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Chance-Constrained and Yield-Aware Optimization
of Photonic ICs With Non-Gaussian
Correlated Process Variations

Chunfeng Cui

Abstract—Uncertainty quantification has become an efficient
tool for uncertainty-aware prediction, but its power in yield-
aware optimization has not been well explored from either
theoretical or application perspectives. Yield optimization is a
much more challenging task. On the one side, optimizing the
generally nonconvex probability measure of performance metrics
is difficult. On the other side, evaluating the probability mea-
sure in each optimization iteration requires massive simulation
data, especially, when the process variations are non-Gaussian
correlated. This article proposes a data-efficient framework for
the yield-aware optimization of photonic ICs. This framework
optimizes the design performance with a yield guarantee, and
it consists of two modules: 1) a modeling module that builds
stochastic surrogate models for design objectives and chance
constraints with a few simulation samples and 2) a novel
yield optimization module that handles probabilistic objectives
and chance constraints in an efficient deterministic way. This
deterministic treatment avoids repeatedly evaluating probability
measures at each iteration, thus it only requires a few simulations
in the whole optimization flow. We validate the accuracy and effi-
ciency of the whole framework by a synthetic example and two
photonic ICs. Our optimization method can achieve more than
30x reduction of simulation cost and better design performance
on the test cases compared with a Bayesian yield optimization
approach developed recently.

Index Terms—Chance constraints, integrated photonics, non-
Gaussian correlations, photonic design automation, uncertainty
quantification, yield optimization.

I. INTRODUCTION

HE DEMAND for low-power, high-speed communica-
Ttions, and computations have boosted the advances in
photonic integrated circuits. Based on the modern nano-
fabrication technology, hundreds to thousands of photonic
components can be integrated on a single chip [1], [2].
However, process variations persist during all the fabrication
processes and can cause a significant yield degradation in
large-scale design and manufacturing [3]-[6]. Photonic ICs are
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more sensitive to process variations (e.g., geometric uncertain-
ties) due to their large device dimensions compared with the
small wavelength. To achieve an acceptable yield, uncertainty-
aware design optimization algorithms are highly desirable [7].

Yield optimization algorithms try to increase the success
ratio of a chip under random process variations, and they
have been studied for a long time in the electronic cir-
cuit design [8]-[11]. However, it is still expensive to reuse
existing yield optimization solvers for photonic ICs. The
major difficulties include: 1) the quantity of interest (e.g.,
the probability distribution of a bandwidth) does not admit
an explicit expression. Instead, we only know the simulation
values at parameter sample points; 2) the design objec-
tives and constraints are defined in a stochastic way. They
are hard to compute directly and require massive numeri-
cal simulations to estimate their statistical distributions; and
3) practical photonic IC designs often involve non-Gaussian
correlated process variations, which are more difficult to cap-
ture. To estimate the design yield efficiently, one alternative
is to build a surrogate model. In [12]-[14], posynomials
were used to model statistical performance, and geomet-
ric programming was employed to optimize the worst-case
performance. Li et al. [15] proposed a Chebyshev affine arith-
metic method to predict the cumulative distribution function.
The recent Bayesian yield optimization (BYO) [10] approx-
imated the probability density of the design variable under
the condition of “pass” by the kernel density estimation. The
work [11] further approximated the yield over the design vari-
ables directly by a Gaussian process regression. However,
these machine learning techniques may still require many sim-
ulation samples. Furthermore, worst-case optimization or only
optimizing the yield can lead to nonoptimal (and even poor)
chip performance.

Recently, uncertainty quantification methods based on gen-
eralized polynomial chaos have achieved great success in
modeling the impact caused by process variations in electronic
and photonic ICs [16]-[27]. A novel stochastic collocation
approach was further proposed in [28] and [29] to handle
non-Gaussian correlated process variations, which shows sig-
nificantly better accuracy and efficiency than [30] due to
an optimization-based quadrature rule. These techniques con-
struct stochastic surrogate models with a small number of
simulation samples, but their power in yield optimization has
not been well explored despite the recent robust optimization
methods [7] based on generalized polynomial chaos.
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Leveraging the chance-constrained optimization [31] and
our recently proposed uncertainty quantification solvers
[28], [29], this article presents a data-efficient technique to
optimize photonic ICs with non-Gaussian correlated process
variations. Instead of just optimizing the yield, we optimize a
target performance metric while enforcing the probability of
violating design rules to be smaller than a user-defined thresh-
old. Doing so can avoid performance degradation in yield
optimization. Chance-constrained optimization [31] has been
widely used in system control [32], autonomous vehicles [33],
and reliable power generation [34], [35], but it has not been
investigated for yield optimization of electronic or photonic
ICs. Our specific contributions include.

1) A chance-constraint optimization framework that can
achieve high chip performance and high yield simultane-
ously under non-Gaussian correlated process variations.

2) A surrogate model that approximates the stochastic
objective and constraint functions with a few simula-
tions. Since both the objective function and constraints
are only available through a black-box simulator, we
build a surrogate model based on the recent uncertainty
quantification solver [29]. The main step is to compute a
quadrature rule in the joint space of design variables and
stochastic parameters by a new three-stage optimization
process.

3) A deterministic reformulation. A major challenge of
chance-constrained optimization is to reformulate the
stochastic constraints into deterministic ones [36].
We reformulate the probabilistic objective function
and constraints as nonsmooth deterministic functions.
Afterward, we transform them into an equivalent poly-
nomial optimization, which can be solved efficiently.

4) Validations on benchmarks. Finally, we validate the effi-
ciency of our proposed framework on a synthetic exam-
ple, a microring add-drop filter, and a Mach—Zehnder
filter. Preliminary numerical experiments show that our
proposed framework can find the optimal design vari-
able efficiently. Compared with the BYO method [10],
our proposed method can reduce the number of simula-
tions by 30x, achieve better performance, and produce
a similar yield on the test cases.

