v ) /b is also calibrated through an iterative integration 

f Eq. (1) until its solution matches the dislocation dynamics ob- 
ig. 3. The energy profile W̄ p (τap , s ) and the energy barrier calculated using the CINEB m

he direction of the Burgers vector. 

4 
ained in MD at τ d 
p < τap < τmax 

p . F (v ) /b is initially assumed the 

ame as τap (v st ) . Since the dislocation velocity strongly oscillates, 

he iteration procedure is not trivial. In previous atomistic simula- 

ions, F (v ) was determined for τap > τmax 
p only; here we determine 

t for τap ≥ 0 , i.e., for a much broader range of velocities than be- 

ore. Our results in Fig. 4 show that F (v ) can be approximated by

 (v ) /b = a e −c v , in which a = 0 . 1202 GPa, c = 0 . 9805 s/km for the

huffle screw dislocation and a = 1 . 43 · 10 −4 GPa, c = 3 . 125 s/km for

he shuffle 60 ◦ dislocation. The dominant contribution to the dis- 

ipation force is believed to be induced by the phonon emission 

rom the moving dislocations. When a dislocation moves at low 

peed ( v = 1 . 53 km/s ), the emitted phonon waves are confined in

 cone with a wide angle of θ ≈ 82 . 6 ◦ behind it ( Fig. 5 ). How-

ver, with the increase of the dislocation velocity, the phonon wave 

mission is largely confined within a cone with a narrow angle of 

≈ 54 . 7 ◦. Note that this cone is not related to the Mach cone be-

ause the dislocation motion is still subsonic. 

In the above iteration procedure, if the assumed F (v ) /b leads 

o a higher averaged velocity, F (v ) /b is then linearly increased 

o gradually introduce a larger drag force for dislocation motion, 

hich in turn, will reduce the dislocation velocity. For τap > τmax 
p , 

here is no velocity oscillation, F (v ) /b = τap (v st ) , and no iterations

re needed ( Fig. 6 ). However, for τap < τmax 
p , there is a significant

scillation in the magnitude of the dislocation velocity. That is why 

 (v ) /b is not equal but slightly larger than τap (v st ) ( Fig. 6 ).The dif-

erence between F (v ) /b and the stationary τap (v st ) increases with 

he decrease of τap where more oscillations appear. Such differ- 

nces are smaller for 60 ◦ dislocation for which F (v ) and τap (v st )

re less sensitive to the dislocation velocity. In other words, a 

maller rate-sensitivity causes smaller oscillations of the resistance 

tress with respect to τap (v st ) , and, consequently, a smaller devia- 

ion of F (v ) from τap (v st ) . 

Generally, the effective masses for screw and edge dislocations 

re adopted from [26] : 

 = 

E 0 

c 2 t 

; (7) 

here E 0 ,i is the core energy of the static dislocation and c t is the

peed of shear waves. For the SW potential we used here, E 0 = 

 . 5 eV/nm for the shuffle screw dislocation [57] , E 0 = 4 . 3 eV/nm

or the shuffle 60 ◦ dislocation, and c t = 6 . 4 km/s [58] . Conse-

uently, the effective mass m s = 1 . 34 ̇ 1 0 −25 eV · nm 

−3 · s −2 for the

huffle screw dislocation and m e = 1 . 05 ∗ 10 −25 eV · nm 

−3 · s −2 for

he shuffle 60 ◦ dislocation. 

With an insertion of W̄ p (τap , s ) , F (v ) , and the effective masses

f dislocations, Eq. (1) becomes 

∂ W̄ p (s, τap ) 

∂s 
+ m 

dv 
dt 

+ F (v ) = 0 . (8) 
ethod for the dislocation motion under a variety of applied shear stresses τap along 
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Fig. 4. The dependence of the dissipation force F/b on the dislocation velocity v for 

the shuffle screw (red squares) and the 60 ◦ (blue triangles) dislocations. The two 

curves correspond to the analytical approximation of the atomistic data for τap ≥ τ d 
p 

and a linear function for τap < τ d 
p . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The shear stress field nearby a moving dislocation at two different velocities. 

