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Abstract: Catechol is a key constituent in mussel adhesive proteins and is responsible for strong
adhesive property and crosslinking formation. Plant-based polyphenols are also capable of chemical
interactions similar to those of catechol and are inherently antimicrobial. This review reports a series
of catechol-based antimicrobial polymers classified according to their antimicrobial mechanisms.
Catechol is utilized as a surface anchoring group for adhering monomers and polymers of known
antimicrobial properties onto various types of surfaces. Additionally, catechol’s ability to form
strong complexes with metal ions and nanoparticles was utilized to sequester these antimicrobial
agents into coatings and polymer matrices. During catechol oxidation, reactive oxygen species
(ROS) is generated as a byproduct, and the use of the generated ROS for antimicrobial applications
was also introduced. Finally, polymers that utilized the innate antimicrobial property of halogen-
ated catechols and polyphenols were reviewed.
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1. Introduction

Infection associated with microorganisms such as bacteria, viruses, fungi, or para-
sites results in more death worldwide when compared with other causes [1,2]. To date,
there are many different strategies to prevent bacterial growth and infection. The most
widely used antimicrobial strategy is the use of small antimicrobial molecules that are
broadly applied such as antibiotics, antiseptics, disinfectants, and preservatives. How-
ever, overreliance on the use of these compounds has resulted in the formation of drug-
resistant microorganisms due to their ability to rapidly mutate [3,4]. For instance, Pseudo-
monas aeruginosa and Staphylococcus aureus are resistant to many antibiotics [5].

Challenged by the ongoing threats from antibiotic-resistant microorganisms, poly-
mers with intrinsic antimicrobial properties have received increased interest in both the
academia and the industry [6,7]. Antimicrobial polymers are either functionalized with
antimicrobial agents [8] or possess innate antimicrobial properties [9-11]. There are sev-
eral categories of antimicrobial polymers, which include cationic polymers [12,13], poly-
mers that mimic natural peptides [14-17], halogenated polymers [15,18], and polymers
containing metal ions or nanoparticles (NPs) [19]. Antimicrobial polymers can slow or
inhibit the growth of drug-resistant strains [9,10] and present high antimicrobial efficacy
due to the various antimicrobial modes and polymeric structures [4]. Additionally, these
antimicrobial polymers are promising materials with less toxicity to the human body,
long-lasting activity, and higher environmental safety than the traditional disinfectants
[20,21].

Catechol and polyphenols are widely found in nature. Marine mussels secrete adhe-
sive proteins that consist of a large abundance of 3,4-dihydroxyphenyl-i-alanine (DOPA),
an amino acid with a catechol side chain [22-24]. The presence of catechol contributes to
both the interfacial binding and curing of these adhesive proteins [25]. Catechol can par-
ticipate in a wide range of reversible interactions (e.g., hydrogen bonding, mt—mt electron
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Non-covalent interactions

interaction, cation—Tt interaction, coordination with metal oxide surfaces and metal ions),
and covalent bond formation (Figure 1) [23]. Incorporating catechol into the polymers im-
parts these materials with the chemical reactivity of catechol for designing adhesives, an-
tifouling coatings, drug carriers, and antimicrobial polymers [26-30]. Similarly, plant-
based polyphenols such as tannic acid (TA) and catechin exhibit intermolecular interac-
tions and crosslinking capability resembling those of catechol [31-33]. While most scien-
tists utilize these compounds predominantly as a surface anchoring group for promoting
interfacial bonding, recent research indicated that catechol generates reactive oxygen spe-
cies (ROS) as a byproduct during catechol oxidation [34]. ROS has been demonstrated to
function as an effective, broad-spectrum biocide in many industrial and biomedical appli-
cations [35,36]. Additionally, catechol chemically modified with a halogen [37] and poly-
phenols such as TA, curcumin, catechin, and procyanidin [38—40] are innately antimicro-

bial.
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Figure 1. Possible interactions and reactions of catechol, semiquinone, and ortho-quinones. Noncovalent interactions in-
clude hydrogen bonding, m—mt electron interaction, coordination with metal oxide surface, cation—m interaction, and coor-
dination with metal ions. Covalent interactions include catechol-boronate complexation, polymerization, and irreversible
bonding to organic substrates or molecules bearing, -thiol, -amine, and -imidazole functional groups.