This article should be regarded as a preliminary result in this
direction, and many topics can be investigated in the future.

II. PRELIMINARIES
A. Yield Optimization

The yield is defined as the percentage of qualified products
overall. For a photonic IC, denote the design variables by x =
[x1, x2, ...,xdl]T € X and the process variations by random
parameters & = [£1, &, ..., édz]r € Q. Suppose x is uniformly
distributed in a bound domain and & follows a probability
distribution p(&). Let {y;(x, E)}?’:1 denote a set of performance
metrics of interest, {u;}?_, denote its required upper bound,
and /(x, &) denote the indicator function

1, if yi(x,&)<u;
0, otherwise.

Vi=1,...,n

I(x, &) = { (D

The yield at a certain design choice x is defined as
Y(x) = Probg (y(x, §) < ulx) = Eg[I(x, §)]. 2)

The yield optimization problem aims to find an optimal design
variable x* such that

x* = argmax Y(x). 3)
xeX

There are three major difficulties in solving the above yield
optimization problem: 1) the indicator function I(x, §) does
not always admit an explicit formulation; 2) computing the
yield Y(x) involves a nontrivial numerical integration, which
requires numerous simulations at each design variable x; and
3) Y(x) is an implicit nonconvex function and it is difficult to
compute its optimal solution.

B. Chance Constraints

The chance constraint is a powerful technique in
uncertainty-aware optimization [31]. In comparison with the
deterministic constraints or the worst-case constraints where
the risk level € is zero, a chance constraint enforces the proba-
bility of satisfying a stochastic constraint to be above a certain
confidence level 1 — € (e is usually not zero)

Probg (y(x, &) <u)>1-—¢ 4)

or equivalently, the probability of violating the constraint to
be smaller than the risk level €

Probg (y(x, &) > u) <e. (3)

Under strict conditions, such as the parameters being inde-
pendent and y(x,&) being a linear function, (4) can be
reformulated into equivalent deterministic constraints [37]. In
other words, one can reformulate the left-hand side of (4)
by its probability density function (PDF) and substitute the
right-hand side by a constant related to the cumulative density
function. However, these conditions rarely hold in practice.
Even if the conditions hold, computing the PDF or cumula-
tive density function of an uncertain variable can be intractable
[17], [36]. In these cases, we seek for deterministic reformula-
tions that can well approximate the chance constraints. There
is a tradeoff in choosing the reformulation: if the reformu-
lation is aggressive (the feasible domain is enlarged), it may
result in an infeasible solution; otherwise, if the reformulation
is conservative (the feasible domain is decreased), the solution
may be degraded.

One may convert the chance constraint (4) to a deterministic
constraint via the mean and variance of y(x, &) [36], [37]

Eg[y(x, §)] + key/varg[y(x, §)] = u. (6)

Here, Eg[-] denotes the mean value and varg[-] denotes the
variance. The constant k. is chosen as k. = /(I — €)/e.
The detailed proof is shown in Appendix A. It is worth not-
ing that (6) is a stronger constraint than (4): every feasible
point of (6) is also a feasible point of the original chance
constraint (4).
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C. Stochastic Spectral Methods

Assume that y(§) is a smooth function satisfying
E[y?(&)] < oo. The stochastic spectral methods can approxi-
mate y(&) by orthonormal polynomial basis functions

P

(&) ~ Z ca Vo (§), with E[Wy(E)Wg(§)] =8up. (7)
|o|=0

Here |a| = oy + -+ 4+ ag,, Wy(§) is an orthonormal basis

function indexed by «, and ¢4 is its corresponding coefficient.

If the parameters & are independent, p(§) equals the prod-
ucts of its 1-D marginal density function p;(&;). In this case, the
basis function Wy (&) is the product of multiple 1-D orthogonal
basis functions

o (§) = V181 - .. Vi, (§a)- ®)

These 1-D basis functions v;(§;) can be constructed by
the three term recursion [38]. Various stochastic spectral
approaches have been proposed to compute the coefficients
Cq, including the intrusive (i.e., nonsampling) solvers (e.g.,
stochastic Galerkin [39], the stochastic testing [16]) and the
nonintrusive (i.e., sampling) solvers (e.g., stochastic collo-
cation [40]). In the past few years, there has also been a
rapid progress in handling high-dimensional parameters, such
as the tensor recovery method [19], the compressive sens-
ing technique [41], analysis of variance (ANOVA) or the
high-dimensional model representation (HDMR) [42], and the
hierarchical uncertainty quantification [18].

In practice, the random parameters may be correlated. If
the parameters & are non-Gaussian correlated, the computa-
tion is more difficult. In such cases, W (&) can be constructed
by the Gram-Schmidt approach [28], [29] or the Cholesky
factorization [43], [44]. The main difficulty lies in computing
high order moments of &, which can be well resolved by the
functional tensor train approach [44].

III. OUR YIELD-AWARE OPTIMIZATION MODEL

In this section, we show our yield-aware chance-constrained
optimization model, and illustrate how to convert the stochastic
formulation to a deterministic one. The basic assumptions are
listed as follows.
Assumption 1: We made the following assumptions.
1) The design variable x is upper and lower bounded,
ie,x e X =|a, b]dl.

2) The stochastic parameter £ € € R% admits a non-
Gaussian correlated density function p ().

3) The yield is qualified by the following constraints:

Yie [n]. )

Here, [n] =1, ..., n and E[y;(x, )] < u;. Each individ-
ual quantity y;(x, &) is a black-box function, and we can
obtain its function values at given sample points.

The design variables x are deterministic without any prob-
ability measures, and all samples of x are equally important
in the optimization process. Therefore, we treat x as mutually
independent random variables with a uniform distribution and

yi(x7 s) = u;
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use Legendre polynomials as their basis functions. The pro-
cess variations & are non-Gaussian correlated, which enables
our model to handle generic cases.