Fig. 6. A comparison of F (v ) /b and τap (v st ) . 
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q. (8) is then solved for the motion of a dislocation (initially lo- 

ated at s = 0 ) with various initial velocities v 0 under different τap .

ample solutions resulting from several different initial and bound- 

ry conditions are given in Fig. 7 . 

For τap = 0 . 5 GPa � τmax 
p and v 0 = 3 . 3 km/s the dislocation de-

elerates until a stationary oscillatory velocity is reached ( Fig. 7 a) 

fter moving a distance of 8 b-9 b. This leads to a distinctive phys-

cal picture of dislocation motion: a stationary dislocation motion 

t a constant averaged velocity of v st = b/t p , which occurs through 

 periodic oscillation v os (s ) with a period of b. Here t p is the time

equired for a dislocation to travel a distance of b. When the dis- 

ocation starts with an even lower initial velocity of v 0 = 1 . 87 km/s

t τap = 0 . 7 GPa, it accelerates to a stationary state ( Fig. 7 b) at a

oving distance of 6 b-8 b. In contrast, for v = 0 , dislocations can-
0 

5 
ot move unless τap is larger than τmax 
p . For τap = 2 . 2 GPa > τmax 

p ,

n initially static dislocation accelerates to a constant velocity mo- 

ion without oscillations through several velocity jumps ( Fig. 7 c). 

he constant dislocation velocity corresponds to the balance be- 

ween the drag and the driving force. For τap = 0 . 1 GPa < τ d 
p , al-

hough the dislocation starts with a high velocity ( v = 4 km/s ), it

ecelerates down to zero velocity within 4–5 oscillations and then 

tops ( Fig. 7 d). The time period for a dislocation to reach a sta-

ionary motion or a full stop is within 4–9 periods from solving 

q. (8) , which is consistent with MD simulations. The good cor- 

espondences between the solution of Eq. (8) and the MD sim- 

lation results demonstrate that the calibrated W̄ p (τap , s ) , F (v ) , 
nd the effective masses of dislocations are reasonably accurate for 

eing used in dislocation dynamics simulations [32,33] , even for 
d 
p < τap < τmax 

p , at which the dislocation was usually considered 

o be arrested. 

A stationary variation of the velocity v st for both types of dis- 

ocations with displacement s/b within one period of oscillation is 

hown in Fig. 8 . The magnitude of the velocity oscillation decreases 

ith the increase of τap . The oscillation disappears for τap > τmax 
p . 

he minimum velocity decreases when τap decreases. The τap at 

hich the minimum velocity of a shuffle screw dislocation reduces 

o zero is 0 . 36 GPa ( 0 . 26 GPa for a shuffle 60 ◦ dislocation). This is

lose to the dynamic Peierls stress ( 0 . 33 GPa and 0 . 21 GPa for shuf-

e screw and 60 ◦ dislocations, respectively) from MD simulations. 

When τmax 
p > τap > τ d 

p , there is a critical initial dislocation ve- 

ocity, v c 
0 

= v c 
0 
(τap ) , below which the dislocation stops ( Fig. 9 )

nd above which it continues a stationary motion, independent 

rom how the dislocation motion was activated. The maximum 

 

c 
0 

is at τap = τ d 
p , which is 2 . 02 km/s for a shuffle screw disloca-

ion and 1 . 89 km/s for a shuffle 60 ◦ dislocation. Then v c 
0 

decreases

apidly with the increase of τap and reaches zero at τap ≥ τmax 
p . 

he dislocation with v 0 = 0 at τap ≥ τmax 
p accelerates to a con- 

tant velocity as shown in Fig. 7 c. The functional form of v c 
0 
(τap )

an be approximated by v c 
0 

= a (τap − τmax 
p ) 2 + b(τap − τmax 

p ) 3 with 

 = 0 . 2708 km · GPa −2 /s and b = −0 . 5804 km · GPa −3 /s for a shuffle

crew dislocation and a = 1 . 085 km · GPa −2 /s and b = −0 . 1185 km ·
Pa −3 /s for a shuffle 60 ◦ dislocation. The functional form of 

 

c 
0 
(τap ) can be supplemented with the dissipation force F (v ) for 

eing used in mesoscale computer simulations of plastic flow in 

aterials under dynamic loading. For a small τap close to τ d 
p , v c 0 

ncreases rapidly and is significantly larger than v st . However, for 

 large τap , v c 0 is much smaller than v st , which can still be easily

eached after several periods of accelerations. 

