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Embedded Index Coding

Alexandra Porter

Abstract— Motivated by applications in distributed storage and
distributed computation, we introduce embedded index coding
(EIC). EIC is a type of distributed index coding in which
nodes in a distributed system act as both broadcast senders
and receivers of information. We show how linear embedded
index coding is related to linear index coding in general, and
give characterizations and bounds on the communication costs
of optimal embedded index codes. We also define fask-based
EIC, in which there is only one sender node responsible for
transmitting a block to a particular receiving node. Task-based
EIC is more computationally tractable and has advantages in
applications such as distributed storage, in which senders may
complete their broadcasts at different times. Finally, we give
heuristic algorithms for approximating optimal linear embedded
index codes, and demonstrate empirically that these algorithms
perform well.

Index Terms—Index coding, distributed storage, coded com-
putation.

I. INTRODUCTION

N INDEX coding, defined by Bar-Yossef, Birk, Jayram and

Kol in [3], sender(s) encode data blocks into messages
which are broadcast to receivers. The receivers already have
some of the data blocks, and the goal is to minimize the
number of messages broadcast by using this “side informa-
tion.” For example, if node r; knows a data block b; and
node 79 knows block bs, a sender S can broadcast by @ bs.
Then 71 can cancel out b; and 7o can cancel by such that
both nodes learn a distinct new block from a single broadcast
message.

Index coding is typically studied in the models depicted
in Figures la and 1b, where the senders are distinct from
the receivers. In this paper, we consider a setting—depicted
in Figure lc—where the senders are the receivers. This
is similar to a “peer-to-peer” network model, but in this
setting nodes are always communicating by broadcasting to
the full network, rather than communicating with each other
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Fig. 1. Communication model for (a) centralized index coding with sender
S, receivers r1,...,r5; (b) general multi-sender index coding with senders
s1,..,S84 and receivers 71, ...,75; and (c) embedded index coding, a special
case of (b) with joint sender and receiver nodes r; = s1,...,75 = S5.

directly. This model is motivated by applications in device-to-
device multicast and distributed computation, as we discuss in
Section I-B.

We call this model embedding index coding (EIC). In
this paper, we study the EIC model, and establish char-
acterizations of optimal EIC solutions as well as separa-
tions between EIC and other models. Moreover, we develop
efficient heuristics for finding good EIC solutions, and
demonstrate empirically that they perform well. We briefly
summarize our contributions next in Section I-A, and then
discuss some motivations for the EIC model more in
Section I-B.

A. Contributions

Our contributions can be summarized as follows.

1) We define embedded index coding (EIC). As elaborated
on in Section I-B below, EIC is motivated by appli-
cations in device-to-device multicast and in distributed
computation. In this paper, we argue that it is worth
studying EIC, both because of the many natural applica-
tions, and because—as we will demonstrate—focusing
on EIC as a special case of the more general multi-
sender model (that is, Figure Ic as a special case of
Figure 1b) will allow us to obtain stronger results and
faster algorithms.

2) We define the notion of a task-based solution to an EIC
problem. In task-based solutions, the communication
can be partitioned into independent tasks, so that each
receiver is only reliant on a single sender to get a
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particular block.! Task-based solutions can be more
robust to failures or delays: if a sender’s messages are
corrupted or lost, the messages from other senders can
still be used to fully decode data blocks. Moreover,
as noted below, there are efficient heuristics to find good
task-based solutions to EIC problems.

3) We prove several results establishing relationships
between centralized (single-sender) index coding, EIC,
and task-based EIC, for linear schemes over Fs. In par-
ticular, we show that the optimal communication for a
general EIC problem is only a factor of two worse than
the optimal communication in the centralized model;
we give characterizations and bounds for the optimal
communication cost of the best task-based solutions to
an EIC problem; and we show separations between the
three models.

4) Based on the (proofs of) the bounds described above,
we design heuristics for designing general EICs and
task-based EICs. We give empirical evidence that these
approximation algorithms perform well, compared to
existing algorithms for the (more general) multi-sender
index coding problem (Figure 1b).

B. Motivation

In this section we give some motivation for the EIC model,
which we argue may have many applications.

One natural application of EIC is file sharing, where several
files are stored on several devices, and some devices would
like files that they do not currently have. In this case, EIC
might be relevant in a device-to-device multicast model, where
network nodes communicate information among themselves
via multicast, so each node is able to send the same message
to multiple receivers simultaneously. A device-to-device mul-
ticast model has been studied, by e.g., [34], in which cellular
phones share information with each other to reduce load on
the base stations they would otherwise access for all data. In
this setting, EIC could be used to reduce the communication
cost of file sharing or similar tasks.

A second, less straightforward, application of EIC is coded
computation, in particular the work of [24], [25]. Those works
use coding theoretic techniques to improve the computation
and communication costs of distributed computation in a
MapReduce model. We describe the set-up in detail below;
as we will see, there a “shuffle” phase which is precisely an
instance of an EIC problem.

We first set up notation for the MapReduce model [9]. A
distributed computation task structured using the MapReduce
model consists of two computation phases: map and reduce,
with a communication phase, shuffle, happening in between.
Following the notation of [24], suppose we want to compute
@ output functions, each of which are functions of N input
files, using K servers, for some @, N, K € N. Let wq, ..., wy
denote the input files, and let ¢1, ..., denote the output

This can be seen as a generalization of Instantly Decodable Network
Codes [19] which have been studied with similar motivation (see Remark 3).
Task-based solutions are also related to Locally Decodable Index Codes [30]
(see Remark 4).
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functions so at the end of the day we would like
¢q(wi,...,wy) for ¢ = 1,...,Q. We also suppose that
each function ¢, for ¢ = 1,...,Q) can be decomposed as
Pg(wi, ...y wn) = hg(gq1(wi), ..., gg,n(wn)) for some other
functions h, and g41,...,94,~. The functions g, , for ¢ =
1,..,Q and n = 1,...,N are the map functions and the
functions h, for all ¢ = 1,...,Q are the reduce functions.
Each node x initially receives some subset W, of the files
W = {wi,...,wn}. We note that the sets W, may overlap,
so the same file can be given to different nodes. Then node
x computes the set of intermediate values vy, = gg,n(wn)
for all ¢ = 1,...,Q0 and w, € W,. Next, each node x
is tasked with computing a set of reduce functions @, C
{h1,...,hg}. For node x to compute a reduce function h,,
it needs v 1, ..., Vg, n. From the map phase, each node x only
has {vgn : wy, € Wy }. Thus the shuffle step, in which nodes
communicate intermediate values with each other, is needed.
Figure 2 shows an example of a computation task using the
MapReduce.

The task faced by the nodes during the shuffle phase
is precisely an instance of EIC. Each node has some side
information—the intermediate values v, , that it computed
in the map phase—and each node wants some information—
the intermediate values v, , that it must compute in the
reduce phase. The nodes can multicast information to each
other and take advantage of side information in order to
reduce communication. We note that this problem is only
interesting if some intermediate values are held by multiple
nodes; otherwise there is no opportunity for index coding.
Thus, interesting instances of the EIC problem only arise when
the files w; are distributed with redundancy, which is precisely
the case in the setting of coded computation [24], [25].

The works [24], [25] define the redundancy between the
sets W, in such a way that the they can analytically identify a
good EIC solution to the specific EIC problem they (implicitly)
define. Even though in those works one gets to design the
EIC instance, there are two reasons in the context of coded
computation that we might want to study a general EIC
problem that we do not get to design.

The first reason is that it might be the case the redundancy
pattern changes in an unforeseen way. For example, suppose
that the map phase was disrupted so that the scheme of [24]
was no longer possible, e.g. if a node failed (we note that the
work [24] does not handle stragglers or failed nodes). This
would give rise to a new EIC problem, which could be solved
to determine a communication-efficient way to shuffle.

The second reason is that in some settings the redundancy
pattern may not have been designed not to optimize the
shuffle phase, but for some other reason. One example of
this is the situation in [25], which handles straggling (that
is, slow or unresponsive) nodes for the application of matrix
multiplication. The scheme in [25] achieves a latency-load
tradeoff which does not match the lower bound they give, and
thus may not be optimal; viewing this as an EIC problem and
solving it may yield shuffle schemes with less communication.
In more detail, in the scheme of [25], only the fastest subset
of ¢ servers to complete the map operation move on to shuffle
and reduce, thereby mitigating the effects of straggling servers.
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input: map: shuffle: reduce:
mapped by x:

g1,1(w1),..., 8,1 (W) V31,Us1,Us2, V52 X0 | hg(va1, Usa, v33) . f \VTZ V13
81.2(w2), ..., g6,2(12) hs(vs1, Usz, Us3) i Uo1| |V22| V23

e £ [ om o
81,2(ws), ..., g6,2(wo) W;}” V2 | (v, viz, vi3) qg X U a2 Va3
g1,3(ws), ..., g6.3(w3) ha(v21, V22, V23) g vs1|  |Us2 @ ‘

T el (el v

gr1(wy), ..., g6.1(wr) & | hy(va1, Va2, v43) needed from
g1.3(W3), ..., 6,3(1w3) he(ve1, V62, V63) shuffle

(@)

(b)

Fig. 2. Example of MapReduce computation with N = 3 and Q = 6: the system as a whole computes ¢1 (w1, w2, ws), p2 (w1, w2, w3), ..., e (w1, w2, w3).
In (a), the boxes show a possible assignment of map and reduce functions. In particular, for node z: W, = {1, 2} meaning that x receives data blocks w1
and wa. Then z computes all vi1,...,v61 and vi2,...,ve2 (green). In this example, Qz = {3, 5} meaning that = needs v31, v32,v33 and vs1, vs2, V53 in
order to compute ¢3 and ¢5. Since = did not compute v33 and vs3 it must acquire them via shuffling. Note that node x has v31, vs1, v32, vs2 from mapping
so it reuses them locally to compute h3z and hs, as indicated by the arrow connecting the x’s. In (b), the values computed in map and needed for reduce are

visualized as a grid, with boxes indicating what = computes and then needs.

