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of Photonic ICs With Non-Gaussian

Correlated Process Variations
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Abstract—Uncertainty quantification has become an efficient
tool for uncertainty-aware prediction, but its power in yield-
aware optimization has not been well explored from either
theoretical or application perspectives. Yield optimization is a
much more challenging task. On the one side, optimizing the
generally nonconvex probability measure of performance metrics
is difficult. On the other side, evaluating the probability mea-
sure in each optimization iteration requires massive simulation
data, especially, when the process variations are non-Gaussian
correlated. This article proposes a data-efficient framework for
the yield-aware optimization of photonic ICs. This framework
optimizes the design performance with a yield guarantee, and
it consists of two modules: 1) a modeling module that builds
stochastic surrogate models for design objectives and chance
constraints with a few simulation samples and 2) a novel
yield optimization module that handles probabilistic objectives
and chance constraints in an efficient deterministic way. This
deterministic treatment avoids repeatedly evaluating probability
measures at each iteration, thus it only requires a few simulations
in the whole optimization flow. We validate the accuracy and effi-
ciency of the whole framework by a synthetic example and two
photonic ICs. Our optimization method can achieve more than
30× reduction of simulation cost and better design performance
on the test cases compared with a Bayesian yield optimization
approach developed recently.

Index Terms—Chance constraints, integrated photonics, non-
Gaussian correlations, photonic design automation, uncertainty
quantification, yield optimization.

I. INTRODUCTION

T
HE DEMAND for low-power, high-speed communica-

tions, and computations have boosted the advances in

photonic integrated circuits. Based on the modern nano-

fabrication technology, hundreds to thousands of photonic

components can be integrated on a single chip [1], [2].

However, process variations persist during all the fabrication

processes and can cause a significant yield degradation in

large-scale design and manufacturing [3]–[6]. Photonic ICs are
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more sensitive to process variations (e.g., geometric uncertain-

ties) due to their large device dimensions compared with the

small wavelength. To achieve an acceptable yield, uncertainty-

aware design optimization algorithms are highly desirable [7].

Yield optimization algorithms try to increase the success

ratio of a chip under random process variations, and they

have been studied for a long time in the electronic cir-

cuit design [8]–[11]. However, it is still expensive to reuse

existing yield optimization solvers for photonic ICs. The

major difficulties include: 1) the quantity of interest (e.g.,

the probability distribution of a bandwidth) does not admit

an explicit expression. Instead, we only know the simulation

values at parameter sample points; 2) the design objec-

tives and constraints are defined in a stochastic way. They

are hard to compute directly and require massive numeri-

cal simulations to estimate their statistical distributions; and

3) practical photonic IC designs often involve non-Gaussian

correlated process variations, which are more difficult to cap-

ture. To estimate the design yield efficiently, one alternative

is to build a surrogate model. In [12]–[14], posynomials

were used to model statistical performance, and geomet-

ric programming was employed to optimize the worst-case

performance. Li et al. [15] proposed a Chebyshev affine arith-

metic method to predict the cumulative distribution function.

The recent Bayesian yield optimization (BYO) [10] approx-

imated the probability density of the design variable under

the condition of “pass” by the kernel density estimation. The

work [11] further approximated the yield over the design vari-

ables directly by a Gaussian process regression. However,

these machine learning techniques may still require many sim-

ulation samples. Furthermore, worst-case optimization or only

optimizing the yield can lead to nonoptimal (and even poor)

chip performance.

Recently, uncertainty quantification methods based on gen-

eralized polynomial chaos have achieved great success in

modeling the impact caused by process variations in electronic

and photonic ICs [16]–[27]. A novel stochastic collocation

approach was further proposed in [28] and [29] to handle

non-Gaussian correlated process variations, which shows sig-

nificantly better accuracy and efficiency than [30] due to

an optimization-based quadrature rule. These techniques con-

struct stochastic surrogate models with a small number of

simulation samples, but their power in yield optimization has

not been well explored despite the recent robust optimization

methods [7] based on generalized polynomial chaos.
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Leveraging the chance-constrained optimization [31] and

our recently proposed uncertainty quantification solvers

[28], [29], this article presents a data-efficient technique to

optimize photonic ICs with non-Gaussian correlated process

variations. Instead of just optimizing the yield, we optimize a

target performance metric while enforcing the probability of

violating design rules to be smaller than a user-defined thresh-

old. Doing so can avoid performance degradation in yield

optimization. Chance-constrained optimization [31] has been

widely used in system control [32], autonomous vehicles [33],

and reliable power generation [34], [35], but it has not been

investigated for yield optimization of electronic or photonic

ICs. Our specific contributions include.

1) A chance-constraint optimization framework that can

achieve high chip performance and high yield simultane-

ously under non-Gaussian correlated process variations.

2) A surrogate model that approximates the stochastic

objective and constraint functions with a few simula-

tions. Since both the objective function and constraints

are only available through a black-box simulator, we

build a surrogate model based on the recent uncertainty

quantification solver [29]. The main step is to compute a

quadrature rule in the joint space of design variables and

stochastic parameters by a new three-stage optimization

process.

3) A deterministic reformulation. A major challenge of

chance-constrained optimization is to reformulate the

stochastic constraints into deterministic ones [36].

We reformulate the probabilistic objective function

and constraints as nonsmooth deterministic functions.

Afterward, we transform them into an equivalent poly-

nomial optimization, which can be solved efficiently.

4) Validations on benchmarks. Finally, we validate the effi-

ciency of our proposed framework on a synthetic exam-

ple, a microring add-drop filter, and a Mach–Zehnder

filter. Preliminary numerical experiments show that our

proposed framework can find the optimal design vari-

able efficiently. Compared with the BYO method [10],

our proposed method can reduce the number of simula-

tions by 30×, achieve better performance, and produce

a similar yield on the test cases.

This article should be regarded as a preliminary result in this

direction, and many topics can be investigated in the future.

