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We show that if a sequence of normalized polynomials gives rise to a positive basis of

the skein algebra of a surface, then it is sandwiched between the two types of Chebyshev

polynomials. For the closed torus, we show that the normalized sequence of Chebyshev

polynomials of type one (T̂n) is the only one that gives a positive basis.

1 Introduction

1.1 Results

Let R be a commutative integral domain with a distinguished invertible element q ∈ R.

The main examples are R = Z[q±1] and R = Z with q = 1. Let � = �g,p be the oriented

surface of genus g with p points removed. The skein algebra S (�; R) is the R-algebra

spanned by isotopy classes of framed links in � × (−1, 1) modulo the skein relation and

the trivial loop relation in Figure 1. The product is given by superposition. For details,

see Section 2.1.

We assume that the ring R has a positive part R+, see Section 2.4. When R = Z

its positive part is R+ = Z+, the set of non-negative integers, and when R = Z[q±1]

its positive part is R+ = Z+[q±1]. A basis B of an R-algebra is positive if the structure
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Positivity of Skein Algebras 3187

Fig. 1. Defining relations for S (M).

constants are in R+, that is, for any x, y ∈ B the product xy is a linear combination

of elements in B with coefficients in R+. An important conjecture [4] in cluster algebra

theory is that the skein algebra S (�) has a positive basis.

A sequence of polynomials (Pn(x))∞n=0 with R coefficients is normalized if Pn(x)

is monic with degree n for each n ≥ 0. Note P0(x) = 1 by definition. A normalized

sequence (Pn) defines a basis BP of S (�; R) as in Section 2.3. We say a sequence of

normalized polynomials (Pn) is positive on � over R if the corresponding basis BP is a

positive basis of S (�; R).

Two important sequences considered here are the normalized Chebyshev poly-

nomials of type one (T̂n) and type two (Sn), defined inductively by

T̂0(x) = 1, T̂1(x) = x, T̂2(x) = x2 − 2, T̂n(x) = xT̂n−1(x) − T̂n−2(x), n ≥ 3,

S0(x) = 1, S1(x) = x, Sn(x) = xSn−1(x) − Sn−2(x), n ≥ 2.

Note that the polynomials T̂n(x) coincide with the Chebyshev polynomials of type one

except for T̂0. The reason is we want T̂n to be monic.

The 2nd named author [13] showed that when R = Z and q = 1, the sequence

(T̂n) is positive on any surface and made a conjecture, refining an earlier one of Fock

and Goncharov [4], that (T̂n) is positive when R = Z[q±1] as well.

The 1st named author [7] showed that if the sequence (Pn) is positive on a surface

� having genus ≥ 1, then (Pn) ≥ (T̂n). Here, (Pn) ≥ (Qn) means each Pn is an R+-linear

combination of Q0, Q1, . . . , Qn.

We extend the lower-bound result in [7] to surfaces of genus 0, and at the same

time give an upper bound for all surfaces.

Theorem 1. Suppose R = Z[q±1] and (Pn) is normalized with integer coefficients. Let

� be a surface with genus at least 1 or with at least 4 punctures. If (Pn) is positive on

�, then (T̂n) ≤ (Pn) ≤ (Sn).

In the case of the closed torus �1,0, our result is much more precise.
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3188 T. T. Q. Lê et al.

Theorem 2. A normalized sequence (Pn) is positive on the closed torus �1,0 over Z or

Z[q±1] if and only if (Pn) = (T̂n).

See Section 2.5 for more refined statements.

Theorem 2 is somewhat surprising. The sequence (Sn) gives simple objects in the

ring of modules over the quantum group Uq(sl2). From this point of view, (Sn) is more

natural than the sequence (T̂n). However, it does not give a positive basis on the torus.

On the other hand, if the surface has negative Euler characteristic, it is conjectured that

the (Sn) is positive [13].

Conjecture 1. Both (T̂n) and (Sn) are positive on any surface � with negative Euler

characteristic.

If the skein algebra of a surface � has a positive basis, then one can ask whether

the skein algebra can be categorified. A categorification would give the skein algebra a

richer structure and hopefully will lead to an interesting 4D topological quantum field

theory. The (positive) basis of a normalized sequence is functorial in the sense that

if f : � → �′ is a strict embedding (see the definition in Section 2.3), then f maps

injectively the (positive) the basis of � to the (positive) basis of �′. For some initial

results and an extensive discussion of strategies to categorify the conjectural positive

bases of the sequences (T̂n) and (Sn), see [12].

