T. T. Q. Lé et al. (2021) “Lower and Upper Bounds for Positive Bases of Skein Algebras,”
International Mathematics Research Notices, Vol. 2021, No. 4, pp. 3186-3202

Advance Access Publication May 6, 2020

doi:10.1093/imrn/rnaa082

Lower and Upper Bounds for Positive Bases of Skein Algebras

Thang T. Q. Lé!*, Dylan P. Thurston 2 and Tao Yu®

'School of Mathematics, 686 Cherry Street, Georgia Tech, Atlanta, GA
30332, USA, *Department of Mathematics, Indiana University,
Bloomington, IN 47405-7106, and 3School of Mathematics, 686 Cherry
Street, Georgia Tech, Atlanta, GA 30332, USA

*Correspondence to be sent to: e-mail: letu@math.gatech.edu

We show that if a sequence of normalized polynomials gives rise to a positive basis of
the skein algebra of a surface, then it is sandwiched between the two types of Chebyshev
polynomials. For the closed torus, we show that the normalized sequence of Chebyshev

polynomials of type one (Tn) is the only one that gives a positive basis.

1 Introduction
1.1 Results

Let R be a commutative integral domain with a distinguished invertible element g € R.
The main examples are R = Z[g*'land R = Z withg = 1. Let & = ¥, p be the oriented
surface of genus g with p points removed. The skein algebra .”(%; R) is the R-algebra
spanned by isotopy classes of framed links in ¥ x (—1, 1) modulo the skein relation and
the trivial loop relation in Figure 1. The product is given by superposition. For details,
see Section 2.1.

We assume that the ring R has a positive part R, see Section 2.4. When R = 7Z
its positive part is R, = Z_, the set of non-negative integers, and when R = ZIg*!

its positive part is R, = Z+[qﬂ]. A basis B of an R-algebra is positive if the structure
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X =q >< +q! X Q =(—¢"—q¢7?)

(A) Skein relation (B) Trivial loop relation

Fig. 1. Defining relations for .7 (M).

constants are in R, that is, for any x,y € B the product xy is a linear combination
of elements in B with coefficients in R, . An important conjecture [4] in cluster algebra
theory is that the skein algebra .#/(X¥) has a positive basis.

A sequence of polynomials (P, (x))}> , with R coefficients is normalized if P, (x)
is monic with degree n for each n > 0. Note Py(x) = 1 by definition. A normalized
sequence (P,) defines a basis Bp of ./(X;R) as in Section 2.3. We say a sequence of
normalized polynomials (P,) is positive on X over R if the corresponding basis Bp is a
positive basis of . (3; R).

Two important sequences considered here are the normalized Chebyshev poly-

nomials of type one (Tn) and type two (S,,), defined inductively by

Tox) =1, Ty\x)=x, T,x)=x>-2, T,(x)=xT, (x)—T, ,(x), n=>3,

Sox) =1, S (x) =x, S,x)=xS, x)—=S,_,(x), n=>2

Note that the polynomials Tn(X) coincide with the Chebyshev polynomials of type one
except for T,. The reason is we want T, to be monic.

The 2nd named author [13] showed that when R = Z and q = 1, the sequence
(Tn) is positive on any surface and made a conjecture, refining an earlier one of Fock
and Goncharov [4], that (T,,) is positive when R = Z[g*'] as well.

The 1st named author [7] showed that if the sequence (P,,) is positive on a surface
¥ having genus > 1, then (P,) > (Tn). Here, (P,) > (Q,) means each P, is an R+-linear
combination of Q,4,Q,,...,Q,,.

We extend the lower-bound result in [7] to surfaces of genus 0, and at the same

time give an upper bound for all surfaces.

Theorem 1. Suppose R = Z[g*'] and (P,) is normalized with integer coefficients. Let
¥ be a surface with genus at least 1 or with at least 4 punctures. If (P,) is positive on
¥, then (T,) < (P,) < (S,).

In the case of the closed torus ¥, ;, our result is much more precise.
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3188 T.T.Q.Léetal

Theorem 2. A normalized sequence (P,) is positive on the closed torus X, ; over Z or
ZIg*'] if and only if (P,) = (T},).

See Section 2.5 for more refined statements.

