Acta Materialia 206 (2021) 116623

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article

Stationary dislocation motion at stresses significantly below the )
Peierls stress: Example of shuffle screw and 60° dislocations in silicon | %

Hao Chen?, Valery I. Levitas”“%* Liming Xiong¢, Xiancheng Zhang®

aKey Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and
Technology, Shanghai 200237, China

b Department of Aerospace Engineering, lowa State University, Ames, lowa 50011, USA

¢ Department of Mechanical Engineering, Iowa State University, Ames, lowa 50011, USA

d Ames Laboratory, US. Department of Energy, lowa State University, Ames, lowa 50011-3020, USA

¢ Department of Aerospace Engineering, lowa State University, Ames, Iowa 50011, USA

ARTICLE INFO ABSTRACT
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namics (MD) simulations at 1 K and 300 K, and also by solving the continuum-level equation of motion,
which uses the atomistic information as inputs. The concept of a dynamic Peierls stress, rg, below which
a stationary dislocation motion can never be possible, is built upon a firm atomistic foundation. In MD
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Keywords: simulations at 1 K, the dynamic Peierls stress is found to be 0.33 GPa for a shuffle screw dislocation and
Dynamic Peierls stress 0.21 GPa for a shuffle 60° dislocation, versus P of 1.71 GPa and 1.46 GPa, respectively. The critical ini-
Dislocation mobility tial velocity v5(tsp) above which a dislocation can maintain a stationary motion at ¢ < Tgp < T is

Molecular dynamics

A : found. The velocity dependence of the dissipation stress associated with the dislocation motion is then
Multiscale modeling

characterized and informed into the equation of motion of dislocation at the continuum level. A station-
ary dislocation motion below T, is attributed to: (i) the periodic lattice resistance smaller than 7%
almost everywhere; and (ii) the change of a dislocation’s kinetic energy, which acts in a way equivalent
to reducing 7"**. The results obtained here open up the possibilities of a dynamic intensification of plas-
tic flow and defects accumulations, and consequently, the strain-induced phase transformations. Similar
approaches can be applicable to partial dislocations, twin and phase interfaces.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction ysis of the equation of motion of dislocations at the continuum
level. The energy balance equation for describing the motion of a
As the intrinsic lattice resistance to a dislocation motion, the dislocation [26] reads as

Peierls stress is the minimum stress required to start the motion dW, (s, Tap)  dK
of a static straight dislocation at zero temperature [1]. This is a Tapbv = — P L L F(v)y; K =0.5m7, (1)

dt dt
key controlling parameter in many mesoscale models such as crys-
tal plasticity [2] and dislocation dynamics [3-5]. Extensive research
has been devoted to determining the Peierls stress for different
materials using first principle calculations [6-11], molecular dy-
namics (MD) [12-18], as well as the Peierls-Nabarro model [19-
21,21-24]. In different constitutive equations, it is often assumed
that below the Peierls stress dislocation motion is impossible [2—
5,13,25]. Here we found that the Peierls stress should be exceeded
for starting the motion of a dislocation, but not to maintain its sta-
tionary motion. This concept can be understood through an anal-

where T14p is the applied shear stress acting on the dislocation
within the slip plane along the slip direction, b is the magnitude of
the Burgers vector, v = ds/dt is the dislocation velocity, W, (s, Tap)

and 1p = %W are the Peierls energy per unit length and the
lattice resistance stress, respectively, which are periodic along the
dislocation path s and dependent on the applied stress 7qp, K and
m are the kinetic energy and effective mass of a dislocation per
unit length, F(v) is the dissipation force per unit length induced
by the electron/phonon drag and the wave radiation from a fast

moving dislocation. For 74 = const, with dwpift’f"p) = deffs‘r“”) % =

dWp(s,Tap) ,, _ dK _ dv -WTi
* Corresponding author. —L v =tpby, and G = mvg;, Eq. (1) can be re-written as
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Zhang). Topb = Tpb + mE +F(v). (2)
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It is clear from Eq. (2) that, at a zero initial velocity, vy =0, a
dislocation does not move until t4p > 15“3". That is why the Peierls
stress " is considered as a counterpart of the dry friction, as-
suming that the stationary dislocation motion at 7qp < T is im-
possible.