Remark 1.1. In Theorem 1, we exclude the case when (g, p) is one of (0, 0), (0, 1), (0, 2),

(0, 3) because in these cases the skein algebra S (�g,p; R) is a commutative polyno-

mial algebra and hence obviously has a positive basis; for example, the monomial

basis.

Remark 1.2. For other types of positivity, see for example [2, 3, 8, 10].

2 Skein Algebras

2.1 Basic definitions

Let R be a commutative integral domain with unit and with a distinguished invertible

element q ∈ R. Suppose M is an oriented 3-manifold, not necessarily closed. A framed

link L in M is a smooth, unoriented, closed one-dimensional submanifold equipped with

a normal vector field. By convention, the empty set is also considered as a framed link.

The skein module S (M; R) of M, introduced independently by Przytycki [11] and Turaev
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Positivity of Skein Algebras 3189

[14, 15], is defined as the quotient of the R-module freely generated by isotopy classes

of framed links in M by the skein relation and the trivial loop relation in Figure 1.

In the figure, the diagrams represent links that are identical outside of a ball in

the manifold M. The shaded part is the projection onto the equatorial plane of the ball

where the difference is. The framings on the diagrams are vertical, that is, pointing out

to the reader. The skein relations were introduced by Kauffman [6].

For � = �g,p, the oriented surface with genus g and p punctures, let

S (�; R) := S (� × (−1, 1); R),

which has a product structure given by stacking. More precisely, the product of two

framed links L and K in S (�; R) is given by the union i+(L)∪i−(K), where i± : M → M are

the embeddings defined by i±(x, t) = (x, t±1
2 ). It is easy to see that this is a well-defined

product that turns S (�; R) into an R-algebra. It should be noted that there are surfaces

� 
= �′ such that � × (−1, 1) and �′ × (−1, 1) are diffeomorphic as 3-manifolds, but

S (�; R) and S (�′; R) have different product structures, hence different as R-algebras.

An orientation preserving embedding of surfaces i : � → �′ induces an

R-algebra homomorphism i∗ : S (�; R) → S (�′; R) by applying (x, t) �→ (i(x), t) to links.

In particular, the mapping class group of � acts on the skein algebra S (�; R).

2.2 Multicurves

A multicurve γ on a surface � = �g,p is a closed unoriented 1-submanifold of � none of

the components of which bounds a disk in �. A simple closed curve is a multicurve with

one component. A peripheral curve is simple closed curve bounding a once-punctured

disk. By convention, the empty set is a multicurve.

A multicurve γ of � defines an element of S (�; R) by the embedding γ ⊂ � ∼=
�×{0}. The framing on γ is vertical, that is, parallel to the (−1, 1) direction and pointing

towards 1.

If α and β are disjoint multicurves, then α ∪ β is also a multicurve, and αβ =
βα = α ∪ β as elements of S (�; R). It follows that peripheral curves are in the center of

the skein algebra.

By grouping together isotopic components, every multicurve γ can be uniquely

written as

γ = γ
n1
1 . . . γ nr

r , (1)

where γ1, . . . , γr are disjoint and pairwise non-isotopic simple closed curves, and ni are

positive integers.
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3190 T. T. Q. Lê et al.

2.3 Bases

Let B = B(�) denote the set of all isotopy classes of multicurves. The module structure

of the skein algebra is very simple.

Theorem 2.1 ([11]). As an R-module, S (�; R) is free with basis B(�).

From this description of free bases, it is easy to see that, as an R-algebra

S (�g,p; R) is isomorphic to a commutative polynomial algebra for the case when g = 0

and p ≤ 3. Namely S (�0,0; R) ∼= S (�0,1; R) ∼= R. When (g, p) = (0, 2), one has

S (�0,2; R) ∼= R[x] where x is the only peripheral curve. Finally, S (�0,3; R) ∼= R[x, y, z],

where x, y, z are the three peripheral curves. These surfaces will not be considered

below. For all other (g, p), over R = Z[q±1], the skein algebra S (�g,p; R) is non-

commutative.

An embedding ι : � ↪→ �′ is strict if the induced map from B(�) to B(�′) is

injective. From Theorem 2.1, we get the following.

Corollary 2.2. If ι : � ↪→ �′ is a strict embedding, then ι∗ : S (�; R) → S (�′; R) is an

algebra embedding.

