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Abstract—We show that Gallager’s ensemble of Low-
Density Parity Check (LDPC) codes achieves list-decoding
capacity with high probability. These are the first graph-
based codes shown to have this property. This result
opens up a potential avenue towards truly linear-time list-
decodable codes that achieve list-decoding capacity.

Our result on list decoding follows from a much more
general result: any local property satisfied with high
probability by a random linear code is also satisfied
with high probability by a random LDPC code from
Gallager’s distribution. Local properties are properties
characterized by the exclusion of small sets of codewords,
and include list-decoding, list-recovery and average-radius
list-decoding.

In order to prove our results on LDPC codes, we
establish sharp thresholds for when local properties are
satisfied by a random linear code. More precisely, we show
that for any local property P, there is some R* so that
random linear codes of rate slightly less than R* satisfy P
with high probability, while random linear codes of rate
slightly more than R* with high probability do not. We
also give a characterization of the threshold rate R*.

This is an extended abstract. The full version is
available at https://arxiv.org/abs/1909.06430.

I. INTRODUCTION

In this paper, we study sets C' C X" of strings
of length n, with the combinatorial property that not
too many elements of C' are contained in any small
enough Hamming ball. In the language of coding the-
ory, such a C is a list-decodable code. List-decoding
is an important primitive in coding theory, with ap-
plications ranging from communication to complexity
theory. However, as discussed below, most construc-
tions of capacity-achieving (aka, optimal) list-decodable
codes are fundamentally algebraic, despite a rich his-
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tory of combinatorial—and in particular, graph-based—
constructions of error correcting codes.

We show that a random ensemble of Low-Density
Parity-Check (LDPC) codes achieves list-decoding ca-
pacity with high probability. LDPC codes are the proto-
typical example of graph-based codes, and are popular
both in theory and in practice because of their extremely
efficient algorithms. One of the motivations for this
work is that we do not currently know any linear-time
algorithms for list-decoding any code up to capacity;
since graph-based codes offer linear-time algorithms
for a variety of other coding-theoretic tasks, our result
opens up the possibility of using these constructions for
linear-time list-decoding algorithms.

List Decoding: Formally, a code C C X" is
(«, L)-list-decodable if for all z € 3",

[{c € C : dist(c,2) < a}| < L.

Above, dist(c, z) is the relative Hamming distance,

dist(c, ) = %| (i et )],

Elements ¢ € C are called codewords, X is called the
alphabet, and n is called the length of the code.

The fundamental trade-off in list-decoding is between
the parameter « and the size |C| of the code, given that
the list size L is reasonably small. We would like both
« and |C| to be large, but these requirements are at
odds: the larger the code C' is, the closer together the
codewords have to be, which means that o cannot be as
large before some Hamming ball of radius a has many
codewords in it. The size of a code C is traditionally
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quantified by the rate R of C, which is defined as

1 C
o oz (€D

n

The rate of C' is a number between 0 and 1, and larger
rates are better.

List-decoding has been studied since the work of
Elias and Wozencraft in the 1950’s [Eli57], [Woz58],
and by now we have a good understanding of what is
possible and what is not. The classical list-decoding
capacity theorem states that there exist codes over
alphabets of size || = ¢ and of rate R > 1 —hy(a) —¢
which are («, 1/¢)-list-decodable, where

hy(z) := zlog,(¢—1)—xlog,(x) — (1 —x)log,(1—x)

(1)
is the g-ary entropy function. Conversely, any such code
with rate R > 1 — hy(cv) + € must have exponential list
sizes, in the sense that there is some z € Y™ so that
[{c € C : dist(c,z) < a} | = exp, ,(n).!

A code of rate R > 1 — hy(a) — ¢ that is (o, L)-
list decodable for L = O.,(1) is said to achieve
list-decoding capacity, and a major question in list-
decoding is which codes have this property. By now
we have three classes of examples. First, it is not
hard to see that completely random codes achieve list-
decoding capacity with high probability. Second, a long
line of work (discussed more below) has established that
random linear codes do as well: we say that a code over
the alphabet ¥ = T, is linear if it is a linear subspace
of FZ‘? and a random linear code is a random subspace.
Third, there are several explicit constructions of codes
which achieve list-decoding capacity; as discussed be-
low, most of these constructions rely importantly on
algebraic techniques.

LDPC Codes: Graph-based codes, such as LDPC
codes, are a class of codes which is notably absent from
the list of capacity-achieving codes above. Originally
introduced by Gallager in the 1960’s [Gal62], codes
defined from graphs have become a class of central
importance in the past 30 years.