In this scheme, an MDS code is applied over the input values,
such that each of the g servers doing the shuffle and reduce
can collect any m intermediate values for each of its assigned
reduce functions, and thus can get the required data regardless
of which ¢ servers completed the map phase. This differs
from index coding, in which we have a fixed set of data
that each node requires. However, finding the best shuffle
scheme can be solved as a set of index coding problems,
in which each corresponds to a particular outcome of which m
values each node gets. Solving for the optimal solution to each
and minimizing over all combinations would give an optimal
shuffle solution. Thus EIC could be useful in closing the
gap between the upper and lower bounds on communication
established by [25].2

C. Outline

The rest of this paper is organized as follows. In Section II
we review related work in more detail. In Section III we for-
mally define the EIC problem and several notions of solution.
In Section IV we show how EIC problems relate to more
general index coding and we analyze how different notions
of solutions are related. In Section V we provide algorithms
for approximating optimal EIC solutions and demonstrate
empirically that they perform well.

II. RELATED WORK

In this section we briefly review related work. Index coding
was first introduced by [3], based on the Informed-Source
Coding on Demand (ISCOD) model proposed by [4], and
many extensions and variations have been studied, including
non-linear index coding [26] and multi-sender index cod-
ing [32]. We focus on linear index coding, where the messages
broadcast are linear combinations of the original data.

The work of [3] characterized the number of broadcasts
required to solve an index coding problem in terms of the

2We note that pliable index coding is a variant of index coding that allows
for this flexibility, and has been used to improve shuffle [38] in a master-
worker setting, but not the fully decentralized system we consider.

minrank (c.f. Definition 6) of a relevant graph. The minrank
is difficult to compute exactly, and a number of approximations
and heuristics have been studied for computing optimal linear
index codes [6], [7], [31], [36], [39], [40]. We will also
use the minrank, and heuristics for computing it, in our
approach.

Embedded index codes are a special case of the linear multi-
sender index codes in [18] and [22], which both consist of
multiple senders and multiple receivers, but as two distinct
and non-overlapping sets of nodes; this is the setting depicted
in Figure 1b. In [22], rank minimization is used in an approach
similar to our method. The approaches of [18], [22] can also
be applied to EIC, and we compare these approaches in more
detail in Section V.

The embedded model in Figure 1c has been studied before
in [12]. In that work, the authors study a special case of EIC,
where each node wants all of the data blocks it does not
already have. In this setting, they develop a greedy algorithm
which uses a near-optimal number of broadcasts. However,
their approach crucially uses the fact that every node wants
every block, and does not seem to generalize to the general
EIC setting that we study here.

While our coding scheme is deterministic, our multi-sender
network model is similar to those studied with composite
coding, an approach based on randomized coding [1]. Multi-
sender models and achievable rate regions using composite
coding are defined in [20], [21], [33]; to the best of our
knowledge these results are not directly applicable to our
scheme.

Index coding is a special instance of the network coding
problem (e.g., [23]), in which source nodes send information
over a network containing intermediate nodes, which may
modify messages, in addition to receiver nodes. It has also
been shown that network coding instances can be reduced
to index coding instances [10], [11]. Real-Time Instantly
Decodable Network Codes (IDNC’s) [19] aim to minimize
completion delay of the communication task, rather than the
index coding goal of minimizing total number of messages.
Our task-based solutions are a generalization of instant decod-
ability in index codes (see Remark 3).
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Task-based solutions are also related to the notion of locally
decodable index codes. An index coding solution has locality
r if each node uses at most r received symbols to decode any
message symbol. There is tradeoff between optimal broadcast
rate and locality of solutions for a given index coding prob-
lem [30]. When r = 1, locally decodable index codes are
a special case of task-based schemes, although the notions
diverge for more general r (see Remark 4).

Our construction is motivated by the problem of data
shuffling for coded computation, such as in [24], [25]; this
is described in Section I-B. Other connections between index
coding and distributed storage have been established, but are
not directly related to our work. These include the relationship
between an optimal recoverable distributed storage code and a
general optimal index code [29] and the duality of linear index
codes and Generalized Locally Repairable codes [2], [35].

Finally, index coding techniques can also be applied
to coded caching (e.g., [27], [13] and references therein),
in which nodes may request and store data dynamically.
Coded multicasting similar to index coding has been applied
to decentralized coded caching [28], and our work could also
be applied in coded caching.

a) Subsequent work: In our work, we introduce the
notion of task-based schemes for EIC, and develop heuristics
for these schemes. However, we left it as an open problem
to understand the limitations of task-based schemes relative to
other schemes. Since our work first appeared, Haviv has solved
this problem by giving tight bounds on the gap between task-
based schemes and centralized schemes for EIC [17]. Briefly,
this work shows that for any graph G, the length of the best
task-based scheme is at most quadradically worse than the best
scheme without the task-based restriction, and also shows that
there exist graphs where this gap is asymptotically tight.

III. FRAMEWORK

In this section we formally describe our model for Embed-
ded Index Coding.

We assume that there is a set of m data blocks, D € (]Fg)m,
where each data block is an element of F; when convenient,
we will view D € IFQ”M as an m x ¢ boolean matrix with the
m data blocks as rows. These m data blocks are stored on n
storage nodes; each node ¢ stores a subset of the data blocks,
and some data blocks may be stored on multiple nodes. We
assume that each node can perform local computations and
can broadcast information over an error-free channel to all the
other nodes. In this work, we focus on a linear model, where
each node is restricted to computing Fy-linear combinations
of data blocks.

We note that all of our results generalize to arbitrary finite
fields. However, for simplicity we will state all of our results
over [y, the finite field of size two.

An Embedded Index Coding (EIC) problem is defined in
terms of which data blocks each node has and needs. It will be
convenient to represent these “has” and “needs” relationships
in terms of binary matrices B and R respectively.

Definition 1: An Embedded Index Coding (EIC) problem is
specified by a pair of matrices R, B € F3*™ s.t. supp(R) N
supp(B) = 0.
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Informally, the interpretation should be that in an EIC
problem (R, B), a node u needs block a if R,, = 1 and
has block b if B, = 1.

Remark 1: The matrices (R, B) can be remembered as “R”
for what nodes request and “B” for what nodes had before.

Each node u will broadcast a set of b, € N linear
combinations of the blocks it has, and the goal is for each
node to be able to recover all of the blocks that it needs. We
formalize this in the following definition.

Definition 2: For an EIC problem (R, B) a linear broad-
cast solution that solves (R, B) is a collection of matrices
M, ..., 30 and integers hy, ..., h, with 39 e Fh=*™ for
each u € [n] so that:

o For each u € [n] and each a € [m] so that B,, = 0,

the a' column of 5 is zero.

o For each u € [n] and each a € [m] so that R,, = 1,

. h
there is some vector (") ¢ IFQZ’-’ ™ S0 that

JE1S)
ﬁiQi
e, = alv. :
W
diag(Bu)
where B,, is the row of B indexed by u and diag(B,,) is
the matrix with B, on the diagonal. Above, e; denotes
the ;%" standard basis vector.

o The length of an EIC solution is 3,h,, the number of
symbols broadcast. We also refer to this as the commu-
nication cost of the solution.

An Embedded Index Coding (EIC) problem (R, B) is
solvable if a linear broadcast solution as defined above exists
for (R, B). Note that as long as there is a nonzero entry in
each column of B, meaning there is at least one node that has
each block, a problem is solvable.

To use a linear broadcast solution, each node u computes
and broadcasts 3(*) . D, where we view D € anxé as a matrix
whose rows are the data blocks. This can be computed locally
because the only non-zero columns of 3(*) correspond to non-
zero entries of row B,, i.e. blocks node u has.

In order to decode the blocks it wants, each node u uses
the fact that

s
FI&)
block ¢ = e, - D = a(“® . - D,
3
diag(By,)

and thus block a is a linear combination (given by a(*®)) of
the broadcasts 5D, ..., 3D that node u receives and the
data blocks that u already has.

A. Problem Graph and Problem Matrix

We next define some representations of embedded index
coding problems (extending the work of [3]) which will be
useful in studying the length of solutions and the construction
of algorithms.
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We begin by defining a graph G which captures an EIC
problem. The vertices of G will correspond to requirement
pairs of the EIC problem, defined as follows.

Definition 3: Given an EIC problem (R, B), the set of
requirement pairs for (R, B) is P = {(u,a) € [n] x [m] :
Rua = 1}-

Now we can formally define the problem graph G for an
EIC problem (R, B).

Definition 4: Given an EIC problem (R, B), the problem
graph G = (V, E) corresponding to (R, B) is the graph G
with vertices V' = {v(y,q) : (u,a) € P} and (directed) edges
E = {(v(%a),v(w’b)) : Bub =lora= b}

That is, for (u,a) and (w,b) in P, there are two reasons
that there could be an edge from the vertex v, 4) to the vertex
V(w,p): €ither the node u has the block b that the node w
wants, or else the two blocks a and b are the same block. As
we will see, these two types of edges play two different roles.