To understand whether the dislocation core structure recon- 

truction is responsible for or contributes to the stationary mo- 

ion of a dislocation at a stress significantly below the static Peierls 

tress, here we exam the atomistic core structure on the fly of the 

islocation motion. When the dislocation velocity is 1700 m/s and 

elow, the core structure of the moving dislocation is found not to 

hange in comparison with that of a static dislocation (see Fig. 10 ). 

hus, the observed stationary dislocation motion at τap � τmax 
p is 

ot caused by the core structure reconfiguration. At the same time, 

hen τap is approaching τmax 
p , the dislocation accelerates to a 

ery high velocity at a level of 30 0 0 m/s, where the core struc-

ure is found to reconstruct indeed. However, based on our results 

or τap � τmax 
p , we conclude that this is not the main reason for 

he stationary dislocation motion below the static Peierls stress, 

ut just an accompanied phenomenon due to the high dislocation 

elocity. Additional simulations are also carried out at T = 300 K. 

 slight reduction in the static Peierls stress ( 1 . 65 GPa and and

 . 42 GPa for a shuffle screw and a shuffle 60 ◦ dislocation) and a mi-

or increase in the dynamic Peierls stress ( 0 . 45 GPa and 0 . 32 GPa,

espectively) are observed. The increase of τ d 
p is attributed to the 

ncrease of F (v ) with a temperature rise [59] . 



H. Chen, V.I. Levitas, L. Xiong et al. Acta Materialia 206 (2021) 116623 

Fig. 7. The variation of a shuffle screw dislocation’s velocity v as a function of its traveling distance s obtained by solving Eq. (8) using the energy profile W̄ p (τap , s ) in 

Fig. 3 and the atomistic-data-based drag F (v ) in Fig. 4 as inputs. 

Fig. 8. A stationary variation of the velocity v of a shuffle screw dislocation (a) and 60 ◦ dislocation (b) with displacement s/b obtained by solving Eq. (8) . With a decrease 

of τap , the minimum velocity decreases and finally reaches zero at the dynamic Peierls stress of τ d 
p . 
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The mechanisms discussed above of course do not exhaust all 

ossible atomic modes that may contribute to the mobility of dis- 

ocations in Si. In particular, it has been widely accepted that 

he motion of a dislocation line in a high-Peierls-stress material 

ike silicon do not occur by rigid translation (except in the abso- 

ute zero-temperature limit) but by thermally-induced nucleation 

nd propagation of kinks (secondary defects along the dislocation 

ine) at finite temperature [60–64] . The dislocation motion through 

 double kink mechanism is usually more energetically favorable 

han a rigid translation, but is ruled out here because: (i) The tem- 

erature and the applied stress in the present simulations are too 

ow to activate a kink pair, the formation energy of which is at 

 level of 0.65 eV and requires a stress of 1 GPa at a temperature

f 300 K. Even under such stress and temperature conditions, ac- 

ording to the transient state theory, the time required to activate 

 kink pair will be 8 microseconds. This is obviously beyond the 
6 
each of MD and also the main reason why the kink pairs are usu- 

lly initially introduced into the computer models in many existing 

tomistic simulations of dislocation motion in high-Peierls-stress 

aterials; (ii) A typical kink-kink separation along the dislocation 

ine is at a level of 10 b 12 b, which is larger than the length of the

islocation line under consideration. The activities of kinks have 

een suppressed and are not relevant to the Peierls stress reduc- 

ion observed here; (iii) The Stillinger-Weber potential has been 

sed in this work. This interatomic potential does not produce a 

crew dislocation core at the center of a hexagon. Thus, with this 

otential, even if the kinks are initially introduced, a relaxation of 

he system will lead to spontaneous recombination and elimina- 

ion of the kinks. However, it is also possible that the critical stress 

equired for a stationary dislocation motion can be further reduced 

or some loading regimes if kinks and high initial velocity are si- 



H. Chen, V.I. Levitas, L. Xiong et al. Acta Materialia 206 (2021) 116623 

Fig. 9. The minimum initial dislocation velocity v c 0 below which a dislocation stops 

vs. τap . v c 0 decreases from 2 . 02 km/s for a shuffle screw dislocation and 1 . 89 km/s 

for a 60 ◦ dislocation down to zero when τap ≥ τ max 
p . For comparison, the plot of the 

dependence of the stationary dislocation velocity v st on τap is also included here. 