II. PRELIMINARIES

A. Yield Optimization

The yield is defined as the percentage of qualified products

overall. For a photonic IC, denote the design variables by x =
[x1, x2, . . . , xd1

]T ∈ X and the process variations by random

parameters ξ = [ξ1, ξ2, . . . , ξd2
]T ∈ �. Suppose x is uniformly

distributed in a bound domain and ξ follows a probability

distribution ρ(ξ). Let {yi(x, ξ)}n
i=1 denote a set of performance

metrics of interest, {ui}n
i=1 denote its required upper bound,

and I(x, ξ) denote the indicator function

I(x, ξ) =
{

1, if yi(x, ξ)≤ ui ∀i = 1, . . . , n

0, otherwise.
(1)

The yield at a certain design choice x is defined as

Y(x) = Probξ (y(x, ξ) ≤ u|x) = Eξ

[

I(x, ξ)
]

. (2)

The yield optimization problem aims to find an optimal design

variable x∗ such that

x∗ = argmax
x∈X

Y(x). (3)

There are three major difficulties in solving the above yield

optimization problem: 1) the indicator function I(x, ξ) does

not always admit an explicit formulation; 2) computing the

yield Y(x) involves a nontrivial numerical integration, which

requires numerous simulations at each design variable x; and

3) Y(x) is an implicit nonconvex function and it is difficult to

compute its optimal solution.

B. Chance Constraints

The chance constraint is a powerful technique in

uncertainty-aware optimization [31]. In comparison with the

deterministic constraints or the worst-case constraints where

the risk level ε is zero, a chance constraint enforces the proba-

bility of satisfying a stochastic constraint to be above a certain

confidence level 1 − ε (ε is usually not zero)

Probξ (y(x, ξ) ≤ u) ≥ 1 − ε (4)

or equivalently, the probability of violating the constraint to

be smaller than the risk level ε

Probξ (y(x, ξ) ≥ u) ≤ ε. (5)

Under strict conditions, such as the parameters being inde-

pendent and y(x, ξ) being a linear function, (4) can be

reformulated into equivalent deterministic constraints [37]. In

other words, one can reformulate the left-hand side of (4)

by its probability density function (PDF) and substitute the

right-hand side by a constant related to the cumulative density

function. However, these conditions rarely hold in practice.

Even if the conditions hold, computing the PDF or cumula-

tive density function of an uncertain variable can be intractable

[17], [36]. In these cases, we seek for deterministic reformula-

tions that can well approximate the chance constraints. There

is a tradeoff in choosing the reformulation: if the reformu-

lation is aggressive (the feasible domain is enlarged), it may

result in an infeasible solution; otherwise, if the reformulation

is conservative (the feasible domain is decreased), the solution

may be degraded.

One may convert the chance constraint (4) to a deterministic

constraint via the mean and variance of y(x, ξ) [36], [37]

Eξ

[

y(x, ξ)
]

+ κε

√

varξ
[

y(x, ξ)
]

≥ u. (6)

Here, Eξ [·] denotes the mean value and varξ [·] denotes the

variance. The constant κε is chosen as κε =
√

(1 − ε)/ε.

The detailed proof is shown in Appendix A. It is worth not-

ing that (6) is a stronger constraint than (4): every feasible

point of (6) is also a feasible point of the original chance

constraint (4).
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C. Stochastic Spectral Methods

Assume that y(ξ) is a smooth function satisfying

E[y2(ξ)] ≤ ∞. The stochastic spectral methods can approxi-

mate y(ξ) by orthonormal polynomial basis functions

y(ξ) ≈
p
∑

|α|=0

cα�α(ξ), with E
[

�α(ξ)�β(ξ)
]

= δα,β . (7)

Here |α| = α1 + · · · + αd2
, �α(ξ) is an orthonormal basis

function indexed by α, and cα is its corresponding coefficient.

If the parameters ξ are independent, ρ(ξ) equals the prod-

ucts of its 1-D marginal density function ρi(ξi). In this case, the

basis function �α(ξ) is the product of multiple 1-D orthogonal

basis functions

�α(ξ) = ψ1(ξ1) . . . ψd2

(

ξd2

)

. (8)

These 1-D basis functions ψi(ξi) can be constructed by

the three term recursion [38]. Various stochastic spectral

approaches have been proposed to compute the coefficients

cα , including the intrusive (i.e., nonsampling) solvers (e.g.,

stochastic Galerkin [39], the stochastic testing [16]) and the

nonintrusive (i.e., sampling) solvers (e.g., stochastic collo-

cation [40]). In the past few years, there has also been a

rapid progress in handling high-dimensional parameters, such

as the tensor recovery method [19], the compressive sens-

ing technique [41], analysis of variance (ANOVA) or the

high-dimensional model representation (HDMR) [42], and the

hierarchical uncertainty quantification [18].

In practice, the random parameters may be correlated. If

the parameters ξ are non-Gaussian correlated, the computa-

tion is more difficult. In such cases, �α(ξ) can be constructed

by the Gram–Schmidt approach [28], [29] or the Cholesky

factorization [43], [44]. The main difficulty lies in computing

high order moments of ξ , which can be well resolved by the

functional tensor train approach [44].

III. OUR YIELD-AWARE OPTIMIZATION MODEL

In this section, we show our yield-aware chance-constrained

optimization model, and illustrate how to convert the stochastic

formulation to a deterministic one. The basic assumptions are

listed as follows.

Assumption 1: We made the following assumptions.

1) The design variable x is upper and lower bounded,

i.e., x ∈ X = [a, b]d1 .

2) The stochastic parameter ξ ∈ � ∈ R
d2 admits a non-

Gaussian correlated density function ρ(ξ).

3) The yield is qualified by the following constraints:

yi(x, ξ) ≤ ui ∀ i ∈ [n]. (9)

Here, [n] = 1, . . . , n and E[yi(x, ξ)] ≤ ui. Each individ-

ual quantity yi(x, ξ) is a black-box function, and we can

obtain its function values at given sample points.

The design variables x are deterministic without any prob-

ability measures, and all samples of x are equally important

in the optimization process. Therefore, we treat x as mutually

independent random variables with a uniform distribution and

use Legendre polynomials as their basis functions. The pro-

cess variations ξ are non-Gaussian correlated, which enables

our model to handle generic cases.

A. Probabilistic Yield Optimization Model

The yield at a given design variable x can be defined as the

probability that the yield conditions (9) are satisfied, i.e.,

Y(x) = Probξ (y(x, ξ) ≤ u).