A. Probabilistic Yield Optimization Model

The yield at a given design variable x can be defined as the
probability that the yield conditions (9) are satisfied, i.e.,

Y(x) = Probg (y(x, §) < u).

Here, y(x,&) = [, &),....,y,x &1 and u =
[u1, ..., u,]". Consequently, the yield optimization problem
can be described as

max Probg (y(x, §) < u). (10)
xeX

However, the above yield maximization often contradicts
with our performance goals. For instance, one may have to
reduce the clock rate of a processor significantly in order to
achieve a high yield. As a result, directly optimizing the yield
may lead to an over-conservative design. In practice, the design
variables that provide the best yield may be nonunique, and
we hope to chose a design that achieves good performance
and high yield simultaneously. Therefore, we ensure the yield
with a chance constraint

Probs (y(x, &) <u) > 1—¢€ (1D

and optimize the expected value of an uncertain performance
metric f(x, &) by the following yield-aware optimization:

min Eg[fer. )]

s.t. Probg(y(x,§) <u) > 1—e. (12)

Here, € is a given risk level to control the yield. The above for-
mulation is not equivalent to (10). It can describe, for instance,
the following design optimization problem: minimize the aver-
age power consumption of a photonic IC while ensuring at
least 95% yield (i.e., with 5% probability of violating tim-
ing and bandwidth constraints) under process variations. Note
that f(x, &) may also be the function (e.g., weighted sum) of
several performance metrics that we intend to optimize simul-
taneously. The parameter € can help designers balance between
the yield and a target performance goal (i.e., power consump-
tion). A small € results in a higher yield but possibly a worse
performance metric. Therefore, the value of € can be chosen
adaptively and case-dependently by the users based on their
specific requirements on the performance and yield.

Because the yield function Y (x) and the objective function
f(x, &) are not available, we have to estimate the yield and
objective at a certain design variable x by the Monte Carlo
(MC) method [8], [9]. This requires a huge number of simu-
lation samples at each design variable x, which is infeasible
for many simulation-expensive photonic IC design problems.

Due to the ease of implementation, we reformulate the joint
chance constraint in (11) into individual chance constraints

Probg (yi(x,§) <u)) > 1—¢ Vie[n] (13)

In this formulation, €; means the risk tolerance of violat-
ing the ith design specification. Since Probg(y(x,§) < u) =
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Probg (M_; (vi(x, §) < u;)) = 1 — Probg (UL, (i(x, §) > u;)),
the probability of the joint chance constraint can be upper and
lower bounded by the individual chance constraints

max Probg (yi(x, &) > u;) < Probg (UL, (yi(x, &) > uy))

i=1,...,

n
< ) Probe(yi(x. §) = u).

i=1
When ¢; = € for all i, (13) is a relaxation of (11) (e.g.,
the feasible domain is enlarged); when Z?:l € < €, (13)
becomes more conservative than (11) (e.g., the feasible domain
is reduced). In this article, we do not give the universal
best choice of ¢;. Instead, the users can tune the parameters
adaptively based on their requirements.

Consequently, we have the following chance-constrained

yield-aware optimization model:

min Bs[/(x, )]

s.t. Probg(vi(x, &) <uj)) >1—¢ Vieln. (14

B. Deterministic Reformulation

The chance-constrained optimization problem (14) is diffi-
cult to solve directly. This problem is more challenging when
vi(x, &) is nonlinear because it is almost impossible to formu-
late the chance constraints in (14) to equivalent deterministic
formulations. A naive approach is to replace the stochas-
tic constraints by inequality constraints over the expected
constraints

min Eg[fer. )]

st. Be[yix, &)] <w; Vieln] (15)
However, this treatment will lose the probability density
information and may not provide a high-quality solution,
although it can help improve the yield in practice. We
will illustrate this phenomenon in numerical experiments in
Section V-A.
Therefore, we do not use the formulation in (15). Instead,
we adopt the second-order moment approach in [36] and [37]
and replace (13) by

Eg[yitx, §)] + ke /varg [vix, ] <wi Vienl. (16)

Here, k¢, = /(1 — €;/€;) is a scaling parameter. We present
the detailed proof in Appendix A and point out the following.
1) Constraint (16) is a stronger condition than (13). In other
words, each feasible point of (16) is also feasible for the
chance constraint (13).

2) The parameter ¢; is a user-defined risk tolerance. When
¢; decreases, the feasible set will become smaller.
However, the optimal solution may result in a higher
yield.

3) When the variance varg[y;(x, §)] is small enough, the
feasible set of (16) is close to the deterministic constraint
Eelyi(x, £)] < u;.

Consequently, the probabilistic optimization model (14) is

reformulated into a deterministic optimization problem

min B[/ (x. )]

st. Be[yi(x, &)] 4 key/varg[yix, &) <wi Vie[n]l. (A7)

IV. ALGORITHM AND IMPLEMENTATION DETAILS

We cannot solve problem (17) directly because we do not
know the mean values and variances for the black-box func-
tions {y;(x,§)}?_, and f(x, &). A direct approach is to apply
an MC method to estimate the mean values and variances for
every iterate x. However, this is not affordable because of the
large number of numerical simulations.

In this section, we build the surrogate model for f(x, &)
and {y;(x, §)}’_, by using generalized polynomial chaos [45]
and our recent developed uncertainty quantification solver
[28], [29]. Once the surrogate models are constructed, we can
perform deterministic optimization. The main task is to build
the orthogonal basis functions @4 (x) and Wg (&), and compute
the coefficients c;’ 8 and hy g such that

P
Vi E) R Y ch g Pa(x)Wp(E) (18)
ee|+|B1=0
and
p
fEEO~ Y hygPax)Vp(E). (19)

lee|+81=0

Once the above surrogate models are obtained, the mean value
of y;(x, &) can be approximated by

P
Eg[yite, )] ~ ) ¢, gPalx) (20)
loe|=0
and the variance is approximated by
p_(p-IBl 2
varg [yite, )] ~ Y | D ¢ pPal®) 1)
[B1=1 \ la|=0

Equation (21) is obtained based on the orthonormal prop-
erty of the basis functions. The detailed proof is shown in
Appendix B. The mean value of the objective function f(x, §)
can be evaluated in the same way. Finally, the deterministic
yield optimization model (17) has an explicit expression and
can be solved.

