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Stochastic Gradient Coding for Straggler
Mitigation in Distributed Learning

Rawad Bitar =, Member, IEEE, Mary Wootters

Abstract—We consider distributed gradient descent in the pres-
ence of stragglers. Recent work on gradient coding and approximate
gradient coding have shown how to add redundancy in distributed
gradient descent to guarantee convergence even if some workers
are stragglers—that is, slow or non-responsive. In this work we
propose an approximate gradient coding scheme called Stochastic
Gradient Coding (SGC), which works when the stragglers are
random. SGC distributes data points redundantly to workers
according to a pair-wise balanced design, and then simply ignores
the stragglers. We prove that the convergence rate of SGC mirrors
that of batched Stochastic Gradient Descent (SGD) for the £; loss
function, and show how the convergence rate can improve with
the redundancy. We also provide bounds for more general convex
loss functions. We show empirically that SGC requires a small
amount of redundancy to handle a large number of stragglers
and that it can outperform existing approximate gradient codes
when the number of stragglers is large.

Index Terms—Distributed computing, straggler mitigation,
stochastic gradient descent, machine learning algorithms, con-
vergence analysis.

I. INTRODUCTION

E CONSIDER a distributed setting where a master

wants to run a gradient-descent-like algorithm to solve
an optimization problem distributed across several workers.
Let X € R"™*¢ be a data matrix and let x; € R? denote the i’th
row of X. Let y € R™ be a vector of labels, so x; has label y;.
Define A £ [X|y] to be the concatenation of X and y. The
master wants to find a vector B* € R that best represents the
data X as a function of the labels y. That is, the goal is to
iteratively solve an optimization problem

B* =aIgmﬁiHE(A,ﬂ), (D
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for a given loss function £, by simulating or approximating
an update rule of the form

Biy1=8:— VIVE(As .Bz) (2

Many natural loss functions £(A, B) can be written as the sum
over individual rows a; of A, i.e.,

LA B =) La,B, 3)

i=1

such loss functions lend themselves naturally to distributed
algorithms. In a distributed setting, the master partitions the
data matrix A into rows a; which are distributed between the
workers. Each worker returns some linear combination(s) of
the gradients V.L(a;, 8,) that it can compute, and the mas-
ter aggregates these together to compute or approximate the
update step (2).

We focus on the setting where some of the workers may
be stragglers, i.e., slow or unresponsive. This setting has been
studied before in the systems community [2]-[5], and recently
in the coding theory community [6]-[8]. A typical approach
is to introduce some redundancy: for example, the same piece
of data a; might be held by several workers. There are several
things that one might care about in such a scheme and in this
paper we focus on the following four desiderata:

(A) Convergence Speed: We would like the error |8, — B*|»
to shrink as quickly as possible with the iterations .
(B) Redundancy: We would like to minimize the amount of
storage and computation overhead needed between the
workers.
Communication: We would like to minimize the amount
of communication between the master and the workers.
(D) Flexibility: In practice, there is a great deal of variability
in the number of stragglers over time. We would like an
algorithm that degrades gracefully if more stragglers than
expected occur.

Exact Gradient Coding for Worst-Case Stragglers: Much
existing work has focused on simulating gradient descent
exactly, even in the presence of worst-case stragglers, for
example [6]-[9]. In that model, at each round an arbitrary set
of s workers (for a fixed s) may not respond to the master. The
goal is for the master to obtain the same update B, at round
t that gradient descent would obtain. For this to happen, the
master should be able to obtain an exact value of the gradient
VL(A, B,). This has given rise to (exact) gradient coding [6],
which focuses on optimizing desiderata (A) and (C) above.
However, these schemes (and necessarily, any scheme in this

©)

2641-8770 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 18:59:55 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-4421-1024
https://orcid.org/0000-0002-2345-2531

278 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

model) do not do so well on (B) and (D). First, it is not
hard to see that in the presence of s worst-case stragglers, it
is necessary for any n — s workers to be able to recover all
of the data, which necessitates a certain amount of overhead.
Namely, every data vector should be replicated on s+ 1 differ-
ent workers. Second, the gradient coding schemes for example
in [6], [7] are brittle in the sense that they work perfectly for
s failures, but cannot handle more than s stragglers.

No Coding at all for Random Stragglers: On the other hand,
there has also been work on approximately simulating gradient
descent. One approach (similar to the one in [3]) is to assume
that the stragglers are random, rather than worst-case, and not
employ any redundancy at all. Thus, the master obtains an
approximate update (2) instead of an exact one by computing
the sum in (3) without the responses of the stragglers. (We will
later refer to this algorithm as “Ignore—Stragglers—SGD.”) If
the stragglers are independent at each round, this algorithm
is a close approximation to Batch—-SGD, see, e.g., [10]-[13],
and performs in about the same way. However, for convex
loss functions it is well known that, while Batch—SGD does
converge to B*, the convergence is not as fast as that of classi-
cal gradient descent [14]-[16]. Thus, this approach maintains
the good communication cost (C) of the coded approaches
by requiring each worker to send one linear combination of
the gradients to the master, and improves on (B) and (D), but
sacrifices (A), the convergence rate.

Approximate Gradient Coding: Adding Redundancy to
Approximate the Gradient: A line of work known as approxi-
mate gradient coding [9], [17]-[22] introduces redundancy in
order to speed up the convergence rate of such an approxi-
mate scheme. This line of work studies the data redundancy
d (that is, the number of times each row a; of the data matrix
A is replicated) needed to tolerate s stragglers and allow the
master to compute an approximation of the gradient if more
than s workers are stragglers [9], [18]-[20]. In [17] a vari-
ant of this idea is studied; in that work the data is encoded
using LDPC code rather than being duplicated. In approxi-
mate gradient coding, the master is required to compute the
exact gradient with high probability if fewer than s workers
are stragglers. If more than s workers are stragglers, the dis-
tance between the computed gradient at the master and the
true gradient can be made small if the redundancy factor is
poly-logarithmic in the number of workers. So far, this line
of work has mostly focused on desiderata (B), (C) and (D),
and most works have not directly analyzed the convergence
time (A). Two exceptions are [17] and [19], which we discuss
more below. In this work, we introduce an approximate gradi-
ent coding scheme called Stochastic Gradient Coding (SGC)
which works in the random straggler model and which does
well simultaneously on desiderata (A)-(D). We analyze the
convergence rate of SGC, and we present experimental work
which demonstrates that SGC outperforms the most recently
proposed schemes [18], [19] when p (the fraction of workers
that the master will ignore in each iteration) is relatively large.

Remark 1 (Motivation for the Random Straggler Model,
and for Large p): A model of random stragglers has been
studied before (e.g., [9], [17]-[21], [23]), and is motivated as
an easy-to-study model that captures non-persistent stragglers.

However, one might also work in a “random stragglers” model
even if all of the workers are fast: just like how SGD samples
fewer points to save time and computation, so the master might
sample random workers to save bandwidth and computation.

This second setting further motivates the case when p might
be relatively large, which is the setting that we focus on in this
work.

A. Contributions

We consider an approach that we call Stochastic Gradient
Coding (SGC). The coding idea—which is similar to previous
approaches in approximate gradient coding [18]—is simple:
the master distributes data to the workers with a small amount
of repetition according to a pair-wise balanced scheme (which
we will define below); a data point a; is replicated d; times,
and d; can vary from data point to data point. Below, the
redundancy parameter d refers to the average of the d;’s. Once
the data is distributed, the algorithm proceeds similarly to the
Ignore—Stragglers—SGD algorithm described above: workers
compute gradients on their data and return a linear combina-
tion, and the master aggregates all of the linear combinations
it receives to do an update step.