Here, y(x, ξ) = [y1(x, ξ), . . . , yn(x, ξ)]T and u =
[u1, . . . , un]T . Consequently, the yield optimization problem

can be described as

max
x∈X

Probξ (y(x, ξ) ≤ u). (10)

However, the above yield maximization often contradicts

with our performance goals. For instance, one may have to

reduce the clock rate of a processor significantly in order to

achieve a high yield. As a result, directly optimizing the yield

may lead to an over-conservative design. In practice, the design

variables that provide the best yield may be nonunique, and

we hope to chose a design that achieves good performance

and high yield simultaneously. Therefore, we ensure the yield

with a chance constraint

Probξ (y(x, ξ) ≤ u) ≥ 1 − ε (11)

and optimize the expected value of an uncertain performance

metric f (x, ξ) by the following yield-aware optimization:

min
x∈X

Eξ

[

f (x, ξ)
]

s.t. Probξ (y(x, ξ) ≤ u) ≥ 1 − ε. (12)

Here, ε is a given risk level to control the yield. The above for-

mulation is not equivalent to (10). It can describe, for instance,

the following design optimization problem: minimize the aver-

age power consumption of a photonic IC while ensuring at

least 95% yield (i.e., with 5% probability of violating tim-

ing and bandwidth constraints) under process variations. Note

that f (x, ξ) may also be the function (e.g., weighted sum) of

several performance metrics that we intend to optimize simul-

taneously. The parameter ε can help designers balance between

the yield and a target performance goal (i.e., power consump-

tion). A small ε results in a higher yield but possibly a worse

performance metric. Therefore, the value of ε can be chosen

adaptively and case-dependently by the users based on their

specific requirements on the performance and yield.

Because the yield function Y(x) and the objective function

f (x, ξ) are not available, we have to estimate the yield and

objective at a certain design variable x by the Monte Carlo

(MC) method [8], [9]. This requires a huge number of simu-

lation samples at each design variable x, which is infeasible

for many simulation-expensive photonic IC design problems.

Due to the ease of implementation, we reformulate the joint

chance constraint in (11) into individual chance constraints

Probξ (yi(x, ξ) ≤ ui) ≥ 1 − εi ∀ i ∈ [n]. (13)

In this formulation, εi means the risk tolerance of violat-

ing the ith design specification. Since Probξ (y(x, ξ) ≤ u) =
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Probξ (∩n
i=1(yi(x, ξ) ≤ ui)) = 1 − Probξ (∪n

i=1(yi(x, ξ) ≥ ui)),

the probability of the joint chance constraint can be upper and

lower bounded by the individual chance constraints

max
i=1,...,n

Probξ (yi(x, ξ) ≥ ui) ≤ Probξ

(

∪n
i=1(yi(x, ξ) ≥ ui)

)

≤
n
∑

i=1

Probξ (yi(x, ξ) ≥ ui).

When εi = ε for all i, (13) is a relaxation of (11) (e.g.,

the feasible domain is enlarged); when
∑n

i=1 εi ≤ ε, (13)

becomes more conservative than (11) (e.g., the feasible domain

is reduced). In this article, we do not give the universal

best choice of εi. Instead, the users can tune the parameters

adaptively based on their requirements.

Consequently, we have the following chance-constrained

yield-aware optimization model:

min
x∈X

Eξ

[

f (x, ξ)
]

s.t. Probξ (yi(x, ξ) ≤ ui) ≥ 1 − εi ∀ i ∈ [n]. (14)

B. Deterministic Reformulation

The chance-constrained optimization problem (14) is diffi-

cult to solve directly. This problem is more challenging when

yi(x, ξ) is nonlinear because it is almost impossible to formu-

late the chance constraints in (14) to equivalent deterministic

formulations. A naive approach is to replace the stochas-

tic constraints by inequality constraints over the expected

constraints

min
x∈X

Eξ

[

f (x, ξ)
]

s.t. Eξ

[

yi(x, ξ)
]

≤ ui ∀ i ∈ [n]. (15)

However, this treatment will lose the probability density

information and may not provide a high-quality solution,

although it can help improve the yield in practice. We

will illustrate this phenomenon in numerical experiments in

Section V-A.

Therefore, we do not use the formulation in (15). Instead,

we adopt the second-order moment approach in [36] and [37]

and replace (13) by

Eξ

[

yi(x, ξ)
]

+ κεi

√

varξ
[

yi(x, ξ)
]

≤ ui ∀ i ∈ [n]. (16)

Here, κεi =
√

(1 − εi/εi) is a scaling parameter. We present

the detailed proof in Appendix A and point out the following.

1) Constraint (16) is a stronger condition than (13). In other

words, each feasible point of (16) is also feasible for the

chance constraint (13).

2) The parameter εi is a user-defined risk tolerance. When

εi decreases, the feasible set will become smaller.

However, the optimal solution may result in a higher

yield.

3) When the variance varξ [yi(x, ξ)] is small enough, the

feasible set of (16) is close to the deterministic constraint

Eξ [yi(x, ξ)] ≤ ui.

Consequently, the probabilistic optimization model (14) is

reformulated into a deterministic optimization problem

min
x∈X

Eξ

[

f (x, ξ)
]

s.t. Eξ

[

yi(x, ξ)
]

+ κεi

√

varξ
[

yi(x, ξ)
]

≤ ui ∀ i ∈ [n]. (17)

IV. ALGORITHM AND IMPLEMENTATION DETAILS

We cannot solve problem (17) directly because we do not

know the mean values and variances for the black-box func-

tions {yi(x, ξ)}n
i=1 and f (x, ξ). A direct approach is to apply

an MC method to estimate the mean values and variances for

every iterate x. However, this is not affordable because of the

large number of numerical simulations.