The overall framework is summarized in Algorithm 1. In
the following, we explain the implementation details.

A. Basis Functions for Design and Uncertainty Variables

For the mutually independent uniform-distributed design
variable x, their basis functions ®4(x) can be decoupled into
the products of 1-D basis functions

o (x) = g, (x1) - 95, (xay)-

Here, ¢f;[[(xl-) is a Legendre polynomial [45] and can be
constructed by the three-term recurrence relation [38].

For the random vector & describing non-Gaussian cor-
related process variations, we construct its basis functions
Wg(§) by the Gram-Schmidt approach proposed in [28]
and [29]. Specifically, we first reorder the monomials g =

(22)

& f L 5 dzdz in the graded lexicographic order, and denote them
as {pj(E)};v:pl. Here, Ni' = (dzlj“p) is the total number of

basis functions for & € R?% bounded by order p. Then we
set W1(§) = 1 and generate the orthonormal polynomials
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Algorithm 1: Our Proposed Chance-Constrained Yield-
Aware Optimization Solver

Input: The range of the design variable x, PDF of the
non-Gaussian correlated random parameters o (&), the
polynomial order p, the upper bounds of performance
metrics {ui}?: 1» and the chance constraint thresholds
{ei}i ;-

1. Conslt?&ct the basis functions @y (x) and Wg(§) based on
(22) and (23) independently.

2. Imtlahze the quadrature points for design variables
{x;, vl} =] by (26), and quadrature points for stochastic

parameters {&;, ul}?/] by the optimization problem (27),
respectively. Then co-optimize the quadrature rule to
obtain {xi, &, Wk}kM=1 by (28).

3. Call the simulator to compute Sxx, Er), yi(xy, &) for all
i=1,...,nand k=1, .

4. Build the coefﬁ01ents ha ’g and d B by equation (25).

5. Set up the optimization problem (31) and then solve it
via a global polynomial optimization solver, e.g., [51].

Output: The optimized design variable x*

{W;(& )}]].Vzp2 in the correlated parameter space recursively by

j—1
Wi(&) = pi(&) — Y _E[pi&)wi®)]Wi(§)
i=1

\,I\/'
v = &

E[#2@)]

(23)

These basis functions {W; (’;‘)}J N | can be reordered into
{\Ijﬂ@)}‘m =0

B. How to Compute the Coefficients?

By a projection approach, the coefficient cfx 8 for the basis
function can be computed by

chp = Exg[yilx, ) Pa(x)Wp(®)].

The above integration can be well computed given a suitable
set of quadrature points {xj, & k}ﬁ’lz | and weights {wy }2’1: 1

(24)

M
Cup ™ D Vil £¢) Pa(r) Wp (E Wi (25)
k=1
We need to design a proper quadrature rule. The main chal-
lenge here is that x is an independent vector but & describes
non-Gaussian correlated uncertainties.
In this article, we propose a three-stage optimization method
to compute the quadrature rule.
1) We compute the quadrature rule {x;, vl} =, for the
independent design variable x.
2) We employ the optimization approach proposed in [28]
and [29] to calculate the quadrature points and weights
{&,, ul} 1—; Tor the non-Gaussian correlated parameter §.
3) We use their tensor products (MM, points) as an ini-
tialization and call the optimization approach proposed
in [28] and [29] for the coupled space of x and & to
compute M < MM, joint quadrature points and weights
(o, & WL
The details are described as follows.
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1) Initial Quadrature Rule for x: One could employ the
sparse grid approach [46], [47] to compute the quadrature sam-
ples and weights for the independent uniform random variables
x € RY. However, the quadrature weights from a sparse grid
method can be negative, and the number of quadrature points
is not small enough. Therefore, after obtaining the sparse-grid
quadrature rule, we refine the quadrature rule by the least
square optimization solver

d

N211
00 5 COTRIES w2t B

Here, the expectations E[®;(x)] = §;; are already known from
the orthogonality of basis functions, and Ng 1 — (dlz; 2p ). This
model is similar to that of [28] and [29], which provides the
quadrature points and weights to compute the numerical inte-
gral of all basis functions upper bounded by order 2p. If the
optimized objective in (26) is small, the numerical integral
of any functions in the pth order polynomial space will also
be accurate. Further, the number of points M; can also be
updated adaptively. The theoretical proofs for the number of
quadrature points and the numerical approximation error are
provided in [29].

2) Initial Quadrature Points for &: For the non-Gaussian
correlated parameters &, we adopt the optimization-based
quadrature rule in [28] and [29]. Specifically, we compute M»
quadrature points &§; and weights w; via solving the following
optimization problem:

N2

2p 2

(E[‘I’j(é)] - g‘l’j(&)”l) :

3) Optimized Joint Quadrature Points for x and &: The
tensor product of the two sets of quadrature points {x;, vz}?ill
and {&,, ul}?fl result in M1 M> simulation points in total, which
may be still unaffordable for large-scale photonic design prob-
lems. We propose an optimization model to compute the joint
quadrature rule for both the design variables x and the uncer-
tain parameters & to further reduce the simulation cost of
building surrogate models

min 27)

=0
Eu> i

N N —j1 2
min

asx b Z Z (51115112 Zq’h(xk)‘pjz (Ex)w ) - (28)

ELwp>0 J1=1 jo=1

Here 81,615, = 1 if ji = j» = 1 and zero otherwise, and
d = dy + dp. Our numerical experiments show that the total
number of optimized quadrature points is M is significantly
smaller than MM,.