However, in contrast to the constant dry friction along the glide
plane, the lattice resistance stress, t,, is periodic along s. It is
smaller than 7" almost everywhere, changes the sign, and may
add to tq4p along the half of the period. Besides, as long as the ini-
tial dislocation velocity and kinetic energy are high enough, for the
dislocation under a shear stress of tqp < Tp + F/b, a change of the
kinetic energy % in Eq. (1) may effectively overcome the Peierls
stress. These two features allow the following phenomenon: a sta-
tionary dislocation motion at 7gp <« 7;'%*. Here the stationary dis-
location motion refers to a state in which the dislocation velocity
is a time-independent periodic function of s with a period of b.
Here the minimum 74, when a stationary motion becomes possible
is defined as the dynamic Peierls stress, r;}. In a pioneering work,
through including the radiation of elastic waves into the elastic-
ity theory for dislocation motion, Al'shitz et al. [27] analytically
predicted that the stationary motion of a dislocation under a frac-
tion of the Peierls stress is possible as long as its velocity exceeds
a critical value. Similarly, in an independent work with a simple
atomic scale model, Crowley et al. also analytically showed that
a stationary dislocation motion in materials under a shear below
the static Peierls stress might happen and the external strain re-
quired for such phenomenon would strongly depend on the shape
of the interatomic potential [28]. Note that the dynamic Peierls
stress [27,28] was considered as a function of dislocation veloc-
ity, which is just a dissipation stress. Here we define the dynamic
Peierls stress, 79, as the minimum Tqp at which a stationary mo-
tion is possible. The existence of rg and whether it is significantly
lower than the traditional Peierls stress, 7%, was not discussed in
the literature. Later on, in a simple 2D lattice, such a phenomenon
was confirmed through computer simulations at the atomic scale.
The elastic wave emitted from a moving dislocation was charac-
terized by Koizumi et al. in MD [29]. In contrast, at the contin-
uum level, the dynamics of fast moving dislocations in materials
[30] under high strain-rate deformation is usually studied through
an extension of the Peierls-Nabarro model. Those models either in-
corporate the static Peierls stress [25,31] as one controlling param-
eter into the mobility law by assuming that a negligible drag has
been induced by the elastic wave radiating from the moving dislo-
cations, or simply approximate it as a viscous drag [32,33].

There obviously exists a need to perform the large-scale atom-
istic simulations of the motion of a dislocation below the Peierls
stress in realistic materials, especially high-Peierls-barrier materi-
als, such as silicon or other materials with covalent or ionic bonds.
In particular, how far below the Peierls stress is a stationary dislo-
cation motion possible and what are the conditions for its realiza-
tion? For a continuum study of the high strain rate plastic defor-
mation below the Peierls stress at the meso- and macro-scales, one
needs a set of the constitutive equations for a single dislocation to
be justified and calibrated by atomistic simulations or experiments.
This will lead to an explicit incorporation of the concept of the dy-
namic Peierls stress, ‘L'g, into the mesoscale computer models and
in turn, a significant expansion of their predictive capability.

In this paper, to confirm the existence of rl‘,j and to study the
dislocation motion in a stress range of 7§ < qp < 7. we perform
a series of MD simulations of the motion of shuffle screw and also
60° dislocations in silicon at 1 K and 300 K. Taking the dissipa-
tion force, F(v), calibrated from the MD simulations as an input,
the numerical solution of Eq. (1) is also pursued. In this way, an
iterative loop of linking the atomistic and continuum-level analysis
is developed and closed. Surprisingly, the dynamic Peierls stresses
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at 1 K is 5-7 times smaller than the static Peierls stress. We also
found that the critical initial velocity vg(zqp) above which a dis-
location can maintain a stationary motion at rg < Tgp < rgm. Af-
ter a calibration of all the material parameters in the constitutive

equation (1), it well describes the MD simulation results.

2. Definition of the driving force for the motion of a
dislocation

In contrast to the quasi-static processes, the definition of a driv-
ing force for the motion of a dislocation under dynamic loading is
nontrivial because it is not equal to the averaged shear stress over
the sample or external surface. Based on Weertman’s analysis [34],
the force per unit dislocation length in the direction of the Burger’s
vector can be calculated as follows:

° oA
b= [ m0) Gy 3)

Here 7, is the stress distribution along the dislocation Burger’s di-
rection within the slip plane, Au is the jump of displacements
along the dislocation Burger’s direction across the slip plane (see
Figs. 3-5 in [26]), and the dislocation is placed at the point y = 0.
Since aaAy“ is not zero in the vicinity of a dislocation core only,
y C [—a; a], a small portion of the stress distribution in the in-
terval [—a; a] will participate in the integral. Let us also assume

am;)%y) = BABLyO'). Then Eq. (3) can be simplified as

0 dAu a dAu
ab: ZX ——d X ——dy. 4
b= [ )ty [ ra) Sty 4

Utilizing the mean value theorem for the integration, we con-
tinue

0 9Au T 9Au
Topb = rb‘/_aa—ydy+'cb+/0 By

0.5b
dy=(; + z;)/ dAu=05(t; +1;)b. (5)
0

where 77 and 7} are the averaged shear stresses in the intervals
[—a; 0] and [O; a], respectively, and the total jump Au =b in the
interval [—a; a]. Simulation results showed that 7, converges with
an increase of a, and we choose a and 74 after a full convergence
is reached. Thus,