Here is one way to define a code using a graph.
Suppose that G = (V, W, E) is a bipartite graph with
|[V| = n and [W| = m for m < n. Then G naturally
defines a linear code C' C Fy; of rate at least 1 —m/n

'Here and throughout the paper, exp(n) denotes 29(™), and
subscripts indicate that we are suppressing the dependence on those
parameters.

2Here and throughout the paper, F4 denotes the finite field with ¢
elements.
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as follows:

C=(cely :VjeW, Z a;jc; =00,
i€T(5)

where I'(7) denotes the neighbors of ¢ in G and «; ; €
F, are fixed coefficients. That is, each vertex in W
serves as a parity check, and the code is defined as
all possible labelings of vertices in V' which obey all of
the parity checks. When the right-degree of G is small,
the resulting code is called a Low-Density Parity Check
(LDPC) code.

LDPC codes and related constructions (in particu-
lar, Tanner codes [Tan81] and expander codes [SS94],
[ZémO01]) are notable for their efficient algorithms for
unique decoding; in fact, the only linear-time encod-
ing/decoding algorithms we have for unique decoding
(that is, list-decoding with L = 1) are based on such
codes.

Motivating question: We currently do not know of
any linear-time algorithms to list-decode any code to
capacity. Since graph-based codes and LDPC codes in
particular are notable for their linear-time algorithms,
this state of affairs motivates the following question:

Question 1.1. Are there (families) of LDPC codes that
achieve list-decoding capacity?

A. Contributions

Motivated by Question 1.1, our contributions are as
follows.

(1) We show that the answer to Question I.1 is “yes.”
More precisely, we show that random LDPC codes
(the same ensemble studied by Gallager in his
seminal work nearly 60 years ago [Gal62]), achieve
list-decoding capacity with high probability.

In fact, we show a stronger result: random LDPC
codes satisfy with high probability any local prop-
erty that random linear codes satisfy with high
probability. We define local properties precisely
below; informally, a local property is one de-
fined by the exclusion of certain bad sets. List-
decodability is a local property—it can be defined
by the exclusion of any big set of vectors that are
too close together—and this answers Question I.1.
Along the way, we develop a characterization of
the local properties that are satisfied with high
probability by a random linear code. We show that
for any local property P, there is a threshold R*
so that random linear codes of rate slightly less
than R* satisfy P with high probability, while
random linear codes of rate slightly greater than R*

@)
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with high probability do not. Moreover, we give a

characterization of the threshold R*.

In [GLM™20], the above characterization is used

to compute lower bounds on the list-decoding and

list-recovery parameters of random linear codes.

This additional application does not directly relate

to LDPC codes.

We describe each of these contributions in more detail
below.

(1) Random LDPC codes achieve list-decoding
capacity: We study the so-called “Gallager ensemble”
of binary LDPC codes introduced by Gallager in the
1960’s [Gal62], as well as its natural generalization to
larger alphabets.?

Fix a rate R € (0,1) and a sparsity parameter s,
and let ¢ = (1 — R)s. We assume that ¢ is an integer.
To define the ensemble of random s-LDPC codes
of rate R, we need to specify a distribution on the
underlying bipartite graphs and a distribution on the
coefficients o ;. We define the distribution on graphs
as follows. Let G; = (V,W,, E;) for i = 1,...,¢ be
independent uniformly random (1, s)-regular bipartite
graphs with a shared left vertex set V' of size n and
disjoint right vertex sets W;, each of size n/s. Then
let G = (V,W, E) be the union of these graphs, where
W = Ule W;. Finally, we choose the coefficients o; ;
for (i,j) € E to be uniformly random in [F}.

Our main theorem about the list-decodability of
random LDPC codes is a reduction from the list-
decodability of random linear codes:

Theorem L2. For any R € (0,1), € > 0, prime power
g o € (0,1 —1/q) and L > 1 there exists sg > 1
such that the following holds for any odd s > sq.
Suppose that a random linear code of rate R over F,,
is (o, L)-list decodable with high probability. Then a
random s-LDPC code of rate R — € over F is (o, L)-
list decodable with high probability.

Remark 1.3 (The parity of s). All of our results hold for
even s as well as odd s. However, the proof is slightly
simpler for odd s, so for clarity we state and prove the
theorem in this case.

Instantiating this with a result of [GHKI11] on list
decoding of random linear codes, we get the following
corollary.

Corollary 14. For any prime power q, « € (0,1—1/q),
and € € (0,1 — hy(e)) there exists L = On(1/¢) and

3For binary codes, our definition coincides with Gallager’s. For
larger alphabets our definition is somewhat different: Gallager’s
ensemble chooses the coefficients c; ; to be all ones, while we choose
them to be random elements of Fy.
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s > 1 so that a random s-LDPC code of rate 1—hg(a)—
e over F, is («, L)-list-decodable with high probability.