Remark: Problem (28) is a nonconvex optimization and is
hard to optimize in general. The subproblems (26) and (27)
help to provide a good initial guess for the joint optimization.

We use the block coordinate descent optimization method
described in [29] to solve all optimization subprob-
lems (26)—(28). The following theorem ensures high accuracy
for our surrogate model considering the unavoidable numerical
optimization error and function approximation error.
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Build the chance

constrained model (12)

Input the range of
« and the PDF of &

1

I

Reformulate (12) into
(14) with n constraints

Solve (28) to compute
the quadrature rule

I

I

Reformulate (14) into

deterministic model (17)

Call the simulator at

the quadrature points

I

il

Derive the polynomial
optimization model (31)

Construct the surrogate
model by (25)

1

Solve (31) and output

the optimal design

Fig. 1.  Flowchart of our proposed framework for solving the chance
constrained yield-aware optimization.

Theorem 1~ [29]: Assume that {xi, &, wi}yl, are the
numerical solution to (28).
1) Suppose that the objective function of (28) decays to
zero. The required number of quadrature points is upper
and lower bounded by

i @D _ @d+2p)!
P pld! Toepd
2) For any smooth and square-integrable function y(&),

the approximation error of its pth order stochastic
approximation y(§) satisfies

<M <Ny,

(29)

ly(x, &) — 3, O, < o181 + a2éy. (30)

Here, §(x, &) Y it ig—0 Ce P )W (E), By
is the £1-norm of the objective function of (28)
evaluated at its final numerical solution, J, is the
distance of y(x, &) to the pth order polynomial space,
ar = NpLT, ap = 1+ N,W, L = max |y(x,é)|2, T =
male+j2,11+[2=1,.‘.,N21, I dD]] (x)\yjz (g)\yll (x)\ylz (g) ll2, and

W = sup [(|TI[y(§)1))/(Elly(§)|D] are constants.
Remark: This section focuses on the theory and imple-
mentation for building a surrogate model for low-dimensional
problems. For high-dimensional problems that are more costly
in both computing the quadrature rule and difficult in reduc-
ing the number of samples, we may apply a high-dimensional
solver such as the compressive sensing [43] to build the
surrogate model. Our framework in Fig. 1 is still applicable.

C. Proposed Polynomial Optimization

With the formula for the mean value (20) and the vari-
ance (21), we obtain the following deterministic formula for

the chance-constrained optimization:

p
Z ha,Oq)oc (x)

min
xeX e
2
p (pr—IBl
s.t. Ke Z Zcix’ﬂfba(x)
1B1=1 \la|=0

p
+ ) gPa®) <u; Yie[n]. (32)

lot|=0

However, the constraints are nonsmooth because of the square-
root terms, and may not admit a gradient at some points [48].
Instead, we use the equivalent smooth polynomial formula

k2varg[yi(x, )] < (i — Ee[yitx, §)])°. (33)

Consequently, (17) can be reduced to a deterministic and
smooth optimization problem of x in (31), as shown at the
bottom of this page.

Noting that both the objective function and the constraints
of (31) are polynomials, we can obtain the optimal solution
by using any polynomial solvers. In this article, we use the
semi-definite relaxation-based approaches [49], [50] because
they can find the global optimal solution.

V. NUMERICAL EXPERIMENTS

In this section, we verify our proposed approach by a
synthetic example and two photonic IC examples. The p
subproblem (31) is solved by the global optimization solver
GloptiPoly 3 [51]. For a design variable x, we generate M
parameters §; and approximate the yield by

the number of & such that y;(x, &) < u;
yield(x) = £ il &) L
M
(34)

We set all risk thresholds to €. For the synthetic example,
we will compare our method with the deterministic formula-
tion (15). For the photonic IC examples, we will compare our
method with the BYO method [10]. We summarize the key
idea of the BYO in Appendix C. The MATLAB codes and a
demo example can be downloaded online.!

A. Synthetic Example

First, we consider a synthetic example with two design vari-
ables and two non-Gaussian correlated random parameters.
The design variable x admits a uniform distribution [ —1, 112

1 https://web.ece.ucsb.edu/~zhengzhang/codes_dataFiles/ccyopt/

p
min Z he,0Pe (x)

xeX =0
p [pr—IBI ' 2 p 2 p

st k2 1Y ch pPa) | < |uwi- D hoPa@ | . D g ®alx) <up Vien] (31)
1B1=1 \ |e|=0 lee|=0 lee|=0
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Fig. 2. Feasible set of the synthetic example with risk tolerance levels € € [10_2, 10_0'1] under different uncertainty distributions. (a) Positive-correlated
non-Gaussian distribution. (b) Gaussian independent distribution. (c) Negative correlated non-Gaussian distribution. The domain between the red lines are the
deterministic feasible set x% + xp <1, and the blue lines demonstrate the effects of chance constraints.
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Fig. 3. Quadrature points and weights in the synthetic experiment. (a) and (b) Initial 2-D quadrature points for the design variable x and uncertain parameters
& by solving (26) and (27), respectively. (c) and (d) Optimized quadrature points for the joint 4-D space of x and & by solving (28). Here, we project the
optimized 4-D quadrature points to the 2-D subspace of x and &, respectively. The quadrature weights are shown in colors.

TABLE I
OPTIMAL SOLUTION FOR THE SYNTHETIC EXPERIMENT UNDER
DIFFERENCE RISK THRESHOLD €

and the uncertain parameter £ follows a Gaussian mixture dis-
tribution. We define the yield criterion as (x; + 51)2 + (xp +
&) < 1 and our goal is to maximize Eg[3(x; +&1) +(x2+&2)].