The basis B(�) can be twisted by polynomial sequences as follows. Let P = (Pn)

be a normalized sequence of polynomials. If γ = γ
n1
1 . . . γ

nr
r as in Equation (1), define

P(γ ) = Pn1
(γ1) . . . Pnr

(γr).

Let

BP(�) := {P(γ ) : γ ∈ B(�)}.
Then, BP(�) is also a free R-basis of S (�; R). When Pn(x) = xn one recovers BP(�) =
B(�).

2.4 Positivity

Let R+ = Z+ if R = Z and R+ = Z+[q±1] if R = Z[q±1]. More generally, when R is

an arbitrary commutative domain with a distinguished invertible element q, a positive

part of R is any subset R+ satisfying

(1) q, q−1 ∈ R+,

(2) R+ is closed under addition and multiplication,

(3) R+ ∩ (−R+) = {0}.
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Positivity of Skein Algebras 3191

Fix such a positive part of R. A basis of S (�;R) is positive if the structure

constants are in R+, that is, for any basis elements x,y, the product xy is an R+-linear
combination of the basis elements. A normalized sequence of polynomials P = (Pn) is

positive on � over R if the basis BP is positive for S (�;R).

Recall that given two normalized sequences of polynomials (Pn) and (Qn), one

defines (Pn) ≤ (Qn) if each Qn is an R+-linear combination of P0,P1, . . . ,Pn.

Lemma 2.3. The binary relation (≤) is a partial order on the set of normalized

sequences of polynomials.

Proof. It is clear that (≤) is reflexive and transitive, and we need to show that it is

anti-symmetric. Assume that (Pn) ≤ (Qn) and (Qn) ≤ (Pn). Writing each sequence (Pn)

and (Qn) as an infinite column vectors, then (Qn) = A×(Pn), where A is a Z+×Z+ matrix

that is upper triangular, having 1 on the diagonal, and having entries R+. We can write

A = I + N, where I is the identity matrix and N is a strictly upper triangular matrix.

Suppose the matrix N = (Nij) is not 0. Among all the non-zero entries of N, let Nij be the

one with the smallest pair (j− i, i) in the lexicographic order. Then, it is easy to see that

(A−1)ij = −Nij. Since (Qn) ≤ (Pn), all the entries of A−1 are in R+. It follows that both Nij

and −Nij are in R+, a contradiction. Thus, N = 0, and (Pn) = (Qn). �

The Chebyshev polynomials of type one (Tn) and type two (Sn) are defined by

the recurrence relations

T0(x) = 2, T1(x) = x, Tn(x) = xTn−1(x) − Tn−2(x), n ≥ 2,

S0(x) = 1, S1(x) = x, Sn(x) = xSn−1(x) − Sn−2(x), n ≥ 2.

They can be characterized by

Tn(t + t−1) = tn + t−n, Sn(t + t−1) = tn + tn−2 + · · · + t−n.

Thus, Sn(x) − Sn−2(x) = Tn(x) for n ≥ 2.

While (Sn) is a normalized sequence, (Tn) is not. We normalize Tn by setting

T̂0(x) = 1 and T̂n(x) = Tn(x) for n > 0, as in the Introduction. Then, (T̂n) is a normalized

sequence, and

Sn(x) =
�n/2�∑
i=0

T̂n−2i(x).

Thus, (T̂n) ≤ (Sn).
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3192 T. T. Q. Lê et al.

2.5 Results

Here are fuller, more refined versions of Theorems 1 and 2. For the convenience of

proofs, we formulated them in three statements.

Theorem 2.4. Suppose R is a commutative domain with a distinguished invertible

element q and a positive part R+. Assume either g ≥ 1 or p ≥ 4. Let (Pn) be a normalized

sequence of polynomials that is positive on �g,p over R.

(a) One has (Pn) ≥ (T̂n) and P1(x) = x.

(b) If Pn = T̂n for n ≤ 3 then (Pn) = (T̂n).

Theorem 2.5. Suppose R is a commutative domain with a distinguished invertible

element q and a positive part R+. A normalized sequence polynomial (Pn) is positive on

the torus �1,0 over R if and only if (Pn) = (T̂n).

Theorem 2.6. Suppose R = Z[q±1] and (Pn) are normalized sequences of polynomials

with integer coefficients. Assume either g ≥ 1 or p ≥ 4. If (Pn) is positive on �g,p over R,

then (Pn) ≤ (Sn).