Remark 2 (The Role of Redundancy in SGC and in
Approximate Gradient Coding With Random Stragglers):
Since our scheme is replication-based, the reader may wonder
why we use the word “coding.” Here, we are using it in the
same way as is standard to describe the many replication-based
schemes in the gradient coding literature, for example [6], [9],
[18], [19].! Since each worker responds with only a single
vector (rather than all of the partial gradients it can compute),
and a worker (with all its data) straggles as a unit, it matters
how the data is distributed between the workers. We will see
that this matters in our experiments in Section VI, where we
compare the SGC method of distributing data to the different
data distribution methods of [19].

One point of our work is to understand to what extent adding
redundancy can speed up the convergence of SGD. To this end,
we will also compare SGC with the “Ignore—Stragglers—-SGD”
algorithm alluded to above, where there is no replication of
the data and the master simply ignores slow workers when
estimating the gradient.

One contribution of this work is to provide a rigorous con-
vergence analysis of SGC. We show that SGC with only a
small amount of redundancy d is able to regain the benefit of
(A) from the (exact) coded approaches, while still preserving
the benefits of (B), (C), (D) that the “Ignore—Stragglers—SGD”
approach sketched above does. A second contribution is exten-
sive experimental evidence which suggests that for the same
small redundancy factor d SGC outperforms other schemes
when there are many stragglers.

More precisely, our contributions are as follows (all in the
stochastic straggler model):

« In the special case of the ¢> loss function, we show that

SGC with redundancy factor d > 1, can obtain error
bounds where ||8* — B,||2 decreases at first exponentially

TWe note also that our replication-based data distribution is similar to a
Fractional Repetition (FR) code [24].
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and then proportionally to %. This mirrors existing results
on SGD (which corresponds to the case d = 1), and quan-
tifies the trade-off between replication and error. This is
made formal in Theorem 3.

« For more general loss functions, we show that SGC has
at least the same convergence rate as Ignore—Stragglers—
SGD, and we give some theoretical evidence that the error
|IB* — B,|| may decrease as d increases. This is made
formal in Theorem 4.

« We provide numerical simulations comparing SGC to gra-
dient descent, Ignore—Stragglers—SGD and a few other
versions of SGD, and other approximate gradient cod-
ing methods. Our simulations show that indeed SGC
improves the accuracy of Ignore—Stragglers—SGD, with
far less redundancy than would be required to imple-
ment exact gradient descent using coding. In addition,
we compare SGC to other approximate gradient methods
existing in the literature and show that SGC outperforms
the existing methods when the probability of workers
being stragglers is high.

Remark 3: Like previous works [17], [19], we measure the
error as a function of the number of iterations. We note that
an important metric in distributed computing is the error as
a function of the total running time. In particular, it could
be possible that the coding—which introduces computational
overhead at the workers—can slow down the process more
than the gains in convergence help. As with previous work,
we envision settings where the bottleneck is the delay expe-
rienced by the master per iteration, for example as caused by
network and system management delays. In such settings it is
meaningful to consider the number of iterations.

B. Relationship to Previous Work on Approximate
Gradient Coding

We provide a more detailed description of previous work in
Section VII, but first we briefly mention some of the main dif-
ferences between our work and existing work on approximate
gradient coding [9], [17]-[21].

First, we note that our SGC scheme is quite similar to
Bernoulli Gradient Coding (BGC) studied in [18], where the
data is distributed uniformly at random to d workers. One dif-
ference between our work and that work is that we allow for
the redundancy of different data points a; to vary for different
i; we will see that for the ¢, loss function it makes sense to
choose d; based on |x;||>. A second difference between our
work and [18] is that [18] does not provide a complete conver-
gence analysis. The works [9], [20], [21] also study schemes
similar in flavor to SGC, but these works also do not provide
complete convergence analyses.

The works of [17], [19] do provide convergence analyses,
although for schemes that are quite different from SGC. More
precisely, [17] studies a scheme with LDPC coding, rather
than repetition. The work of [19] studies a scheme based on
Fractional Repetition (FR) codes, which was proposed in [18].
However, the FR codes studied by [19] results in a very dif-
ferent data distribution scheme than the one we study. Their
scheme partitions the data and the workers into different blocks

and every worker in a block receives all of the data from the
corresponding block.

Additionally, we obtain slightly different error guarantees
than the analyses of [17], [19]. More precisely, the analysis
of [19] proves a bound where the error decreases exponentially
in T (the number of iterations of the algorithm) until some
noise floor is hit. The analysis of [17] studies the special case
of the ¢ loss function, and shows that the error decays like
O(1/+/T). In contrast, for SGC and for the special case of the
£, loss function, we show that the error decays exponentially
in T at first and then switches to dacaying like O(1/7T); this
mirrors existing results for SGD for the ¢, loss function. We
give a more general result that holds for general convex loss
functions and show that the error decays as O(1/T).

Finally, we provide empirical results which suggest that our
scheme can outperform existing gradient coding schemes (in
particular, the FR-based approach of [18], [19] and BGC [18])
in some parameter regimes. We do not compare our scheme
empirically to that of [17], [21], [22] because they requires
more work on the master’s end (to encode and decode) and
are thus not directly comparable to our work.

C. Organization

We give a more precise definition of our set-up in Section II.
We describe the SGC algorithm in Section III. In Section IV,
we give a more detailed overview of both our theoretical
and empirical results, which are fleshed out in Sections V
and VI respectively. The proofs of our results can be found
in the Appendix. We provide more detail on related work in
Section VIIL.

II. SETUP
A. Probabilistic Model of Stragglers

In this paper, we adopt a probabilistic model of strag-
glers. More precisely, we assume that at every iteration each
worker may be a straggler with some probability p, and this
is independent between workers and between iterations. Our
probabilistic model is similar to the model in [9], [17]-[21]
and is in contrast to the worst-case model assumed by much of
the literature on coded computation. (See Remark 1). In our
numerical simulations, we relax the assumption of indepen-
dence and show that similar results hold when the identities
of the stragglers are somewhat persistent from round to round
and change only after a fixed number of iterations.

B. Computational Model

Our computational model has two stages, a distribution
stage and a computation stage.

In the distribution stage, the master encodes the data using
unequal data repetition code. More precisely, the master can
decide to send each row a; of A to d; different workers.
We refer to the parameter d = %Zf":ld,- as the average
redundancy of the scheme.

The computation stage is made up of rounds, each of which
contains two repeating steps. In the first step, the master does
some local computation and then sends a message to each
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worker. In the second step, each worker does some local
computation and tries to send a message back to the mas-
ter; however, with probability p the message may not reach
the master. Then the round is over and the master repeats
the first step to begin the next round. We refer to the total
amount of communication per round as the communication of
the scheme. We allow each worker to send only one message
to the master to reduce the communication.

IIT. STOCHASTIC GRADIENT CODING

In this section, we describe our solution, which we call
Stochastic Gradient Coding (SGC). The idea behind SGC is
extremely simple. It is very much like the Ignore—Stragglers—
SGD algorithm described above, except we introduce a small
amount of redundancy. We describe the distribution stage and
the computation stage of our algorithm below. Our scheme has
parameters dy, ..., d,;, which control the redundancy of each
row, and a parameter y; which controls the step size. We will
see in the theoretical and numerical analyses how to set these
parameters.

In our analysis, we focus on pair-wise balanced schemes.

Definition 1: We say that a distribution scheme that sends
a; to d; different workers is pair-wise balanced if for all i # 7/,
the number of workers that receives a; and ay is @.

Notice that with a completely random distribution scheme,
the expected number of workers who receive both a; and ay for
i # 1 is equal to 447 n our analysis, it is convenient to deal
with schemes that are exactly pair-wise balanced. However,
for small d; it is clear that no such schemes exist (indeed,
we may have ZZL < 1). In our simulations, we choose a
uniformly random scheme” which seems to work well (see
Section VI). We believe that our analysis should extend to a
random assignment as well, although for simplicity we focus
on pair-wise balanced schemes in our theoretical results.