Top =0.5(7, + 7). (6)

Since the self-stresses of a moving dislocation is antisymmetric
about y =0, they do not contribute to tqp. For the static dislo-
cation under a homogeneous external stress 7, the local stresses
without considering the self-stresses are 7,” = tb+ =17, and we ar-
rive at the well-known equation. In this paper, the driving shear
stress Tqp for the motion of a dislocation is calculated using Eq. (6).
It provides that, for constant 7qp, the dislocation motion arrives
at a stationary state with its velocity oscillating around a constant
value, while the averaged shear stress changes.

3. Molecular dynamics simulations

Here, silicon (Si) is chosen as a representative material for ver-
ifying the possibility of a stationary dislocation motion below the
static Peierls stress and the definition of a dynamic Peierls stress.
The simulations are started at a low initial temperature of (1K)
using a Nosé-Hoover thermostat [35] to exclude the effect of the
finite temperature on the dislocation motion. The atomic interac-
tions are described using the Stillinger-Weber (SW) potential [36],
which correctly describes the un-dissociated shuffle dislocations
[12,37], the amorphous phase [38] and the GB structure in silicon
[39-41]. The time step for all simulations is 1 fs. All simulations
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Fig. 1. The atomistic computer model set-up for simulating the single dislocation motion in single crystalline Si. The atomic displacement field corresponding to a simple
shear strain €, for a screw dislocation is applied in the x —y shear plane and €,, = V3¢, for a shuffle 60° dislocation to produce a shear stress. The bottom of the sample
is fixed as rigid and the top of it is displaced. A stress concentration is introduced on the edge of the sample when a dislocation carrying a high initial velocity needs to be
generated. The inset pictures show the boundary conditions applied for a shuffle screw and 60° dislocation, respectively..

are carried out using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [42].

Figure. 1 shows the computer model set-up of a single crys-
talline silicon with the xy plane parallel to the (111) glide plane.
In the x-direction, a periodicity length is Ly ~ 2 nm which is larger
than the cutoff distance of SW potential. The dimension of the
sample along the Ly direction has been varied from 2nm to 30 nm.
The results are found to be independent of the dimension along
the sample thickness direction, where a periodic boundary con-
dition has been applied. Along the other two dimensions, free
boundary conditions are applied. Ly is the sample width along the
dislocation migration direction, and has been varied from 120 nm
to 1000nm to exclude the size effect on the steady-state disloca-
tion motion. L, is fixed as a sample height of 40nm. The model
consists of ~ 400, 000 to 32,000,000 atoms.

To drive the motion of a single dislocation, with a few atomic
layers on the bottom of the sample being fixed, a displacement-
controlled boundary condition is imposed on the top (Fig. 1). Two
types of dislocations (one is shuffle 60° and the other is shuf-
fle screw) have been considered. For the motion of a single shuf-
fle screw dislocation, a displacement of Uy = Hey, along x direc-
tion is applied (Fig. 1a), where H is the height of the sample
along the z direction. For the motion of the shuffle 60° disloca-
tion, a displacement of Uy = Hey, together with a displacement of
Uy = Hey, = v/3Hey, along both x and y directions are applied. For
both dislocations U, = 0. During the dislocation motion, the ap-
plied shear stress, tqp, is calculated using Eq. (6).

In our MD simulations, for both shuffle 60° and shuffle screw
dislocations, we implement two methods to initiate dislocation
motion, referred to as static loading and dynamic loading. For
static loading, we drive an initially non-moving dislocation by
gradually increasing the applied shear stress until it starts to move,
i.e, until 7gp > 7", A static dislocation was inserted in the mid-
dle of the sample by imposing the displacement field of disloca-
tions [43]. After the inclusion of the dislocation, the shear strain
was then increased until the dislocation start to move. The ap-
plied shear stress 74y, above which the dislocation starts to move
is noted as the traditional static Peierls stress [12,43]. This method
has been applied in measuring the Peierls stress for dislocations
in silicon [12] and characterizing the dislocation core structure
[44,45] in silicon.