Theorem 2 is somewhat surprising. The sequence (S,,) gives simple objects in the
ring of modules over the quantum group U, (sl,). From this point of view, (S,) is more
natural than the sequence (T,). However, it does not give a positive basis on the torus.
On the other hand, if the surface has negative Euler characteristic, it is conjectured that
the (S,,) is positive [13].

Conjecture 1. Both (T,) and (S,) are positive on any surface ¥ with negative Euler

characteristic.

If the skein algebra of a surface X has a positive basis, then one can ask whether
the skein algebra can be categorified. A categorification would give the skein algebra a
richer structure and hopefully will lead to an interesting 4D topological quantum field
theory. The (positive) basis of a normalized sequence is functorial in the sense that
if f: ¥ — ¥ is a strict embedding (see the definition in Section 2.3), then f maps
injectively the (positive) the basis of ¥ to the (positive) basis of ¥’. For some initial
results and an extensive discussion of strategies to categorify the conjectural positive

bases of the sequences (Tn) and (S,), see [12].

Remark 1.1. In Theorem 1, we exclude the case when (g, p) is one of (0, 0), (0, 1), (0, 2),

(0,3) because in these cases the skein algebra .(¥,,;R) is a commutative polyno-

9.0’
mial algebra and hence obviously has a positive basis; for example, the monomial

basis.
Remark 1.2. For other types of positivity, see for example [2, 3, 8, 10].

2 Skein Algebras
2.1 Basic definitions

Let R be a commutative integral domain with unit and with a distinguished invertible
element g € R. Suppose M is an oriented 3-manifold, not necessarily closed. A framed
link L in M is a smooth, unoriented, closed one-dimensional submanifold equipped with
a normal vector field. By convention, the empty set is also considered as a framed link.
The skein module .(M; R) of M, introduced independently by Przytycki [11] and Turaev
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[14, 15], is defined as the quotient of the R-module freely generated by isotopy classes
of framed links in M by the skein relation and the trivial loop relation in Figure 1.

In the figure, the diagrams represent links that are identical outside of a ball in
the manifold M. The shaded part is the projection onto the equatorial plane of the ball
where the difference is. The framings on the diagrams are vertical, that is, pointing out
to the reader. The skein relations were introduced by Kauffman [6].

For ¥ = ¥/ ,, the oriented surface with genus g and p punctures, let

S(X:R) :i= (X x (=1,1);R),

which has a product structure given by stacking. More precisely, the product of two
framed links L and K in . (%; R) is given by the union i (L)Ui_(K), where i, : M — M are
the embeddings defined by i, (x,t) = (x, &Tl). It is easy to see that this is a well-defined
product that turns ./(Z; R) into an R-algebra. It should be noted that there are surfaces
¥ # ¥’ such that ¥ x (—1,1) and ¥’ x (—1,1) are diffeomorphic as 3-manifolds, but
Z(Z; R) and . (X’; R) have different product structures, hence different as R-algebras.

An orientation preserving embedding of surfaces i : ¥ — ¥’ induces an
R-algebra homomorphism i, : .(X; R) — .“(¥’; R) by applying (x, t) + (i(x), t) to links.
In particular, the mapping class group of X acts on the skein algebra .7 (%; R).

2.2 Multicurves

A multicurve y on a surface £ = X , is a closed unoriented 1-submanifold of ¥ none of
the components of which bounds a disk in ¥. A simple closed curve is a multicurve with
one component. A peripheral curve is simple closed curve bounding a once-punctured
disk. By convention, the empty set is a multicurve.

A multicurve y of ¥ defines an element of .7(X; R) by the embedding y ¢ ¥ =
% x {0}. The framing on y is vertical, that is, parallel to the (-1, 1) direction and pointing
towards 1.

If « and B are disjoint multicurves, then « U 8 is also a multicurve, and «f =
Ba = o U B as elements of .(X; R). It follows that peripheral curves are in the center of
the skein algebra.

By grouping together isotopic components, every multicurve y can be uniquely

written as

)/:)/lnl...}/rnr, (1)

where y,, ..., y, are disjoint and pairwise non-isotopic simple closed curves, and n; are

positive integers.
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3190 T.T.Q.Léetal
2.3 Bases

Let B = B(X) denote the set of all isotopy classes of multicurves. The module structure

of the skein algebra is very simple.
Theorem 2.1 ([11]). As an R-module, .(Z; R) is free with basis B(X).