The way SGC works is as follows:

o Distribution Stage: The master creates d; copies of each
row a;, i =1, , m, and sends them to d; distinct work-
ers according to a pair-wise balanced scheme. We denote
by S;, j=1,...,n, the set of indices of the data vectors
given to worker W;, i.e., §; = {i; a; is given to W;}.

o Computation Stage: At each iteration ¢, the master sends
B, to all the workers. Each worker W; computes

Z 1

LB = v VL(aj. B,) %)

p)

and sends the result to the master. The master aggregates
all the received answers from non straggler workers, sums
them and updates B as follows:

B =8 — ytzzd(l

j=1 i=1

Vﬁ(az, By,

2In our simulations, we assign rows to d; workers uniformly at random,
which approximates a pair-wise balanced scheme. Similarly, the BGC con-
struction of [18] approximates a pair-wise balanced scheme where each row
is assigned to d workers uniformly at random, i.e., d; = d for all i € [m].

where T/ is the indicator function for worker j being non
straggler and having obtained point a; during the data
distribution, i.e.,

1 if worker j is non straggler
and has point a;,
0 otherwise.

7=

1

Note that I; depends on the iteration ¢, however we drop
t from the notation for notational convenience since the
value of ¢ will be clear from the context.

For use below, we define

g2 sz(l VL(a;, B). (5)

We call g, the estimate of the gradient at iteration ¢ which
estimates the exact gradient of the loss function in (3),

g2 VL@, B

i=1

IV. SUMMARY OF OUR MAIN RESULTS

In this section, we summarize both our theoretical and
numerical results.

A. Theoretical Results

Our main theoretical contributions are to derive results for
SGC that mirror known results for SGD and Batch—-SGD.
There are two important differences between our results and
those for Batch—-SGD.

1) First, one of our goals is to show how the error ||* —
ﬂt||% depends on the redundancy parameter d; we show
that it is roughly like 1/d. This explains why SGC can
work much better than Ignore-Stragglers—SGD (say, so

that |8, — /3*||% is half as large), even with relatively
low redundancy (say, d = 2). In Batch—-SGD we always
have d = 1.

2) Second, it is nontrivial to adapt existing results for
Batch—SGD to our setting. The reason is that the batches
are not uniform in our setting; rather, they depend on the
way that the data is distributed. We note that this is true
even if the data is distributed randomly to begin with:
in that case it is true that the marginals of the batches
are uniformly random (that is, in each round the set of
gradients that the master receives is a uniformly ran-
dom subset of all of them) but because the randomness
from the initial distribution is fixed throughout the com-
putation, if we view it this way then the batches are no
longer independent. The main technical challenge in our
analysis (in particular, the proof of Theorem 1 below)
is to deal with this issue.’

We adapt existing result from the SGD literature to prove

a tighter bound that holds for arbitrary convex loss functions.
And we derive a stronger convergence guarantee for the ¢,
loss function.

3We note that this is not an issue for our proof of Theorem 2, since we
are able to adapt existing results that depend only on the mean and variance
of the gradient estimates.
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Special Case: £, Loss Function: We begin with a result
which is specialized for the £, loss function. This result is of
a similar flavor as the results of [25]-[27] on SGD and the
randomized Kaczmarz algorithm.* Those works show that the
speed of convergence is exponential to begin with, and then
begins to decay polynomially like 1/¢ once an unavoidable
limit is reached. In this work, we show an analogous result for
the £, loss function. In this case we show that the convergence
is exponential to begin with, until the noise is on the order of
> normal of the residual r £ XB* —y, and then it begins to
decay polynomially like 1/(dr).

Thus, our analysis generalizes the case when d = 1 (aka,
Ignore—Stragglers—SGD), and we see that as the repetition fac-
tor d increases, the error of SGC decreases. We state our main
theorem informally below, and we state the formal version in
Section V. Throughout the paper we use the superscript 7 to
denote the transpose of a matrix.

Theorem 1  (Informal; see Theorem 3 for a Formal
Version): Consider an SGC algorithm run on a matrix A =
[X]y] of dimension m x (£ + 1) distributed to n workers.
Suppose that the distribution scheme is pairwise balanced, and
that each row a; of A = [X]y] is sent to d; different workers,
where d; is chosen proportional to ||xi||%.

Suppose that n is sufficiently large and that

1 & p
d=— di > 8| — ).
w22 4(i5)

Choose an error tolerance ¢ > 0. Then, it is possible
to choose a step size y; at each step ¢ so that the follow-
ing guarantee holds on the iterates By of SGC, for T >
2log(1/€?):

E| |8 —8°15] = 80— 8713

LN
+ o (log (1/e)- _p),
where F = (XB* — y)/IX"X[2.

That is, if the residual T is very tiny, so that the second term
is smaller than the first, then the algorithm reaches accuracy
& in roughly log(1/e) steps. However, if T is larger, then the
convergence becomes polynomial, matching what we expect
from SGD. In this second case, the difference is that the repli-
cation factor d appears in the denominator, so that when d is
larger, the error is smaller, explaining why replication helps.
Notice that if p is constant, we expect good performance when
d = O(1). In contrast, to exactly simulate gradient descent via
coding would require d = Q (n).

The main difficulty in proving Theorem 3 (the formal ver-
sion of Theorem 1) is that because the data distribution is fixed
ahead of time, the “batches” that the master acquires in each
round are not uniformly random, but rather come from some
distribution determined by the data distribution.

Beyond €, Loss Function: Our result above is limited in
that it only applies to the £, loss function. We believe that the
analysis of Theorem 3 should apply to general loss functions,

4We note that [26] also holds for more general loss functions.

n = 10 workers, p = 0.7

—— ERASUREHEAD
Ignore-Stragglers—SGD

— SGC

—GD

2000 3000 4000 5000

Number of iterations, ¢

0 1000

Fig. 1. Comparison between Ignore—Stragglers-SGD, SGC and
ERASUREHEAD in terms of the distance between B, and B* the value of
B that minimizes the loss function. SGC outperforms Ignore—Straggler—-SGD
at the expense of adding small redundancy, d = 2 in this example.

but for now we observe that in fact a convergence rate of 1/¢
does follow for SGC from a result of [14].

In that work, the authors give a general analysis of stochastic
gradient descent, which works as long as (in our language) the
master is computing an unbiased estimator of the gradient.
The convergence speed of the algorithm then depends on the
variance of this estimate. This result applies in our setting.

Theorem 2  (Informal; see Theorem 4 for a Formal
Version): Suppose that SGC is run on a matrix A £ [X|y]
of dimension m x (£ 4+ 1) distributed to n workers. Suppose
that the distribution scheme is pairwise balanced, and that each
row a; of A is sent to d; different workers, d; < n. Consider
a version of the optimization problem in (1) where B is con-
strained to a convex set V. Under some mild assumptions on
the loss function £ and assuming there exists a constant C
such that

IVL(;, B3 < C?

for all i € [n] and for all B € W, then there is a way to choose
the step size y; at each step ¢ so that the error after T iterations
is bounded by

E[”ﬁr - ﬂ*“;] < 0/T).

The proof of Theorem 2 (given [14, Lemma 1]) boils down
to showing that our gradient estimator g; is an unbiased esti-
mator of the true gradient and that E[||§t||%] is bounded for all
t, which we do in the Appendix.

We give more precise statements of these theorems in
Section V, and prove them in the Appendix.