Figure 3 shows two examples of problem graphs. In Fig-
ure 3a, all edges indicate where a node has a block that another
is requesting, i.e. cases where (v, q), V(w,)) € £(G) because
B, = 1. In Figure 3d, dashed edges indicate pairs of vertices
which represent two requests for the same block, i.e. cases
where (U(u’a), U(w,b))7 ('U(w,b)7 U(u’a)) S E(G) because a = b.

Definition 5: Given a graph G = (V, E), we say that a
matrix A € F‘Qlelvl fits G if:

1) Agr =1 forall k € [|V]] and

2) for any k,¢ € |V|,(k,¢) ¢ E implies that Ay, = 0.

Thus if M is the adjacency matrix of G and matrix A fits
G, the non-zero entries of A (other than the diagonal) are a
subset of the non-zero entries of M.

Definition 6: The minrank of a graph G in field F5, denoted
minrks(G), is the rank of the lowest-rank matrix A over Fa
which fits G:

minrks (G) := min{rks(A) : A fits G}

In Section IV-A, we will show how our definition of a
problem graph generalizes the side information graph defined
for index coding (that is, the centralized case of Figure 1(a),
where each node requests a single unique block). In this
setting, it was shown in [3] that minrks(G) is the length of
the optimal index code. We will show later how the minrank
can also be used in computing solutions for EIC problems.

B. Task-Based Solutions

We now define a task-based solution, which is a particular
type of solution to an embedded index coding problem. As we
will see, we can design efficient heuristics to find task-based
solutions, and additionally task-based solutions may be more
useful in settings with node failures.

Definition 7: A task T = (k, M) is defined by a sender
node k and a set of pairs

M C {(u,a) € P : By, =1}

Informally, if T = (k, M) and (u,a) € M, then this means
that it is part of the node k’s task to send the block a to the
node u. Notice that this is not completely general: it rules out
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the possibility that the node u could recover the block a from
two separate sender nodes.

A task-based solution is one built out of tasks. We formally
define this as follows.

Definition 8: A task-based solution to an EIC problem
(R, B) with requirement pairs P is a linear broadcast solution
D, ..., B0 so that 5 € FL*™, such that for each (u,a) €
P, there is an £ € [n] and a coefficient vector aﬁ"’a) € Fhetm

such that “
_ wa) g
€a = Oy { diag(B.) } '

Let T = (¢, M) be a task, for some M C {(v,b) € P: By, =
1}. For any (v,b) € M, we say that the node ¢ is responsible
for (v,b) in the task 7.

Informally, a task-based solution is a linear solution in
which each node u decodes each requested block a using only
messages from one sender node ¢ who is responsible for (u, a).
That is, ¢ broadcasts a vector B(Z) - D, and u should be able
to recover a from this vector and its local side information.

A task-based solution to (R, B) is related to the corre-
sponding problem graph G’ = (V, E) by specifying a partition
of the vertices. Let N (v(,,4)) € V denote the out-edge
neighborhood of a vertex v, ,) € V: that is,

N (0(ua)) = {0w,b) * (V(wa)> Vb)) € B

Definition 9: For an EIC problem (R, B) with problem
graph G, define the sender neighborhood of node u € [n]
as:

Ny = {vwp €V : Bu = 1}.

That is, the sender neighborhood N,, of a node w is the set
of vertices in V' corresponding to node-block pairs (w,b) so
that the node u has the block b (and thus u could send b to
w).

Remark 2: In terms of the problem graph GG, we have N,, C
NaNT (V(u,q))- This is because every edge of the “first type”
in G leaving v(y,q) g0€s 10 a Vertex v, ) so that By, = 1
(that is, node w has block ¢), and in particular V(w,e) € Ny,.
However, it is possible that the containment above is strict.
For example, suppose that u only wants one block, a, and
furthermore that there is some other node w that also wants a.
In this case, there is an edge of the “second type” from (u, a)
to (w,a), and hence (w,a) € N (v(y,0)) = NaN T (V(u,a))-
However, (w,a) ¢ N, because u does not have the block a.
Thus Ny € NaN T (04,0 )-

We note that this containment is an equality (that is, N,, =
NaN T (V(w,a))s i [{a : va) € V| > 1, ie., node u wants
more than one block.

Figure 4 shows examples of sender neighborhoods for the
problem graph examples shown in Figure 3a.

Remark 3: Finding tasks (k, M) which maximize |M]|
while minimizing total broadcast messages is a generalization
of Instantly Decodable Network Codes (IDNCs) [19]. More
precisely, solving the IDNC problem on sender neighborhood
Ny, for some node k finds the task (k, M) with maximal |M |
such that only one message needs to be broadcast by sender
k to satisfy all (u,a) € M.
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: : x1) @2) Ww3) (4
N B ®D [T 0 o 0
. u w2 |6 1 0 5
W w w3) [0 8 1 0
X X 4 |65 b6 07 1
Y v 81,62,...07 € {0, 1}
®) ©
®wl) w1 w2 x2) (¥3)
; B 1) | 1 50 0 5,
u u wh |55 1 o o o0
w w ®2) |0 0 1 5, 05
®2) |0 0 56 1 0
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Fig. 3.

Examples of a problem graph G for nodes u, w, x,y and data blocks D1, D2, D3, D4. Each pair of boxes is a vertex in GG, where the black boxes

contain indices of requested data blocks and the white boxes contain indices of side information blocks; each pair of boxes is labeled with the relevant node.
In (a), node w is requesting block Dy and has blocks D1, Dy in its side information. Part (b) shows the corresponding (R, B). Part (c) describes all matrices
that fit the problem graph in (a). In (d), node u requests blocks 1 and 2, represented by two separate vertices. Since w also requests block 1 and z also
requests block 2, we have a different type of edge (dashed) indicating vertices corresponding to the same requested block. Part (e) shows the corresponding
(R, B) and (f) describes all matrices that fit the problem graph in (d). Note that all zeros in column 4 of R in (¢) mean we do not have a row or column

corresponding to Dy in (f).

Remark 4: Task-based solutions are also related to locally
decodable index codes (LDICs) [30]. In an LDIC, a (central-
ized) index coding solution has locality r if each node uses at
most 7 of the broadcast messages to decode any one block. In
the case that r = 1, the natural generalization of LDICs to the
decentralized setting is a special case of a task-based scheme.
When r > 1, the two notions are different, but they have a
similar flavor of restricting the information that can be used
to reconstruct a single block.

Remark 5: Each node k and its sender neighborhood N}, (or
any subset of Nj) together form an instance of an index coding
problem with a single source: node k is a source which has
all blocks requested by nodes in Ni. Thus the communication
model is the same as in [3], but it is not necessarily a single
unicast problem (see Definition 13); that is, it is not the case
that each node wants a unique block.

Definition 10: Let G be a problem graph with sender
neighborhoods Ny, ..., N,,. A neighborhood partition is a set
{Ni,...,N,,} such that

1) N;C N foralli=1,..,n,
2) N;NN;j =0 for any i,j € [n],
3) and U,ep, Ni = V(G).

We note that a neighborhood partition exists for a problem
graph G of an EIC problem (R, B) as long as (R, B) is
solvable. Indeed, in this case |J N; = V(G), which is
all that is required.

Given an EIC problem with problem graph G and task-
based solution 7', there is a corresponding neighborhood
partition {Nl,...,Nn}: each vertex v, ,) in G belongs to
the N; such that i € [n] is responsible for (u,a) in T.
Furthermore, any neighborhood partition trivially corresponds
to at least one task-based solution, in which each sender ¢ € [n]
broadcasts each block requested by a node in N; as a separate
message.

i€[n]

For example, there is a task-based solution for the EIC
problem shown in Figure 3a, using sender neighborhoods
N, = {u,w,z} and N, = {y}. The messages for the task
executed by node y are D1 D, and Dy B D3, and the message
broadcast by node u for its task is D4. Then nodes u, w, and
x each decode their requested block from the task executed by
node y, and node y decodes its request from the task executed
by node wu. Task-based solutions like this can be easier to
compute than a distributed solution in general, and they allow
some independence between nodes: in the example, nodes u,
w and = do not need to wait for any node other than node y
to be able to decode their requested block.

Remark 6: While we only study task-based solutions on
the EIC model, task-based solutions can also be defined for
multi-sender index coding in general.

C. Centralized Solutions

We will later compare decentralized solutions to embedded
index coding problems to an idealized centralized index coding
solution. To that end, we define a solution to a an embedded
index coding problem which assumes the existence of some
oracle server with access to all of D (and has no requirements
itself).

Definition 11: For an EIC problem defined by (R, B),
a centralized linear broadcast solution which solves (R, B)
is a matrix § and h € N with g € IF;L *™ such that for each
u € [n] and each a € [m] with R,,, = 1, there is some vector
al®®) € Fi+™ 5o that

e, — (w0 . [

Finally, we use the following symbols to denote the optimal
lengths for each type of solution:
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Fig. 4. Examples from (a) Figure 3a and (c) Figure 3d, shown with sender
neighborhoods of nodes w and y. Note that in (c), the out-neighborhood
of the vertex (u,1) is {(w,1), (y,3)} and the out-neighborhood of (u,2)
is {(z,2), (y,3)} but the sender neighborhood (Definition 9) of w is the
intersection of these. In (b) and (d) the matrices that form a task-based solution
for (a) and (c), respectively, are shown.