m

p

b

m

s

c

(

 

 

(

Fig. 11. (a) The annihilation of a screw dislocation on the free surface when it 

moves with a speed of v = 1 . 506 km/s . The kinetic energy is dissipated by the re- 

flected acoustic phonon waves. (b) The rebounding of a screw dislocation from the 

free surface when it moves at a speed of v = 3 . 768 km/s . Comparing with the low- 

speed dislocation in (a), the high-speed dislocation emits less intensity of phonons. 

Fig. 12. (a) Two coplanar opposite-sign screw colliding dislocations annihilate 

when the dislocations move at v = 2 . 501 km/s . The kinetic energy is dissipated by 

the acoustic phonon waves. (b) Those two same dislocations fully penetrate through 

each other when move against each other at v = 3 . 06 km/s . 

F

(

a

ultaneously imposed on the dislocation line. This will be com- 

rehensively studied in our future work. 

In addition to assisting dislocations on overcoming the Peierls 

arrier, the high initial velocities and kinetic energy of dislocations 

ay lead to other abnormal activities, which were previously ob- 

erved in FCC metals only [49,50] and are reproduced here in sili- 

on, i.e., they could be very general. For example: 

1) A shuffle screw dislocation bounces back from the free surface 

when it moves at a high stationary velocity of v = 3 . 768 km/s

( Fig. 11 b), corresponding to τap > τmax 
p (see Fig. 2 or 9). At 

the same time, for a low stationary velocity of v = 1 . 506 km/s

( Fig. 11 a), which corresponds to τap slightly larger than τ d 
p , 

dislocation annihilates at the surface, as expected, generating 

strong acoustic phonon waves. When a fast moving dislocation 

hits a free surface, it is also annihilated first and then a new 

dislocation is immediately generated, due to a high localized ki- 

netic energy and shear stress concentration, which is four times 

larger than for the lower-velocity dislocation (see Fig. 11 ). Such 

an “annihilation-regeneration” process occurs in a few picosec- 

onds and appears as if the incident dislocation has been “re- 

bounded” from the free surface ( Fig. 11 b). It should be noted 

that such a rebounded dislocation appears on the same slip 

plane as that of the incident dislocation, in contrast to the sim- 

ilar phenomenon in metals [49,50] , where it appears shifted by 

one slip plane. Note that the problem formulation there was the 

same as the above but with a longer run so that the dislocation 

reaches the free surface of the sample and is bounced back. 

2) The problem formulation in Fig. 12 is the same as the above 

but with two dislocations nucleated from both sides of the 

sample. Two co-planar opposite-sign screw dislocations with 
ig. 10. A comparison of the core structures between the moving ( v = 1 . 7 km/s ) and the resting shuffle 60 ◦ dislocations. By superposing the static dislocation core structure 

small white circles in (a)) on the moving dislocation core, it can be seen that motion does not change dislocation core structure. The atoms in this figure are colored by the 

tomic shear stresses. 

7 



H. Chen, V.I. Levitas, L. Xiong et al. Acta Materialia 206 (2021) 116623 

5

m

n

t

o

o

d

v

a

t

a  

t

t

1

a

v
s  

a

s

(

(

n

(

(

(i

a

s

e

d

a

b

b

m

t

t

m

a

t

7

r

t

f

n

m

m

D

c

i

A

(

e

(

U

k

V

M

N

R

 

 

 

 

 

 

 

 

 

 

 

 

high velocities of v = 3 . 060 km/s (corresponding to τap slightly 

larger than τmax 
p ) collide and penetrate each other ( Fig. 12 b) 

rather than annihilating with each other, like for v = 2 . 501 km/s 

( Fig. 12 a), corresponding to τ d 
p < τap < τmax 

p . When those two 

fast moving dislocations meet with each other on the same slip 

plane, they annihilate first as expected from a textbook pre- 

diction. Thereafter, driven by the high kinetic energy and the 

strong stress concentration, those two opposite co-planar dislo- 

cations are then immediately created and accelerated to glide 

in opposite directions. This process also occurs in a very short 

duration and looks as if the incident two dislocations have 

“penetrated” through each other ( Fig. 12 b). The acoustic wave 

generated by penetrated dislocations is much weaker than that 

by the annihilated dislocations. These phenomena will be stud- 

ied quantitatively in our future research. 