To prove these theorems, it suffices to consider three basic surfaces: the closed

torus �1,0, the once-punctured torus �1,1, and the sphere with four punctures �0,4.

This can be seen as follows. If �g,p has at least four punctures, then there is a strict

embedding of �0,4 into �g,p, and by Corollary 2.2, the skein algebra S (�0,4; R) embeds

in S (�; R). The results for �0,4 implies the corresponding results for �g,p. If � has

genus at least 1, then either � = �1,0 or �1,1 strictly embeds into �g,p. In the latter case,

the results for �1,1 imply those for �g,p.

Theorem 2.4 is proved in Section 4. Theorem 2.5 is proved in Section 5.1.

Theorem 2.6 is proved in Section 5.2 for �1,1 and Section 5.3 for �0,4. The case of �1,0 is

a corollary of Theorem 2.5.

3 Parameterization of Curves on Basic Surfaces

A non-oriented simple closed curve on the torus �1,0 is determined by the homology

class up to sign. After choosing a basis of homology on �1,0, every simple closed

curve is represented by a pair of coprime integers (r, s), which is identified with

(−r, −s).
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Fig. 2. The involution of the torus.

Fig. 3. Curves on �0,4.

The isotopy classes of simple curves on �1,1 except the peripheral curve are in

one-to-one correspondence with those on �1,0. Thus, the same notations can be used to

represent essential simple closed curves on �1,1.

In both cases, the mapping class group is SL2(Z) and the action of a mapping

class on the curves is the standard linear action.

The sphere with four punctures �0,4 can be regarded as the quotient of the torus

�1,0 by the involution in Figure 2. The action has four fixed points that corresponds

to the punctures. This quotient also identifies the essential simple closed curves

on �1,0 with the non-peripheral ones on �0,4. Thus, coprime integers (r, s), with the

identification (r, s) = (−r, −s), also represent curves on �0,4.

More concretely, represent �0,4 as in Figure 3. Choose the curves a and b, and

number the punctures as in the figure. The curve surrounding puncture i is denoted by

γi. To obtain the (r, s) curve on �0,4, take |r| parallel copies of a and |s| parallel copies

of b, and resolve each intersection such that one would turn left from a to b if rs > 0

and turn right if rs < 0. Thus, a = (1, 0), b = (0, 1). The (1, 1) curve is demonstrated in

Figure 3. Thus, the (r, s) curve is the Luo product of ar and bs [9] if r ≥ 0 and s ≥ 0 and is

the Luo product of a−r and bs if r < 0 and s ≥ 0. The Luo product of two multicurves α

and β can be defined as the unique multicurve γ such that αβ = qI(α,β)γ +x, where I(α, β)

is the geometric intersection index of α and β, and x is a Z[q, q−1]-linear combination

of multicurves with coefficients being Laurent polynomials in q of highest degrees

< I(α, β).
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3194 T. T. Q. Lê et al.

Fig. 4. Four resolutions of ab.

For �0,4, the mapping class group is (Z/2)2
� PSL2(Z). The mapping classes that

fix puncture 4 forms a subgroup isomorphic to PSL2(Z) = SL2(Z)/{±1}. The action of this

subgroup on (r, s) curves is the projective linear action.

4 Lower Bound, Proof of Theorem 2.4

Note that Theorem 2.4 about lower bounds does not assume R = Z[q±1].

Proof of Theorem 2.4. (1) The case when � has genus at least 1 is already proved

in [7]. Now, assume � = �0,4. Let σ be the counterclockwise half twist along a, fixing

punctures 3 and 4 and exchanging punctures 1 and 2. Then, σ can be represented by the

matrix

(
1 1

0 1

)
. For convenience, define bn = (n, 1) = σn(b).

By resolving both crossings between a and b as in Figure 4, we get

ab = q2b1 + q−2b−1 + c0,

where

c0 = γ1γ3 + γ2γ4.

Applying σn to both sides, we have

abn = q2bn+1 + q−2bn−1 + cn, (2)

where we defined

cn = σn(c0) =
⎧⎨
⎩c0 = γ1γ3 + γ2γ4, n even,

c1 = γ1γ4 + γ2γ3, n odd.

The following can be proved easily using induction.
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Lemma 4.1. For n ≥ 0,

Tn(a)b = q2nbn + q−2nb−n + c0fn + c1gn,

where

fn(a) =
∑

0<i≤n
i odd

[i]T̂n−i(a) and gn(a) =
∑

0<i≤n
i even

[i]T̂n−i(a)

are polynomials of a with R coefficients. Here, [i] = q2i−2 + q2i−6 + · · · + q2−2i is the

quantum integer.