For dynamic loading, we use the applied shear loading to main-
tain the motion of a single dislocation, which emits from a stress
concentration site as shown in Fig. 1. In this dynamic loading sce-
nario, similar to the approach in [46], the dislocation acquires a
high initial velocity by introducing a strong stress concentration.
Firstly, in order to nucleate the single perfect shuffle dislocation

with certain initial velocities [46-48], the constant ramped veloci-
ties along the x and y directions are imposed on the several layers
of atoms located at the right boundary above and below the cen-
tral glide plane in opposite directions with V,, = 3V for the shuf-
fle 60° dislocation and Vi for the shuffle screw dislocation (Fig. 1).
In all simulations, Vy = 0.001 nm/ps and the central glide plane is
set between the two shuffle sets; the top right edge of the sample
is displaced by 0.5b along the positive x direction and the bottom
right edge by 0.5b along the negative x direction. The directions of
the Burgers vector, the applied shear displacement, and the applied
shear stress tqp coincide. Thereafter, the rigidly displaced atoms
on the left edge of the sample remain to be fixed. Clearly, such
a loading strategy is controlled by displacement rather than stress.
There exists a high local stress concentration due to the velocity
jump across the middle plane on the edge of sample. The maxi-
mum shear stress required by shearing a perfect crystal is at level
of the theoretical yield strength and is much larger than the static
Peierls stress.

In this way, the stress concentration ahead of the tip of the
displacement discontinuity will produce dislocations with an ini-
tial velocity migrating towards into the simulation cell. Afterwards,
the dislocation reaches a stationary velocity within 3 nm, similar
to [46,49,50]. Such a loading procedure has been used for investi-
gating supersonic dislocations in tungsten [46]. Similar stress con-
centrators are ubiquitous in real materials, such as steps at free
surface [39,51], grain boundaries [52], interfaces between different
phases [53], and the dislocation pileup against a strong obstacle or
a crack [41].

4. Results and discussion

The mobility of both the initially non-moving dislocation in a
static loading scenario and the dislocation carrying a high initial
velocity in a dynamic loading scenario has been studied in great
details here. The stationary dislocation velocity vs versus the ap-
plied shear stress tqp is shown in Fig. 2. It is clear that both static
and dynamic loading generate the same dislocation velocity for )
larger than the static Peierls stress, which was determined as the
applied shear stress for initiating the motion of a resting disloca-
tion. The static Peierls stress is 1.46 GPa for shuffle 60° dislocation
and 1.71 GPa for shuffle screw dislocation. Both Peierls stresses are
consistent with values from the previous studies [12,22]. However,
Figure. 2 also shows that the dislocation can be at a stationary
motion even for 7o, much lower than the static Peierls stress, if
its initial velocity is high enough. Here the minimum 74, that can
cause the stationary dislocation motion, which we define here as
the dynamic Peierls stress, 9, is 0.33 GPa for a shuffle screw dis-
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Fig. 2. The stationary dislocation velocity vy versus the applied shear 7,4, for 60°
and screw dislocations.

location and is 0.21 GPa for a shuffle 60° dislocation. It should be
also mentioned that the normal stress due to the fixed horizon-
tal boundaries along the z direction in all the present simulations
is much smaller than the shear stress and is thus neglected here.
Also, to exclude the size effect on the dislocation motion, several
simulations with Ly ~ 1 um, the largest of which contains around
32,000,000 atoms, are carried out for 74y = 0.4 GPa. Both the shuf-
fle screw and 60° dislocations generated from the stress concentra-
tion at one end of the sample move to the other end of a sample
with the same constant velocity as that observed in the small sam-
ples.

Since it is impossible with MD to determine the variation of
the dislocation velocity within one Burger’s vector along its glide
direction, here we solve Eq. (1) to show a clear physical picture of
the dynamic Peierls stress. To solve this equation, firstly, the climb-
ing image nudged elastic band (CINEB) method [22,54-56] is used
to determine the Gibbs-type energy Wp(tap, s) = Wp(Tap, ) — Tapbs
under various tgqp. Figure 3 shows that the energy barrier de-
creases with the increase of 74p. In details, for a shuffle screw
dislocation, the energy barrier decreases from 0.37eV/nm at t =0
to 0.02eV/nm at T =1.6GPa. Through a linear extrapolation, the
Peierls stress of the shuffle screw dislocation from our CINEB cal-
culations is 1.68 GPa. Similarly, for the shuffle 60° dislocation, the
energy barrier decreases from 0.29eV/nm at T =0 to 0.04eV/nm
at 7 = 1.2GPa, and the Peierls stress is 1.39 GPa. The calculated
Peierls stress corresponding to the disappearance of the barrier
agrees well with that from our MD simulations.