From this description of free bases, it is easy to see that, as an R-algebra
S (EgpiR) is isomorphic to a commutative polynomial algebra for the case when g =0
and p < 3. Namely #(2yqR) = S (¥5;;R) = R. When (g,p) = (0,2), one has
y(zo,z?R) = R[x] where x is the only peripheral curve. Finally, ,5’(20'3;1%) = Rlx,y,zl,
where x,y,z are the three peripheral curves. These surfaces will not be considered

below. For all other (g,p), over R = Z[g™!], the skein algebra .7(X,,;R) is non-

9.0’
commutative.
An embedding ¢ : ¥ < X' is strict if the induced map from B(X) to B(Y') is

injective. From Theorem 2.1, we get the following.

Corollary 2.2. If:: ¥ < ¥'is a strict embedding, then ¢, : .”(£;R) — (¥, R) is an
algebra embedding.

The basis B(X) can be twisted by polynomial sequences as follows. Let P = (P,;)

be a normalized sequence of polynomials. If y = ylnl ...y as in Equation (1), define

P(y) =P, (1) ... Py (7).

Let
Bp(X) :=1{P(y) : y € B(¥)}.

Then, Bp(X) is also a free R-basis of .7 (%; R). When P,(x) = x" one recovers Bp(X) =
B(X).

2.4 Positivity

Let R, = Z, if R = Z and R, = Z [g*'] if R = Z[g*']. More generally, when R is
an arbitrary commutative domain with a distinguished invertible element g, a positive

part of R is any subset R, satisfying

(1) q.q'eR,,
(2) R, is closed under addition and multiplication,
(3) R, N(-R,)={0).
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Fix such a positive part of R. A basis of .#(X;R) is positive if the structure
constants are in R, that is, for any basis elements x, y, the product xy is an R+—linear
combination of the basis elements. A normalized sequence of polynomials P = (P,) is
positive on X over R if the basis Bj is positive for .”(Z; R).

Recall that given two normalized sequences of polynomials (P,) and (Q,,), one

defines (P,) < (Q,) if each Q,, is an R -linear combination of Py, Py, ..., P,.

Lemma 2.3. The binary relation (<) is a partial order on the set of normalized

sequences of polynomials.

Proof. It is clear that (<) is reflexive and transitive, and we need to show that it is
anti-symmetric. Assume that (P,) < (Q,) and (Q,) < (P,). Writing each sequence (P,)
and (Q,,) as an infinite column vectors, then (Q,,) = A x (P,), where A is a Z, x Z, matrix
that is upper triangular, having 1 on the diagonal, and having entries R__. We can write
A =TI+ N, where I is the identity matrix and N is a strictly upper triangular matrix.
Suppose the matrix N = V) is not 0. Among all the non-zero entries of N, let N be the
one with the smallest pair (j — i, i) in the lexicographic order. Then, it is easy to see that
(A‘l)ij = —N;;. Since (Q,,) < (P,), all the entries of A~! arein R, . It follows that both Ny
and —N;; are in R, a contradiction. Thus, N = 0, and (P,) = (Q,,). |

The Chebyshev polynomials of type one (T,,) and type two (S,,) are defined by

the recurrence relations
Tox) =2, T, (x) = x, T,x)=xT, x)—T, ,(x), n=>2,

Sox) =1, S, (x) =x, S,x)=xS,_ x)-S§,_,(x), n=>2

They can be characterized by

T,(t+t ) =t"4+t", S,t+t H)=t"4+t"2 4. 4t "

Thus, S,,(x) — S,,_3(x) = T, (x) forn > 2.
While (S,,) is a normalized sequence, (T,) is not. We normalize T, by setting
TO(X) =1 and Tn(x) = T,(x) for n > 0O, as in the Introduction. Then, (Tn) is a normalized

sequence, and

n/2)
S, (%) = Z T, 5:(%).
i=0

Thus, (T,) < (S,)-
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3192 T.T.Q.Léetal
2.5 Results

Here are fuller, more refined versions of Theorems 1 and 2. For the convenience of

proofs, we formulated them in three statements.