In this section, we build the surrogate model for f (x, ξ)

and {yi(x, ξ)}n
i=1 by using generalized polynomial chaos [45]

and our recent developed uncertainty quantification solver

[28], [29]. Once the surrogate models are constructed, we can

perform deterministic optimization. The main task is to build

the orthogonal basis functions �α(x) and �β(ξ), and compute

the coefficients ci
α,β and hα,β such that

yi(x, ξ) ≈
p
∑

|α|+|β|=0

ci
α,β�α(x)�β(ξ) (18)

and

f (x, ξ) ≈
p
∑

|α|+|β|=0

hα,β�α(x)�β(ξ). (19)

Once the above surrogate models are obtained, the mean value

of yi(x, ξ) can be approximated by

Eξ

[

yi(x, ξ)
]

≈
p
∑

|α|=0

ci
α,0�α(x) (20)

and the variance is approximated by

varξ
[

yi(x, ξ)
]

≈
p
∑

|β|=1

⎛

⎝

p−|β|
∑

|α|=0

ci
α,β�α(x)

⎞

⎠

2

. (21)

Equation (21) is obtained based on the orthonormal prop-

erty of the basis functions. The detailed proof is shown in

Appendix B. The mean value of the objective function f (x, ξ)

can be evaluated in the same way. Finally, the deterministic

yield optimization model (17) has an explicit expression and

can be solved.

The overall framework is summarized in Algorithm 1. In

the following, we explain the implementation details.

A. Basis Functions for Design and Uncertainty Variables

For the mutually independent uniform-distributed design

variable x, their basis functions �α(x) can be decoupled into

the products of 1-D basis functions

�α(x) = φ1
α1

(x1) . . . φd1
αd1

(

xd1

)

. (22)

Here, φi
αi

(xi) is a Legendre polynomial [45] and can be

constructed by the three-term recurrence relation [38].

For the random vector ξ describing non-Gaussian cor-

related process variations, we construct its basis functions

�β(ξ) by the Gram–Schmidt approach proposed in [28]

and [29]. Specifically, we first reorder the monomials ξβ =
ξ

β1

1 . . . ξ
βd2

d2
in the graded lexicographic order, and denote them

as {pj(ξ)}Np

j=1. Here, N
d1
p =

(

d2+p
p

)

is the total number of

basis functions for ξ ∈ R
d2 bounded by order p. Then we

set �1(ξ) = 1 and generate the orthonormal polynomials
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Algorithm 1: Our Proposed Chance-Constrained Yield-

Aware Optimization Solver

Input: The range of the design variable x, PDF of the
non-Gaussian correlated random parameters ρ(ξ), the
polynomial order p, the upper bounds of performance
metrics {ui}n

i=1
, and the chance constraint thresholds

{εi}n
i=1

.
1. Construct the basis functions �α(x) and �β (ξ) based on

(22) and (23) independently.
2. Initialize the quadrature points for design variables

{xl, vl}M1

l=1
by (26), and quadrature points for stochastic

parameters {ξ l, ul}M2

l=1
by the optimization problem (27),

respectively. Then co-optimize the quadrature rule to
obtain {xk, ξk, wk}M

k=1
by (28).

3. Call the simulator to compute f (xk, ξk), yi(xk, ξk) for all
i = 1, . . . , n and k = 1, . . . , M.

4. Build the coefficients hα,β and ci
α,β

by equation (25).

5. Set up the optimization problem (31), and then solve it
via a global polynomial optimization solver, e.g., [51].

Output: The optimized design variable x∗

{�j(ξ)}Np

j=2 in the correlated parameter space recursively by

�̂j(ξ) = pj(ξ) −
j−1
∑

i=1

E
[

pj(ξ)�i(ξ)
]

�i(ξ)

�j(ξ) = �̂j(ξ)
√

E

[

�̂2
j (ξ)

]

, j = 2, . . . , Np. (23)

These basis functions {�j(ξ)}Np

j=1 can be reordered into

{�β(ξ)}p

|β|=0.

B. How to Compute the Coefficients?

By a projection approach, the coefficient ci
α,β for the basis

function can be computed by

ci
α,β = Ex,ξ

[

yi(x, ξ)�α(x)�β(ξ)
]

. (24)

The above integration can be well computed given a suitable

set of quadrature points {xk, ξ k}M
k=1 and weights {wk}M

k=1

ci
α,β ≈

M
∑

k=1

yi

(

xk, ξ k

)

�α(xk)�β(ξ k)wk. (25)

We need to design a proper quadrature rule. The main chal-

lenge here is that x is an independent vector but ξ describes

non-Gaussian correlated uncertainties.

In this article, we propose a three-stage optimization method

to compute the quadrature rule.

1) We compute the quadrature rule {xl, vl}M1

l=1 for the

independent design variable x.

2) We employ the optimization approach proposed in [28]

and [29] to calculate the quadrature points and weights

{ξ l, ul}M2

l=1 for the non-Gaussian correlated parameter ξ .

3) We use their tensor products (M1M2 points) as an ini-

tialization and call the optimization approach proposed

in [28] and [29] for the coupled space of x and ξ to

compute M ≤ M1M2 joint quadrature points and weights

{xk, ξ k, wk}M
k=1.

The details are described as follows.

1) Initial Quadrature Rule for x: One could employ the

sparse grid approach [46], [47] to compute the quadrature sam-

ples and weights for the independent uniform random variables

x ∈ R
d1 . However, the quadrature weights from a sparse grid

method can be negative, and the number of quadrature points

is not small enough. Therefore, after obtaining the sparse-grid

quadrature rule, we refine the quadrature rule by the least

square optimization solver

min
a≤xl≤b,vl≥0

N
d1
2p
∑

j=1

(

E
[

�j(x)
]

−
M1
∑

l=1

�j(xl)vl

)2

. (26)

Here, the expectations E[�j(x)] = δ1j are already known from

the orthogonality of basis functions, and N
d1

2p =
(

d1+2p
2p

)

. This

model is similar to that of [28] and [29], which provides the

quadrature points and weights to compute the numerical inte-

gral of all basis functions upper bounded by order 2p. If the

optimized objective in (26) is small, the numerical integral

of any functions in the pth order polynomial space will also

be accurate. Further, the number of points M1 can also be

updated adaptively. The theoretical proofs for the number of

quadrature points and the numerical approximation error are

provided in [29].

