
High-Dimensional Uncertainty Quantification via
Active and Rank-Adaptive Tensor Regression

Zichang He and Zheng Zhang
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106

Emails: zichanghe@ucsb.edu, zhengzhang@ece.ucsb.edu

Abstract—Uncertainty quantification based on stochastic spec-
tral methods suffers from the curse of dimensionality. This issue
was mitigated recently by low-rank tensor methods. However,
there exist two fundamental challenges in low-rank tensor-based
uncertainty quantification: how to automatically determine the
tensor rank and how to pick the simulation samples. This paper
proposes a novel tensor regression method to address these two
challenges. Our method uses an `2,p-norm regularization to deter-
mine the tensor rank and an estimated Voronoi diagram to pick
informative samples for simulation. The proposed framework is
verified by a 19-dim phonics bandpass filter and a 57-dim CMOS
ring oscillator, capturing the high-dimensional uncertainty well
with only 90 and 290 samples respectively.

I. INTRODUCTION

Fabrication process variations are a major concern in nano-

scale chip design. To estimate and quantify the uncertain-

ties caused by process variations, Monte Carlo (MC) is

the mainstream uncertainty quantification (UQ) tool used in

commercial EDA tools, but it requires a huge amount of

simulation samples. Instead, stochastic spectral methods based

on generalized polynomial chaos (gPC) [1] offer an efficient

alternative by approximating a stochastic circuit performance

metric as a linear combination of some basis functions [2–4].

However, stochastic spectral methods suffer from the curse

of dimensionality: a huge amount of simulation samples are

required when the number of random parameters is large.

Low-rank tensor methods are a promising technique to

solve high-dimensional UQ problems [5–8]. In [6], a high-

dimensional gPC expansion is obtained via a low-rank tensor

recovery, which estimates massive unknown output samples

from a few simulation results. However, the method [6] uses a

fixed tensor rank, which is hard to estimate a-priori in practice.

The most recent work [9] uses a greedy rank-1 update until

a good accuracy is reached. However, greedy rank-1 tensor

update does not provide optimal solutions and can cause over

fitting. Besides, it is not clear how to adaptively pick the

simulation samples to reduce the computation budget.

Contributions. This paper proposes a novel high-

dimensional UQ solver based on tensor regression. In order to

automatically determine the tensor rank, we employ a group-

sparsity regularization in the training process. We also develop

an adaptive sampling strategy to reduce the simulation cost.

This method balances exploration and exploitation of our

This work was supported by NSF grants #1763699 and #1846476.

model. Our method is used to quantify the uncertainties of

a 19-dim phonic IC and a 57-dim electronic IC with 90 and

290 simulation samples respectively.

II. BACKGROUND

Generalized Polynomial Chaos. Let ξ = [ξ1, . . . , ξd] ∈
R

d be a random vector describing process variations. We aim

to estimate the interested performance metric y(ξ) (e.g., chip

frequency or power) under such uncertainty. A truncated gPC

expansion approximates y(ξ) as

y(ξ) ≈ ŷ(ξ) =
∑

α∈Θ

cαΨα(ξ), (1)

where α is an index vector, and Ψα is a polynomial basis

function of degree |α| = α1 + α2 + · · · + αd. If the joint

probability density function of ξ is ρ(ξ), then the basis

functions satisfy the orthornormal condition:

〈Ψα(ξ),Ψβ(ξ)〉 =

∫

Rd

Ψα(ξ)Ψβ(ξ)dξ = δα,β. (2)

Once the index set Θ is chosen, we need to determine the un-

known coefficient cα for each α ∈ Θ. The gPC only requires a

small number of basis functions and simulation samples when

the parameter dimensionality d is small. However, a huge

number of basis functions and simulation samples are required

when d is large. For instance, in the classical stochastic collo-

cation method [1], the number of simulation samples required

to obtain cα’s is an exponential or polynomial function of d.
Tensors. A promising tool to overcome the curse of dimen-

sionality is tensors. A d-dim tensor X ∈ R
n1×···nd represents

a d-dimensional data array, and it becomes a matrix when

d = 2. The (i1, · · · , id)-th element of X can be denoted as

xi1···id . Given two tensors X and Y of same size, their inner

product is defined as:

〈X ,Y〉 :=
∑

i1···id

xi1···idyi1···id . (3)

A d-dim rank-R tensor can be written as the sum of R rank-1

tensors, known as a CP decomposition:

X =
R
∑

r=1

u
(1)
r ◦ u(2)

r · · · ◦ u(d)
r = [[U(1),U(2), . . . ,U(d)]], (4)

where ◦ denotes an outer product. The last term is the Krusal

form, where factor matrix U
(k) =

[

u
(k)
1 , . . . ,u

(k)
R

]

∈ R
nk×R

includes all vectors associated with the k-th dimension.978-1-7281-6161-7/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 30,2021 at 19:05:52 UTC from IEEE Xplore. Restrictions apply.

III. PROPOSED TENSOR REGRESSION METHOD

A. Tensor Regression Formulation

We choose the following index set for the gPC expansion:

Θ =
{

α = [α1, α2, · · · , αd] | 0 ≤ {αi}
d
i=1 ≤ p

}

. (5)

This specifies a gPC expansion with (p+1)d basis functions.