Theorem 2.4. Suppose R is a commutative domain with a distinguished invertible
element g and a positive part R, . Assume either g > 1 or p > 4. Let (P,) be a normalized

sequence of polynomials that is positive on Zg,p OVer R.

(a) One has (P,) > (Tn) and P, (x) = x.
(b) If P, = T, for n < 3 then (P,,) = (T},).

Theorem 2.5. Suppose R is a commutative domain with a distinguished invertible
element g and a positive part R, . A normalized sequence polynomial (P,) is positive on
the torus ¥,  over R if and only if (P,) = (T,).

Theorem 2.6. Suppose R = Z[g*!] and (P,) are normalized sequences of polynomials
with integer coefficients. Assume either g > 1 or p > 4. If (P,) is positive on X, , over R,
then (P,) < (S,).

To prove these theorems, it suffices to consider three basic surfaces: the closed
torus ¥, ,, the once-punctured torus X, ,, and the sphere with four punctures X ,.
This can be seen as follows. If Eg,p has at least four punctures, then there is a strict
90" and by Corollary 2.2, the skein algebra S (Xg4; R) embeds
in #(X;R). The results for %,, implies the corresponding results for X, ,. If ¥ has

embedding of %, into ¥

genus at least 1, then either ¥ = X, ; or X, ; strictly embeds into X ,,. In the latter case,
the results for ¥, ; imply those for & .

Theorem 2.4 is proved in Section 4. Theorem 2.5 is proved in Section 5.1.
Theorem 2.6 is proved in Section 5.2 for X, | and Section 5.3 for % 4. The case of X j is

a corollary of Theorem 2.5.

3 Parameterization of Curves on Basic Surfaces

A non-oriented simple closed curve on the torus ¥, ; is determined by the homology
class up to sign. After choosing a basis of homology on X, ,, every simple closed
curve is represented by a pair of coprime integers (r,s), which is identified with

(—r,—S).
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Fig. 2. The involution of the torus.

Raor TN

(A) a, b, and puncture numbering (B) The (1,1) curve

Fig. 3. Curves on Xg 4.

The isotopy classes of simple curves on X, ; except the peripheral curve are in
one-to-one correspondence with those on %, ;. Thus, the same notations can be used to
represent essential simple closed curves on X ;.

In both cases, the mapping class group is SL,(Z) and the action of a mapping
class on the curves is the standard linear action.

The sphere with four punctures %, , can be regarded as the quotient of the torus
¥, o by the involution in Figure 2. The action has four fixed points that corresponds
to the punctures. This quotient also identifies the essential simple closed curves
on %, with the non-peripheral ones on o4 Thus, coprime integers (r,s), with the
identification (r,s) = (—r, —s), also represent curves on X 4.

More concretely, represent X, as in Figure 3. Choose the curves a and b, and
number the punctures as in the figure. The curve surrounding puncture i is denoted by
¥;- To obtain the (r,s) curve on X, 4, take |r| parallel copies of a and |s| parallel copies
of b, and resolve each intersection such that one would turn left from a to b if rs > 0
and turn right if rs < 0. Thus, a = (1,0), b = (0, 1). The (1,1) curve is demonstrated in
Figure 3. Thus, the (7, s) curve is the Luo product of a” and b° [9] if r > 0 and s > 0 and is
the Luo product of a™" and b’ if r < 0 and s > 0. The Luo product of two multicurves «
and g can be defined as the unique multicurve y such that «f = q/*#)y +x, where I(«, 8)
is the geometric intersection index of o and 8, and x is a ZI[q, g~ !l-linear combination
of multicurves with coefficients being Laurent polynomials in g of highest degrees

< I(a, B).
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D) e @) Q) - e @)

Fig. 4. Four resolutions of ab.

For X, 4, the mapping class group is (Z/2)? x PSL,(Z). The mapping classes that
fix puncture 4 forms a subgroup isomorphic to PSL,(Z) = SL,(Z)/{£1}. The action of this

subgroup on (r, s) curves is the projective linear action.

4 Lower Bound, Proof of Theorem 2.4

Note that Theorem 2.4 about lower bounds does not assume R = Z[g™!].