In addition to the Peierls stress and Peierls barrier, the dissipa-
tion force F(v)/b is also calibrated through an iterative integration
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tained in MD at tg < Tap < Tp'™. F(v)/b is initially assumed the
same as Tqp(Vst). Since the dislocation velocity strongly oscillates,
the iteration procedure is not trivial. In previous atomistic simula-
tions, F(v) was determined for tqp > 73" only; here we determine
it for 7qp > 0, i.e., for a much broader range of velocities than be-
fore. Our results in Fig. 4 show that F(v) can be approximated by
F(v)/b=ae ", in which a = 0.1202 GPa, c = 0.9805s/km for the
shuffle screw dislocation and a = 1.43 - 10~4 GPa, ¢ = 3.125s/km for
the shuffle 60° dislocation. The dominant contribution to the dis-
sipation force is believed to be induced by the phonon emission
from the moving dislocations. When a dislocation moves at low
speed (v = 1.53km/s), the emitted phonon waves are confined in
a cone with a wide angle of 0 ~ 82.6° behind it (Fig. 5). How-
ever, with the increase of the dislocation velocity, the phonon wave
emission is largely confined within a cone with a narrow angle of
6 ~ 54.7°. Note that this cone is not related to the Mach cone be-
cause the dislocation motion is still subsonic.

In the above iteration procedure, if the assumed F(v)/b leads
to a higher averaged velocity, F(v)/b is then linearly increased
to gradually introduce a larger drag force for dislocation motion,
which in turn, will reduce the dislocation velocity. For 74y > 1';,“3",
there is no velocity oscillation, F(v)/b = tap(vs), and no iterations
are needed (Fig. 6). However, for 74y < 7", there is a significant
oscillation in the magnitude of the dislocation velocity. That is why
F(v)/b is not equal but slightly larger than 7qp(vs) (Fig. 6).The dif-
ference between F(v)/b and the stationary 7qp(Vst) increases with
the decrease of t;p where more oscillations appear. Such differ-
ences are smaller for 60° dislocation for which F(v) and tqp(vs)
are less sensitive to the dislocation velocity. In other words, a
smaller rate-sensitivity causes smaller oscillations of the resistance
stress with respect to 74p(Vst), and, consequently, a smaller devia-
tion of F(v) from 7qp(Vst).

Generally, the effective masses for screw and edge dislocations
are adopted from [26]:

Eo
=,
C[

= (7)
where Eg; is the core energy of the static dislocation and c; is the
speed of shear waves. For the SW potential we used here, Ey =
5.5eV/nm for the shuffle screw dislocation [57], Ey = 4.3eV/nm
for the shuffle 60° dislocation, and c¢; = 6.4km/s [58]. Conse-
quently, the effective mass ms = 1.3410-25eV .nm=3 .52 for the
shuffle screw dislocation and me = 1.05 « 1025 eV . nm=3 . s=2 for
the shuffle 60° dislocation.

With an insertion of Wp(rap,s), F(v), and the effective masses
of dislocations, Eq. (1) becomes

AW, (s, Tap) e mv

of Eq. (1) until its solution matches the dislocation dynamics ob- 35 ma + F(v) =0. (8)

(a)0.4 . . . . (b)0.4 . . . .
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Fig. 3. The energy profile W, (tqp, s) and the energy barrier calculated using the CINEB method for the dislocation motion under a variety of applied shear stresses 74, along

the direction of the Burgers vector.
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Eq. (8) is then solved for the motion of a dislocation (initially lo-
cated at s = 0) with various initial velocities vy under different 7gp.
Sample solutions resulting from several different initial and bound-
ary conditions are given in Fig. 7.

For 7qp = 0.5GPa « 7,/ and vg = 3.3 km/s the dislocation de-
celerates until a stationary oscillatory velocity is reached (Fig. 7 a)
after moving a distance of 8b-9b. This leads to a distinctive phys-
ical picture of dislocation motion: a stationary dislocation motion
at a constant averaged velocity of vss = b/t,, which occurs through
a periodic oscillation v,(s) with a period of b. Here t; is the time
required for a dislocation to travel a distance of b. When the dis-
location starts with an even lower initial velocity of vy = 1.87 km/s
at tgp = 0.7 GPa, it accelerates to a stationary state (Fig. 7 b) at a
moving distance of 6b-8b. In contrast, for vy = 0, dislocations can-
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not move unless tqp is larger than "%, For 7qp = 2.2 GPa > 7%,
an initially static dislocation accelerates to a constant velocity mo-
tion without oscillations through several velocity jumps (Fig. 7 c).
The constant dislocation velocity corresponds to the balance be-
tween the drag and the driving force. For tqp = 0.1GPa < ¢, al-
though the dislocation starts with a high velocity (v =4kmy/s), it
decelerates down to zero velocity within 4-5 oscillations and then
stops (Fig. 7 d). The time period for a dislocation to reach a sta-
tionary motion or a full stop is within 4-9 periods from solving
Eq. (8), which is consistent with MD simulations. The good cor-
respondences between the solution of Eq. (8) and the MD sim-
ulation results demonstrate that the calibrated Wp(rap,s), F(v),
and the effective masses of dislocations are reasonably accurate for
being used in dislocation dynamics simulations [32,33], even for
T < Tgp < T, at which the dislocation was usually considered
to be arrested.