This review focuses on catechol-based antimicrobial polymers. First, the use of cate-
chol moieties as a surface anchoring group to immobilize antimicrobial polymers is re-
viewed. Then, the use of catechol-modified polymers to sequester metal ions or NPs is
introduced. Next, the ability for catechol to generate antimicrobial levels of ROS is intro-
duced. Finally, the antimicrobial activity of halogenated catechol and polyphenols is re-
viewed.

2. Catechol-Modified Polymers with Innate Antimicrobial Properties

Catechol can be incorporated into polymer chains by copolymerizing catechol-con-
taining monomers with plant-based antimicrobial monomers or cationic monomers to
prepare robust and biocompatible antimicrobial polymers and coatings [26,41]. Alterna-
tively, catechol can be tethered to cationic polymers with known antimicrobial properties
to synthesize antimicrobial polymers. In this strategy, catechol serves as the surface an-
choring group to adhere these antimicrobial polymers onto various types of surfaces.
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Monomers with cardanol side chains, 2-hydroxy-3-cardanylpropyl methacrylate
(HCPM), were copolymerized with dopamine methacrylamide (DMA) to prepare an an-
timicrobial polymer, P(DMA-co-HCPM) (Figure 2a) [40]. Cardanol can be obtained from
cashew nut shell liquid and has previously demonstrated antimicrobial property [42,43].
The P(DMA-co-HCPM)-coated polysulfone membranes exhibited excellent antibacterial
activities against Escherichia coli and S. aureus, demonstrating a higher than 90% killing
efficiency. Similarly, borneol is a natural plant-based antibiotic [44], and borneol-contain-
ing polymers demonstrated excellent antibacterial activities [45]. However, these poly-
mers do not have a surface anchoring moiety to form stable coatings [46]. Block copoly-
mers of poly(DMA) and poly (borneolacrylate) (P(DMA-b-BA)) (Figure 2b) demonstrated
remarkable and long-lasting antibacterial properties against E. coli and S. aureus [47].
P(DMA-b-BA) coatings showed robust adhesion and bactericidal properties on different
surfaces such as silicon, silica, stainless steel (SS), cotton fabric, commercial gauze, and
alumina.

Cationic polymers can kill pathogens by attacking their negatively charged cell walls
and exhibit excellent antimicrobial properties [12]. The cationic monomer 2-(methacrylo-
yloxy)-ethyl] trimethylammonium iodide (META) was copolymerized with polyethylene
glycol (PEG) and catechol-based monomers to create a triblock copolymer poly{[2-(2-
methoxyethoxy)ethyl methacrylate]-co-[oligo(ethylene glycol) methacrylate]-co-(N-3,4-di-
hydroxyphenethyl acrylamide)}-b-poly{[2-(methacryloyloxy)ethyl] trimethylammonium
iodide}-b-poly{[2-(2-methoxyethoxy)ethyl methacrylate]-co-[oligo(ethylene glycol) meth-
acrylate]-co-(N-3,4-dihydroxyphenethyl acrylamide)} (P(MEO2MA-co-OEGMA-co-DAA)-
b-PMETA-b-P(MEO:2MA-co-OEGMA-co-DAA)) (Figure 2c) [48]. This triblock copolymer
can self-assemble to form a self-healing hydrogel, while effectively suppressing the
growth of E. coli owing to the presence of cationic quaternary ammonium salt. Addition-
ally, the incorporation of antifouling PEG prevented nonspecific cell attachment. Simi-
larly, catechol was copolymerized with 2-(4-methylthiazol-5-yl) ethyl methacrylate
(MTA) [49] and 2-(dimethylamino)ethyl methacrylate (DMAEMA) [50] to create cationic
antimicrobial polymers.

Qiu et al. [51] showed that through the co-deposition of catechol and cationic poly-
ethylenimine (PEI), N-alkylated PEI was grafted onto polypropylene microfiltration mem-
branes (PPMs) at pH 8.5. Catechols are oxidized into quinone states in a weak alkaline
condition, subsequently reacting with amino groups of PEI via Michael addition or Schiff
base reaction. The modified membrane surface demonstrated 95% antibacterial efficiency
against S. aureus and weak adherence of bacterial cells after 24 h of incubation.
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Figure 2. Chemical structures of polymers functionalized with catechol-based and antimicrobial monomers (a) P(DMA-
c0-HCPM), (b) P(DMA-b-BA), and (c) P(IMEO:MA-co-OEGMA-co-DAA)-b-PMETA-b-P(MEO:2MA-co-OEGMA-co-DAA).