Proof of Theorem 2.4. (1) The case when ¥ has genus at least 1 is already proved
in [7]. Now, assume ¥ = Y4 Let o be the counterclockwise half twist along a, fixing

punctures 3 and 4 and exchanging punctures 1 and 2. Then, o can be represented by the
1 1
matrix (0 ) For convenience, define b,, = (n,1) = o™ (b).
1

By resolving both crossings between a and b as in Figure 4, we get
ab = ¢*b; +q?b_, +c,,

where

Co="1V3+ VoVa-

Applying o™ to both sides, we have
ab, = b,y +q by +Cp, (2)

where we defined

n Co = V1Y3 t V2Va, T €Ven,
c,=0"(cy =

€y =v1Va+ Vavs, nodd.

The following can be proved easily using induction.

1202 YoJelN 0€ Uo Josn ABojouyoa | Jo aynsul ei1bioss) Aq /828285/98 LE/¥/1.Z0Z/aI0Ie/uIWI/Woo dno olWapese/:sd)y WOl pepeojumod



Positivity of Skein Algebras 3195

Lemma 4.1. Forn >0,
T, (@b = q*"b, + q *"b_,, + Cofy, + C1Gn,

where

fo@= > liT, @ and g,(@= > [T, (@

0<i<n O<i<n
i odd i even

are polynomials of a with R coefficients. Here, [i] = g% 2 + g% 6 + ... 4+ g2 % is the
quantum integer.
|

It is also possible to express f;, and g,, in terms of S,,, (see e.g., [1] Theorem 3.5).
The expressions of f,, and g,, are not needed in the following.
First, we show P, (x) = x. Write P; (x) = x + . Then,

P,(a)P,(b) = (a+8)(b +9)
= (g*°b, +q %b_, +cy) + 5(a+b) + 82
= q%(P;(by) — 8) + q 2(Py(b_1) — 8) + (P (y1) — 8)(Py (v3) — &)+

+ (P () — )Py (v) — 8) + 8(Py (@) + Py (B) — 26) + 8%,

The positivity of (P,) implies that —§ and §, the coefficients of P;(y;) and P;(a),
respectively, are both in R . Thus, § = 0, that is P, (x) = x.
Now, consider P, (x) = T,,(x) + 8,1 T,,_;(x) 4+ - -- + 8, T, (x) + 6y with n > 2. Then,

Pp(@)Py(b) = (Tp(a) + 8,1 Ty (@) + -+ 8p)b
=@""by +q Py + 8, 1@ Py + @Dy )+

+ -4 8,(g%*by +q2b_1) + 8yb + coF + ¢, G,

where F and G are polynomials of a with R coefficients. Then, by the positivity of (P,),
the coefficients of P;(b;) = b; are in R, which implies §; € R, . Thus, (P,) > (f‘n).

(2) Choose an essential simple closed curve z on ¥ and a regular neighborhood N
of z, which is an annulus. Then, .7 (V) = R[z] is a subalgebra of . (%), and the positivity
of (P,) on ¥ implies that (P, (2)) is a positive basis for R[z].
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3196 T.T.Q.Léetal
Assume P;(x) = Ti(x) for i < k where k > 4. Since (P,) > (f‘n), we can write
k—1
Py(x) = Ty (x) + > §;Ti(x).

i=0

for some §; € R, . Consider
P (2)Py_1(2) =T1(2)T_1(2) = Ty(2) + T_,(2).

This should be an R -linear combination of Py(2), ..., Py(z). The coefficient of Py (z) is 1

by the monic condition. Thus,

k-3
Pi(2D)P_1(2) — Pr(2) = —81_1 T, (2) + (1 = 8§ Ti_o(@) + D (=8 Ti(2)
=0
is an R_ -linear combination of Py(z) = f’o(z), P (2 = Tk_l(z). This shows §; = 0

for i < k except i = k — 2. A similar argument with P,(z)P;_,(z) shows §,_, = 0 as well.
Thus, P, (x) = Tk(x). By induction, (P,) = (Tn).

5 Upper Bound

The strategy to obtain an upper bound on positive polynomials is to compute the

product of simple closed curves with more and more intersections.

5.1 Proof of Theorem 2.5

Proof. For any pair of integers (r,s) # (0,0), define (r,s); = T3((r/d,s/d)) where d =

gcd(r, s). For convenience, let (0,0) = 2. In this notation, the basis B; is

Bi ={(r,s)g : (r,s) # (0,0} U {1}.