A stationary variation of the velocity v for both types of dis-
locations with displacement s/b within one period of oscillation is
shown in Fig. 8. The magnitude of the velocity oscillation decreases
with the increase of 7qp. The oscillation disappears for tqp > 7.
The minimum velocity decreases when 14, decreases. The 74y at
which the minimum velocity of a shuffle screw dislocation reduces
to zero is 0.36 GPa (0.26 GPa for a shuffle 60° dislocation). This is
close to the dynamic Peierls stress (0.33 GPa and 0.21 GPa for shuf-
fle screw and 60° dislocations, respectively) from MD simulations.

When ‘L'I;“ax > Tgp > rg, there is a critical initial dislocation ve-
locity, v§ = v§(tap), below which the dislocation stops (Fig. 9)
and above which it continues a stationary motion, independent
from how the dislocation motion was activated. The maximum
v§ is at 7qp = g, which is 2.02km/s for a shuffle screw disloca-
tion and 1.89km/s for a shuffle 60° dislocation. Then v§ decreases
rapidly with the increase of 74, and reaches zero at tqp > T
The dislocation with vy =0 at 7gp > r{,“ax accelerates to a con-
stant velocity as shown in Fig. 7c. The functional form of v§(zap)
can be approximated by v§ = a(tap — Tj"¥*)? + b(qp — T'*)3 with
a=0.2708 km - GPa=2/s and b = —0.5804 km - GPa—3/s for a shuffle
screw dislocation and a = 1.085km - GPa—2/s and b= —0.1185km -
GPa—3/s for a shuffle 60° dislocation. The functional form of
VG (Tap) can be supplemented with the dissipation force F(v) for
being used in mesoscale computer simulations of plastic flow in
materials under dynamic loading. For a small 74, close to ‘L'g, g
increases rapidly and is significantly larger than vs.. However, for
a large tqp, vg is much smaller than vy, which can still be easily
reached after several periods of accelerations.

To understand whether the dislocation core structure recon-
struction is responsible for or contributes to the stationary mo-
tion of a dislocation at a stress significantly below the static Peierls
stress, here we exam the atomistic core structure on the fly of the
dislocation motion. When the dislocation velocity is 1700 m/s and
below, the core structure of the moving dislocation is found not to
change in comparison with that of a static dislocation (see Fig. 10).
Thus, the observed stationary dislocation motion at 7gp <« 7" is
not caused by the core structure reconfiguration. At the same time,
when tqp is approaching 7", the dislocation accelerates to a
very high velocity at a level of 3000 m/s, where the core struc-
ture is found to reconstruct indeed. However, based on our results
for 7qp « 7%, we conclude that this is not the main reason for
the stationary dislocation motion below the static Peierls stress,
but just an accompanied phenomenon due to the high dislocation
velocity. Additional simulations are also carried out at T = 300K.
A slight reduction in the static Peierls stress (1.65GPa and and
1.42GPa for a shuffle screw and a shuffle 60° dislocation) and a mi-
nor increase in the dynamic Peierls stress (0.45 GPa and 0.32 GPa,
respectively) are observed. The increase of t¢ is attributed to the

P
increase of F(v) with a temperature rise [59].
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Fig. 7. The variation of a shuffle screw dislocation’s velocity v as a function of its traveling distance s obtained by solving Eq. (8) using the energy profile W,,(rap.s) in

Fig. 3 and the atomistic-data-based drag F(v) in Fig. 4 as inputs.
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Fig. 8. A stationary variation of the velocity v of a shuffle screw dislocation (a) and 60° dislocation (b) with displacement s/b obtained by solving Eq. (8). With a decrease
of 7g4p, the minimum velocity decreases and finally reaches zero at the dynamic Peierls stress of rg.