B. Numerical Simulations

We run extensive simulations on synthetic data A of dimen-
sion 1000 x 100 generated from a Gaussian distribution. We
compare SGC to four other algorithms detailed in Section VI
and show that SGC outperforms all other algorithms when
there are many stragglers. A typical result is shown in Figure 1.
In it, we observe that SGC and ERASUREHEAD outperform
Ignore—Stragglers—SGD at the expense of doubling the redun-
dancy. In Figure 2 we plot the convergence of approximate
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n = 10 workers

7 Ignore-Stragglers—SGD
1 -=SGC
1 —— ERASUREHEAD

18r — 8|

0 01 02 03 04 05 06 07 08 09
Probability of straggling p

Fig. 2. Final convergence of all algorithms run for 7 = 5000 iterations as
function of p the probability of workers being stragglers. We omit GD in this
setting, because it has the same performance as all algorithms when p = 0.

gradient codes as function of p. We observe that SGC out-
performs ERASUREHEAD when the number of stragglers is
large, p > 0.6. As expected, the approximate algorithms have
worse accuracy than full-blown gradient descent, but we note
that implementing exact gradient descent with a p fraction of
stragglers would require redundancy d = pn >> 2. Moreover,
we observe the flexibility of the approximate algorithms in the
number of stragglers, and we note that computing GD exactly
would lack this flexibility. In Section VI, we comment on how
the dependency between stragglers affect the convergence of
SGC. Our implementation is publicly available [28].

V. THEORETICAL RESULTS

In this section we precisely state our theoretical results. We
begin with a specialized result for the ¢, loss function, and
then include a result for more general loss functions.

A. Special Case: €; Loss Function

We begin with a result that holds for the special case of
an ¢; loss function, aka, regression. Inspired by the approach
of [27] for SGD, our approach is to consider a weighted dis-
tribution scheme; that is, we choose d; proportionally to ||x,>||%.
While the statement below is only for the ¢, loss function, we
conjecture that it holds for more general loss functions.

Define a parameter

1 2
X
IXTX]

This parameter measures how incoherent X is. If X is orthog-
onal, u = 1, while if, for example, X is the all-ones matrix,
then = 1/m. It is not hard to check that u € [0, 1].

Suppose that D is a pair-wise balanced distribution scheme
which sends a; to d; different workers, where

di = o - |xl3, (6)
md d 7
o = = .
X2 wlXTX|
1
d= —~ Z d;. (8)
i€[m]

The parameter d is the average redundancy of the scheme
that will control o and the d;’s. Notice that, as stated, it is
possible that the d; end up being non-integers; in the following,
we will assume for simplicity below that d; € Z for all i.
Notice that if ||x;||o = 1 for all i, then this will be the case
because we can choose d; = d to be any integer of our choice,
and this defines o.

Theorem 3: Consider an SGC algorithm run on a matrix
AE2[X ly] of dimension m x (€ + 1) distributed to n workers
according to a pairwise balanced distribution scheme with d;
as described above, with loss function

L(XIyl, B) = IIXB - yl3,

and assume that the degrees d; < n are all integers.

Suppose the stragglers follow the stochastic model of
Section II, and that each worker is a straggler independently
with probability p. Choose ¢ > 0 and choose T > 2log(1/¢2).

Suppose that the number of workers n satisfies n > 8(1% ,

P
and that
8M(L> <d.
I—p

1 in{ 1 1og(1/82)}
" XX > |
Then, after T iterations of SGC, we have

E[18r 815 < £*[ 80— B3

Hf'”zl‘ 201 7.2( P
i GO C))

where the expectation is over the stragglers in each of the T
iterations of SGC and where u is as above, and where

Choose a step size

o IXB — vl
- 172 °
IXTX]

Corollary 1: Suppose that X* =y (that is, we are solving
a system for which there is a solution) and that n > 8p/(1—p).
Then the algorithm described in Theorem 3 converges with

E| |8 - B3] < <280 — 8|

provided that T > 2log(1/¢%) and d > 8up/(1 — p).
In particular, since u < 1, this says that we need to take
d 2 p/(1 —p) and the algorithm converges extremely quickly.

B. Beyond {; Loss Function

Now, we consider a constrained version of the problem
given in (1), where B belongs to a bounded set W. In this
section, we state a result for general loss functions £ which
are A-strongly convex.

Definition 2 (Strongly Convex Function): A function L is
A-strongly convex, if for all B, B € R and any subgradient
g of L at 3,

LB =L +g B B+ 5I8 -8 ©
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TABLE I
SUMMARY OF THE STOCHASTIC ALGORITHMS THAT WE IMPLEMENT IN OUR SIMULATIONS

Algorithm

Brief description

Stochastic Gradient Code (SGC)

Bernoulli Gradient Code (BGC) [18]

ERASUREHEAD [18], [19]

Ignore—Stragglers—SGD

SGC-Send-All

The master sends each data vector x; to d; workers chosen at random, where d; is proportional to the
£2 norm of x; and is computed as in (6) with d = 2. Each worker sends to the master the weighted
sum of its partial gradients as in (4). The master computes the gradient estimate as the sum of the
received results from non straggling workers.

Similar to SGC but all data vectors are replicated d times, i.e., d; = 2 for all ¢ € [m].

Partitions the data set equally and sends each partition to d workers. Workers send the sum of the
partial gradients to the master who computes the gradient estimate as the sum of distinct received
partial gradients divided by total number of data vectors.

Partitions the data among the workers with no redundancy. Workers send the sum of the partial
gradients to the master who computes the gradient estimate as the sum of distinct partial gradients
divided by the average number of data vectors received per iteration.

Same as SGC with one difference: at each iteration the workers send all the partial gradients to the
master. The master computes the gradient estimate as the sum of distinct partial gradients divided by
the average number of data vectors received per iteration.

Theorem 4 below follows from the analysis in [14].

Theorem 4: Suppose that SGC is run on a matrix A £ [X|y]
of dimension m x (£ + 1) distributed to n workers with each
row of A sent to d; different workers, d; < n, according to a
pairwise balanced distribution scheme. Consider a version of
the optimization problem in (1) where B is constrained to a
convex set W, i.e.,

*: i EA? ’
B arg min, (A, B)

and at each step of the algorithm 8, | = ITyy(B;—y:8;), where
IT is the projection operator. Let p denote the probability of
a given worker being a straggler at a given iteration. Suppose
that the loss function £ is A-strongly convex with respect to
the optimal point 8* € W, and that all of the partial gradients
V/L(a;, B) are bounded for i € [n] and B € W, i.e., there
exists a constant C so that
IVL@, Bl3 <C,  YBeW,iclnl.

Suppose that the step size is set to be y; = 1/(Af). Then the
error after T iterations is bounded by

4
E|Br— B[ < 57 @ (10)

where dpmin £ min;e[,) d; and

) émC2<L- !
1—[? dmin

(m—T1Dp
+ —n(l ) +m>.

This shows that SGC does have a convergence rate of O(1/7),
matching regular SGD [14, Lemma 1]. This means that at
least the convergence rate is not hurt by the fact that the data
assignment is fixed. However, unlike Theorem 3, this result
does not always significantly improve as d increases (although
we note that the bound above is decreasing in dpip, SO in some
parameter regimes—when n > m and p is close to 1—this
does indicate some improvement). We leave it as an interesting
open problem to fully generalize our result of Theorem 3 to
general loss functions.

VI. SIMULATION RESULTS
A. Simulation Setup

We simulated the performance of SGC on synthetic data X
of dimension 1000 x 100. The data is generated as follows:
each row vector Xx; is generated using a Gaussian distribution
N0, 100). We pick a random vector § with components being
integers between 1 and 10 and generate y; ~ A ((Xi, [_3 ), 1). Our
code and the generated data set can be found in [28].

We run linear regression using the ¢, loss function, i.e.,

1 2
L(ai ) = 5(("!’7 B —vi)".