3. Catechol-Based Polymers in Combination with Metal Ions and Nanoparticles

Metal ions such as silver, copper, zinc, gold, and titanium can kill bacteria by binding
to cell membrane proteins, thus inhibiting vital enzymatic activities for cell growth and
causing metabolic disruption that leads to cell death [52,53]. Catechol can form reversible
complexes with these metal ions in a pH-dependent manner [54,55]. Additionally, cate-
chol can reduce soluble metal ions to form NPs, thus functionalizing the NPs on the sur-
face of the catechol-containing polymer [56-58]. This section reviews catechol-containing
polymers that contained various metal ions and NPs. In these polymer systems, catechol
functions as an adhesive moiety for surface bonding as well as sequestering the antimi-
crobial metal ions and NPs.

3.1. Silver Ions (Ag*) and Silver Nanoparticles (AgNPs)

Silver and its compounds are the most used metal ions in creating antimicrobial pol-
ymers [5]. When silver is ionized in solution, the bactericidal active Ag*binds to the pro-
teins of cell walls and form complexes with the DNA and RNA of bacteria, leading to
broad-spectrum antimicrobial activity [59,60]. Ag* and AgNPs can be incorporated into
copolymers, hydrogels, or coatings to create antimicrobial polymeric materials [30,61].
Catechol-containing polymers have been demonstrated to reduce water-soluble Ag* to
form AgNPs (Figure 3), effectively encapsulating the AgNPs into the polymer matrices.
In this approach, catechol not only serves as the reducing agent but also stabilizes the in
situ formed AgNPs. Huang et al. [62] prepared catechol-modified chitosan (Figure 4a),
which reduced Ag*in the form of silver nitrate (AgNOs) in solution to form an antimicro-
bial chitosan/AgNP composite. This composite exhibited remarkable antimicrobial per-
formance at a very low dosage, with a minimum bactericidal concentration of 14 ug-mL"
against E. coli and 25 ug-mL™" against S. aureus. In another approach, O-carboxymethyl
chitosan (CMC) was directly reacted with catechol and deposited onto polyethersulfone
(PES) membranes to construct a coating loaded with AgNPs [63]. Carboxyl and amino
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groups in CMC captured Ag*, which was reduced to AgNPs by catechol moieties. Then
PEG-based polyurethane (PU) was added to confer antifouling properties to the mem-
brane. The chitosan/AgNP and CMC-Ag-PU composites can be deposited onto titanium
and PES surfaces, respectively, by utilizing the strong adhesive and redox property of
catechol [63,64]. Both surfaces exhibited strong antibacterial and antifouling properties
against E. coli and S. aureus. Similarly, a copolymer with a cationic methacrylate bearing a
quaternary ammonium group, 2-methacryloxyethyltrimethylammonium chloride
(DMAEMA"), and a methacrylamide bearing DOPA group (poly(mDOPA)-co-
poly(DMAEMA?Y)) (Figure 4b) was applied to fabricate an antimicrobial coating for SS [65].
This cationic polymer in combination with a polyanion, poly(styrene sulfonate), was de-
posited on the SS surface by electrostatic interaction. Both DOPA and poly(DMAEMAY)
formed and stabilized bactericidal AgNPs. This coating showed excellent killing capabil-
ity against E. coli. The antimicrobial Ag* can be reloaded to replenish the antimicrobial
coating. This approach utilized a one-pot preparation, which is more convenient than the
layer by layer (LbL) deposition in which 45-60 bilayers are needed to have a comparable
antimicrobial activity [66].

CH (0]
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Figure 3. Silver nanoparticle (AgNP) preparation through the reduction of Ag* by catechol as a
reducing agent.
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Figure 4. (a) Catechol-modified chitosan and (b) poly(mDOPA)-co-poly(DMAEMA®).