The mechanisms discussed above of course do not exhaust all
possible atomic modes that may contribute to the mobility of dis-
locations in Si. In particular, it has been widely accepted that
the motion of a dislocation line in a high-Peierls-stress material
like silicon do not occur by rigid translation (except in the abso-
lute zero-temperature limit) but by thermally-induced nucleation
and propagation of kinks (secondary defects along the dislocation
line) at finite temperature [60-64]. The dislocation motion through
a double kink mechanism is usually more energetically favorable
than a rigid translation, but is ruled out here because: (i) The tem-
perature and the applied stress in the present simulations are too
low to activate a kink pair, the formation energy of which is at
a level of 0.65eV and requires a stress of 1GPa at a temperature
of 300K. Even under such stress and temperature conditions, ac-
cording to the transient state theory, the time required to activate
a kink pair will be 8 microseconds. This is obviously beyond the

reach of MD and also the main reason why the kink pairs are usu-
ally initially introduced into the computer models in many existing
atomistic simulations of dislocation motion in high-Peierls-stress
materials; (ii) A typical kink-kink separation along the dislocation
line is at a level of 10b 12b, which is larger than the length of the
dislocation line under consideration. The activities of kinks have
been suppressed and are not relevant to the Peierls stress reduc-
tion observed here; (iii) The Stillinger-Weber potential has been
used in this work. This interatomic potential does not produce a
screw dislocation core at the center of a hexagon. Thus, with this
potential, even if the kinks are initially introduced, a relaxation of
the system will lead to spontaneous recombination and elimina-
tion of the kinks. However, it is also possible that the critical stress
required for a stationary dislocation motion can be further reduced
for some loading regimes if kinks and high initial velocity are si-
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Fig. 9. The minimum initial dislocation velocity v§ below which a dislocation stops
VS. Tgp. VG decreases from 2.02km/s for a shuffle screw dislocation and 1.89km/s
for a 60° dislocation down to zero when 7y > 7;"*. For comparison, the plot of the
dependence of the stationary dislocation velocity vs on tqp is also included here.

multaneously imposed on the dislocation line. This will be com-
prehensively studied in our future work.

In addition to assisting dislocations on overcoming the Peierls
barrier, the high initial velocities and kinetic energy of dislocations
may lead to other abnormal activities, which were previously ob-
served in FCC metals only [49,50] and are reproduced here in sili-
con, i.e., they could be very general. For example:

(1) A shuffle screw dislocation bounces back from the free surface
when it moves at a high stationary velocity of v = 3.768km/s
(Fig. 11 b), corresponding to 7qp > 7" (see Fig. 2 or 9). At
the same time, for a low stationary velocity of v = 1.506km/s
(Fig. 11 a), which corresponds to tqp slightly larger than ¢,
dislocation annihilates at the surface, as expected, generating
strong acoustic phonon waves. When a fast moving dislocation
hits a free surface, it is also annihilated first and then a new
dislocation is immediately generated, due to a high localized ki-
netic energy and shear stress concentration, which is four times
larger than for the lower-velocity dislocation (see Fig. 11). Such
an “annihilation-regeneration” process occurs in a few picosec-
onds and appears as if the incident dislocation has been “re-
bounded” from the free surface (Fig. 11b). It should be noted
that such a rebounded dislocation appears on the same slip
plane as that of the incident dislocation, in contrast to the sim-
ilar phenomenon in metals [49,50], where it appears shifted by
one slip plane. Note that the problem formulation there was the
same as the above but with a longer run so that the dislocation
reaches the free surface of the sample and is bounced back.

(2) The problem formulation in Fig. 12 is the same as the above
but with two dislocations nucleated from both sides of the
sample. Two co-planar opposite-sign screw dislocations with

@
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;.
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(a) v=1506m/s  0y,: GPa (b) v=3768m/s  0y;,: GPa
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Fig. 11. (a) The annihilation of a screw dislocation on the free surface when it
moves with a speed of v= 1.506km/s. The kinetic energy is dissipated by the re-
flected acoustic phonon waves. (b) The rebounding of a screw dislocation from the
free surface when it moves at a speed of v = 3.768 km/s. Comparing with the low-
speed dislocation in (a), the high-speed dislocation emits less intensity of phonons.

(a) v=2501.5m/s (b) v=3060m/s
e b b
t=Seps it
x - Z . - x )
25 {1 GPa0 425
t=69ps t=60ps ¥
e
. -b
t=73ps : : t=64ps e

Fig. 12. (a) Two coplanar opposite-sign screw colliding dislocations annihilate
when the dislocations move at v = 2.501km/s. The kinetic energy is dissipated by
the acoustic phonon waves. (b) Those two same dislocations fully penetrate through
each other when move against each other at v = 3.06km/s.