. . . . Algorithm x* Objective | Yield (%)
We for‘mulate the yield into chance constraints and derive the Proposed (c = 00T) | 08630 01172 | 24717 00
following problem: Proposed (¢ = 0.05) | 0.9379 -0.0522 | 27616 100
Proposed (¢ = 0.10) | 0.9587 -0.0402 | 2.8360 99.42
max Fe[3 _ Proposed (¢ = 0.15) | 0.9689  -0.0351 | 2.8717 93.84
p g[301 4 &) — (2 + 5] Proposed (¢ =0.20) | 0.9751  -0.0293 | 2.8959 87.49
(15) 0.9999 0 2.9997 41.66

s.t. Probg ((x1 +E) - (n+&) < 1) >1—e

PrObE((xl +E) +(m+&) < 1) >1—ec (35

To illustrate the effects of different parameter dis-
tributions, we study three PDFs: 1) the independent
distribution N (0, 10’41); 2) the non-Gaussian positive corre-

lations  (1/2)N(0.01,1074%) + (1/2)N(—0.01,107*%)
. 1 ) .

with ¥ = 075 1 ; and 3) the non-Gaussian

negative correlations  (1/2)N'([0.01, —0.01]7, 1074%)

+

(1/2)N([—0.01,0.0117,107*%) with )
1 —

—0.75 1' . The feasible sets under three probability

density distributions are shown in Fig. 2. The comparison
clearly shows that the effects of different uncertainties. For
all three density functions, the feasible regions are reduced
when the risk level € decreases.

Next, we take the non-Gaussian positive correlated distribu-
tion as an example to compute the optimal solution of (35). We

first build the surrogate models for both the objective and con-
straints by the second-order polynomial basis functions. The
optimized quadrature points {x;, Vl}16:1 for the design variables
by (26) and {&,, “1}16:1 for the random parameter by (27) are
shown in Fig. 3(a) and (b), respectively. Directly tensorizing
the two sets of quadrature points generates 36 samples. We
further solve (28) to reduce them to M = 19 optimized sam-
ples and weights. According to Theorem 1, the number of
quadrature samples for d = 4, p = 2 should be in the range
[15,70]. Our optimization algorithm obtains M = 19, which
is close to the theoretical lower bound.

We further show the results for different risk tolerance lev-
els € in Table I. A smaller € results in a smaller feasible
domain (as shown in Fig. 2), and generates a higher yield
but a smaller objective value. In practice, € can be chosen
case-by-case based on the tradeoff between the performance
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Through 1

Ky K, K3 Ky

Drop

Input1

Fig. 4. Optical add-drop filter with three microrings coupled in series.

and yield requirements. Compared with the solution X =
[0.9999, 017 from solving (15), our method can achieve a sig-
nificantly higher yield: our optimized yield is above 87% while
solving (15) only leads to a yield of 41.66%.

B. Microring Add-Drop Filter

We continue to consider the design of an optical add-drop
filter consisting of three identical silicon microrings coupled
in series, as shown in Fig. 4. In designing such a broadband
optical filter, the coupling coefficients play an important role
in determining key performance metrics, such as the band-
width and extinction ratio [52], [53]. A broad and flat passband
with a high extinction ratio can be achieved by optimizing
the coupling strengths between the microrings [52]. In this
example, we employ silicon as the waveguide material and
assume the effective refractive index to be neff = 2.44 and
the effective group index to be ng, = 4.19 near the wave-
length of 1.55 pum. The design variables are the coupling
coefficients x = [Kj, K3, K3, K4] that are to be optimized
within the interval of [0.3, 0.6]. The random variables are set
as small deviations of the coupling coefficients. We assume
that & follows a non-Gaussian correlated distribution:

1 1
pé) = 5/\/(#1, X))+ EN(MZ’ X) (36)
where u; = —pu, = 0.006[1, 1,1, I]T, and the variance is
defined as
1 04 01 04
_ »[ 04 1 04 0.1
%z =0.006 0.1 04 1 04
04 0.1 04 1

We mainly focus on three metrics of the microring filter:
1) the 3dB bandwidth (BW, in GHz); 2) the extinction ratio
(RE, in dB) of the transmission at the drop port; and 3) the
roughness (0pass, in dB) of the passband that takes a stan-
dard deviation of the passband. The yield-aware optimization
problem of the microring filter design can be formulated as

E¢ [BW(x,
max Eg[BW(x, £)]
s.t. Probg (RE(x,§) > REg) > 1 — ¢

PrObE (Upass(xv & < UO) >1—¢ 37

TABLE II
OPTIMIZATION RESULTS FOR THE MICRORING ADD-DROP FILTER

Algorithm Simulations | E¢[BW] (GHz) | Yield (%)
Proposed (e = 0.03) 64 113.4 100
Proposed (e = 0.05) 64 115.6 99.8
Proposed (e = 0.07) 64 117.2 99.5
Proposed (e = 0.10) 64 118.4 98.1

BYO [10] 2020 112.3 99.8

where the yield is defined via some chance constraints on the
extinction ratio and the roughness of the passband. In our sim-
ulation, the threshold extinction ratio (REg) and the roughness
of the passband (op) are 25 dB and 0.5 dB, respectively.

We first build the second-order polynomial surrogate model
by our proposed Algorithm 1. We only need 17 initial quadra-
ture points for the variable x by solving (26), 16 quadrature
points for the parameters & by solving (27), and 64 quadrature
points for the joint optimization of x and & by solving (28).
Fig. 5 shows that our surrogate model can well approximate
the probabilistic distributions of the performance metrics with
the comparison of 103 MC simulations, although our method
only needs 64 simulation samples for this example.