In addition to the catechol-based copolymers, diverse antimicrobial catechol-based
hydrogels containing AgNPs were also reported. Le Thi et al. [67] described catechol-
functionalized gelatin hydrogels loaded with AgNPs for enhanced antimicrobial activi-
ties. This composite hydrogel sustainably released Ag* over a period of 14 days, which
demonstrated the ability to inhibit the growth of both E. coli and S. aureus bacteria. Simi-
larly, GhavamiNejad et al. [68] embedded AgNPs into a zwitterionic hydrogel copolymer-
ized with DMA. This composite hydrogel exhibited strong antibacterial properties against
Gram-negative (E. coli) and Gram-positive (S. aureus and P. aeruginosa) bacteria. Other
monomers such as non-ionic, cationic, and anionic monomers can be used instead of zwit-
terionic monomers to fabricate AgNP-containing nanocomposite hydrogels.

There are limitations for using AgNPs in biomedical applications due to its potential
for causing mammalian cell apoptosis and death [69,70]. Dopamine-conjugated polymers
can be used to reduce the toxicity of AgNPs toward mammalian cells [71]. In this one-step
approach, antimicrobial and biocompatible catechol-containing silver-carbon nanotube
composites (AgNP-CNT) were produced. A catechol-containing heparin-mimetic poly-
mer was used to convert Ag* to AgNPs and anchor them onto the surface of the CNT
composites. The composite coatings demonstrated a great antibacterial activity against E.
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coli and S. aureus with the killing efficiency of 77.3% and 81.2%, respectively. Interestingly,
the shielding effects of the catecholic polymer coating and the bioactivity of the heparin-
like polymer resulted in the improvement of the cytocompatibility of the antimicrobial
nanocomposites and inhibited the direct cellular exposure to AgNPs.

Gan et al. [72] developed a plant-based hydrogel containing Ag-lignin NPs, pectin
(P), and poly acrylic acid (PAA). Lignin possesses the reductive phenolic hydroxyl and
methoxy groups, which can reduce Ag* to AgNPs. The Ag-lignin NPs-P-PAA hydrogel
displayed long-term adhesion, high toughness, and strong antimicrobial properties. The
increased adhesive property was due to the continuous generation of the catechol from of
lignin through a balanced redox reaction inside the hydrogel network. This hydrogel ef-
fectively inhibited E. coli (97%) and Staphylococcus epidermidis (98%). The antibacterial ac-
tivities of NPs-P-PPA in vivo were confirmed in a rabbit model following the injection of
E. coli suspension (1 mL, 105 cells mL).

3.2. Other Metal Ions and Nanoparticles

Iron ion (Fe3) is widely found in mussel byssus along with catechol-containing pro-
teins [73]. The catechol-Fe* interaction has been reported as a tool for developing an an-
timicrobial polymer film on a solid surface [74]. Alginate-functionalized with catechol
(Alg-C) was deposited onto polydopamine (PDA)-coated substrate and Fe** was intro-
duced as the crosslinker to construct a multilayered film (Figure 5). PDA was first de-
scribed by the Messersmith lab [75] and is a facile method to form multifunctional coatings
consisting of polymerized form of dopamine. The Alg-C/Fe* multilayered films pre-
vented bacterial adhesion and films with a thickness greater than 10 nm demonstrated the
ability to inhibit bacterial growth for over 24 h.

Polydopamine
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Figure 5. Alg-C/Fe* coating. Catechol-Fe*-catechol interactions are the bridge to construct the antimicrobial multilayer
film. Reprinted with permission from reference [74], copyright 2016 Wiley.

Siderophores are iron-chelating compounds, secreted by cells to gather iron from ex-
ternal sources [76]. Artificial catechol-containing siderophores conjugated with antimicro-
bial drugs displayed potent antimicrobial activity against multidrug-resistant bacteria.
These catecholate siderophores form complex with Fe* and enter the microorganism via
the corresponding siderophore-uptake pathway to deliver the antimicrobial drug to the
bacterial cell. These drug conjugates exhibited strong antibacterial activities against Gram-
negative bacteria such as P. aeruginosa, which is highly resistant to most of the existing
antibiotics [77]. Some conjugates exhibited a minimum inhibitory concentration lower
than 0.25 ug-mL~" when treated against aminopenicillin-resistant strains [78].