Remark 1.5 (Other parameter regimes). We state Corol-
lary 14 as one example of what can be obtained by
combining Theorem 1.2 with one result on random linear
codes. The result of [GHK11] degrades as « — 1—1/q,
and so Corollary 1.4 degrades as well. However, there
has been a great deal of work on the list-decodability
of random linear codes as o — 1—1/q (summarized in
Section I-B below), and Theorem 1.2 implies that these
results carry over to random LDPC codes as well.

(2) Random LDPC codes achieve any local prop-
erty that random linear codes achieve: Theorem 1.2
follows as a corollary of a much more general theorem.
We show that any “local” property that is satisfied
by random linear codes with high probability is also
satisfied by random LDPC codes with high probability.
Informally, a local property is a property which can
be defined by the exclusion of certain bad sets. For
example, a code C' is («, L)-list-decodable if it does
not contain any sets B C X" of size larger than L
so that B is contained in a Hamming ball of radius
a. Along with list-decodability, local properties include
many related notions like list recovery, average-radius
list decoding, and erasure list decoding. A long line of
work (discussed more in Section I-B) has established
that these properties hold for random linear codes with
high probability, so our reduction immediately implies
that they hold with high probability for LDPC codes as
well.
Formally, we define a local property as follows. Let
7 : [n] — [n] be a permutation on [n]|. For a string
x € X", we let m(x) € X™ denote the string obtained by
permuting the coordinates of = according to 7, and for
a subset B C X", we let m(B) := {m(x) | x € B}. We
say that a collection B of subsets of 3" is permutation
invariant if for any B € B and permutation 7 : [n] —
[n], we also have that 7(B) € B.

Definition 1.6 (Local property). Let P = {P,}nen,
where each P, is a property of length n codes over
3. We say that P is a b-local property if for any n €
N there exists a permutation-invariant collection B,, of
subsets of ", where |B| < b for all B € B, such that

C C X" satisfies P,, <= B ¢ C for all B € B,,.

We say that a family of random codes C' = {C,, }ien
(where {n;} is an increasing sequence) satisfies P with
high probability if lim;_, ., Pr[C,,, satisfies P,,] = 1.
Similarly, we say that C' almost surely does not
satisfy P if lim;_,, Pr[C), satisfies P,,,] = 0.
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A code property is monotone decreasing if given
a code C satisfying P, it holds that every code C’ C
C also satisfies P. Note that every local property is
monotone decreasing.

A random linear code of rate R over F, is de-
fined* as the kernel of a uniformly random matrix
H e F{ ™" Notice that such a code has rate R
with high probability.

For any n € N and R € [0,1] such that R-n € N,
we denote a random linear length n code of rate R by
Chic(R). Likewise, given s, n and R such that s | n
and R -s € N, we denote a random s-LDPC code of
length n and rate R by C7; ppc(R). Whenever we use
these notations, it is implicitly assumed that the relevant

divisibility conditions are satisfied.
Let P = {P,}nen be a monotone decreasing prop-
erty of linear codes. We define

RR1,c(P) :=sup{R € [0,1] : Pr[CRyc(R) satisfies P,] > 1/2}
(@)

kLc(P) = 0.

Remark L.7. If P is a monotone decreasing property
then the function Pr[Cf; (R) satisfies P,| is monotone
decreasing in R. This can be proved by a standard
coupling argument, akin to [BolOl, Thm. 2.1].

if such an R exists. Otherwise we define

With the notation out of the way, we are ready to state
our more general theorem about random LDPC codes.
Essentially, this theorem says that every local property
that holds with high probability for a random linear
code also holds with high probability for a random
s-LDPC code of approximately the same rate. This
approximation improves as s grows.

Theorem L8 (Main). Let P = (Py)nen be a b-local
property with R := limsup,,_, . R «(P) < 1. For
any € > 0 and prime power q, there exists sog =
so(e, R,q,b) > 1 such that for any odd s > s and
any sequence {Ry}nen, if Ry < R o(P) — € for all
n, then the code ensemble C%; p(Ry,) satisfies P with
high probability.