We show simulations for n = 10 workers. For each simula-
tion we vary the probability of a worker being a straggler from
p =0to p=0.9 with a step of 0.1. We run the algorithm for
5000 iterations with a variable step size given® by

In(10100)

For all simulations, we run each experiment 10 times and aver-
age the results. For SGC, each data vector x; is replicated d;
times, where the d;’s are computed as in (6) and (7) with
d = 2. Then, each d; is rounded to the nearest integer. Due to
rounding, the actual value of d given in (8) will be close to
2. In our generated data set, the majority of the d;’s are equal
to 2 while the others are either 1 or 3 resulting in average
redundancy d = 2.024. For the other algorithms in Table I,
the average redundancy d is chosen to be exactly equal to 2.

We omit comparing SGC to the gradient codes in [9]
and [21] because they do not match our setting; the former
requires a high redundancy factor d and the latters requires
the master to run a decoding algorithm at each iteration.

Our metric used to compare the different algorithms is error
versus number of iterations which does not capture the compu-
tation overhead induced by redundantly distributing the data
to the workers. However, we envision SGC to be appealing
to applications in which the computation overhead of a given

5In our theoretical analysis we assumed that the step size y; is propor-
tional to 1/¢. In our numerical simulations, we tried different functions of y;
and observed that the one in (11) gives better convergence rate for all the
considered algorithms.
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Fig. 3. Convergence as function of probability of workers being stragglers p is
shown for small p = 0.1 in (a) and for large p = 0.7 in (b) for n = 10 workers.
SGC convergence has two phases: an exponential decay in the beginning until
it reaches an error floor. SGC has same performance as BGC, but outperforms
ERASUREHEAD for large values of p. In (c¢) the error floor at 7 = 5000
iterations is shown versus p.
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Fig. 4. The effect of the dependency of stragglers across iterations on the

performance of SGC. We assume that the identity of the stragglers change
every v iterations. In (a) the convergence of the error as function of the number
of iterations is shown for different values of v and p = 0.7. SGC maintains
an exponential decay in the error for the tested values of v and p. However,
the rate of the decay decreases and the error floor increases with the increase
of v. In (b), the error at iteration 7 = 5000 as function of v is shown for
different values of p.

worker is not the main bottleneck and the delay experienced
by the master is dominated by other factors such as network
and system management delays. This applies to all algorithms
except Ignore—Stragglers—SGD.

B. Convergence

In Figures 3a and 5a, we plot the error ”/3, — ﬂ*” for up
to 5000 iterations for small and large probability of workers
being stragglers, namely for p = 0.1 and p = 0.7, respectively.
Here, B* given in (1) is computed using the pseudoinverse of
X, ie., B* = (XTX)~'XTy. We notice that for all p the conver-
gence rate of SGC exhibits two phases: an exponential decay
followed by an error floor. To see the benefit of replication,
we compare SGC to Ignore-Stragglers—SGD. Both have the
same performance in the exponential phase, but SGC has a
lower error floor due to redundancy. The normalised difference
between the error floor of SGC and Ignore—Stragglers—SGD
is 0.3, i.e., SGC with d = 2 brings a 30% increase in
performance over Ignore-Stragglers—SGD. A lower bound on

the performance of SGC is SGC-Send—All which has a lower
error floor because it computes a better estimate of the gradi-
ent at the expense of a higher communication cost. However,
as p increases the gap between the two error floor of SGC
and SGC-Send—All decreases. In our simulations, we notice
the error floor of both algorithms almost match for p > 0.6 as
can be seen in Figure 3c.

For our chosen data set, SGC and BGC have similar
performance. This is mainly due to the fact that most of the
data vectors have the same replication factor in BGC and SGC
which is 2 times. For other data sets with more variance in
the d;’s, we observe that SGC can have better performance.
ERASUREHEAD has better error floor than SGC for small val-
ues of p. However, for large p the rate of the exponential decay
drastically decreases for ERASUREHEAD.

C. Dependency Between Stragglers Across Iterations

Our theoretical analysis assumes that the stragglers are
independent across iterations. We check the effect of this
dependency on the numerical performance of SGC. We use
a simple model to enforce dependency of stragglers across
iterations by fixing the stragglers for v iterations, after which
the stragglers are chosen again randomly and iid with a prob-
ability p and this is repeated until the algorithm stops. The
special value of v = 1 implies that the stragglers are indepen-
dent. A large value of v implies a longer dependency among
the stragglers across iterations. We observe in Figure 4 that
SGC still maintains the two phases behavior. However, as v
increases, the rate of convergence decreases and the error floor
increases.

D. Effect of Increasing Redundancy

We present in this section the convergence results for the
same experiments as before for n = 100 workers and average
redundancy d = 5 (see Figure 5b). The goal is to check the
effect of increasing d on the error floor of SGC. In particular,
we are interested in the difference between SGC and Ignore—
Stragglers—SGD. The normalised difference between the error
floor of SGC and Ignore—stragglers—SGD is 0.5, i.e., the error
floor of SGC with d = 5 is half the error floor of Ignore—
Stragglers—SGD.

VII. RELATED WORK

In this section we survey the related work more broadly
than in the introduction.

A. Coding Techniques for Straggler Mitigation

Straggler workers are the bottleneck of distributed systems
and mitigation of stragglers is a must [2]. Amongst popular
techniques, coding theoretic techniques are being used for
straggler mitigation in different applications such as machine
learning, see, e.g., [6], [7], [9], [17], [29]-[31], [31]-[34],
[34]-[40], matrix multiplication, see, e.g., [8], [41]-[49],
linear transforms, see, e.g., [5S0]-[53], and content download,
see, e.g., [54]-[59].

There is a growing body of work on gradient coding, which
focuses on the special and important case of gradient descent.
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Fig. 5. Performance of SGC for n = 100 and d = 5. In (a) we show the
convergence as function of probability of workers being stragglers p = 0.8.
SGC with d = 5 brings a 50% decrease in the error floor compared to
Ignore—Stragglers—SGD. In (b) the error floor at T = 5000 iterations is shown
versus p.

For example, [6], [7], [29] present coding techniques to avoid
stragglers and perform a gradient descent update at each
iteration, i.e., at each iteration the master observes the gra-
dient evaluated at the whole data matrix A. In this framework,
the master distributes the data to workers with redundancy. In
the works cited above, the goal is to exactly compute the gra-
dient, even in the presence of stragglers, and the amount of
redundancy depends on the number of stragglers to be toler-
ated. However, it is still useful (and often much more efficient)
to approximate the gradient, rather than computing it exactly.
This setting is what our work focuses on and we discuss it in
more detail below.

B. Approximate Gradient Coding

In approximate gradient coding, the goal is not to compute
the gradient exactly, but rather to compute an approximation
to the gradient. This is the approach that we take, and there are
several previous works which do this. The ones most relevant
to our work are [3], [9], [17]-[23], which we discuss in more
detail below.

In [3], the authors consider a setting where there are “extra”
workers, and all the workers sample data randomly from X at
each round. Again, the master waits for the fastest n—s workers
to complete. This is quite similar to the Ignore—Stragglers—
SGD scheme; the difference is that in Ignore—Stragglers—SGD,
the data is partitioned among the workers and the data held by
the workers is fixed throughout the algorithm, while in [3] the
workers sample a fresh subset of data at each iteration. The
sampling of the data in [3] is done with replacement which
may incur redundancy in the data held by the workers.

In [17], the authors focus on linear loss functions and use
LDPC codes to encode the data sent to the workers. If fewer
than s stragglers are present, then the master can compute the
exact gradient. However, if more than s stragglers are present
the master leverages the LDPC code to computes an estimate
of the gradient. In [21] the authors propose a replication-based
scheme to distribute the data to the workers. The data distri-
bution scheme can be seen as a bipartite graph with the data
vectors on one side and the workers on the other. An edge is
drawn between a data vector i and a worker j if the vector
a; is given to worker j. The distribution of the degrees of the
nodes corresponding to data vectors and to workers are drawn
according to an LDGM scheme. The main drawback is that
the master has to run a decoding algorithm to decode the sum
of the partial gradients at each iteration.