Fig. 10. A comparison of the core structures between the moving (v = 1.7km/s) and the resting shuffle 60° dislocations. By superposing the static dislocation core structure
(small white circles in (a)) on the moving dislocation core, it can be seen that motion does not change dislocation core structure. The atoms in this figure are colored by the

atomic shear stresses.
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high velocities of v = 3.060km/s (corresponding to tqp slightly
larger than 7,'%) collide and penetrate each other (Fig. 12b)
rather than annihilating with each other, like for v = 2.501km/s
(Fig. 12a), corresponding to ‘L'g < Tgp < Tp"™. When those two
fast moving dislocations meet with each other on the same slip
plane, they annihilate first as expected from a textbook pre-
diction. Thereafter, driven by the high kinetic energy and the
strong stress concentration, those two opposite co-planar dislo-
cations are then immediately created and accelerated to glide
in opposite directions. This process also occurs in a very short
duration and looks as if the incident two dislocations have
“penetrated” through each other (Fig. 12b). The acoustic wave
generated by penetrated dislocations is much weaker than that
by the annihilated dislocations. These phenomena will be stud-
ied quantitatively in our future research.

5. Conclusions

To summarize, we have proved and quantified the stationary
motion of a dislocation in Si at 7gp « T using molecular dy-
namics simulations and solving the equation of motion for disloca-
tions. The Peierls stress 7" is usually considered as a dry friction
or a direct reflection of the yield strength. We introduced a concept
of the dynamic Peierls stress tg < T, below which a stationary
dislocation motion is impossible for dislocations with any initial
velocities. Starting with a qualitative analysis of the energy bal-
ance, Eq. (1), for the motion of a dislocation followed by the solu-
tions of Eq. (8) together with MD simulations for the shuffle screw
and 60° dislocations in Si at 1 K and 300 K, it is seen that, above
the critical initial velocity v (tap), a dislocation can maintain a sta-
tionary motion at rg < Tgp < Tp"*. The dynamic Peierls stresses at
1 K are 5-7 times smaller than the static Peierls stress. When the
applied shear is between the static and dynamic Peierls barriers, if
Vg > VG (Tap), the dislocation velocity converges toward a stationary
state at the given 1) after traveling a distance of 4b — 9b, although
a strong oscillation is present in the stationary velocity. Two rea-
sons are responsible for this phenomenon:

(a) In contrast to the constant dry friction, the lattice resistance
stress, Tp, is periodic along s, and is smaller than the Peierls
stress, T;'%, almost everywhere. It changes signs and may add
to 74p along the half of the period.

(b) When a dislocation passes the regions in which 7qp < 7p + F/b,
a reduction in its kinetic energy ‘fj—’f in Eq. (1) acts in a way

equivalent to reducing the Peierls stress.

The constitutive model for Eq. (8) includes three key compo-
nents:

(i) the energy profile Wp(rap,s), which is calculated using the
CINEB method in MD;

(ii) the dissipation force F(v), which is determined through an it-
erative comparison between the solution of Eq. (8) and the MD
simulation results. Previously, F(v) was determined for tqp >
7%, here F(v) is calibrated down to zero stress instead;

(iii) and the critical initial velocity, v(tap), below which the sta-
tionary motion is not reachable.

Here Si is considered as a model material for cubic diamond
and zinc blended covalent crystal structures, and the obtained re-
sults are expected to be generic for these structures. Since the en-
ergy balance equation in Eq. (1) has the same form for the partial
dislocations (e.g., twinning or phase transforming dislocations) and
also for twin and phase interfaces [65,66], our results here should
be valid for them as well. Our findings will also open the possi-
bility of a dynamic intensification of the plastic flow, defects accu-
mulations, phase transformations, and shear banding [67]. Indeed,
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through a dynamic initiation of dislocations and interface propaga-

tion with 7gp > t{,“ax, one can maintain a stationary dislocation at

much lower stresses at 7qp > rg. In particular, one possible mech-
anism for the drastic reduction of phase transformation pressure
through plastic shearing by one to two orders of magnitude [68—
70] is related to the formation of the dislocation pileups in mate-
rials. The pileup-induced strong stress concentration may activate
the barrierless nucleation of a high-pressure phase [41,70-72]. The
formation of such dislocation pileups can be promoted by a dy-
namic initiation of the plastic flow followed by a deformation at
much lower stresses. Such a scenario may be realized through ball
milling, short peening, or dynamic powder compaction.
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