Definition 12: Let (C')(g,p) denote the minimum length of
a centralized linear solution to the EIC problem (R, B) as
defined in Definition 11.

Let (D) (g, p) denote the minimum length of a decentralized
linear broadcast solution to the EIC problem (R, B) as defined
in Definition 2.

Let (T')(g, ) denote the minimum length of a decentralized
and task-based solution to the EIC problem (R, B) as defined
in Definition 8.

IV. MINIMUM CODE LENGTHS AND RELATIONSHIPS

In this section, we analyze the values of (C)g p),
(D)(r,B)» and (T')(g,p) for a given (R, B). We drop (R, B)
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from the notation when comparing two of these under the
same (R, B) in general. While it has been shown that graph-
theoretic upper and lower bounds on minrank can have sig-
nificant separation [37], they are still useful in comparing the
achievable minimum lengths in different solution types for EIC
problems.

A. (C)(r,B) and Minrank of the Problem Graph

First, we discuss an idealized centralized solution to an EIC
problem, and introduce some useful machinery.

The work [3] defines the side information graph for an
index coding problem. We show how our problem graph is
an effective generalization of the side information graph such
that the same technique of using minrank to find an optimal
centralized solution applies. The side information graph as
defined by [3] is equivalent to a Problem Graph (Definition 4)
for any single unicast EIC problem (R, B) (defined below).

Definition 13: An EIC specified by (R,B) is a single
unicast index coding problem if

1) every node requests exactly one data block and

2) each data block is requested by exactly one node.

Figure 3a shows the problem graph for a single unicast EIC;
Figure 3d shows the problem graph for an EIC which is not
single unicast.

We will generalize the following theorem, which restates
Theorem 5 of [3] using our definitions:

Theorem 1 (Theorem 5 of [3]): Given a single unicast EIC
(R, B) and the corresponding problem graph G, (C) g, p) =
minrks (G).

When a problem is not single unicast (in particular when
the second condition of Definition 13 does not hold) we
constrain the minrank function over a subset of possible
matrices, constructed as follows:

Definition 14: Given an EIC problem (R, B) a problem
graph G = (V, E), we define the column repetition function

¢(R.B) : F‘2V|><m — F‘Qlelvl as follows. Given a matrix A €

F‘Qlem, construct a matrix A" = ¢ py(A) € FLV‘XM by
copying columns of A as follows. We index the rows of A by
pairs (u,a) € P, and the columns of A by data blocks b € [m].
We index the rows and columns of A’ by pairs (u,a) € P.
Then, for all (v,b) € P, the column of A’ indexed by (v, b)
is equal to the column of A indexed by b. We will denote the
image of (g p) by A(r,p) = {4’ : JA s.t. ¢r By (A) = A'}.

For example, consider the problem graph in Figure Sa
(which is the same as Figure 3d, reproduced for the reader’s
convenience). The matrices described by Figure 5c are those
matrices A such that A" = ¢ p)(A) fits the problem graph
in Figure 5a. Figure 5d describes the matrices A’ that fit the
graph in Figure 5a and are in A (g, p). The set of matrices sat-
isfying Figure 5d have the property that the columns indexed
by (u,1) and (w,1) are equal, and the columns indexed by
(u,2) and (z,2) are equal. Note that the matrices described
by Figure 5d are a subset of those described by Figure 3c.

We subsequently assume that for each problem graph G =
(V, E), there is a fixed ordering function f : V — {1, ..., |V}
used to index matrices using the vertex set.
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Fig. 5. Example of a problem graph G for nodes u,w,z,y and data

blocks D1, D2, D3, D4 ((a) is the same as Figure 3d and (b) is the same
as Figure 3e). Part (c) describes all matrices A € IF‘QV‘ X Where V=5
and m = 3, such that A’ = o (r,B)(A) fits (). Note that we omit Dy and
use m = 3 instead of m = 4 because no node in this example requests
Dy. Part (d) describes all matrices A’ that fit (a) and have some A such that
é(r,B)(A) = A’. Using the same assignment of d1,0d2,03,d1 € {0,1}
for (c) and (d) would produce a matrix A and the corresponding A’ =
b (r,B)(A).

Remark 7: The function ¢g p) preserves the rank of a
matrix, since it just inserts duplicates of columns. That is,
rka(¢(r,5)(A4)) = rka(A4).

For an EIC problem (R, B), we will use the set A (g p)
to restrict the domain of minrank, resulting in the restricted-
minrank:

Definition 15: The restricted minrank of a graph G =
(V, E) in the field Fy over the set of matrices A C ng‘x‘vl,
denoted r-minrky (G, A), is the rank of the lowest-rank matrix

A" € A which fits G:
r-minrks (G, A) = min{rky(A") : (4" € A) A (A’ fits G)}.

Lemma 1: Let G be the problem graph for an EIC problem
defined by (R, B). Let A’ be a matrix that fits G, and assume
that A" = ¢ g p)(A) for some matrix A € ]F‘Qlem. Suppose
that A7) € F3*™ is a matrix whose rows are r rows of A
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which span the rowspace of A; thus, the rowspace of A s
equal to that of A. Then A(") is a centralized linear broadcast
solution to (R, B).

Proof: Let r := rko(A) = rko(A’). Without loss of
generality, suppose that the first » rows Ay, ..., A, span the
rowspace A. Then for any (u,a) € P, the corresponding row
of A can be represented as A, o) = S1_; A" A; for some
)\gu’a), oA™Y e B, For ease of notation let £ := (u,a),
s0 Ay = A(y,q) denotes the row of A indexed by the request
pair (u, a) € P (which corresponds to node u requesting block
a) as in Definition 5.

Let 3 be the matrix

A ——
6: ’
A ——

so that rows of D are the encoded messages which are
broadcast by the centralized source:

A D

Ay D
D=1 .
A, D

Then [)\(f), e /\g)] -(#D) = A, - D. Thus if some node u has
the set of encoded messages {A1-D, A3-D, ..., A, - D}, it can
compute Ay - D.

We next define the vector o € F5*: let pup, = Ay if By = 1,
otherwise let up, = 0. Equivalently, y := B, ® Ay, where we
use ® to denote Hadamard (entry-wise) product. By definition
of B, node u has e,D for any b € [m] such that By, = 1.
We claim that the only b € [m] so that Ay, = 1 and By # 1
is b = a. Indeed, if Agp = Ay ), = 1, then A’(%a)’(v’b) =1
for all v so that (v,b) € P, by the definition of ¢ p). Since
A’ fits G, this implies that either ¢ = b or that node u has the
block b. But if By, # 1, then u does not have b, leaving only
the possibility that a = b.

As a result, all non-zero entries of A, — e, are indexed by
some b such that B, = 1, so

/.LZBuQAg:Ag—ea.
Then we construct the decoding vector a(*%) as
u,a L
alw) = [)\(1)...)\,@ — 1 — )
so that decoding is done by computing

u,a ﬁ
ottt [ diag(B,) } P

¢

=Y, AO) - (BD) = (n© Bu) - D

=90 (BD) — (A —eq) - D

:Ag-D—(Ag—ea)-D

=e,D.
This shows that A(") is a centralized linear broadcast solution
to (R, B), as per Definition 11. O

We next generalize Theorem 1 to EIC problems which are

not single unicast.
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Theorem 2: Given a EIC problem (R, B), corresponding
problem graph G, and column repetition function ¢(g, gy with
range A (g, B),

(C)(R,B) = r—minrkg (G, A(R,B))~

Proof: Let A" € A(gp) be the matrix of lowest
rank in A(p p) that fits G and let r := rky(A’) =
r-minrks (G, A(g,p)). Let A € ng‘xm such that
¢(r.p)(A) = A’. By Lemma 1, a matrix A") composed of r
linearly independent rows of A is a centralized linear solution
to (R, B) of length r (by the choice of r, the rowspan of
A" equals the rowspan of A). Since a centralized source
is able to construct each of these messages for this solution
(that is, the rows of matrix A(™D) we conclude that

(C)(R,B) < r = r-minrks (G, -A(R,B))-

For the other direction, suppose that Z € F5*™ is a linear

solution to (R, B) for some s € Z". Let z; € FJ* denote the
it" row of Z. We will show that the row span of Z contains
the row span of some matrix A such that A" := ¢ p)(A)
fits G. Consider some (u,a) € P. By the definition of a linear
solution, there exists some vector a(“%) such that

Write
al®®) = A A

for some )\gu’“),uj € o, so that

S

e, = Z )\gu,a)zi + i HiBuje;.

i=1 j=1
Let A(y,q) € F5' be the vector

m

A(u’a) =e, — ZﬂjBujej — Z /\;u,a)zj.
j=1 j=1

Then A, 4) is in the row span of Z, and moreover the a’th
entry of A, ,) satisfies

A(u,a),a =1
Additionally, for any block b € [m] with b # a such that
Bub - O’
Ay = (€a)s — iy Bup = 0.
Let A € F‘Qpl “™ be the matrix whose rows are given by A(WI)

for (u,a) € P. Let A’ := ¢r,p)(A). We claim that A’ fits
G. Indeed, we have for all (u,a) € P that

zu,a),(u,a) = A(%a)va =1

by the above, and so the first requirement of Definition 5 is
met.