�

It is also possible to express fn and gn in terms of Sn, (see e.g., [1] Theorem 3.5).

The expressions of fn and gn are not needed in the following.

First, we show P1(x) = x. Write P1(x) = x + δ. Then,

P1(a)P1(b) = (a + δ)(b + δ)

= (q2b1 + q−2b−1 + c0) + δ(a + b) + δ2

= q2(P1(b1) − δ) + q−2(P1(b−1) − δ) + (P1(γ1) − δ)(P1(γ3) − δ)+
+ (P1(γ2) − δ)(P1(γ4) − δ) + δ(P1(a) + P1(b) − 2δ) + δ2.

The positivity of (Pn) implies that −δ and δ, the coefficients of P1(γ1) and P1(a),

respectively, are both in R+. Thus, δ = 0, that is P1(x) = x.

Now, consider Pn(x) = Tn(x) + δn−1Tn−1(x) + · · · + δ1T1(x) + δ0 with n ≥ 2. Then,

Pn(a)P1(b) = (Tn(a) + δn−1Tn−1(a) + · · · + δ0)b

= q2nbn + q−2nb−n + δn−1(q2n−2bn−1 + q2−2nb1−n)+
+ · · · + δ1(q2b1 + q−2b−1) + δ0b + c0F + c1G,

where F and G are polynomials of a with R coefficients. Then, by the positivity of (Pn),

the coefficients of P1(bi) = bi are in R+, which implies δi ∈ R+. Thus, (Pn) ≥ (T̂n).

(2) Choose an essential simple closed curve z on � and a regular neighborhood N

of z, which is an annulus. Then, S (N) ∼= R[z] is a subalgebra of S (�), and the positivity

of (Pn) on � implies that (Pn(z)) is a positive basis for R[z].
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3196 T. T. Q. Lê et al.

Assume Pi(x) = T̂i(x) for i < k where k ≥ 4. Since (Pn) ≥ (T̂n), we can write

Pk(x) = Tk(x) +
k−1∑
i=0

δiT̂i(x).

for some δi ∈ R+. Consider

P1(z)Pk−1(z) = T1(z)Tk−1(z) = Tk(z) + Tk−2(z).

This should be an R+-linear combination of P0(z), . . . , Pk(z). The coefficient of Pk(z) is 1

by the monic condition. Thus,

P1(z)Pk−1(z) − Pk(z) = −δk−1T̂k−1(z) + (1 − δk−2)T̂k−2(z) +
k−3∑
i=0

(−δi)T̂i(z)

is an R+-linear combination of P0(z) = T̂0(z), . . . , Pk−1(z) = T̂k−1(z). This shows δi = 0

for i < k except i = k − 2. A similar argument with P2(z)Pk−2(z) shows δk−2 = 0 as well.

Thus, Pk(x) = T̂k(x). By induction, (Pn) = (T̂n).

5 Upper Bound

The strategy to obtain an upper bound on positive polynomials is to compute the

product of simple closed curves with more and more intersections.

5.1 Proof of Theorem 2.5

Proof. For any pair of integers (r, s) 
= (0, 0), define (r, s)T = Td((r/d, s/d)) where d =
gcd(r, s). For convenience, let (0, 0)T = 2. In this notation, the basis BT̂ is

BT̂ = {(r, s)T : (r, s) 
= (0, 0)} ∪ {1}.

Note (r, s)T = (−r, −s)T . The structure constants of the skein algebra of the torus in the

basis BT̂ were computed by Frohman and Gelca [5],

(r, s)T(u, v)T = qrv−us(r + u, s + v)T + q−(rv−us)(r − u, s − v)T ,

which shows that (T̂n) is positive.
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Positivity of Skein Algebras 3197

By Theorem 2.4, one has (Pn) ≥ (T̂n) and P1(x) = x = T1(x). To show the opposite

inequality, consider

P1((n, 1))P1((0, 1)) = (n, 1)T(0, 1)T = qn(n, 2)T + q−n(n, 0)T .

First, let n = 2. Write T2(x) = P2(x) + δ1P1(x) + δ0. Then,

P1((2, 1))P1((0, 1)) = q2(2, 2)T + q−2(2, 0)T

= q2 (
P2((1, 1)) + δ1P1((1, 1)) + δ0

)
+ q−2 (

P2((1, 0)) + δ1P1((1, 0)) + δ0

)
.