Molybdenum trioxide (MoOs) NPs also demonstrated strong antimicrobial activity
[56,57]. However, the application of MoOs NPs is limited by their poor solubility in water.
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Catechol-containing polymers such as poly(dopamine methacrylamide-co-methoxyethyl
acrylate), poly(dopamine methacrylamide), poly(ethyl methacrylate-co-dopamine meth-
acrylamide), and poly (hydroxyethyl methacrylate-co-dopamine methacrylamide) were
used to secure MoOs NPs on surfaces [58]. These nanocomposite coatings not only killed
E. coli and Bacillus subtilis after only 1 h of incubation, but they were also antimicrobial
against the more antibiotic-resistant Gram-negative (P. aeruginosa) and Gram-positive
(Streptococcus pyogenes and S. epidermidis) bacteria strains after 2 h of incubation. These
coatings also demonstrated the ability to inhibit the growth of biofilms.

4. ROS-Releasing Catechol-Based Polymers

ROS are highly reactive molecules and free radicals derived from molecular oxygen
[79]. ROS can degrade organic compounds [80-82], initiate free radical polymerization
[83], and kill cells [84,85]. ROS kills cells by attacking and destroying proteins, lipids, and
DNA, which makes ROS a potential solution for antimicrobial applications [86]. Catechol
generates various types of ROS such as hydrogen peroxide (H20:), superoxide (Oz"), sin-
glet oxygen ('Oz2), and hydroxyl radical (¢ OH) during oxidizing conditions such as autox-
idation [34], chemical-induced oxidation [87], and metal ion-mediated oxidation [87,88].

H20: is generated as a byproduct during the autoxidation of catechol at a neutral to
basic pH (Figure 6a) [34]. Catechol-modified microgels generated 1-5 mM of H20: over a
period of 4 days as catechol autoxidized through simple hydration [28]. The H20: gener-
ated from these microgels completely prevented colony formation of both Gram-negative
(E. coli) and Gram-positive (S. epidermidis) bacteria within 24 h and inactivated the infec-
tivity of both enveloped bovine viral diarrhea virus (BVDV) and non-enveloped porcine
parvovirus (PPV). By controlling the oxidation state of catechol, these microgels can be
repeatedly activated (pH 7.4) and deactivated (pH 3.5) to generate antipathogenic levels
of H202. These microgels do not contain the reactive ROS, and H20: is generated by con-
verting molecular oxygen in the aqueous solution through catechol oxidation. This simple
activation process enables the catechol-modified microgel to function as a lightweight and
portable source of disinfectant.

H:0: is not a very potent disinfectant and bacteria such as Staphylococcus secrete an-
tioxidant enzymes such as catalase that decomposes H20: [89]. To further enhance the
antimicrobial property of catechol-modified microgels, these microgels were further
chemically modified with hematin (HEM), a porphyrin derivative that contains an Fe3*
ion (Figure 6b) [90]. Fe?* can convert the generated H20: to * OH via a Fenton-like reaction
process. *OH is also a highly reactive and strong oxidant with remarkable antimicrobial
properties [91]. These microgels demonstrated faster and more effective antibacterial ac-
tivities against both Gram-negative (E. coli) and Gram-positive (S. epiermidis) bacteria at
concentrations of 10° and 107 CFU-mL"", when compared to microgels that generated only
H202[90]. These microgels also reduced 99.997% and 99.97% infectivity of BVDV and PPV,
respectively. However, *OH alone did not provide sufficient antimicrobial property due
to its short half-life (10~ s) [92]. To overcome this issue, the microgels were further modi-
fied with positively charged [2-(methacryloyloxy)ethyl] trimethylammonium chloride
(METAC), which enhances the antibacterial performance of the microgel through electro-
static interactions between the positively charged microgels and the negatively charged
pathogens [90].
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Figure 6. Schematics showing the mechanism of catechol oxidation and H20: generation (a) and
H202 decomposition to generate *OH in the presence hematin (HEM) (b). Reproduced with per-
mission from reference [90] copyright 2020 American Chemical Society.