To see the second requirement of Definition 5, first note that
for all b # a, we have

Azura):(wrb) = A(u’a)’b

which by the above is non-zero only if B,; = 1; that is, only if
there is an edge (of the “first type”) from vy, q) t0 vy p) in G.
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Second, there is always an edge (of the “second type”) from
U(u,a) 1O V(w,q)- Thus, the only non-zero off-diagonal entries
of A’ correspond to edges in GG, and the second requirement
of Definition 5 is satisfied.

Thus, for any linear solution Z of length s, there is a matrix
A so that the row span of Z contains the row span of A and
so that A" = ¢ g py(A) fits G. Thus,

(C)(r,B) = s = rka(A) =rko(A")
> r-minrks (G, A(r,B))-

This completes the proof. O

Because the minrank gives the optimal linear solution for
a centralized sender with all data blocks, our definition of
the problem graph is a natural extension of index coding
and the side information graph to the embedded index coding
model. In the following it will be helpful to use the following
theorem from [3] relating minrank to some other standard
graph properties. For an undirected graph G, the chromatic
number x(G) is the minimum number of colors required to
color the vertices of G so that no neighboring vertices have the
same color. The cliqgue number w(G) is the size of the largest
clique in G. The independence number, denoted «(G), is the
set of the largest independent set in G, so a(G) = w(G).

Throughout the paper, we will apply these notions to
directed graphs, rather than undirected graphs. To avoid con-
fusion, we will adopt the following notation.

Definition 16: Let G = (V, E) be a directed graph. The
undirected graph Geither = (V, Eecither) is the graph so that
{u,v} € Ee¢ither Whenever either (u,v) € E or (v,u) € E.
The undirected graph Gpotn, = (V, Epotp,) is the graph so that
{u,v} € Epotp, whenever both (u,v) € E and (v,u) € E.

We note that for any directed graph G, Gpotn = (G)either
and (@ )poth = Geither. For undirected graphs G, the following
relationships are known [3].

Theorem 3 ([3]): Let G be an undirected graph. Then
w(G) < minrky(G) < x(G).

A similar bound applies to our restricted version of minrank:

Corollary 1: Given a EIC problem (R, B), a corresponding
problem graph G = (V, E), and the column repetition function
¢(r,p) With range A(g gy, we have:

w(Geither) < miner(G) <
r-minrks (G, A(g,B)) < X(Ghoth)-

Proof: Since r-minrks is a minimization over a smaller
set of matrices than minrks, clearly minrky(G) <
r-minrky (G, A). We also have

W(Geither) S miner(Geither) S miner(G)v

where the first inequality follows from Theorem 3 and the sec-
ond inequality follows from the fact that any matrix that fits G
also fits Gejther. Thus it remains the show the final inequality
in the statement of the Corollary.

Using a similar approach to [3], we show the final inequality
by describing a matrix A’ € A that fits G such that rko(A’) <
X(Gpotn)- This is enough to establish the final inequality, since
we will have

r-minrks (G, A) < rka(A") < x(Grotn)-
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By the definition of chromatic number, there is a partition of
V into sets C1,..., Cx(m) so that each C; forms a clique
in Gpoer- Let C C V be a clique from such a partition. Define

a vector c¢(©) € F3* so that the a’th entry of ¢(©) is given by

a

LC) _ 1 Ju € [n] so that v, ) € C
0 else

Now, define a matrix A € F,”/™ with rows indexed by
elements of P, so that if v(, ) is in the clique C, then

A(u,a) = C(C).

Let A" = ¢(r,p)(A). Thus by definition of ¢ py(A) (see
Remark 7):
rko(A") = rka(A4) < X(Grotn)

since there are only x(Gporn) distinct rows of A.

Now we just need to show that A’ fits G. Consider some row
Azma)’ where A, q) = c(@ for some clique C, and choose
some (w,b) # (u,a) such that A, .y, =1.1f a =0, then
(V(u,a)> V(w,p)) € E is an edge of the “second type.” On the
other hand, if a # b, then by the definition of ¢z ), ci ) = 1,
so there exists some = € [n] so that v, ;) € C. Since C' is
a clique in Gypotn, (V(u,a), V(zp)) € E. By the definition of
problem graph this is an edge of the “first type,” so By, = 1,
so we also have (v(y,q), V(w,p)) € E. Thus any non-zero off-
diagonal entry of A corresponds to an edge in G. Moreovoer,
the diagonal entries of A’ are

C

A/(uva)v(u7(l) = A(u,a%a - Cé )
where v(, ) € C, so this is 1 from the definition of c{”.
Thus, A’ fits G. -

B. Cost of Decentralization: (D) < 2(C)

It can easily be seen that (C') < (D), that is, that the
minimum length of a decentralized embedded index code is
at least the minimum length of a centralized solution. Indeed,
the (D) messages transmitted in the decentralized solution can
all be constructed by a centralized source which has access to
all data blocks. Thus we are interested in how much larger
(D) can be than (C). Intuitively, one way we can construct
a decentralized solution is to create a centralized solution,
and split the messages into parts that can be constructed by
nodes using their side information. In fact, we show that each
message of a centralized solution only needs to be split into
two messages to make a decentralized solution, so (D) is no
more than a factor of 2 worse than (C):

Theorem 4: Given a solvable EIC problem (R, B),
(D)(r.B) <2 (C)(r,B)-

Proof: Let P be the set of requirement pairs for (R, B).
Let G = (V,E) be the problem graph for (R,B) and
let ¢(r p) be the corresponding column expansion func-
tion, with image A(p p). By Theorem 2, (C)rp) =
r-minrky (G, A(g, p)). Let A" € A p) be a matrix with
A" = ¢(r,p)(A) for some A € FY1X™ o that

l"kQ(A/) = I‘kQ(A) = (C)(R,B) =T
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and so that A’ fits G. By Lemma 1, there is a matrix A" with
rows Ay, ..., A, thatis a centralized linear broadcast solution
to (R,B). We will show how to simulate this centralized
solution using only 27 messages.

Since Ay, ..., A, are rows of A, they correspond to require-
ment pairs in P. Fix ¢ € [r] and suppose that A, corresponds
to (u,a) € P. Since A’ fits G, the diagonal entries of A’
are non-zero. This means that A, , # 0. Further, for b # a,
if Ay # 0 then there is an edge of the “first type” in G: that
is, B,y = 1, which means that node u has block b. Thus, node
u is able to compute

> Ape, D=4, D—e,-D
b:Bup=1

using the information it had before and the information it
receives.
The decentralized scheme is then as follows. For each ¢ &
[r] corresponding to (u,a), we have two broadcasts:
1) Node u broadcasts Zb:Bubzl Appep - D. That is, Ay is
a row of S(¥).

2) Fix any other node w so that B,,, = 1. We note that such
a node exists because (R, B) is solvable. Then node w
broadcasts e, - D. That is, e, is a row of B(“’).

Now every node can add together the two broadcasts
corresponding to ¢ € [r] to obtain A, - D. Since A" is a
linear centralized solution to (R, B), this scheme is a linear
centralized solution to (R, B). O

We note that the proof of Theorem 4 crucially uses the EIC
formulation; this shows why considering EIC separately as a
special case of multi-sender index coding can be valuable.

C. Cost of Task-Based Solutions: Upper Bound for (T)

We first show how the minrank can be used to re-formulate
the length (7') of the optimal task-based solution. Let (R, B)
be an EIC problem, with problem graph G = (V,E).
Recall from Definition 10 that, given a task-based solution
T, the neighborhood partition {Nl, e Nn} is a partition of
V so that N,, C N,, is the set of vertices V(u,a) O that w is
responsible for (u,a) in 7.

For Nw C N,, corresponding to a task-based solution 7', let
G|, denote the induced subgraph of G on the vertices Ny.
As per Remark 5, each N,, corresponds to an EIC problem
(R B(), over the set of blocks {a € [m] : Ju €
[n] s.t. V(ua) € ]\~fw}. Thus by definition of N,,, node w has
all blocks used in problem (R(“), B(*)) and any centralized
solution to (R(™) B()) can be broadcast by w. Note that
such a solution can easily be used as a self-contained part of
a solution to the problem (R, B) with the full set of m blocks.
To do so, we just insert zeros in encoding and decoding vectors
for blocks in [m] not used in (R(*), B(*)). Then the messages
of the solution to (R(*), B(*)) can be used by vertices of N,,
as in the subproblem.

We first show how solutions to these subproblems can be
used as building blocks for task-based solutions.

Lemma 2: Let G be a problem graph for a solvable
EIC problem (R, B). Let {Ny,....,N,} be a neighborhood
partition. Let G| 5~ be the subgraph of G induced by N, and
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let (R™), B(")) be the problem with problem graph G| ~, for
all w € [n]. Then any set of solutions {3(*) € Frwxm . €
[n], hw € Zt} for problems {(R(™), B()) : w € [n]} forms
a task-based solution to (R, B) with length }_"" | h;.

Proof: For each vertex v, q) of G there is some N,, such
that v(, q) € N,. Let B) be the centralized linear broadcast
solution to EIC problem (R("), B(")), where (") g Fhwxm
for some hy, € Z*t. Then there exists some a(*% such that

Bw)

diag(B,)
for each (u,a) € P, all requests in P are satisfied in this way
by some (). D. By definition of (R(*), B(*)), each (). D
for w € [n] can be broadcast by node w. Thus g, ..., 5™
forms a task-based solution to (R, B) with length """ | h;. [J

We can then compute the length of an optimal task-based
solution, (7°), in terms of neighborhood partitions.