2) Initial Quadrature Points for ξ : For the non-Gaussian

correlated parameters ξ , we adopt the optimization-based

quadrature rule in [28] and [29]. Specifically, we compute M2

quadrature points ξ l and weights wl via solving the following

optimization problem:

min
ξ l,ul≥0

N
d2
2p
∑

j=1

(

E
[

�j(ξ)
]

−
M2
∑

l=1

�j

(

ξ l

)

ul

)2

. (27)

3) Optimized Joint Quadrature Points for x and ξ : The

tensor product of the two sets of quadrature points {xl, vl}M1

l=1

and {ξ l, ul}M2

l=1 result in M1M2 simulation points in total, which

may be still unaffordable for large-scale photonic design prob-

lems. We propose an optimization model to compute the joint

quadrature rule for both the design variables x and the uncer-

tain parameters ξ to further reduce the simulation cost of

building surrogate models

min
a≤xk≤b
ξ k,wk≥0

Nd
2p
∑

j1=1

Nd
2p−j1
∑

j2=1

(

δ1j1δ1j2 −
M
∑

k=1

�j1(xk)�j2

(

ξ k

)

wk

)2

. (28)

Here δ1j1δ1j2 = 1 if j1 = j2 = 1 and zero otherwise, and

d = d1 + d2. Our numerical experiments show that the total

number of optimized quadrature points is M is significantly

smaller than M1M2.

Remark: Problem (28) is a nonconvex optimization and is

hard to optimize in general. The subproblems (26) and (27)

help to provide a good initial guess for the joint optimization.

We use the block coordinate descent optimization method

described in [29] to solve all optimization subprob-

lems (26)–(28). The following theorem ensures high accuracy

for our surrogate model considering the unavoidable numerical

optimization error and function approximation error.
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Fig. 1. Flowchart of our proposed framework for solving the chance
constrained yield-aware optimization.

Theorem 1 [29]: Assume that {xk, ξ k, wk}M
k=1 are the

numerical solution to (28).

1) Suppose that the objective function of (28) decays to

zero. The required number of quadrature points is upper

and lower bounded by

Nd
p = (d + p)!

p!d!
≤ M ≤ Nd

2p = (d + 2p)!

(2p)!d!
. (29)

2) For any smooth and square-integrable function y(ξ),

the approximation error of its pth order stochastic

approximation ỹ(ξ) satisfies

‖y(x, ξ) − ỹ(x, ξ)‖2 ≤ α1δ1 + α2δ2. (30)

Here, ỹ(x, ξ) =
∑p

|α|+|β|=0 cα,β�α(x)�β(ξ), δ1

is the �1-norm of the objective function of (28)

evaluated at its final numerical solution, δ2 is the

distance of y(x, ξ) to the pth order polynomial space,

α1 = NpLT , α2 = 1 + NpW, L = max ‖y(x, ξ)‖2, T =
maxj1+j2,l1+l2=1,...,N2p

‖�j1(x)�j2(ξ)�l1(x)�l2(ξ)‖2, and

W = sup [(|I[y(ξ)]|)/(E[|y(ξ)|])] are constants.

Remark: This section focuses on the theory and imple-

mentation for building a surrogate model for low-dimensional

problems. For high-dimensional problems that are more costly

in both computing the quadrature rule and difficult in reduc-

ing the number of samples, we may apply a high-dimensional

solver such as the compressive sensing [43] to build the

surrogate model. Our framework in Fig. 1 is still applicable.

C. Proposed Polynomial Optimization

With the formula for the mean value (20) and the vari-

ance (21), we obtain the following deterministic formula for

the chance-constrained optimization:

min
x∈X

p
∑

|α|=0

hα,0�α(x)

s.t. κεi

√

√

√

√

√

p
∑

|β|=1

⎛

⎝

p−|β|
∑

|α|=0

ci
α,β�α(x)

⎞

⎠

2

+
p
∑

|α|=0

ci
α,0�α(x) ≤ ui ∀ i ∈ [n]. (32)

However, the constraints are nonsmooth because of the square-

root terms, and may not admit a gradient at some points [48].

Instead, we use the equivalent smooth polynomial formula

κ2
εi

varξ
[

yi(x, ξ)
]

≤
(

ui − Eξ

[

yi(x, ξ)
])2

. (33)

Consequently, (17) can be reduced to a deterministic and

smooth optimization problem of x in (31), as shown at the

bottom of this page.

Noting that both the objective function and the constraints

of (31) are polynomials, we can obtain the optimal solution

by using any polynomial solvers. In this article, we use the

semi-definite relaxation-based approaches [49], [50] because

they can find the global optimal solution.

V. NUMERICAL EXPERIMENTS

In this section, we verify our proposed approach by a

synthetic example and two photonic IC examples. The p

subproblem (31) is solved by the global optimization solver

GloptiPoly 3 [51]. For a design variable x, we generate M

parameters ξ j and approximate the yield by

yield(x) =
the number of ξ j such that yi

(

x, ξ j

)

≤ ui

M
.

(34)

We set all risk thresholds to ε. For the synthetic example,

we will compare our method with the deterministic formula-

tion (15). For the photonic IC examples, we will compare our

method with the BYO method [10]. We summarize the key

idea of the BYO in Appendix C. The MATLAB codes and a

demo example can be downloaded online.1

A. Synthetic Example

First, we consider a synthetic example with two design vari-

ables and two non-Gaussian correlated random parameters.

The design variable x admits a uniform distribution U [−1, 1]2

1https://web.ece.ucsb.edu/∼zhengzhang/codes_dataFiles/ccyopt/

min
x∈X

p
∑

|α|=0

hα,0�α(x)

s.t. κ2
εi

p
∑

|β|=1

⎛

⎝

p−|β|
∑

|α|=0

ci
α,β�α(x)

⎞

⎠

2

≤

⎛

⎝ui −
p
∑

|α|=0

ci
α,0�α(x)

⎞

⎠

2

,

p
∑

|α|=0

ci
α,0�α(x) ≤ ui ∀ i ∈ [n] (31)
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(a) (b) (c)

Fig. 2. Feasible set of the synthetic example with risk tolerance levels ε ∈ [10−2, 10−0.1] under different uncertainty distributions. (a) Positive-correlated
non-Gaussian distribution. (b) Gaussian independent distribution. (c) Negative correlated non-Gaussian distribution. The domain between the red lines are the

deterministic feasible set x2
1

± x2 ≤ 1, and the blue lines demonstrate the effects of chance constraints.