Note (r,s); = (—r, —s)7. The structure constants of the skein algebra of the torus in the

basis B; were computed by Frohman and Gelca [5],
r,$)p(w, Vg =gV W r+u,s+v)p+q T r —u,s—v)p,

which shows that (f"n) is positive.
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By Theorem 2.4, one has (P,) > (Tn) and P, (x) = x = T, (x). To show the opposite

inequality, consider

Pl ((nl ]-))P] ((01 1)) = (nl I)T(OI l)T = qn(nrz)T + q_n(n, O)T
First, let n = 2. Write T, (x) = P,(x) + §,P; (x) + §,. Then,

P ((2,1)P,((0, 1)) = ¢°(2,2)p + g *(2,0)7
= q? (P,((1, 1)) + 8, P ((1, 1)) + &)
+q % (P,((1,0)) + 8, P, ((1,0)) + &) .
By the positivity of (P,(x)), 8, and (g*> + g ?)8, are in R,. On the other hand,
Py(x) = Ty(x) — 6, T, (x) — §, implies —§;, -8y € R,.. Thus, §; = 0 = §; and P,(x) = T,(x).

Forn > 2, (n, 2)y is either P, ((n, 2)) or Py((n/2,1)). Then, by the positivity of (P,),
(n,0)y = T, ((1,0)) is an R -linear combination of {P,((1,0))}. Thus, (P,) < (Tn). [ |

5.2 Theorem 2.6, punctured torus case

Assume ¥ = X, ,. Define T, ; = T;((r/d,s/d)), S,y = S4((r/d,s/d)) for (r,s) # (0,0),
where d = gcd(r, s). Let Ty g = Sy = 1. The products on X, ; are more complicated than
the ¥, ; case. No general formula is available yet. However, to prove the theorem, only

special cases are needed.

Lemma 5.1. If the curves (r/d, s/d) and (u, v) intersect once, where d = gcd(r, s), then

T T — qrv—suT

rs-uv r+u,s+v

+ q—(rv—su) T

r—u,s—v*

(3)

Proof. There is a diffeomorphism of ¥, ; sending the curves (r/d, s/d) and (u, v) to the

curves (1,0) and (0, 1), respectively. Then, (3) becomes

d —d
Ta0To1 =9 Tg1+9q "Tg,1-
This is essentially a reformulation of Proposition 3.1 in [7]. |

Lemma 5.2. On X, ;, let U be the peripheral curve. Then,

T 0Ty = qun+1,2 + q_zTn71,2 +U+q*+q HA,,

where A, =0 if n is even, and A, =1 is n is odd.
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77 7
=q + + 7 +q‘27

Fig. 5. Four resolutions of T oT1 2.

N
o
\
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Proof. If nis even, then (n/2,1) and (1, 0) intersect once. In this case, the formula is a
specialization of Lemma 5.1. When n = 1, the curves (1,0) and (1, 2) intersect twice as
in Figure 5.

Opposite sides of the squares are identified, and the corners represent the

puncture. Resolving both crossings, we get

T 0T, = 1,12+ U+ (—¢* — g H+q%0,1)?

=@’ Ty, +q 2To, +U+q*+q 2

For a general odd n, apply (n—1)/2 Dehn twists along (1, 0) to the equation above

gives

T 0Ty = qun+l,2 + q_zTnfl,Z +U+q¢*+qH.

Lemma5.3. OnZ,,,
Ty1To1 =q " Tpp+q "Tpo+ (U+ @ +q HG,,

where Gy = G; =0, and
[n/2]
4i-n—2
G, = Z g Sn—zi,O

=1

ifn > 1.
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Proof. When n =0, 1, the result follows from direct calculation. To use induction, note

(n,1) and (1,0) intersect at one point. Thus, T} o7}, ; = qT 11 + q_lTn—l,l-

Tyi11Tor =@ "TpiTio—aq Ty 11)Ton
=q 7 (q"Tn2+q "Too+ W +*+07)G,) Trg
—q (@ T+ @ M T 0+ UG+ GG, )
=q" (@ Tp10+ 3 2Ty 12+ U+G +q 24,
+q " N Ty 0+ Tr o) + U+ +q 3716, Ty
—q" Ty, = Ty 0 — U+ @+ 9 Hq %6,y
_ qn+1Tn+1,2 n q_n_lTn+l,O F U+ + q_z)(q_lGnTl,O _ q—an_l n qn—lAn)