In [9], [18], the authors present approximate gradient
schemes. The main idea is to bound the distance between the
computed approximate gradient and the actual gradient at each
step. Both of these schemes have a similar framework to ours:
the data is replicated among nodes according to an appropriate
design, and the workers return a linear combination of the gra-
dients that they can compute. In [9] the authors present a data
replication scheme based on Ramanujan graphs. In [18] the
authors present two constructions. The first is based on frac-
tional repetition codes (FRC) and partitions the workers and
data into blocks; within a block, each worker receives every
data point from the corresponding block. The second construc-
tion called Bernoulli Gradient Coding (BGC) distributes each
data point randomly to d different workers. We note that BGC
is an approximation of the pairwise-balanced schemes we con-
sider and can be seen as a case of SGC when all the data a;
have the same norm.

In [22] the authors present a data replication scheme based
on balanced incomplete block designs. The scheme guaran-
tees that the computed estimate of the gradient is close to the
actual gradient even if the stragglers are not chosen randomly
across iterations. This work is motivated by systems in which
stragglers cannot be modeled statistically.

In [23], the authors also study a replication-based scheme,
but they focus on a model where individual workers return
many gradients asynchronously, rather than returning a linear
combination of the gradients they can compute.

In [20] the authors present fundamental bounds on the error
between the approximated gradient and true gradient at each
round as function of the redundancy. In [19], the authors ana-
lyze the convergence rate of the fractional repetition scheme
presented in [18] and show that under standard assumptions
on the loss function, the algorithm maintains the convergence
rate of centralized stochastic gradient descent.

C. Other Work on Stochastic Gradient Descent

Beginning with its introduction in [60], there has been a
huge body of work on stochastic gradient descent (in a set-
ting without stragglers), and we draw on this mathematical
framework for our theoretical results. In the special case of £,
loss (which we focus on in this work), SGD coincides with
the randomized Kaczmarz method [25], [26], and our proof of
Theorem 3 is inspired by these analyses.
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There has been a great deal of work on SGD and Batch—
SGD in distributed settings where there is no redundancy of
the data between workers and dealing with stragglers is not
the primary concern, see, e.g., [27], [61]-[64]. In addition
to the synchronous setting in which the master waits for all
workers to make an update on #, there has been work on the
asynchronous setting in which the master makes an update on
B every time a worker gets back, see, e.g., [12], [65]-[68]. For
example, [68] shows that asynchronous SGD asymptotically
behaves similarly to synchronous SGD in terms of convergence
for convex optimization and under the similar assumptions on
the loss function. In [67], the authors compare the convergence
rate of synchronous and asynchronous SGD as a function of
the wall clock time rather than number of iterations.

APPENDIX
Proof of Theorem 3

In this section, we prove Theorem 3. In the case when the
loss function is

L(XIyL. B) = %IIXﬂ —~yli3.
we have
VL(a, B) = ((xi, B) — yi) - Xi,
so that

Y VL@, B) =X"(XB—y) = VLA, B).

Fix an iteration z. Let Z; (which depends on #; we suppress
this dependence in the notation) be defined by

n
Zi=Y T.
j=1

That is, Z; is the number of workers who hold a; who are not
stragglers at round ¢. Thus, Z; is a binomial random variable
with mean d;(1 — p) and variance d;p(1 — p). Let

Z; = 7; — ElZ],
so that
B[Z] = dp(1 - p)
and
E[ZZ] = %p(l —p).

From the definition of B,,; and replacing g by its value
from (5), we have

Biy1 =B, — i

n m I]
=B, — —L—VL(a;,
B, V‘Z,Zd,-a Ty VE@i B

j=1 i=1
m

Z
=B, — Z cli(l——p)((xi’ I3t> - Yi)Xi

i=1

=B - ZZiai«Xia B:) — yi)Xi,
i=1

where we define

_ Vi
di(1 —p)
(Notice that §; also depends on f; we suppress this for

notational convenience).
Expanding out the terms, we have

S

Bii1 — B* =B, — B*— > _EIZlsxix] (B, — B*)

i=1

Zsixix] (B, — B¥)

|

- E[Zi18;((xi B*) — yi)xi

Il
-

M=

Z;8i((xi, B*) — yi)xi
1

where we have split up Z; = E[Z;] + Z; and
((xi, B,) — yi)xi = xix! (B, — B*) + ({xi, B*) — vi)xi.
Letting
r=Xp* -y

be the optimal residual and writing the above in matrix
notation, we have

Biv1 — B* = (B, — B*) — (1 — p)X"DaDsX(B, — B*)
— X"D;DsX (B, — B¥)
— (1 = p)X"DyDsr
— X"D5Dsr,

where D is diagonal with entries Z;, Ds is diagonal with
entries §;, and Dy is diagonal with entries d;. Recalling that

o Vi
" (1 —-pd;
we have
Ds-Dg = Y .
l—p

Thus we can simplify the above as
.Bt+1 - B = (Igt - ﬂ*) - thTX(ﬂ, - ﬁ*)
— X"D;DsX (B, — B*)
— v X"r — X" D;Dsr
= (B, — B) — viX"X(B, — B*)
— X"D;DsX (B, — B)
— X"D5Dsr

using the fact that X'r = 0 since r = X8* —y is the optimal
residual. We simplify this further as:

Biy1 — B* = (I — viX"X +X"D;D;sX)(B, — B*)
— XD Dyr.
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Now we compute E[[|8,.; — B*|1?1, where the expectation
is over the choice of B;11, conditioned on B,. We let E; £
E[l|B.+1 — B**] and by £ (8, — B*), we have

Ev=b][ (1 - nX"x)"

+ XTD(gE[DZXXTDZ]DgX]b X (12)
+ r'DsE[D;XX" D5 | Dsr (13)
+ " DsE[D;XX" D;|DsXb, (14)
+ r'DsE[D5 | XX" (I — y:X"X)by (15)
+ bl (I — X" X) (X"E[D;1DsX)b;.  (16)

We handle each of these terms below. First, we observe
that (15) and (16) are zero because ED5; = 0. In order to
handle (12), (13), (14), we compute

E[D;XX"D;].

The off-diagonal elements are given by

Bl )] = 01 = pfi x).
and the diagonal elements are given by
E[Z21%i12] = dip(1 = p)lIxil> = dZp(1 = p)/o.
Thus,
1

E[D;XX"D;] = p(l—p)< DXXTD, + _<I__>Dd>
(e n

Now we handle the terms (12) and (13). First, for (12), we
have the equation shown on bottom of the page where in the
last line we used the fact again that DsDy = y;I/(1 —p). Now
we can bound this term by

D4\ 1
+ (1— —d)—Dg)Dar
n o
pa

_ P =P) i py b xXT DDyt
n

1— D
+ urT( d)DgD Dsr
o n

T Dy
2 2 r (I—}—)r
E ylp I‘TXXTI‘+ ylp . g
(1 —=pn l—p o
. P i
= 1—p o

where we have used the fact that X'r =
v’ (I — Dg/n)r < ||r||* because d; < n for all i.