. Conclusions 

To summarize, we have proved and quantified the stationary 

otion of a dislocation in Si at τap � τmax 
p using molecular dy- 

amics simulations and solving the equation of motion for disloca- 

ions. The Peierls stress τmax 
p is usually considered as a dry friction 

r a direct reflection of the yield strength. We introduced a concept 

f the dynamic Peierls stress τ d 
p � τmax 

p , below which a stationary 

islocation motion is impossible for dislocations with any initial 

elocities. Starting with a qualitative analysis of the energy bal- 

nce, Eq. (1) , for the motion of a dislocation followed by the solu- 

ions of Eq. (8) together with MD simulations for the shuffle screw 

nd 60 ◦ dislocations in Si at 1 K and 300 K, it is seen that, above

he critical initial velocity v c 
0 
(τap ) , a dislocation can maintain a sta- 

ionary motion at τ d 
p < τap < τmax 

p . The dynamic Peierls stresses at 

 K are 5–7 times smaller than the static Peierls stress. When the 

pplied shear is between the static and dynamic Peierls barriers, if 

 0 > v c 
0 
(τap ) , the dislocation velocity converges toward a stationary 

tate at the given τap after traveling a distance of 4 b − 9 b, although

 strong oscillation is present in the stationary velocity. Two rea- 

ons are responsible for this phenomenon: 

a) In contrast to the constant dry friction, the lattice resistance 

stress, τp , is periodic along s, and is smaller than the Peierls 

stress, τmax 
p , almost everywhere. It changes signs and may add 

to τap along the half of the period. 

b) When a dislocation passes the regions in which τap < τp + F /b, 

a reduction in its kinetic energy dK 
dt 

in Eq. (1) acts in a way 

equivalent to reducing the Peierls stress. 

The constitutive model for Eq. (8) includes three key compo- 

ents: 

i) the energy profile W̄ p (τap , s ) , which is calculated using the 

CINEB method in MD; 

ii) the dissipation force F (v ) , which is determined through an it- 

erative comparison between the solution of Eq. (8) and the MD 

simulation results. Previously, F (v ) was determined for τap ≥
τmax 

p , here F (v ) is calibrated down to zero stress instead; 

ii) and the critical initial velocity, v c 
0 
(τap ) , below which the sta- 

tionary motion is not reachable. 

Here Si is considered as a model material for cubic diamond 

nd zinc blended covalent crystal structures, and the obtained re- 

ults are expected to be generic for these structures. Since the en- 

rgy balance equation in Eq. (1) has the same form for the partial 

islocations (e.g., twinning or phase transforming dislocations) and 

lso for twin and phase interfaces [65,66] , our results here should 

e valid for them as well. Our findings will also open the possi- 

ility of a dynamic intensification of the plastic flow, defects accu- 

ulations, phase transformations, and shear banding [67] . Indeed, 
8 
hrough a dynamic initiation of dislocations and interface propaga- 

ion with τap > τmax 
p , one can maintain a stationary dislocation at 

uch lower stresses at τap > τ d 
p . In particular, one possible mech- 

nism for the drastic reduction of phase transformation pressure 

hrough plastic shearing by one to two orders of magnitude [68–

0] is related to the formation of the dislocation pileups in mate- 

ials. The pileup-induced strong stress concentration may activate 

he barrierless nucleation of a high-pressure phase [41,70–72] . The 

ormation of such dislocation pileups can be promoted by a dy- 

amic initiation of the plastic flow followed by a deformation at 

uch lower stresses. Such a scenario may be realized through ball 

illing, short peening, or dynamic powder compaction. 
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