(a) (b) (c) (d)

Fig. 3. Quadrature points and weights in the synthetic experiment. (a) and (b) Initial 2-D quadrature points for the design variable x and uncertain parameters
ξ by solving (26) and (27), respectively. (c) and (d) Optimized quadrature points for the joint 4-D space of x and ξ by solving (28). Here, we project the
optimized 4-D quadrature points to the 2-D subspace of x and ξ , respectively. The quadrature weights are shown in colors.

and the uncertain parameter ξ follows a Gaussian mixture dis-

tribution. We define the yield criterion as (x1 + ξ1)
2 ± (x2 +

ξ2) ≤ 1 and our goal is to maximize Eξ [3(x1 +ξ1)+(x2 +ξ2)].

We formulate the yield into chance constraints and derive the

following problem:

max
x

Eξ [3(x1 + ξ1) − (x2 + ξ2)]

s.t. Probξ

(

(x1 + ξ1)
2 − (x2 + ξ2) ≤ 1

)

≥ 1 − ε

Probξ

(

(x1 + ξ1)
2 + (x2 + ξ2) ≤ 1

)

≥ 1 − ε. (35)

To illustrate the effects of different parameter dis-

tributions, we study three PDFs: 1) the independent

distribution N (0, 10−4I); 2) the non-Gaussian positive corre-

lations (1/2)N (0.01, 10−4�) + (1/2)N (−0.01, 10−4�)

with � =
(

1 0.75

0.75 1

)

; and 3) the non-Gaussian

negative correlations (1/2)N ([0.01,−0.01]T , 10−4�) +
(1/2)N ([−0.01, 0.01]T , 10−4�) with � =
(

1 − 0.75

−0.75 1

)

. The feasible sets under three probability

density distributions are shown in Fig. 2. The comparison

clearly shows that the effects of different uncertainties. For

all three density functions, the feasible regions are reduced

when the risk level ε decreases.

Next, we take the non-Gaussian positive correlated distribu-

tion as an example to compute the optimal solution of (35). We

TABLE I
OPTIMAL SOLUTION FOR THE SYNTHETIC EXPERIMENT UNDER

DIFFERENCE RISK THRESHOLD ε

first build the surrogate models for both the objective and con-

straints by the second-order polynomial basis functions. The

optimized quadrature points {xl, vl}6
l=1 for the design variables

by (26) and {ξ l, ul}6
l=1 for the random parameter by (27) are

shown in Fig. 3(a) and (b), respectively. Directly tensorizing

the two sets of quadrature points generates 36 samples. We

further solve (28) to reduce them to M = 19 optimized sam-

ples and weights. According to Theorem 1, the number of

quadrature samples for d = 4, p = 2 should be in the range

[15, 70]. Our optimization algorithm obtains M = 19, which

is close to the theoretical lower bound.

We further show the results for different risk tolerance lev-

els ε in Table I. A smaller ε results in a smaller feasible

domain (as shown in Fig. 2), and generates a higher yield

but a smaller objective value. In practice, ε can be chosen

case-by-case based on the tradeoff between the performance
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Fig. 4. Optical add-drop filter with three microrings coupled in series.

and yield requirements. Compared with the solution x̃ =
[0.9999, 0]T from solving (15), our method can achieve a sig-

nificantly higher yield: our optimized yield is above 87% while

solving (15) only leads to a yield of 41.66%.

B. Microring Add-Drop Filter

We continue to consider the design of an optical add-drop

filter consisting of three identical silicon microrings coupled

in series, as shown in Fig. 4. In designing such a broadband

optical filter, the coupling coefficients play an important role

in determining key performance metrics, such as the band-

width and extinction ratio [52], [53]. A broad and flat passband

with a high extinction ratio can be achieved by optimizing

the coupling strengths between the microrings [52]. In this

example, we employ silicon as the waveguide material and

assume the effective refractive index to be neff = 2.44 and

the effective group index to be ng = 4.19 near the wave-

length of 1.55 µm. The design variables are the coupling

coefficients x = [K1, K2, K3, K4] that are to be optimized

within the interval of [0.3, 0.6]. The random variables are set

as small deviations of the coupling coefficients. We assume

that ξ follows a non-Gaussian correlated distribution:

p(ξ) = 1

2
N (µ1,�) + 1

2
N (µ2,�) (36)

where µ1 = −µ2 = 0.006[1, 1, 1, 1]T , and the variance is

defined as

� = 0.0062

⎡

⎢

⎢

⎣

1 0.4 0.1 0.4

0.4 1 0.4 0.1

0.1 0.4 1 0.4

0.4 0.1 0.4 1

⎤

⎥

⎥

⎦

.

We mainly focus on three metrics of the microring filter:

1) the 3dB bandwidth (BW, in GHz); 2) the extinction ratio

(RE, in dB) of the transmission at the drop port; and 3) the

roughness (σpass, in dB) of the passband that takes a stan-

dard deviation of the passband. The yield-aware optimization

problem of the microring filter design can be formulated as

max
x∈X

Eξ

[

BW(x, ξ)
]

s.t. Probξ (RE(x, ξ) ≥ RE0) ≥ 1 − ε

Probξ

(

σpass(x, ξ) ≤ σ0

)

≥ 1 − ε (37)

TABLE II
OPTIMIZATION RESULTS FOR THE MICRORING ADD-DROP FILTER

where the yield is defined via some chance constraints on the

extinction ratio and the roughness of the passband. In our sim-

ulation, the threshold extinction ratio (RE0) and the roughness

of the passband (σ0) are 25 dB and 0.5 dB, respectively.

We first build the second-order polynomial surrogate model

by our proposed Algorithm 1. We only need 17 initial quadra-

ture points for the variable x by solving (26), 16 quadrature

points for the parameters ξ by solving (27), and 64 quadrature

points for the joint optimization of x and ξ by solving (28).

Fig. 5 shows that our surrogate model can well approximate

the probabilistic distributions of the performance metrics with

the comparison of 103 MC simulations, although our method

only needs 64 simulation samples for this example.