By the positivity of (Pn(x)), δ1 and (q2 + q−2)δ0 are in R+. On the other hand,

P2(x) = T2(x) − δ1T1(x) − δ0 implies −δ1, −δ0 ∈ R+. Thus, δ1 = 0 = δ0 and P2(x) = T2(x).

For n > 2, (n, 2)T is either P1((n, 2)) or P2((n/2, 1)). Then, by the positivity of (Pn),

(n, 0)T = Tn((1, 0)) is an R+-linear combination of {Pk((1, 0))}. Thus, (Pn) ≤ (T̂n). �

5.2 Theorem 2.6, punctured torus case

Assume � = �1,1. Define Tr,s = Td((r/d, s/d)), Sr,s = Sd((r/d, s/d)) for (r, s) 
= (0, 0),

where d = gcd(r, s). Let T0,0 = S0,0 = 1. The products on �1,1 are more complicated than

the �1,0 case. No general formula is available yet. However, to prove the theorem, only

special cases are needed.

Lemma 5.1. If the curves (r/d, s/d) and (u, v) intersect once, where d = gcd(r, s), then

Tr,sTu,v = qrv−suTr+u,s+v + q−(rv−su)Tr−u,s−v. (3)

Proof. There is a diffeomorphism of �1,1 sending the curves (r/d, s/d) and (u, v) to the

curves (1, 0) and (0, 1), respectively. Then, (3) becomes

Td,0T0,1 = qdTd,1 + q−dTd,−1.

This is essentially a reformulation of Proposition 3.1 in [7]. �

Lemma 5.2. On �1,1, let U be the peripheral curve. Then,

T1,0Tn,2 = q2Tn+1,2 + q−2Tn−1,2 + (U + q2 + q−2)An,

where An = 0 if n is even, and An = 1 is n is odd.
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Fig. 5. Four resolutions of T1,0T1,2.

Proof. If n is even, then (n/2, 1) and (1, 0) intersect once. In this case, the formula is a

specialization of Lemma 5.1. When n = 1, the curves (1, 0) and (1, 2) intersect twice as

in Figure 5.

Opposite sides of the squares are identified, and the corners represent the

puncture. Resolving both crossings, we get

T1,0T1,2 = q2(1, 1)2 + U + (−q2 − q−2) + q−2(0, 1)2

= q2T2,2 + q−2T0,2 + U + q2 + q−2.

For a general odd n, apply (n−1)/2 Dehn twists along (1, 0) to the equation above

gives

T1,0Tn,2 = q2Tn+1,2 + q−2Tn−1,2 + (U + q2 + q−2).

�

Lemma 5.3. On �1,1,

Tn,1T0,1 = qnTn,2 + q−nTn,0 + (U + q2 + q−2)Gn,

where G0 = G1 = 0, and

Gn =
�n/2�∑
i=1

q4i−n−2Sn−2i,0

if n > 1.
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Proof. When n = 0, 1, the result follows from direct calculation. To use induction, note

(n, 1) and (1, 0) intersect at one point. Thus, T1,0Tn,1 = qTn+1,1 + q−1Tn−1,1.

Tn+1,1T0,1 = (q−1Tn,1T1,0 − q−2Tn−1,1)T0,1

= q−1
(
qnTn,2 + q−nTn,0 + (U + q2 + q−2)Gn

)
T1,0

− q−2
(
qn−1Tn−1,2 + q1−nTn−1,0 + (U + q2 + q−2)Gn−1

)
= qn−1(q2Tn+1,2 + q−2Tn−1,2 + (U + q2 + q−2)An)

+ q−n−1(Tn+1,0 + Tn−1,0) + (U + q2 + q−2)q−1GnT1,0

− qn−3Tn−1,2 − q−n−1Tn−1,0 − (U + q2 + q−2)q−2Gn−1

= qn+1Tn+1,2 + q−n−1Tn+1,0 + (U + q2 + q−2)(q−1GnT1,0 − q−2Gn−1 + qn−1An)

= qn+1Tn+1,2 + q−n−1Tn+1,0 + (U + q2 + q−2)Gn+1,

where the last equality can be directly verified using the expression of Gn. Thus, the

formula holds by induction. �

Proof of Theorem 2.6, punctured torus case. Since (Pn) is positive, P1(t) = t. Thus,

P((n, 1))P((0, 1)) = Tn,1T0,1

is an R+-linear combination of basis elements in BP. Since (Pn) has integer coefficients,

terms with different exponents of q are separately Z+-linear combinations of basis

elements in BP. Rearranging the product in terms of the exponents of q, we have

P((n, 1))P((0, 1)) = q−nSn((1, 0)) + (higher degree in q).