Catechol generates Oz~ in metal ion-mediated oxidation, which can be further con-
verted into 'Oz by the metal ion [88,93]. Both Oz and O:2 are more reactive when compared
to H202. When catechol-modified microgels were incubated in solutions containing up to
40 mM of various metal ions (e.g., FeZ, Ni**, Cu?, Co*) more than 85% of these metal ions
were removed from the solution [88]. Most interestingly, these metal ions were repur-
posed to generate ROS for dye degradation. Similarly, 'Oz was produced by oxidizing
catechol-modified microgel with iron magnetic nanoparticles (FeMNPs) instead of metal
ions (Figure 7). Unlike autoxidation of catechol that occurs only at a basic pH, the ROS
generation occurred over a wide range of pH (pH 3 to 9). The generated 'O: killed 99% of
E. coli after 24 h of incubation, degraded organic dyes, and removed the antibiotic ciprof-
loxacin from the solution. This simple mixture of catechol-modified microgel and
FeMNPs can potentially be utilized as a portable source for on-demand generation of ROS
for bioremediation and water purification.
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Figure 7. Multifunctional catechol-based microgel. Reprinted with permission from reference [88], copyright 2020 Amer-
ican Chemical Society.



Molecules 2021, 26, 559

9 of 18

Catechols in PDA coating also demonstrated the ability to generate H2O2 [29]. How-
ever, to generate antimicrobial levels of H20z, a two-step coating approach combined with
gentle shaking was necessary (Figure 8). In the first coating step, a thick primer layer of
PDA was coated onto the surface of polypropylene (PP) mesh utilizing an elevated level
of dopamine (20 mg-mL-"). In the second step, a significantly lower concentration of do-
pamine (2 mg-mL~") was applied for the formation and deposition of macroaggregates of
PDA NPs formed in the solution. Shaking the solution during coating promoted gas ex-
change to increase molecular oxygen content in the reaction solution, which promoted
catechol oxidation in creating a thicker PDA film. When the PDA-coated PP mesh was
hydrated in a solution at pH 7.4, 200 uM of H20: was generated for over 48 h. The released
H20: completely killed E. coli and reduced the log reduction value of S. epidermidis by
98.9% within 24 h. Furthermore, PDA was coated on to SS to reduce adhesion of Psychro-
bacter cryohalolentis [94].

PP mesh

One-step PDA coating Two-step PDA coating

Well plate
~ >
Orbitally shaking for Orbitally shaking for another ,:' ]
24h at 25°C 24h at 25°C v/
‘__::
Antibacterial a 0
(0} H o_ {0
S 202 J =0
{30
PBS (pH 7.4)
\ @SZC Quinone
\ Activated by simple hydration ;

Figure 8. Schematic illustration of (a) catechol-based polydopamine (PDA) coating prepared by
two-steps with gentle shaking and (b) the activation of the PDA-coated mesh to generate H2O2 by
simply hydrating the mesh in the PBS with at pH 7.4. Reprinted with the permission of reference
[29], copyright 2019 Kord Forooshani et al.

5. Innate Antimicrobial Property of Halogenated Catechol and Polyphenols
5.1. Antimicrobial Halogenated Catechol

Halogenated phenols, such as triclosan and hexachlorophenol, can rupture and kill
bacteria by deforming their cell walls, inhibiting their growth, and causing cytological
damage [95]. Triclosan binds tightly to enoyl-acyl carrier protein reductase in complex
with oxidized nicotinamide adenine dinucleotide (Fabl/NAD") to inhibit the synthesis of
bacterial fatty acids and achieve a broad-spectrum antimicrobial effect [96,97]. The anti-
microbial halogenated catechol also exists in nature. DOPA with a chloride-functionalized
catechol side chain (CI-DOPA) was extracted from a marine polychaete, Phragmatopoma
californica [98]. PEG hydrogel chemically crosslinked using Cl-functionalized dopamine
prevented E. coli adhesion rate by 20% [99].

Recently, our group prepared a series of DMA derivatives (chlorodopamine methac-
rylamide (DMA-Cl), bromodopamine methacrylamide (DMA-Br), and iododopamine
methacrylamide (DMA-I)) modified with electron-withdrawing halogen substituents at
the 6-position (Figure 9) [37]. These halogenated DM As were incorporated into hydrogels,