Lemma 3: Given a solvable EIC problem (R, B), let .4
be the set of all possible neighborhood partitions (as in
Definition 10). For {Ny,...,N,} € 4, let (R™), B()) be
the EIC problem induced by N,,. Then

(T)(r,B) =

e, = al®). . Since there is such a vertex v, q)

min

n
~ mil ZI'—IniIlI'k2(G|Ni,A(R(i)7B(i))).
{N1,....N,}eN ’

i=1
Proof: Observe that since (R, B) is solvable, .4 is non-
empty. We first show that

(T)(r,B) <

n
~ min Z r-minrks (G| 5, A(ro), gy )-
{N1,....,N,}e N i1 )

Consider the neighborhood partition {N Ly Nn} which min-
imizes Y7 | r-minrke (G| , A(ro) p)). A possible task-
based solution 7' can be constructed by optimally solving
the centralized index coding problem (R(™), B(")) defined
by each G| &, With sending node w, as shown in Lemma 2.
By Theorem 2, each centralized subproblem optimal solution
has length r-minrks (G|, A(ga) pe))), so the total length
of T'is > 1" | r-minrky (G| 5 , Arr 50))-
Next we show
Z r—minrkg (G|J\7L 5 A(R(i) ’B(i)))

i=1

~ min
{Ni,....N,}eN

< (T)(gr,B)-

Let T' be the optimal task-based solution, with length
(T')(r,B)- Construct { Ny, ..., N, } so that

Nu = {V(u,a) : w is responsible for (u,a) in T} .

By the definition of a task-based solution, each
vertex is assigned to exactly one such N, so we
have a neighborhood partition {Nl,...,Nn} c . The
centralized index coding problems (R(“) B(")) for each
w € [n] have problem graphs G|y ~and optimal solutions
of length r-minrks(G| NW,A(R(U,>7B<W)) (Theorem  2).
If (T)rp) < Yi—yr-minrks(Glg,, Age o)), then
the solution to (R(™), B(")) for some w € [n] must have
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(®)

Fig. 6. (a) Example of a problem graph for a single unicast EIC problem
that has (C) < (D) < (T'). Each pair of boxes is a vertex in the problem
graph, where black boxes contain indices of requested data blocks and the
white boxes contain indices of side information blocks; the label u, w, z,y, z
indicates which node the vertex corresponds to. (b) The subgraphs induced
by each node along with its sender neighborhood.

length strictly less than r-minrks(G|g, . Agw) o))
This  contradicts Theorem 2. Thus (7)), p) >
ming g y.jes > r—miner(G|]\~,i,A(R(i)’B(i))). O

The following upper bound on (T),py follows from
Lemma 3 and Corollary 1.

Lemma 4: Given a solvable EIC problem defined by (R, B),
let .4 be the set of all possible neighborhood partitions
(Definition 10). Then

min

(T)r,B) < _ L
{N1,....,N,}enN

n
DX ((G|]\7i)both) Y
i=1
In Section V-B, we will use Lemma 4 to develop algorithms
to approximate the optimal neighborhood partition (in the
sense that the right hand side of (1) is minimized), by reducing

the problem to the minimum cover problem.

D. An Example Where (C) # (D) # (T)

Figure 6a is an example of a single unicast EIC problem
(R, B) for which (C) < (D) < (T). First consider (C): by
inspection, a central source with all data blocks could send
messages Dy @ Dy, D3, and Dy ® Ds so that all five nodes
can decode their requested block, but no combination of fewer
messages suffices. No solution of length at most 2 is possible
(see Appendix ), so, (C') = 3.

Next consider (D). A solution of minimum-length is: node
y broadcasts Dy @ D3, node z broadcasts D3 P D1, node u
broadcasts Dy, and node x broadcasts Ds. It can be checked
that this is indeed a minimum-length solution (see Appendix ).
Thus, (D) = 4.

Finally, consider (7"). Then out-neighborhoods of each
node, as shown in Figure 6, are the subgraphs over which we
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can apply index coding (Remark 5). In particular, we construct
the neighborhood partition from these subgraphs (Defini-
tion 10). Since the graph induced by each neighborhood is
acyclic, as shown in [39] there is no way to do any non-trivial
coding in any subgraph to a code shorter than the uncoded
solution. Thus any task-based solution requires that all blocks
be broadcast uncoded. Since there are five blocks that need to
be sent, we have (T') = 5.

E. Separations Between (T') and (C')

We next give a condition on the problem graph G which
guarantees that (T') is strictly larger than (C), with a gap as
big as the gaps from the graph-theoretic minrank bounds.

Lemma 5: Given a solvable EIC problem defined by (R, B)
and corresponding problem graph G, if

(X(Geith,er) - 1)X(Gb0th) < |V|7

then there is an optimal task-based solution with neighborhood
partition { Ny, ..., N,,} so that

(C)r,B) < X(Grotn) <

Yw (W) < (T)(n.B)
i=1

Proof: Let V := V(G). First note that for any undirected
graph H, a(H) = w(H) and %}) < a(H) (see, e.g., [41]).
Consider coloring each graph (G| Nl)either (induced by an
element of the neighborhood partition) individually, compared
to coloring all of Gejper at once. Since every node in ]\~fi
shares a neighbor in Gipe, (i.€. any of the vertices V(i,a) €
V for some a € [m]) there is a color in the minimum
coloring of Gejtper not necessary to color (G| Ni)either. Thus
X((Ni)eith,er) < X(Geither) — 1. Putting these steps together,
we have

n

Z w((Glﬁi)either) = Z a((G|Ni)either)

i=1

n V(G|
=3 V(Glg,)

i=1 X(( ".)either)

—~ |[V(Glg,)I
>

Z em‘her _1

IVI

- X(Geither) -1 .

ﬁ > X(Geither) =
X(Gotn ), this proves the strict inequality in the claim. Above,
the first inequality follows from applying w(H) > Xl(‘l/q‘) to
each induced graph (G| N, )either- The final equality follows
from the fact that Y " | [V (G|, )| |[V|, which is true
because the graphs in the set {G|, i € [n]} are induced by
corresponding elements of the vertex partition {Nl, vy Nn}
Finally, the remaining two inequalities in the statement of
the lemma follow from Corollary 1. O]
Lemma 5 establishes a gap between (C) (g, 5) and (T')(r, p)

whenever |V| > (x(Geither) — 1)(X(Gpoth)), SO We note here

Since by assumption we have
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a few simple graphs which illustrate how this may or may not
be the case.

Suppose that G is a directed clique, which for example
would be the case if every node wanted a different block and
had every block they did not want. Then x(Geither) = 1,
while X(Gboth) = 1, SO

(X(Geither) - 1)(X(@)) =n—-1<n= |V|

In this case, Lemma 5 establishes a gap. Similarly, Lemma 5
establishes a gap for graphs consisting of multiple discon-
nected directed cliques.

On the other hand, consider a directed cycle, which for
example would be the case if every node ¢ wanted a different
block, which was held only by node ¢ — 1 (mod n). Then
Lemma 5 does not establish a gap: x(Geither) = 2 or 3 and

X(%) =n, 50 (X(Geither) — 1) (X(Gootn)) £ n.

V. ALGORITHMS

In this section, we use results from the previous section to
design two heuristics for finding good EIC solutions. We also
demonstrate empirically that our algorithms perform well.

First, we use Theorem 4 to give an algorithm which
produces an EIC solution that is optimal within a factor of
two. We show empirically that our algorithm is faster (more
precisely, has a smaller search space) than the algorithm of
[22]. We note that our algorithm is tailored for EIC while the
approach of [22] works more generally in the multi-sender
model. This demonstrates the value of focusing on EIC as a
special case.

Second, we use Lemma 4 to give a heuristic algorithm
to design a task-based scheme for an EIC problem. We
show empirically that the quality of solution returned by our
algorithm is within a small constant factor (at most 1.4 in our
experiments) of the optimal centralized scheme.

We describe both of these in more detail below.

A. Approximating (D)

The proof of Theorem 4 gives an algorithm to approximate
the optimal decentralized solution to an EIC problem, which
we detail in Algorithm 1. Algorithm 1 first computes the exact
optimal centralized solution with length (C')(g,5) and then
uses the transformation outlined in the proof of Theorem 4
to arrive at a decentralized solution with length at most
2(C)(r,B)- We note that in practice the optimal centralized
solution could also be approximated, leading to a decentralized
solution of length at most twice the cost of the approximation.

Algorithm 1: Given an EIC problem (R, B):

1) Construct the problem graph G

2) Find A € Flv‘xm such that

ko (P (g, p)(A)) = 1- mlnrkg(G,A(RB))
a) Let r :=rkqo(A)
b) Let A, ..., A, be linearly independent rows of A

3) For each A, € {A;.. A, }:

a) Let £ = (u,a)

b) Node u: broadcast } 2, p _; Awey - D

c¢) For an arbitrary node w s.t. B,,, = 1: compute and
broadcast e, - D = D,

I‘kg (A) =
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We compare Algorithm 1 to the algorithms in previous
work [18], [22], which apply more generally to any multi-
sender index coding problem but can in particular be applied to
EIC. In the multi-sender index coding problem solved by [18],
[22], there is a set of sender nodes and a set of receiver nodes,
which do not overlap. Each sender node has some subset
of the data that it can use in constructing messages to send
to the receivers, and each receiver requests one of the data
items and has a subset of the others as side-information. Since
the algorithms of [18], [22] only apply to single unicast EIC
problems (Definition 13), we restrict our analysis to that case.
To use the algorithms of [18], [22], for an EIC problem (R, B),
we construct a sender and a receiver for each of the original
nodes. Thus the k*" sender has the data blocks indicated by By,
and the k'" receiver has as side-information the data indicated
by By. Let nj, be the number of data blocks that sender k has,
SO N = |Bk|1.