Let ik = αk+1, then we can define two d-dimensional tensors

X and B(ξ) with their (i1, i2, · · · id)-th element specified as

xi1i2···id = cα and bi1i2···id(ξ) = Ψα(ξ). (6)

Combining (1), (5) and (6), the truncated gPC expansion

can be written as a tensor regression model

y(ξ) ≈ ŷ(ξ) = 〈X ,B(ξ)〉. (7)

It is worth noting that tensor B(ξ) depends on ξ. When the

random parameters ξ are mutually independent, Ψα(ξ) can

be written as the product of d uni-variable basis functions for

each parameter ξk. In this case B(ξ) is a rank-1 tensor.

Our goal is to compute X given a set of data samples

{ξn, y(ξn)}
N

n=1. Assume that X has the rank-R decomposi-

tion in (4), we can solve the following optimization problem

min
{U(k)}d

k=1

h(X) =
1

2

N
∑

n=1

(

yn − 〈[[U(1),U(2), . . . ,U(d)]],Bn〉
)2

,

(8)

where yn = y(ξn) and Bn = B(ξn).

B. Automatic Rank Determination

The low-rank tensor regression (8) requires the rank of X to

be determined a-priori, which is often infeasible in practice.

In order to address this issue, we first choose a sufficiently

large R such that it is above the actual rank, then we choose

a proper rank-shrinking penalty function to regularize (8).

Specifically, we employ a group `2,q-norm regularization

function to shrink the rank of X :

g(X) =

R
∑

r=1





(

d
∑

k=1

‖u(k)
r ‖22

)

1
2





1
q

, q ∈ [0, 1] . (9)

This function puts u
(k)
r , the r-th column of each U

(k), in the

same group, and measures the `2,p norm of all groups. As a

result, one can shrink some groups to zero by reducing g(X),
leading to an automatical rank reduction. A smaller q leads to

a stronger shrinkage, and q = 1 corresponds to a group lasso.

By adding the penalty term (9), we have the following

improved tensor regression model:

min
{U(k)}d

k=1

f(X) =h(X) + λg(X). (10)

After solving this optimization problem, each obtained factor

matrix U
(k) has a few common columns whose values are

close to zero. These columns can be deleted and the actual

rank of our obtained tensor becomes R̂ ≤ R, where R̂ is the

number of remaining columns that are not deleted.

It is non-trivial to minimize f(X) since the regularization

function g(X) is usually non-differentiable and non-convex

with respect to U
(k)’s. Instead, we solve the following opti-

mization problem in practice:

min
{U(k)}d

k=1

f̂(X) =h(X) + λĝ(X). (11)

Here ĝ(X) is an upper bound of g(X) obtained via the

variational inequality [10]:

g(X) ≤ĝ(X) = min
η∈RR

λ

2

R
∑

r=1

d
∑

k=1

‖u
(k)
r ‖22

ηr
+

λ

2
‖η‖q. (12)

Once {U(k)}dk=1 is given, the values of ĝ(X) and f̂(X) can

be estimated by setting the elements of η as

ηr = (zr)
2

q+1 ‖z‖q2q1 , ∀ r = 1, . . . , R, (13)

where zr =

(

d
∑

k=1

‖u
(k)
r ‖22

)

1
2

, q1 = 2q
q+1 and q2 = q−1

q+1 .

Problem (11) can be solved via an alternating algorithm

such as a block coordinate descent solver or alternating

direction method of multipliers. Due to the page limitation,

we omit the details in this paper and will explain the detailed

optimization algorithm in an extended journal paper.

C. Adaptive Sampling Strategy

Another fundamental question is how to select the parameter

samples {ξn}
N
n=1 for simulation. The method in [7] uses some

Monte Carlo random samples. Instead, this paper reduces the

simulation cost by selecting only a few informative samples

for detailed device- or circuit-level simulations.

We first use the Latin Hybercube (LH) sampling to generate

an initial sample set Ω. Then we employ an exploration step

via the Voronoi diagram to measure the sample density in Ω.

Given two distinct samples ξi, ξj ∈ Ω, a Voronoi cell Ci(ξi)
covers the region that are closest to ξi. It is defined as the

intersection of a set of half-planes (hp):

Ci(ξi) =
⋂

ξj∈Ω\ξi

hp(ξi, ξj)

hp(ξi, ξj) ={ξ ∈ R
d| ‖ξ − ξi‖ ≤ ‖ξ − ξj‖}.

(14)

It is intractable to calculate an Voronoi cell exactly in a high-

dimensional space. However, we can easily estimate it via

Monte Carlo [11]. The sample density of Ci is approximated

by counting the number of samples that are closest to ξi. Each

sample in Ω determines one Voronoi cell with itself as the

center, and we can select a new sample from the cell region

with the lowest density.

If the performance metric y(ξ) is known to be highly

nonlinear, we can further exploit its non-linearity. Given ξ and

a Voronoi cell center a, we measure the nonlineary of y(ξ) as

γ(ξ) = |ŷ(ξ)− ŷ(a)−∇ŷ(a)T (ξ − a)|. (15)

We select a new sample as the one with largest γ(ξ) in a

Voronoi cell with the lowest sample density. This method can

be easily extended to a batch version by searching the top-K

least-sampled regions.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 30,2021 at 19:05:52 UTC from IEEE Xplore. Restrictions apply.