Molecules 2021, 26, 559

10 of 18

copolymers, and coatings through free-radical polymerization. The killing efficiency of
halogenated DMA-containing polymers exhibited a 7 log reduction against E. coli and S.
aureus. Most notably, DMA-CI containing hydrogels effectively killed five multidrug-re-
sistant (MDR) bacteria (methicillin-resistant S. aureus, vancomycin-resistant enterococci,
multi-antibiotics-resistant P. aeruginosa, multi-antibiotics-resistant Acinefobacter bau-
mannii, and carbapenem-resistant Klebsiella pneumoniae). All MDR bacteria were com-
pletely eradicated after 24 h of incubation. Additionally, these hydrogels also demon-
strated the ability to kill bacteria in a biofilm while exhibiting low cytotoxicity. Interest-
ingly, when the catechol side chain was protected with methoxy groups and rendered
non-adhesive, the methoxy-protected catechol lost its antimicrobial activity. This indi-
cated that the ability for catechol to adhere to the bacteria is critical for contact killing,
which resulted in membrane disruption. Other halogenated catechol-based polymers
such as chlorinated PDA (CI-PDA) demonstrated a 5 log reduction in bacterial population
against both E. coli and S. aureus [100].
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c6)

c8)

24h
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Figure 9. (a) Chemical structures of halogenated catechol, which was incorporated into copoly-
mers, coatings, and hydrogels with antimicrobial property. (b) FE-SEM images of (b1) S. aureus
grown after 24 h. (b2 and b3) S. aureus treated with DMA-CI containing hydrogel for 24 h with the
inset image showing magnified image of ruptured S. aureus and bacterial debris (white arrows).
(b4) E. coli culture for 24 h. (b5 and b6) E. coli treated with DMA-CI containing hydrogel for 24 h
with the inset image showing magnified image of ruptured E. coli and bacterial debris (white cir-
cles). (c) Fluorescence images of LIVE/DEAD bacterial staining assay of S. aureus (c1 and c3)
treated with catechol-free hydrogel and (c5 and c¢7) DMA-Cl-containing hydrogel after 0 and 24 h.
Fluorescence images of LIVE/DEAD bacterial staining assay of E. coli (c2 and c4) treated with cate-
chol-free hydrogel and (c6 and c¢8) DMA-Cl-containing hydrogel after 0 and 24 h. Live and dead
cells are stained green and red, respectively. Reprinted from [37], copyright 2021, with permission
from Elsevier.
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(a

5.2. Antimicrobial Polyphenols

Polyphenols such as TA, curcumin, catechin, and procyanidin (Figure 10) exhibit in-
nate antimicrobial properties due to the abundant phenolic hydroxyl groups, which can
denature bacterial proteins and damage bacterial cell membranes [38—40]. TA has demon-
strated antimicrobial effect on S. aureus [101]. The antibacterial activity of TA largely relies
on the content of phenolic hydroxyl groups [102]. Sahiner et al. [103] prepared a cross-
linked poly(TA) hydrogel. Under acidic conditions (pH 5.4), p(TA) hydrolyzed into gallic
acid, the minimum inhibition concentration (MIC) value of p(TA) against S. aureus was 40
uL-mL-1. Under alkaline conditions (pH 9.0), p(TA) hydrolyzed and released TA, the MIC
value of p(TA) against S. aureus was 10 uL-mL-. Li and coworkers [104] prepared hemo-
static microparticles by crosslinking TA, carboxymethyl chitosan, hyaluronic acid, and
starch. When this composite material was added to the wound site, it promoted rapid
hemostasis, and the released TA exhibited antimicrobial effects against both E. coli and S.
aureus. A series of UV-curable antibacterial resins were synthesized by modifying TA with
different amounts of glycidyl methacrylate (GMA) [105]. This resin achieved diameters of
zone of inhibition as high as 19 mm against E. coli and S. aureus. However, with an ele-
vated amount of GMA used to crosslink the resin, the resin lost antimicrobial property,
indicating that the phenolic hydroxyl groups in TA played an important role in antibac-
terial activity [106].

(b) o oH
T
Ho oH
OCH3 HsCO
c
HO O OH
OH
OH
(d) OH OH

OH OH
O,
Ho 5
HO
OH
HO Q

OH
HO

Figure 10. Chemical structures of antimicrobial polyphenols such as (a) TA, (b) curcumin, (c) catechin, and (d) procya-

nidin.