In our method and in those of [18], [22], the strategy is to
search over a set of matrices and find the one of minimum
rank. Thus, to compare the complexity of our approach to
previous work, we can compare the size of the state spaces.’
As we describe below, the search space for Algorithm 1
is much smaller than that for the other algorithms. More
precisely, we can see analytically that

|Search space for [18]] =

|Search space for Algorithm 1|®(") ,
and we observe empirically that something similar may be true
for the work of [22]. We elaborate below.

1) Size of Search Spaces for [18] [22], and Algorithm 1: We
begin by describing two previous approaches [18], [22] and
stating the size of their search spaces, as well as the search
space in Algorithm 1; we will compare these expressions in
Section V-A2.

In the work of Kim and No [18], the authors show (The-
orem | in that work) that an optimal linear strategy can be
obtained by finding a matrix F' of lowest rank that “fits” (see
Definition 3 and Corollary 1 of [18]) the given problem. To use
our notation, this matrix F' is created by essentially stacking
the 3" matrices for each sender i on top of each other. The
precise size of the search space is complicated and depends
on the problem (see Remark 2 of [18]), but it could be* as

large as
2(” ZZ'zlnk)*(ZZ'zl(m*nk)). )

3We note that if the minrank is computed exactly, then Combined LT-CMAR
approach of previous work becomes an exact algorithm, while our algorithm
is a two-approximation.

“In slightly more detail, the dimension of the search space in [18] might be
counted as follows. Essentially, that work seeks to find the matrix of smallest
rank by filling in the matrices (1), ..., 3(") ¢ F™*™ gtacked next to each
other to make a large m x n? matrix. For each sender k € [n], there are
ny rows of ﬁ(k) that may be nonzero, leading to n ), ny, free variables.
However, there are additional linear constraints: [18] shows that one may
assume that for any data block ¢ € [m] and node j € [n] so that node j
wants block i, 375 1) ﬂg,kj) = 1, while for any ¢ € [m] and j € [n] so

that node j neither wants nor has block 7, Eke[n] ,81(? = 0. This imposes
an additional m — n; linear constraints for each node j: one constraint for
every block ¢ € [m] that bide j does not have. Thus the dimension is at
least the number of variables minus the number of constraints, which gives
the expression in (2).

1473

We note that, in [18], m refers to the number of receivers
and n is the number of messages, while for us m and n are
reversed; we have used our notation above.

The work of Li et al. [22], introduces an approach called
Combined Lower-Triangularization and Common-Message-
Aware Reduction (Combined LT-CMAR). The idea is to
reduce the search space by both enforcing some structure
and by removing redundancies between senders. We give a
high-level overview of the approach here, and refer the reader
to [22], Section IIIB, for details. Given a set S of senders
and letting K := |S|, all “weak” senders® are removed,
to leave a sender set S* of size K*. That work considers
a set E"(S*) of possible encoding matrices (that is, matrices
B ..., 357 using our notation in Definition 2) that exhibit
particular structure. In particular, they show that they can
make these matrices lower triangular, and they show how
to take into account overlapping messages between senders.
(See Section IIIB in [22] for more details). This results in
an optimization problem that we describe below. Suppose
that M is any matrix that fits G. For each node j € [n],
B; C [m] is the set of indices of blocks that j does not have
as side information. In particular, [M]; 5, does not depend
on the choice of M, so long as it fits G. With this notation,
Proposition 3 in [22] shows that the optimal broadcast rate is
the optimal value of the following optimization problem:

minimize
K+
—!!
Z rka(Cy,)
k=1
subject to

(i)(CY,...Cx.) €C (5%
(i4)[M];,5, € rowspan,([Cy]. 5,),Vj € [1: N]

Above, the matrices EZ € F3#*" play the role of our repair
matrices %), The search space size for Combined LT-CMAR
(that is, the size of C (S*)) is bounded by

9 s (n#me) /2= () i) 2, 3)
where n;c) is the maximum number of blocks that node % has
in common with any other node. See the discussion before
Lemma 1 and after Proposition 3 of [22] for comments on the
search space size. We do not know of a better way to exactly
solve the optimization problem above than by exhausting over
all matrices that satisfy (i) and checking that they satisfy (ii).
Thus, rather than pruning the search space, it seems that item
(ii) adds computational complexity.

Finally, we consider the complexity of our approach,
in terms of the search space size. Note that for single unicast
EIC problems, applying ¢, ) has no effect (that is, A =
é(r,B)(A)), so the computation of the restricted min-rank
r-minrks (G, A(g,p)) in step 2 of Algorithm 1 is equivalent
to computing the (non-restricted) minrank of G, minrks(G).
In this single unicast case, our method solves for minrks(G)

SA weak sender is one whose available information is a subset of the
information available to another sender.

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:02:31 UTC from IEEE Xplore. Restrictions apply.



1474

which can be expressed as:

minimize

1"1{2 (A)

subject to A fits G 4)
It is not hard to see that the search space of (4), solved in
step 2 of Algorithm 1, has a search space of size (in number
of matrices)

92 k=1 Tk 5)

2) Comparison of the Size of Search Spaces: We can
compare the search space size of Algorithm 1 to that of [18]
analytically. Let d = % 2:1 ny be the average number of
times that each block is replicated in the system. Then the

state space of Algorithm 1 has size (as in (5)) given by

2mJ

while the state space in [18] has size (as in (2)) given by

Zm(i(n(l—l/(i)-&-l) .

Thus, our approach has complexity a power of n(l1 — 1/d)
smaller than that of [18].

It is difficult to compare the size (3) of the search space
in [22] to the size (5) of our search space analytically, so we
do this empirically. Figure 7 shows how the base-2 logarithm
of the search space of Algorithm 1 compares to that of
the Combined LT-CMAR procedure of [22]. The larger the
ratio, the more costly the Combined LT-CMAR algorithm is
relative to our EIC heuristic. Values are computed on Erdds-
Renyi graphs randomly generated with various values of n,
the number of vertices, and p, the probability of each directed
edge existing. Note that graphs are re-sampled for each trial
until one is generated such that every node has an out-degree of
at least one. This is done because a node without an out-edge
cannot satisfy any requirements with messages from the other
nodes, so it has to be dropped from the problem, reducing n.
Except for the smallest values of n and p, Sg;c is smaller
than Spr_caar, meaning that Algorithm 1 has a smaller
search space than the combined LT-CMAR algorithm.

As shown in Figure 7b, the ratios go down in some cases
as the edge probability approaches 1, because denser graphs
create more similarities in the neighborhoods of nodes for the
Combined LT-CMAR procedure to leverage into search space
reduction. However, as shown in Figure 7a, for fixed edge
probabilities not close to 1, the quantity Spr_caar (that
is, the logarithm of the search space size for Combined LT-
CMAR) grows relative to Sgrc (the logarithm of the search
space size for Algorithm 1) as n grows. The fact that the plots
in Figure 7a seem to be growing linearly suggests that

|Search space for Combined LT-CMAR| =

|Search space for Algorithm 1|®(n) 7

matching the analytical conclusion we obtained comparing
Algorithm 1 to the work of [18] above.
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Fig. 7. Comparison of the search space size of our method vs. that of
[22]. Both (a) and (b) plot SLTfC]bIAR/SEICﬂ Here, S cm AR is the
logarithm, base 2, of the search space size for a given (R, B) using the method
of [22]. Sgrc is the logarithm, base 2, of the search space size using our
method of approximating with the corresponding centralized solution. Ratios
Srr—cmAar/Serc are plotted for the averages over sets of 20 ErdGs-Renyi
graphs with the given number of vertices n and probability p for each directed
edge, as n varies (a) or p varies (b). When Spr_cnpar/SeErc > 1 our
algorithm has a strictly smaller search space.

B. Approximating (T)

Computing a task-based solution consists of two main steps:
finding a neighborhood partition (Definition 10) and finding
an index coding solution to the task defined by each N; for
sender node ¢. Our heuristic uses Lemma 4 to approximate an
optimal choice for a neighborhood partition. In order to see
how, we define the neighborhood-cliques associated with an
EIC problem:

Definition 17: Given a problem graph G for some EIC
problem (R, B) with sender node neighborhoods N, ..., N,,,
let the set of neighborhood-cliqgues be ¢ = {V(C)
C' is a maximal clique in G|y, for some N;}

We first define the min-cover and min-clique-cover prob-
lems. Let U = {uq,...,u,} be a set of n elements. Let
S = {Xy,..., X} be subsets of U, i.e. X; C U for each
j € [m], such that for all ¢ € [n], u; is in some Xj.
The min-cover problem over (U,S) is to find the smallest
{X;,, ... X;,} € S, such that |J}_, X;, = U. The min-
clique-cover problem over a graph G is an instance (U,.S)
of min-cover in which U = V(G) and S is the set of all
cliques in G, including non-maximal cliques.