Finally we bound (14). We have, using our expression for
E[D;XX" D] from above that

(14) = 1" DsE[D;XX" D;]D;sXb;

0, and that

1
=p(1 — p)r' Dg <ZDdXXTDd

1 Dg\
+ —([ - — Dd D;sXb
o n
l _
_ P4 =Dy b xXTDDsXb,
n
| — D
L PA=p g <I - —d>D§D5Xb1.
o n

Using the fact that DsDy = y4I/(1 — p), we can write
Vt

(1- p)
Vz P

(1 —=p)o

r XxTxb,

D
rT<1 - —d>Xb1
n

(14) =

+

2 Now, the first term is equal to zero because r’ X = 0, and we
2 DY : :
(12) < ((1 — vl XTXI) + mnﬂxnz have
2
2 YiP T Dq X
Yip 14)y= "2 T — =2 )x(8, —
+ f—||xTx||>||ﬂ,—ﬂ*||2, =g " ( n) (8.~ F7)
(I—-p)o

where above we have used the fact that = %rTDdX (.3: - B *)

D —p)on

xT(1-=2)x| < |x"x|, o r .
n again using the fact that r’ X = 0. Finally, we can bound
. . . . . 2
because I — D;/n is a diagonal matrix whose diagonal entries Yvip T *
are all in [0, 1] (using the fact that d; < n for all ). The second (14) (1 —p)crnr d (ﬂ’ B )
term (13) is bounded by y[2p .
< "7 rlllDaX(B, —
(13) = ' DsE[D;XX" D; | Dsr ~ (1 —p)on Iel[Dax (8, — £7)]
1 2
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vip
< —L—|Ir|IVIXTX|| B, — B*|
—p)o

(a
( —ﬁ*Hz)

4
~ (1-po
using the arithmetic-geometric-mean inequality in the final
line. In particular, this term is similar to terms that appear
in both (12) and (13), and (along with the observation
that (15), (16) are zero) we have the equation shown on the
bottom of the page.

Il + 1X7X1 || 8,
2

Now we recall our choice of
1 log(1/g%)
2’ t

1
YT XX 'mm{

and the definition of
_d 1
w XX
Let
1 log(1/&?
— IXTXly, = min{—, M}
2 t

Now we can simplify our bounds on (17), and (18) as:

2
(17) < ((1 —lxTXN) + ﬁ

2
+ z(ly—nXTXll) |8~ 8|

< ((1 — 7%+ (1—>(m2 .=
— .
2 ~ *
+ (—1 _”p)(m)z(%))uﬂt—ﬂ I

1
< ((1 — 0%+ —(faz) 18— 8*|,

IX7x)2
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using the assumptions that n > 4p/(1 —p) and d > 8up/(1 —

p). Now we have:

- I . 2
(17) < ((1 — 7+ E(V’)2) 8. — B8
.3 )
= 1—27/1‘1‘5% Hﬂz‘ﬁ H
<(=m|B: - B,
usmg from the definition of y, that y, < 1/2 and hence
V[ = 2Vt
Meanwhile,
2
a8y <27 P ||r||
1— o
i )|
<2 2
=20 <1 ) IXTX|]2
<2(5)? ]|
=TS ) e ixTx)
recalling that ¥ = r/||X7X| /2. Thus
(18) < 20— Lk
- p) olIXTX]|

—mm( )(Mn

Putting the two terms together, we conclude that for fixed ¢,

E[181 - B3] = =70l 8]

+ 2(%)2(1’%1) (5 ).

Now, we proceed by induction, using the fact that the
stragglers are independent between the different rounds and
conclude with the equation shown on bottom of the page. This
proves the theorem.
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Proof of Theorem 4

In this section we prove Theorem 4. Our proof of Theorem 4
relies on the following result from [14] which shows that any
stochastic algorithm with a “good” estimator of the true gra-
dient converges with rate O(%). We translate this result to our
setting.

Lemma 1 (Lemma 1 in [14]): Suppose L is A-strongly con-
vex over a convex set W, and that g, is an unbiased estimator
of a subgradient g, of the loss function £ at B,, i.e., Eg, = g;.
Suppose also that for all ¢, IE”@, ||§ < G.5 Then if we pick
yy = 1/At, it holds for any T that

2|6, - 3] = 5

(Proof of Theorem 4): In order to apply Theorem 1, we
need to show that the estimate of the gradient obtained by the
master at each iteration is unbiased. To see this, recall that at
each iteration ¢, the master computes the following estimate
of the gradient:

n m

- T/
g = Z di(l——p)VE(ai’ Bo-

19)

6Here, the randomness in the expectation is over the next round of
stragglers, conditioned on the previous rounds.

Therefore,

E[&]

Recall that I{ is an indicator function equal to 1 if worker j
is non straggler and has data vector a;. Thus,

n m
A 1 worker j has data vector a;
=22 VL(ar, B))

d.
j—l i=1 !

= Z VL(a;, B;)

—VE(A 8.).

Mf

=21 Xit VL@, B

i (20)

Now, we need to show that under the conditions of the
theorem, the variance E||g(4, B8,) ||% is bounded. (Here, the ran-
domness is over the choice of the stragglers in round #). As in
the proof of Theorem 3, let Z; be the binomial random variable
that counts the number of non-stragglers (in a given round ¢)
who have block i. Thus we have

B[Z] = dip(1 = p) + a2 = p)?,
-

We compute (21), as shown at the bottom of the previous
page, where we use the fact that the terms E[Z; Z;,1/(d;, d;,)
are all positive to move the maximum inside the sum.

d;,d;
E[Z2;,] = =-=p( = p) +dyd;, (1

{124, 8)13] = | max it )1

2
=F lrgr;% ;Zd(l VL(a;, B)
- 2
1 4 ?
TS ’gré% ;di L(a;, B) i
] m m Z Z
= VL(a;, VL (a;,,
d-p"| B 2, G d, VL@ B). VL(ay. B))
1 =« E[Z;,Z;,]
VL(a;, B), VL(a;,, 21
= (I_P)zilz—:lizz—:l di1d12 ﬂe%( (al ‘B) (32 ﬂ)> ( )
Bl )12 < —S— 3y Bz
21 = (I_P)2 i1=1i=1 dildiz
2 (& (dip<1—p>+d2<1—p)2) (di]dizp(l—m di]dh(l—pﬂ)
= Z ! + Z
(1—]?)2 p diz P nd,-ldi2 dildiz
(S ) Bl )
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< C2<L- + P ) 2
=TT dan w=p " (22)
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We
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have (VL(aj,B), VL(a;, B)) less than or equal to

IVL(a;,, B)lI2IVL(a;,, B)ll2 by Cauchy-Shwarz, and thus
maxﬂew(VL‘(ail, B). VL(a;,, ﬂ)) is less than or equal to
max;e[,) maxgew || VL(ay, ,B)H% < €2, by the assumptions of
the theorem. Thus, we may continue the derivation as shown
in (22), as shown at the bottom of the previous page. Plugging
this estimate into Theorem 1 proves Theorem 4. |

ACKNOWLEDGMENT

The authors thank Deanna Needell for helpful pointers to
the literature.

[1]

[2]
[3]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
(16]
[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES

R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient cod-
ing for straggler mitigation in distributed learning,” in Proc. IEEE Inf.
Theory Workshop (ITW), 2019, pp. 1-5.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, 2013.

J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous SGD,” 2016. arXiv:1604.00981.

G. Ananthanarayanan et al., “Reining in the outliers in MapReduce
clusters using Mantri,” in Proc. USENIX Symp. Oper. Syst. Design
Implement. (OSDI), vol. 10, 2010, p. 24.

M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proc. USENIX Symp. Oper. Syst. Design Implement. (OSDI), vol. 8,
2008, p. 7.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2017, pp. 3368-3376.

M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in Proc. Int. Conf. Mach. Learn. (ICML), vol. 12, 2018, p. 9716.
K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2018, pp. 4302-4310.

L. Bottou, Online Learning and Stochastic Approximations, vol. 17.
Cambridge, MA, USA: MIT Press, 1998, p. 142.

S. Shalev-Shwartz and A. Tewari, “Stochastic methods for £-
regularized loss minimization,” J. Mach. Learn. Res., vol. 12,
pp. 1865-1892, Jun. 2011.

K. Gimpel, D. Das, and N. A. Smith, “Distributed asynchronous online
learning for natural language processing,” in Proc. 40th Conf. Comput.
Nat. Lang. Learn., 2010, pp. 213-222.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “PEGASOS:
Primal estimated sub-gradient solver for SVM,” Math. Program.,
vol. 127, no. 1, pp. 3-30, 2011.