We summarize the results of our proposed method with

different choices of ε and the results obtained by the BYO

in Table II. It shows that when risk tolerance level ε

decreases, our proposed method can achieve higher yield and

lower bandwidth. This is corresponding to our theory that

a lower risk level ε results in a smaller feasible region.

Our proposed method can always achieve a large band-

width because it computes the global optimal solution of the

polynomial optimization problem. When ε = 0.05, we get

a bandwidth Eξ [BW] = 115.6 GHz with 99.8% yield at

the optimal solution x∗ = [0.5582, 0.4208, 0.3000, 0.6000],

while BYO takes 2020 simulations to achieve the result of

Eξ [BW] = 112.3 GHz with the yield 99.8%. Fig. 6 com-

pares the frequency response before and after the yield-aware

optimization. Both our proposed method and BYO can achieve

a higher bandwidth with a smoother passband compared to

the design before optimization. In Fig. 7, we plot the proba-

bility density of the bandwidth at the optimal design by our

chance-constrained optimization with ε = 0.05 and by the

BYO, respectively. It clearly shows that our proposed method

can increase the bandwidth while achieving the same yield.

C. Mach–Zehnder Interferometer

We apply the same framework to optimize a third-order

Mach–Zehnder interferometer (MZI) which consists of three

port coupling and two arms, as shown in Fig. 8. The coupling

coefficients between the MZ arms play the most important

role in the design. The relationship between the coupling

coefficient κ and the gap g (nm) is

κ = exp
(

− g

260

)

. (38)

In this experiment, the design variables x = [g1, g2, g3] are

optimized in the interval of [100 nm, 300 nm]3. The random

variable ξ follows the Gaussian mixture distribution:

p(ξ) = 1

2
N (µ1,�) + 1

2
N (µ2,�) (39)
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(a) (b) (c)

Fig. 5. PDFs of the bandwidth, extinction ratio, and roughness for the microring add-drop filter at the optimal solution x∗ = [0.5582, 0.4208, 0.3000, 0.6000]

by our proposed optimization with ε = 0.05. Our surrogate model uses only 64 simulations, and MC uses 103 simulations.

Fig. 6. Transmission curves of the microring add-drop filter at different design choices. The gray lines show the uncertainties caused by the process variations.
The orange and blue curves show the mean transmission rates at the drop port and the through port, respectively. Here, RE, BW, and σpass denote the mean

values of extinction ratio, bandwidth, and roughness, respectively. (a) Transmission at x0 = [0.45, 0.45, 0.45, 0.45] without any optimization. It does not have
a clear passband because σpass is too large. (b) Results after the BYO. (c) Results obtained from our chance-constrained optimization with ε = 0.05.

Fig. 7. Optimized bandwidth probability density distribution of the micror-
ing filter. Our chance-constrained optimization obtain an expected value of
115.6 GHz while the BYO only produces an expected value of 112.3 GHz.

where µ1 = −µ2 = [1, 1, 1]T , and

� =

⎡

⎣

1 0.4 0.1

0.4 1 0.4

0.1 0.4 1

⎤

⎦.

We consider three performance metrics of the MZI: 1) the

3 dB bandwidth (BW, in GHz); 2) the crosstalk (XT, in dB);

and 3) the attenuation (α, in dB) of the peak transmission. The

yield is defined through the crosstalk and the attenuation. The

Fig. 8. Schematic of a third-order MZI.

yield-aware optimization is formulated as

max
x

Eξ

[

BW(x, ξ)
]

s.t. Probξ (XT(K, ξ) ≤ XT0) ≥ 1 − ε

Probξ (α(x, ξ) ≤ α0) ≥ 1 − ε (40)

where the yield risk level is ε. The threshold crosstalk (XT0)

and attenuation (α0) are −4 dB and 2 dB, respectively.

We first build three second-order polynomial surrogate mod-

els for BW, XT, and α by our proposed Algorithm 1. We

generate 11 initial quadrature points for the design variable x,

10 initial quadrature points for the uncertainty parameter ξ .

Then we apply the tensor product of those 110 points to

problem (28) and eventually get 36 quadrature points for the

joint space after co-optimization. Fig. 9 shows that our sur-

rogate models constructed with 36 quadrature points can well

approximate the density functions of all three performance

metrics compared with MC with 103 samples.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 30,2021 at 19:02:27 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: CHANCE-CONSTRAINED AND YIELD-AWARE OPTIMIZATION OF PHOTONIC ICs WITH NON-GAUSSIAN CORRELATED PROCESS VARIATIONS 4967

(a) (b) (c)

Fig. 9. PDFs for the bandwidth, crosstalk, and attenuation of the MZI at our optimized design parameters x∗ = [0.300, 0.5036, 0.300]. Our surrogate model
uses only 36 simulations and MC uses 1000 simulations.

Fig. 10. Transmission curves of the MZI. The gray lines show the performance uncertainties. The orange and blue curves show the transmission rates at
the drop and through ports, respectively. The mean values of the bandwidth, crosstalk, and attenuation are denoted as BW, XT, and α, respectively. (a) Initial

design x0 = [150, 150, 150]. (b) Design after BYO. (c) Design with the proposed chance-constrained yield optimization.

TABLE III
OPTIMIZATION RESULT FOR THE MZI

Fig. 11. Optimized bandwidth of the MZI by the BYO and our proposed
method, respectively. The expectation bandwidth of the BYO is 175.4 GHz
while our proposed method with ε = 0.05 can get 186.4 GHz.

We also compare our proposed method and BYO in

Table III. Similar to the result in Table II, a lower risk tol-

erance results in higher yield and a lower expected value of

bandwidth. Our method requires 56× fewer simulation points

than BYO, which is a great advantage for design cases with

the time-consuming simulations. For ε = 0.05, the optimized

nominal design is x∗ = [300, 111.2, 300] and its expected

bandwidth is 192.2 GHz. In Fig. 10, we compare the frequency

response before and after the yield-aware optimization. Our

proposed method can have a higher bandwidth and a smaller

crosstalk compared to BYO and the initial design. Fig. 11 fur-

ther shows the probability density of the optimized bandwidth

by our chance-constrained optimization and the BYO, respec-

tively. It clearly shows that our proposed method produces

higher bandwidth.