We summarize the results of our proposed method with
different choices of € and the results obtained by the BYO
in Table II. It shows that when risk tolerance level €
decreases, our proposed method can achieve higher yield and
lower bandwidth. This is corresponding to our theory that
a lower risk level € results in a smaller feasible region.
Our proposed method can always achieve a large band-
width because it computes the global optimal solution of the
polynomial optimization problem. When € = 0.05, we get
a bandwidth E¢[BW] = 115.6 GHz with 99.8% yield at
the optimal solution x* = [0.5582, 0.4208, 0.3000, 0.6000],
while BYO takes 2020 simulations to achieve the result of
E¢[BW] = 112.3 GHz with the yield 99.8%. Fig. 6 com-
pares the frequency response before and after the yield-aware
optimization. Both our proposed method and BYO can achieve
a higher bandwidth with a smoother passband compared to
the design before optimization. In Fig. 7, we plot the proba-
bility density of the bandwidth at the optimal design by our
chance-constrained optimization with ¢ = 0.05 and by the
BYO, respectively. It clearly shows that our proposed method
can increase the bandwidth while achieving the same yield.

C. Mach—Zehnder Interferometer

We apply the same framework to optimize a third-order
Mach—Zehnder interferometer (MZI) which consists of three
port coupling and two arms, as shown in Fig. 8. The coupling
coefficients between the MZ arms play the most important
role in the design. The relationship between the coupling
coefficient ¥ and the gap g (nm) is

K = exp(—z‘é;o).

In this experiment, the design variables x = [g1, g2, g3] are
optimized in the interval of [100 nm, 300 nm]3. The random
variable & follows the Gaussian mixture distribution:

(38)

1 1
pé) = EN(M, X))+ EN(M, Y) (39)
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Fig. 5. PDFs of the bandwidth, extinction ratio, and roughness for the microring add-drop filter at the optimal solution x* = [0.5582, 0.4208, 0.3000, 0.6000]
by our proposed optimization with € = 0.05. Our surrogate model uses only 64 simulations, and MC uses 103 simulations.
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Fig. 6. Transmission curves of the microring add-drop filter at different design choices. The gray lines show the uncertainties caused by the process variations.
The orange and blue curves show the mean transmission rates at the drop port and the through port, respectively. Here, RE, BW, and opass denote the mean
values of extinction ratio, bandwidth, and roughness, respectively. (a) Transmission at x0 =[0.45,0.45, 0.45, 0.45] without any optimization. It does not have
a clear passband because opass is too large. (b) Results after the BYO. (c) Results obtained from our chance-constrained optimization with € = 0.05.
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é Fig. 8. Schematic of a third-order MZI.
o
011 1
0.05 ] yield-aware optimization is formulated as
0 ‘ ‘ ‘ ‘ ‘ max Eg[BW(x, §)]
108 110 112 114 116 118 120 *
Bandwidth (GHz) s.t. Probg (XT(K, §) < XTo) > 1 —¢
Probg (a(x,§) <ap) > 1—¢ (40)

Fig. 7. Optimized bandwidth probability density distribution of the micror-

ing filter. Our chance-constrained optimization obtain an expected value of . . .
115.6 GHz while the BYO only produces an expected value of 112.3 GHz. where the yield risk level is €. The threshold crosstalk (XTo)

and attenuation («g) are —4 dB and 2 dB, respectively.
We first build three second-order polynomial surrogate mod-

where u; = —p, = [1, 1,117, and els for BW, XT, and « by our proposed Algorithm 1. We
generate 11 initial quadrature points for the design variable x,

I 04 0.1 10 initial quadrature points for the uncertainty parameter &.

z= 8‘1‘ 014 0i4 : Then we apply the tensor product of those 110 points to

problem (28) and eventually get 36 quadrature points for the
We consider three performance metrics of the MZI: 1) the joint space after co-optimization. Fig. 9 shows that our sur-
3 dB bandwidth (BW, in GHz); 2) the crosstalk (XT, in dB); rogate models constructed with 36 quadrature points can well
and 3) the attenuation (c, in dB) of the peak transmission. The approximate the density functions of all three performance
yield is defined through the crosstalk and the attenuation. The metrics compared with MC with 103 samples.
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Fig. 9. PDFs for the bandwidth, crosstalk, and attenuation of the MZI at our optimized design parameters x* = [0.300, 0.5036, 0.300]. Our surrogate model

uses only 36 simulations and MC uses 1000 simulations.
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Fig. 10.

Transmission curves of the MZI. The gray lines show the performance uncertainties. The orange and blue curves show the transmission rates at

the drop and through ports, respectively. The mean values of the bandwidth, crosstalk, and attenuation are denoted as BW, XT, and «, respectively. (a) Initial
design xY =150, 150, 150]. (b) Design after BYO. (c) Design with the proposed chance-constrained yield optimization.

TABLE III
OPTIMIZATION RESULT FOR THE MZI

Algorithm Simulations | E¢[BW] (GHz) | Yield (%)
Proposed (e = 0.03) 36 188.8 100
Proposed (e = 0.05) 36 192.2 100
Proposed (e = 0.07) 36 194.5 100
Proposed (e = 0.10) 36 195.0 87.7

BYO [10] 2020 175.0 100

2

——BYO
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15¢F b
5
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0
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Fig. 11. Optimized bandwidth of the MZI by the BYO and our proposed
method, respectively. The expectation bandwidth of the BYO is 175.4 GHz
while our proposed method with € = 0.05 can get 186.4 GHz.

We also compare our proposed method and BYO in
Table III. Similar to the result in Table II, a lower risk tol-
erance results in higher yield and a lower expected value of

bandwidth. Our method requires 56 x fewer simulation points
than BYO, which is a great advantage for design cases with
the time-consuming simulations. For € = 0.05, the optimized
nominal design is x* = [300, 111.2,300] and its expected
bandwidth is 192.2 GHz. In Fig. 10, we compare the frequency
response before and after the yield-aware optimization. Our
proposed method can have a higher bandwidth and a smaller
crosstalk compared to BYO and the initial design. Fig. 11 fur-
ther shows the probability density of the optimized bandwidth
by our chance-constrained optimization and the BYO, respec-
tively. It clearly shows that our proposed method produces
higher bandwidth.