A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient
descent optimal for strongly convex stochastic optimization,” 2011.
arXiv:1109.5647.

L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223-311, 2018.
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent
via moment encoding with LDPC codes,” 2018. arXiv:1805.08327.

Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” 2017. arXiv:1711.06771.

H. Wang, Z. Charles, and D. Papailiopoulos, “ErasureHead: Distributed
gradient descent without delays using approximate gradient coding,”
2019. arXiv:1901.09671.

S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate
gradient coding,” 2019. arXiv:1901.08166.

S. Horii, T. Yoshida, M. Kobayashi, and T. Matsushima,
“Distributed stochastic gradient descent using LDGM codes,” 2019.
arXiv:1901.04668.

S. Kadhe, O. O. Koyluoglu, and K. Ramchandran, “Gradient coding
based on block designs for mitigating adversarial stragglers,” 2019.
arXiv:1904.13373.

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

M. Amiri and D. Giindiiz, “Computation scheduling for distributed
machine learning with straggling workers,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), 2019, pp. 8177-8181.

S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proc. IEEE 48th Annu. Allerton
Conf. Commun. Control Comput. (Allerton), 2010, pp. 1510-1517.

T. Strohmer and R. Vershynin, “A randomized Kaczmarz algorithm with
exponential convergence,” J. Fourier Anal. Appl., vol. 15, no. 2, p. 262,
2009.

D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent,
weighted sampling, and the randomized Kaczmarz algorithm,” in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 1017-1025.

D. Needell and R. Ward, “Batched stochastic gradient descent with
weighted sampling,” in Proc. Int. Conf. Approx. Theory, 2016,
pp. 279-306.

SGC GitHub Repository. Accessed: May 13, 2019. [Online]. Available:
https://github.com/RawadB01/SGC

W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using Reed-Solomon codes,” 2017.
arXiv:1706.05436.

N. Ferdinand and S. Draper, “Anytime stochastic gradient descent: A
time to hear from all the workers,” in Proc. 56th Annu. Allerton Conf.
Commun Control Comput., 2018, pp. 552-559.

S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-
optimal straggler mitigation for distributed gradient methods,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), 2018,
pp. 857-866.

Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded com-
puting: Optimal design for resiliency, security and privacy,” 2018.
arXiv:1806.00939.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2017, pp. 5434-5442.

E. Ozfaturay, D. Gunduz, and S. Ulukus, “Speeding up dis-
tributed gradient descent by utilizing non-persistent stragglers,” 2018.
arXiv:1808.02240.

S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2018,
pp. 1988-1992.

L. Chen et al., “DRACO: Robust distributed training via redundant
gradients,” 2018. arXiv:1803.09877.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128,
Jan. 2018.

H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 1, pp. 141-150, Jan. 2019.

E. Ozfatura, S. Ulukus, and D. Giindiiz, “Distributed gradient descent
with coded partial gradient computations,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), 2019, pp. 3492-3496.

Y. Keshtkarjahromi and H. Seferoglu, “Coded cooperative computation
for Internet of Things,” 2018. arXiv:1801.04357.

R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2017, pp. 2900-2904.

M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra
computations,” in Proc. 5th ACM Symp. Inf. Comput. Commun. Security
(ASIACCS), 2010, pp. 48-59.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2017, pp. 4403-4413.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
2018. arXiv:1802.03430.

T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2018,
pp. 1993-1997.

M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” in Proc. 55th Annu. Allerton Conf. Commun. Control
Comput., 2017, pp. 1264-1270.

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 18:59:55 UTC from IEEE Xplore. Restrictions apply.



BITAR et al.: STOCHASTIC GRADIENT CODING FOR STRAGGLER MITIGATION IN DISTRIBUTED LEARNING 291

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitiga-
tion in distributed matrix multiplication: Fundamental limits and optimal
coding,” 2018. arXiv:1801.07487.

A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-
perfect load balancing in distributed matrix-vector multiplication,” 2018.
arXiv:1804.10331.

S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2017, pp. 2403-2407.

Y. Yang, P. Grover, and S. Kar, “Computing linear transformations
with unreliable components,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3729-3756, Jun. 2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2016, pp. 2100-2108.

S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded
linear transform,” 2018. arXiv:1804.09791.

M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:
Which clones should attack and when?,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 45, no. 2, pp. 12-14, 2017.

G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Proc. 50th Annu. Allerton Conf. Commun. Control Comput., 2012,
pp- 326-333.

L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2012, pp. 2766-2770.

D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7-11, 2015.

K. Lee, N. B. Shah, L. Huang, and K. Ramchandran, “The MDS queue:
Analyzing the latency performance of erasure codes,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, pp. 2822-2842, May 2017.

S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download time
of availability codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2015,
pp. 1467-1471.

H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 400-407, 1951.

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, ‘“Better mini-batch
algorithms via accelerated gradient methods,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2011, pp. 1647-1655.

A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2011,
pp. 873-881.

0. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal dis-
tributed online prediction using mini-batches,” J. Mach. Learn. Res.,
vol. 13, pp. 165-202, Jan. 2012.

O. Shamir and N. Srebro, “Distributed stochastic optimization and
learning,” in Proc. 52nd Annu. Allerton Conf. Commun. Control
Comput., 2014, pp. 850-857.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, vol. 23. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1989.

J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2012, pp. 1223-1231.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
SGD,” 2018. arXiv:1803.01113.

S. Chaturapruek, J. C. Duchi, and C. Ré, “Asynchronous stochastic con-
vex optimization: The noise is in the noise and SGD don’t care,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2015, pp. 1531-1539.

Rawad Bitar (Member, IEEE) received the
Diploma degree in computer and communica-
tion engineering from the Faculty of Engineering,
Lebanese University, Roumieh, Lebanon, in 2013,
the ML..S. degree from the Doctoral School, Lebanese
University, Tripoli, Lebanon, in 2014, and the
Ph.D. degree in electrical engineering from Rutgers
University, New Brunswick, NJ, USA, in 2020.
He is currently a Postdoctoral Researcher with
the Technical University of Munich. His research
interests are in the broad area of information the-
ory and coding theory with a focus on coding for information theoretically
secure distributed systems with application to machine learning.

Mary Wootters (Member, IEEE) received the B.A.
degree in mathematics and computer science from
Swarthmore College in 2008, and the Ph.D. degree
in mathematics from the University of Michigan in
2014. She is an Assistant Professor of computer
science and electrical engineering with Stanford
University. She was an NSF Postdoctoral Fellow
with Carnegie Mellon University from 2014 to 2016.
She works in theoretical computer science, applied
math, and information theory; her research interests
include error correcting codes and randomized algo-
rithms for dealing with high-dimensional data. She is a recipient of the NSF
CAREER Award and was named a Sloan Research Fellow in 2019.

Salim El Rouayheb (Member, IEEE) received
the Diploma degree in electrical engineering from
the Faculty of Engineering, Lebanese University,
Roumieh, Lebanon, in 2002, the M.S. degree from
the American University of Beirut, Lebanon, in
2004, and the Ph.D. degree in electrical engineer-
ing from Texas A&M University, College Station,
in 2009. He is currently an Assistant Professor
with the ECE Department, Rutgers University,
New Brunswick, NJ, USA. He was a Postdoctoral
Research Fellow with UC Berkeley from 2010 to
2011, and a Research Scholar with Princeton University from 2012 to 2013.
He was an Assistant Professor with the ECE Department, Illinois Institute of
Technology from 2013 to 2017. His research interests are in the broad area of
information theory and coding theory with a focus on network coding, coding
for distributed storage and information theoretic security. He is a recipient of
the NSF Career Award.

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 18:59:55 UTC from IEEE Xplore. Restrictions apply.