= qn+1Tn+1,2 + qfannH’O +(U+¢*+ qiz)Gn+1'

where the last equality can be directly verified using the expression of G,,. Thus, the

formula holds by induction. |

Proof of Theorem 2.6, punctured torus case. Since (P,) is positive, P, (t) = t. Thus,
P((n,1))P((0,1)) =T, 1Ty,

is an R -linear combination of basis elements in Bp. Since (P,) has integer coefficients,
terms with different exponents of g are separately Z, -linear combinations of basis

elements in Bp. Rearranging the product in terms of the exponents of g, we have
P((n,1))P((0,1)) = q "S,,((1,0)) + (higher degree in g).

Therefore, (P,) < (S,,). [ |

5.3 Theorem 2.6, sphere with four punctures case

The proof is similar to the punctured torus case. Define S, ¢ = S;((r/d, s/d)) for (r,s) #
(0,0), where d = gcd(r, s). Let Sy g = 1.
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Recall that y; is the curve surrounding puncture i, and ¢y = ;Y3 + VoV4. 0 =

11
( ) represents the counterclockwise half twist along a, fixing punctures 3 and 4
0 1

and exchanging punctures 1 and 2. ¢, = o¥(cy).

Lemma 5.4. On X,

S1,052k,2 = q452k+1,2 + q_482k71,2 +Sk1 HIS10+ (@ +q Dy + vav)l

4 -4 2 -2
S1,052k+1,2 =4 Sok42,2 7 a4 Sor2 +(@°CkSk11 @ “Cr1Sp) + T
where I' = +y2 4yt yZi4yE-2
ViVoV3Va TVY1 T V) TV3 T Va .
Proof. By direct computation,

S10S02=a"S12+a *S_15+ oS0 +[S10+ @+ D2+ vav)l

S10S1,2=0"Sy5+ q_450,2 + (qZCOSl,l + q_201so,1) +T.
The equations follow by applying o¥. |
Lemma 5.5 (see also [1] Theorem 3.6). On o .4r forn >0,
Sp1S01 =" Spa + 4 " Spo + Gy + B

Here, go =g; =0, and forn > 2,

n/2] n—i
472
gn= 24" cainSir
i—1 =i

h,, is a polynomial of g, S; 5 and y;s only. hy = 0, and for n > 1, the exponents of g in h,,

are between —2n + 2 and 2n — 2.

Proof. When n = 0, the equation clearly holds. When n = 1, resolving both crossings
of Sy ; and Sy ;, yields

S1,1501 = q251,2 + qizsl,o + (V1V2 + V3Ya)-

Thus, the equation holds with h; = y; v, + v3Va.
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Whenn > 1,

Snt1,1501 =4 251,080,101 = 4 *Sp_1,1501 — 4 *CnSo,1
= q_zsl,o(qznsn,z + q_znsn,o +gp + hy)
—q @S, 2 TS 10 Gn1 F 1) — 4 %C,So -
=281 0802 + 42" A (Snt1,0 + Sno1,0) + 4 281,090 + 43Sy 0Py
— g S, 1 =TS, 10— 0700 1~ @ ey — 0,
= (qzn_zsl,osn,z - qzn_ﬁsn—l,z) + q_zn_25n+1,0
+ (@ 281090 — @ *In_1 — a4 %€, So1) + (@28 ohy — @ Ry ).

To continue, apply Lemma 5.4 to the 1st term. For the product S, 4g,, we can use

Equation 2, written in the notations of this section
2 -2
51,0501 = 4" Sn+11 T4 “Spo11 + Cp-
After a routine reduction, the product S,, ;Sj ; has the desired form. |

Proof of Theorem 2.6, sphere with 4 punctures case. In the product (n,1)(0,1) =

S,.150,1, the terms with the lowest g-exponent is
q ""Sp0=q ""S,((1,0))

for n > 0. This shows that S, ((1,0)) is a Z, -linear combination of {P;((1,0))}. Thus,
(P,)) <(S,). This completes the proof of Theorem 2.6. |
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