Using neighborhood-cliques, solving for the chromatic num-
bers used to upper bound the length of a task-based solution
reduces to min-cover:

Theorem 5: Given an EIC problem (R, B) and the cor-
responding problem graph G, solving for the neighborhood
partition Nl, Nn to minimize

n

Z:x ((Glm)both) (6)

is equivalent to the min-cover problem over vertices of G' with
sets

¢ ={V(C;) : C; is a maximal clique in (G|n,)both }-

In particular, given a solution to the min-cover problem for C,
we can, in polynomial time, find a neighborhood partition to
minimize (6).
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Theorem 5 will follow from the following two lemmas.

Lemma 6: x Given a neighborhood partition {N; : i € [n]}
for some (R, B) with problem graph G, there exists a cover C
of V(G) chosen from elements of ¢ (the set of neighborhood-
cliques) such that

> (@) = Y- x (@5 i)

cjec

Proof: Take some N; and consider a minimum coloring
using X ((G| g, Jbotn) colors. Each set of vertices with a shared
color is by definition a clique in (G| &, Jboth» call such a clique
C;. Since N; C N, C; (or a larger clique containing C; if
C; is not maximal) is in ¢". We can apply this to all N; to get
a cover of V(G). Since we create such a C; for each color
used for Ni, and the complement of a clique is 1-colorable,

Y X0 =

j:Cjused for N;
{7 : used for N;}| = x((Glz, Jbotn)-

]

Lemma 7: Given an EIC problem (R, B) with problem
graph G and clique cover C := {C;} C €, there is a
corresponding choice of neighborhood partition Ny, ..., N,

such that -
> x (@) 2 X x (CT5Jbarn)

Proof: For each i, let N; := J{C; € C: C; C N;}. Now
letting ¢ := [{C; € C : C; C N;}|, we can color (G|g )votn
with ¢ colors, so X((G|z, )botn) < ¢ =3 x(C)). O

Theorem 5 follows immediately from Lemmas 6 and 7,
as well as the observation that in the proof of Lemma 7 we can
efficiently find the optimal N; as unions of the sets C; ecC.

This inspires an algorithm to find Ny, ..., N,,. Since min-
cover is NP-hard solving for these will be as well, but we
can use existing min-cover approximation algorithms. Below,
Algorithm 2 computes the neighborhood partition which min-
imizes Y | x(G|g,) and the length of the minimum task-
based solution using that partition.

Algorithm 2: Given an EIC problem (R, B):

1) Construct the problem graph G

2) Let € =0

3) For each v; € V(G)

a) Let N; C V(G) be the out-neighborhood of v;

b) Compute G|y;,, the subgraph induced by N;

¢) Compute the set of maximal cliques in (G| N, )poth
and add each to ¢

4) Compute minimum clique cover C of V(G) using ele-

ments of .
5) While there exist C;,C; € C’ such that C; N C; # 0
a) Replace C; in C with C; \ (C; N Cy)
6) Let T'=0
7) For each v; € V(G)
a) Let N; = J{C; €C: C; C N;}
b) Compute G| , the subgraph induced by N;
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Fig. 8. Ratio of the length of our task-based solution returned by Algorithm 2
to the length of the optimal centralized solution.”

i) Let (R, B") be a EIC problem with problem

graph G| , keeping vertex labels from (R, B)
¢) T'=T +r-minrks (G| 5,, A(rr, p))

8) T is the total cost of the optimal task-based solution
given neighborhood partition { Ny, ..., N,,}.

Remark 8: Note that after step 5 of Algorithm 2, C is a
clique partition of V(G) of minimum size. This is because
removing vertices from a clique in C; € C produces a new
clique, and if a smaller clique partition existed then it would
also be a smaller clique cover, contradicting choice of C in
step 4 as a minimum clique cover.

Figure 8 shows the ratio of the length of our approximately
optimal task-based solution compared to the length of the
optimal centralized solution. This ratio upper bounds the ratio
of a true optimal task-based solution to the corresponding
centralized solution. In all of our experiments this approxi-
mation ratio is upper-bounded by 1.4. As in the experiments
in Figure 7, Erd6s-Renyi graphs are randomly generated for
a variety of values for n, the number of nodes, and p,
the directed edge probability. As the size of the graph increases
for a fixed edge probability, the ratio appears to converge. For
a fixed number of nodes, there also appears to be some upper
bound on the ratio even as the probability of each edge goes
to 1.

Remark 9: Tt has been shown [14] that with high probability,
Erd6s-Renyi graphs G with n nodes have minrk(G) =
O(n/logn) for any constant edge probability p. As a result,
in the experiments in Figure 8 we expect the optimal task-
based solution length to be within a constant factor of the
length of optimal centralized (and decentralized) solutions.

VI. CONCLUSION

In this paper we defined embedded index coding, a special
case of multi-sender index coding in which each node of
the network is both a broadcast sender and a receiver. We
characterized an EIC problem using a problem graph, and
we used this formulation to show that the optimal length
of a solution to an EIC problem is bounded by twice the

7Sample sizes in these experiments are 10 random graphs, except p =
0.9,n = 6 which only uses 5, since the search space for the brute-force
minrank algorithm explodes, increasing exponentially in the number of graph
edges.
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length of the optimal centralized index coding solution. We
also defined task-based solutions to EIC problems, in which
the set messages broadcast by each node can be decoded
independently of messages from other senders, and we proved
characterizations and bounds for task-based solutions. Finally,
we used these bounds to develop heuristics for finding good
solutions to EIC problems, and showed empirically that these
heuristics perform well.

We end with some open questions and future directions.
Since this work first appeared, it was shown by [17] that
for any integer k, there exists an index coding problem with
problem graph G and minrks(G) = k, such that the task-
based solution cost is ©(k?). Since we’ve shown an optimal
decentralized solution has cost within a constant factor of
the optimal centralized solution cost, i.e. minrks(G), this
result also shows a gap between general decentralized and
task-based solutions. However, the exact relationship between
decentralized solutions and centralized solutions to embedded
problems remains open.

It is also an interesting question to improve on algorithms
for finding task-based solutions. Our current approach uses an
upper bound on minrank, given by the chromatic number of
the complement of the problem graph. This bound is known
to be quite loose in some settings. The fractional chromatic
number of the complement of the problem graph, x ¢ (G), has
been used to tighten the upper on minrank of G [5], and it was
also shown by [30] that the optimal centralized index coding
solution size with locality of one is y y(G). Thus the fractional
chromatic number may be a useful approach in this direction.

Additionally, the Lovasz Theta function has been shown
to be greater than Shannon capacity (and thus greater than
independence number) but less than minrank for some graphs,
but greater than minrank for others [8], [13]. As suggested
by [16], the Lovasz Theta function may be useful for better
approximating minrank, which could lead to better algorithms
for centralized, decentralized, and task-based solutions.

Additionally, the Lovasz Theta function has been shown
to be greater than Shannon capacity (and thus greater than
independence number) but less than minrank for some graphs,
but greater than minrank for others [8,13]. As suggested by
[14], the Lovasz Theta function may be useful for better
approximating minrank, which could lead to better algorithms
for centralized, decentralized, and task-based solutions.

APPENDIX

Claim: No centralized solution of length less than 3 exists
for the problem graph in Figure 6a.

Proof: All five requested blocks D1, Da, ..., D5 must be
included in at least one message. Clearly the only solution
candidate of length 1 is Dy & Dy ¢ D3 @ D4 @ D5 and would
not work. Next we show no solution of length 2 is possible.
Suppose such a solution did exist and let A, B be the two
messages. Then each node could compute A @& B and any
sum over A, B, A @ B and its side information. We list the
requirements for A, B, A@® B imposed by three nodes, w, y, z
below. At least one of the “message options” for each node
must be included in {A, B, A® B} for A, B to form a solution:
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node | has wants message options

w D, Ds {D3, D3, Dy & D3}

y {D2,D3} Dy {D4, Dy ® D4, D3 @ Dy,
Dy & D3 @ Dy}

z {D:,Ds} Ds {Ds,D3 ® D5, D1 @ Ds,
D1 @& D3 @ Ds}

Without loss of generality (since we are taking sums over
Fs), if there is a possible solution we can express it as A
from the set of options for w and B from the set of options
for y such that A @ B is in the set of options for z. Since
Ds appears in all options for z and in none of the options for
w,y clearly choosing such an A, B is not possible. Thus no
solution of length 2 exists for these three nodes (or the graph
as a whole). O

Claim: No decentralized solution of length less than 4 exists
for the problem graph in Figure 6a.

Proof: We show a solution of length 3 cannot exist; thus
a solution of length 2 or 1 also cannot exist because it could
trivially be extended by duplicating a message.

First, consider the requested blocks, D1, Do, ..., Ds. All five
blocks are requested by at least one node (that doesn’t already
have it), so all five blocks must be included in a solution.
Additionally, each node has one or two of the five blocks,
so it can send a single data block or, if it has two data blocks,
their sum. Thus any decentralized solution of length 3 consists
of either two sums of two data blocks each and one additional
block (so that the five distinct data blocks are all used) or three
sums of two data blocks each, in which case one data block
appears more than once. We list all possible distinct cases for
assembling messages in this way (excluding cases where not
all blocks appear at least once):

Set # | Message 1  Message 2 Message 3
1 Di®Dy D3s®dDs Do

2 Di®Dy Dy®dD3  D3®Ds
3 Di®Dy  Da® Ds Ds

For each of these three message sets, at least one node would
be unable to get its requested information. From message set
#1, node w cannot get D3 (w has Dy as side information).
From message sets #2 and #3, node u cannot get Dy (u
has D1, D, as side information). Thus there is no solution of
length less than 4. O
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