Therefore, (Pn) ≤ (Sn). �

5.3 Theorem 2.6, sphere with four punctures case

The proof is similar to the punctured torus case. Define Sr,s = Sd((r/d, s/d)) for (r, s) 
=
(0, 0), where d = gcd(r, s). Let S0,0 = 1.
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Recall that γi is the curve surrounding puncture i, and c0 = γ1γ3 + γ2γ4. σ =(
1 1

0 1

)
represents the counterclockwise half twist along a, fixing punctures 3 and 4

and exchanging punctures 1 and 2. ck = σ k(c0).

Lemma 5.4. On �0,4,

S1,0S2k,2 = q4S2k+1,2 + q−4S2k−1,2 + ckSk,1 + [S1,0 + (q2 + q−2)(γ1γ2 + γ3γ4)],

S1,0S2k+1,2 = q4S2k+2,2 + q−4S2k,2 + (q2ckSk+1,1 + q−2ck+1Sk,1) + 
.

where 
 = γ1γ2γ3γ4 + γ 2
1 + γ 2

2 + γ 2
3 + γ 2

4 − 2.

Proof. By direct computation,

S1,0S0,2 = q4S1,2 + q−4S−1,2 + c0S0,1 + [S1,0 + (q2 + q−2)(γ1γ2 + γ3γ4)],

S1,0S1,2 = q4S2,2 + q−4S0,2 + (q2c0S1,1 + q−2c1S0,1) + 
.

The equations follow by applying σ k. �

Lemma 5.5 (see also [1] Theorem 3.6). On �0,4, for n ≥ 0,

Sn,1S0,1 = q2nSn,2 + q−2nSn,0 + gn + hn.

Here, g0 = g1 = 0, and for n ≥ 2,

gn =
�n/2�∑
i=1

q4i−2
n−i∑
j=i

cn−j+1Sj,1.

hn is a polynomial of q, S1,0 and γi’s only. h0 = 0, and for n ≥ 1, the exponents of q in hn

are between −2n + 2 and 2n − 2.

Proof. When n = 0, the equation clearly holds. When n = 1, resolving both crossings

of S1,1 and S0,1, yields

S1,1S0,1 = q2S1,2 + q−2S1,0 + (γ1γ2 + γ3γ4).

Thus, the equation holds with h1 = γ1γ2 + γ3γ4.
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When n > 1,

Sn+1,1S0,1 = q−2S1,0(Sn,1S0,1) − q−4Sn−1,1S0,1 − q−2cnS0,1

= q−2S1,0(q2nSn,2 + q−2nSn,0 + gn + hn)

− q−4(q2n−2Sn−1,2 + q2−2nSn−1,0 + gn−1 + hn−1) − q−2cnS0,1.

= q2n−2S1,0Sn,2 + q−2n−2(Sn+1,0 + Sn−1,0) + q−2S1,0gn + q−2S1,0hn

− q2n−6Sn−1,2 − q−2n−2Sn−1,0 − q−4gn−1 − q−4hn−1 − q−2cnS0,1

= (q2n−2S1,0Sn,2 − q2n−6Sn−1,2) + q−2n−2Sn+1,0

+ (q−2S1,0gn − q−4gn−1 − q−2cnS0,1) + (q−2S1,0hn − q−4hn−1).

To continue, apply Lemma 5.4 to the 1st term. For the product S1,0gn, we can use

Equation 2, written in the notations of this section

S1,0Sn,1 = q2Sn+1,1 + q−2Sn−1,1 + cn.

After a routine reduction, the product Sn,1S0,1 has the desired form. �

Proof of Theorem 2.6, sphere with 4 punctures case. In the product (n, 1)(0, 1) =
Sn,1S0,1, the terms with the lowest q-exponent is

q−2nSn,0 = q−2nSn((1, 0))

for n > 0. This shows that Sn((1, 0)) is a Z+-linear combination of {Pk((1, 0))}. Thus,

(Pn) ≤ (Sn). This completes the proof of Theorem 2.6. �
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