VI. CONCLUSION

This article has presented a data-efficient framework for the

yield-aware optimization of photonic ICs under non-Gaussian

correlated process variations. We have proposed to reformulate

the stochastic chance-constrained optimization into a deter-

ministic polynomial optimization problem. Our framework

only requires simulation at a small number of important points

and admits a surrogate model for yield-aware optimization. In

the experiments by the microring filter and the Mach–Zehnder

filter, we have demonstrated that our optimization scheme can

give high yield and high bandwidth. Compared with BYO,

our method has consumed much fewer simulation samples and
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produced better design performance while achieving the same

yield.

This article should be regarded as a presentation of prelimi-

nary results in this direction. Many problems are worth further

investigation in the future, for instance.

1) Nonsmoothness: Similar to generalized polynomial

chaos [45], the surrogate modeling techniques in [28]

and [29] require the stochastic functions to be smooth.

However, the performance metrics of a photonic IC may

be nonsmooth with respect to the design variables and

process variations. How to handle nonsmoothness in this

optimization framework is a critical issue.

2) High Dimensionality: Large-scale photonic ICs may

have a huge number of design variables and process

variation parameters. This brings new challenges to

the surrogate modeling and the resulting polynomial

optimization in our framework.

APPENDIX A

DETAILED DERIVATION OF (6)

Suppose u > Eξ [y(x, ξ)]. We show that the following

deterministic constraint

Eξ

[

y(x, ξ)
]

+
√

(1 − ε)/ε

√

varξ
[

y(x, ξ)
]

≤ u

is a sufficient but not necessary condition for the chance

constraint

Probξ (y(x, ξ) ≤ u) ≥ 1 − ε.

In other words, we want to show that each feasible point

of (16) is a feasible point of the chance constraint (13).

Denote the random variable as X = y(x, ξ). Cantelli’s

inequality [54] states that for any random variable X with

a mean value E[X] = Eξ [y(x, ξ)] and variance σ 2 =
varξ [y(x, ξ)], it holds that the probability of a single tail can

be bounded as follows:

Prob(X − E[X] ≤ λ) ≥ 1 − σ 2

σ 2 + λ2
if λ > 0. (41)

Therefore, for any constant u ≥ E[x] we have

Prob(X ≤ u) = Prob(X − E[X] ≤ u − E[X])

≥ 1 − σ 2

σ 2 + (u − E[X])2
.

For any ε, a sufficient condition for Prob(X ≤ u) ≥ 1 − ε is

1 − [σ 2/(σ 2 + (u − E[x])2)] ≥ 1 − ε, i.e.,

E[X] +
√

(1 − ε)/εσ ≤ u. (42)

Substituting X = y(x, ξ) into the above equation we get (6).

The proof is completed.

APPENDIX B

DETAILED DERIVATION OF (20) AND (21)

Suppose that the smooth function y(x, ξ) is already repre-

sented by a linear combination of some basis functions

y(x, ξ) =
p
∑

|α|+|β|=0

cα,β�α(x)�β(ξ) (43)

where E[�β(ξ)�γ (ξ)] = δβ,γ . The mean value of y(x, ξ) is

Eξ

[

y(x, ξ)
]

=
p
∑

|α|=0

p−|α|
∑

|β|=0

cα,β�α(x)E
[

�β(ξ)
]

=
p
∑

|α|=0

cα,0�α(x)

where the last equality is due to �0(ξ) = 1 and E[�β(ξ)] =
E[�β(ξ)�0(ξ)] = 0 ∀β �= 0. The variance is

varξ
[

y(x, ξ)
]

= Eξ

[

(

y(x, ξ) − Eξ

[

y(x, ξ)
])2
]

= Eξ

⎡

⎢

⎣

⎛

⎝

p
∑

|β|=1

⎛

⎝

p−|β|
∑

|α|=0

cα,β�α(x)

⎞

⎠�β(ξ)

⎞

⎠

2
⎤

⎥

⎦

=
p
∑

|β|=1

⎛

⎝

p−|β|
∑

|α|=0

cα,β�α(x)

⎞

⎠

2

where the last equality is due to the basis functions {�β(ξ)}
are orthogonal in the stochastic parameter space.

APPENDIX C

BAYESIAN YIELD OPTIMIZATION

BYO is a state-of-the-art tool for the yield optimization of

electronic devices and circuits [10]. This method approximates

and optimizes the posterior distribution of design variable

under the condition of pass events

S = {(x, ξ) : (x, ξ) satisfies all performance constraints}.

With the Bayes’ theorem, it holds that Prob(S|x) =
[(Prob(S))/(Prob(x))]Prob(x|S). In our problem setting,

Prob(x) is a constant because we assume that x follows

a uniform distribution and Prob(S) should also be a con-

stant without the dependence on the variable x. Therefore,

Prob(S|x) ∝ Prob(x|S) and the original yield optimization

problem (3) is equivalent to

xBYO = argmax
x∈X

Prob(x|S). (44)

The paper [10] proposed an expectation-maximization frame-

work to solve problem (44). At the t-th iteration, the expec-

tation step approximates the probability by the kernel density

estimation. Specifically, we generate N = 100 samples (xi, ξ i)

randomly and call a simulator to compute the quantity of

interests at those samples. Then choose M ≤ N pass samples

to perform the kernel density estimation

Prob(x|S) ≈ 1

M

M
∑

i=1

1√
2πh

exp

(

− 1

2h

(

x − µi

)T(
x − µi

)

)

where {µi}M
i=1 ∈ S are design samples that satisfies the

performance constraints and h = 0.3 is a bandwidth parameter.

Afterward, the maximization step returns an updated design

variable xBYO,t. We will call the simulator again at this design

variable to record its objective value and pass status. We ter-

minate the algorithm if the maximal iteration number 20 is

reached, or the residue of two consecutive iterations is below
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10−6. After the whole optimization process, we return the

design variable that can pass the yield constraints with the

best objective value

xBYO = arg max
x∈xBYO,t

Eξ

[

f (x, ξ)
]

s.t. pass(x) = 1.
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