VI. CONCLUSION

This article has presented a data-efficient framework for the
yield-aware optimization of photonic ICs under non-Gaussian
correlated process variations. We have proposed to reformulate
the stochastic chance-constrained optimization into a deter-
ministic polynomial optimization problem. Our framework
only requires simulation at a small number of important points
and admits a surrogate model for yield-aware optimization. In
the experiments by the microring filter and the Mach—Zehnder
filter, we have demonstrated that our optimization scheme can
give high yield and high bandwidth. Compared with BYO,
our method has consumed much fewer simulation samples and
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produced better design performance while achieving the same
yield.

This article should be regarded as a presentation of prelimi-
nary results in this direction. Many problems are worth further
investigation in the future, for instance.

1) Nonsmoothness: Similar to generalized polynomial
chaos [45], the surrogate modeling techniques in [28]
and [29] require the stochastic functions to be smooth.
However, the performance metrics of a photonic IC may
be nonsmooth with respect to the design variables and
process variations. How to handle nonsmoothness in this
optimization framework is a critical issue.

2) High Dimensionality: Large-scale photonic ICs may
have a huge number of design variables and process
variation parameters. This brings new challenges to
the surrogate modeling and the resulting polynomial
optimization in our framework.

APPENDIX A
DETAILED DERIVATION OF (6)

Suppose u > Eg[y(x,&)]. We show that the following
deterministic constraint

Ee [y, )] + V(1 — €) /ey /varg[y(x, £)] < u

is a sufficient but not necessary condition for the chance
constraint

Probg (y(x, &) <u) > 1 —e.

In other words, we want to show that each feasible point
of (16) is a feasible point of the chance constraint (13).

Denote the random variable as X = y(x, &§). Cantelli’s
inequality [54] states that for any random variable X with
a mean value E[X] = Eg[y(x,&)] and variance o2 =

varg[y(x, &)], it holds that the probability of a single tail can
be bounded as follows:
2

o
ProbX —EX] <M >1— ——
rob(X ~E[X] <) = 1 =~

5 ifA>0. @D

Therefore, for any constant u > E[x] we have

Prob(X < u) = Prob(X — E[X] < u — E[X])
02
02+ (u—E[X])*
For any €, a sufficient condition for Prob(X < u) > 1 — € is
1 —[0%/(c*+u—ExDH]>1—c¢, ie.,

EX]++v0 —¢€)/eoc <u.

Substituting X = y(x, &) into the above equation we get (6).
The proof is completed.

>1-

(42)

APPENDIX B
DETAILED DERIVATION OF (20) AND (21)

Suppose that the smooth function y(x, &) is already repre-
sented by a linear combination of some basis functions
p

YEE = D capPa®)Wp(E)

loe|+]81=0

(43)
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where E[Wg (&)W, (§)] = 8g,,. The mean value of y(x, §) is

P p—le

Ee[yx. &)= Y > capPa@)E[¥p(E)]

lee|=0|B|=0
p
= Z Coc,OcDoc (%)
M

where the last equality is due to Wo(§) = 1 and E[Vg(§)] =
E[Wg(§)Wo(£)] =0 VB # 0. The variance is

varg[y(x, §)] = e[ (vx. &) — B [y(x., §)])]

p (pr—IBI 2
=Ee| | D[ D cap®alx) |Wp®)
[Bl=1 \Jee|=0
p [p—IBI 2
= > | D] cap®alx)
[BI=1 \ la|=0

where the last equality is due to the basis functions {Wg (&)}
are orthogonal in the stochastic parameter space.

APPENDIX C
BAYESIAN YIELD OPTIMIZATION

BYO is a state-of-the-art tool for the yield optimization of
electronic devices and circuits [10]. This method approximates
and optimizes the posterior distribution of design variable
under the condition of pass events

S={x,§&) : (x, &) satisfies all performance constraints}.

With the Bayes’ theorem, it holds that Prob(S|x) =
[(Prob(S))/(Prob(x))]Prob(x|S). In our problem setting,
Prob(x) is a constant because we assume that x follows
a uniform distribution and Prob($) should also be a con-
stant without the dependence on the variable x. Therefore,
Prob(S|x) o Prob(x|S) and the original yield optimization
problem (3) is equivalent to

xBYO = argmax Prob(x|S).

xeX

The paper [10] proposed an expectation-maximization frame-
work to solve problem (44). At the ¢-th iteration, the expec-
tation step approximates the probability by the kernel density
estimation. Specifically, we generate N = 100 samples (x;, &;)
randomly and call a simulator to compute the quantity of
interests at those samples. Then choose M < N pass samples
to perform the kernel density estimation

(44)

M
1 1 1
Probel$) ~ 17 3~ ——exp (_ﬁ(x — )" (x - m))
i=1

where {;Li}f.‘i | € § are design samples that satisfies the
performance constraints and # = 0.3 is a bandwidth parameter.
Afterward, the maximization step returns an updated design
variable xBY0-!, We will call the simulator again at this design
variable to record its objective value and pass status. We ter-
minate the algorithm if the maximal iteration number 20 is
reached, or the residue of two consecutive iterations is below

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 30,2021 at 19:02:27 UTC from IEEE Xplore. Restrictions apply.



CUI et al.: CHANCE-CONSTRAINED AND YIELD-AWARE OPTIMIZATION OF PHOTONIC ICs WITH NON-GAUSSIAN CORRELATED PROCESS VARIATIONS 4969

107%. After the whole optimization process, we return the
design variable that can pass the yield constraints with the
best objective value

BYO _ _
x = argxer)rclélgco‘t Eg [f(x, ’;‘)] s.t. pass(x) = 1.
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