Other natural polyphenols such as tea catechins, curcumin from Curcuma longa, and
procyanidins from grape seeds exhibit anti-tumor, anti-inflammatory, antioxidant, anti-
obesity, and antimicrobial properties [107-112]. For example, theaflavin digallate (TFDG),
a poly-catechin, can directly inhibit cytoplasmic membrane proteins to achieve an antimi-
crobial effect [113]. The membrane glucose transporters’ activity decreased 40% after treat-
ment with 62.5 mg-L-* TFDG. Similarly, nanofibrous membranes constructed from curcu-
min-containing polymer demonstrated to be effective antimicrobial barriers with antimi-
crobial activity that lasted over 7 days [111]. Procyanidins can serve as an antimicrobial
drug [114]. Procyanidins were loaded into sugarcane bagasse hydrogel and exhibited an-
tibacterial effect against S. aureus. Finally, procyanidin-treated crepe de Chine silk showed
excellent flame-retardant and antimicrobial properties [115]. The treated silk maintains
more than 80% antimicrobial activity after repeated washing for more than 20 times.
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6. Summary and Future Outlooks

The use of antimicrobial polymers has been extended to many different fields due to
their improved quality and safety in comparison to traditionally used biocides. This article
reviewed different strategies to create antimicrobial polymers utilizing catechol chemis-
try. The adhesive property of catechol was utilized to anchor antimicrobial polymers to
impart surfaces with antimicrobial property. Additionally, the ability for catechol to bind
to metal ions and reduce metal nanoparticles was utilized to sequester these antimicrobial
ions and particles into coatings and polymer matrices. ROS is a broad-spectrum disinfect-
ant and is generated as a byproduct during catechol oxidation. The process of inducing in
situ catechol oxidation is a recent strategy utilized to create portable biomaterials with the
ability for on-demand generation of ROS for antimicrobial application. Finally, halogen-
ated catechols and natural polyphenols exhibit innate antimicrobial property.

While catechol and catechol-containing biomaterials have proven to be biocompati-
ble in culture and in preclinical studies [116-119], cytotoxic compounds are incorporated
in designing antimicrobial polymers. Ag* can interfere with mammalian cell function
through a competitive protein complexation and silver-containing polymers can damage
mammalian cells [120,121]. Antimicrobial metal oxides such as zinc and titanium with
improved biocompatibility can potentially be used instead of the cytotoxic Ag* [122-124].
Similarly, halogenated catechol such as chlorocatechols had been demonstrated to be toxic
to zebra fish, a model organism [125]. Additionally, iodine-modified catechol was also
demonstrated to be cytotoxic when directly contacting fibroblasts [37]. To improve the
biocompatibility of halogenated catechol, a temporary and pH-responsive protecting
group such as boronic acid could potentially be incorporated [126,127]. The utilization of
ROS is an attractive antimicrobial strategy due to its short half-life and biocompatible deg-
radation products (i.e., water and oxygen) [35]. ROS is also a natural disinfectant gener-
ated as part of normal wound healing response [79]. However, elevated levels of ROS can
destroy healthy tissues, retard wound healing, and induce tumor formation [128,129]. Sil-
ica nanoparticles that catalyze the degradation of ROS could potentially be incorporated
to modulate the concentration of the released ROS [130].

One of the often-overlooked issues in designing catechol-based coating is the long-
term stability of the surface-bound catechol. There have only been limited studies that
characterized the performance of these coatings in the presence of biomolecules or cells,
or in vivo for 7 days or longer [131,132]. Catechol forms both reversible and irreversible
interfacial bonds depending on the surface type [22-24], and it is potentially feasible for
catechol to detach from inorganic surfaces over time. Recently, in situ electrochemical ox-
idation was found to deactivate and detach catechol-containing adhesive that was ad-
hered to a titanium surface [133]. As such, externally applied force and oxidative stress
can potentially lead to catechol delamination. While synthetic mussel adhesive mimics
predominantly utilize catechol for adhesion, mussel adhesive proteins utilize a combina-
tion of different amino acid residues (i.e., charged, hydrophobic, etc.) and intermolecular
chemical interactions between multiple proteins to create adhesive plaques that bind
tightly to the substrate surface [23]. Incorporation of diverse interfacial chemistries may
be necessary to strengthen coating stability. Additionally, there is a potentially need for
strategies that preserve the reduced and adhesive form of catechol so that the delaminated
catechol may reattach. The incorporation of an antioxidant thiol functional group [134],
acidic side chain for buffering local solution pH [135], and temporary protecting groups
such as boronic acid [136] can be used to prevent catechol oxidation.
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