Remark 1.9 (The dependence on ¢, R, ¢, b). An inspec-
tion of the proof shows that we may take

R (blog(q) + log(q/€)> _

hg'(1 - R)

4There are a few natural ways to define a random linear code: for
example we could also define it as a uniformly random subspace of
dimension Rn, or we could define it as the image of a uniformly
random n X Rn matrix, or we could define it as we do here, as the
kernel of a uniformly random (1 — R)n X n matrix. It can be shown
that these distributions are quite close to each other, and in particular,
any property that holds for one with high probability holds for the
others.
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The existence of a reduction like the one in Theo-
rem L.8 is surprising, at least to the authors. There is a lot
more structure in a random LDPC code than in a random
linear code. For example, we know of linear-time unique
decoding algorithms for random LDPC codes,’ but it is
unlikely that any efficient unique decoding algorithm
exists for random linear codes.® Thus it is unexpected
that this much more structured ensemble would share
many properties—in a black-box way—with random
linear codes.

Remark 1.10 (A converse to Theorem 1.8?). One may
be tempted to conjecture that the converse of Theorem
L8 holds as well. Namely, in the setting of Theorem 1.8,
if Ry, > Ry (P)+e for all i, then the code ensemble
Csuppc(Ry) almost surely does not satisfy P. However,
this turns out to be false, due to the following example.
Assume that ¢ = 2 and consider the 1-local property
P := (P,)nen, where P, is the set of all length n linear
codes that only contain even weight codewords. It is not
hard to see (e.g., using Theorem I1.8) that R} (P)
tends to 0 as n — oo. On the other hand, if % is even,
then every s-LDPC code (including, say, a code of rate
% ) satisfies ‘P, contradicting this conjecture.

However, the above counter-example relies on a tech-
nicality involving divisibility criteria. It is an interesting
question whether a natural converse of Theorem 1.8
holds if we additionally assume that P belongs to
some natural class of “nicely behaved” properties that
precludes counter-examples of this sort.

(3) A characterization of local properties satisfied
by random linear codes: In order to prove Theorems 1.2
and L.8, we develop a new characterization of the
local properties satisfied by a random linear code. Our
formal theorem is given as Theorem II.8. Informally,
this theorem implies that for any monotone decreasing
property P, there is a sharp threshold R* so that random
linear codes of rate slightly less than R* with high
probability satisfy P, while random linear codes of rate
slightly larger than R* with high probability do not.
Moreover, we give a characterization of R*.
Formally, we have the following definition, recalling
the definition of R}, ~(R,) from (2).

Definition 1.11 (Sharpness for random linear codes).
We say that the property P is sharp for random linear
codes if for every € > 0 there holds:

SThis follows, for example, from [SS94] because the underlying
random graph is with high probability a good expander.

5Unique decoding of random linear codes is related to the problem
of Learning Noisy Parities (LNP) and Learning With Errors (LWE),
which are thought to be hard.
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e If R, < R},(P) — ¢ for large enough n, then
the code ensemble Cy; (Ry) (n € N) satisfies P
with high probability.

o If R, > R}y, (P)+e for large enough n, then the
code ensemble Cg; ~(Ry) (n € N) almost surely
does not satisfy P.

If a property P is sharp, we sometimes refer to
RE1(P) as the threshold for P.

Theorem II.8 has two corollaries. The first is that
local properties are sharp for random linear codes:

Corollary L.12. Every local property is sharp for ran-
dom linear codes.

The second corollary of Theorem II.8 is a characteri-
zation of R} (P). This characterization requires some
definitions to state formally, so we defer the formal
statement to Theorem I1.8. However, it has an intuitive
interpretation, which we sketch here.

Recall that a local property is defined by a
permutation-invariant collection 5,, of excluded sets.
For simplicity of exposition, suppose that all of the sets
B € B, have size exactly b, and moreover that they all
have dimension exactly b. (This assumption is helpful
for exposition but not necessary for our analysis). In
this case, it is easy to compute the probability that each
individual set B € B, is contained in Cryc(R) (see
Fact 11.2):

Pr(B C Cruc(R)] = ¢~ -,
Thus, we have
E|{B € B, : BC Crrc(R)}| = |B,|-q~ 1= Fnb.
Thus, as long as

log | B, |

nb '
we are guaranteed by Markov’s inequality that with
high probability, no elements of 13,, appear in Crrc(R).
However, what if R > RE; (B,,)? It turns out that the
statement above is not tight: in some cases it is likely
that no elements of B,, appear in Crrc(R) even if the
rate R is significantly larger than Ry o(B,). We give
an example in Example II.5 of when this can occur.

Our result in Theorem I1.8 pins down exactly when
this can occur. Informally, it happens only because some
projection B/, of the collection B,, is more favorable
than one might expect, in the sense that RE; o (B),) is
larger than one might expect. In this case, the “correct”
threshold is precisely RE; (B.,).

Thus, Theorem I1.8 also provides a characterization
of which sorts of “bad” lists B (up to a permutation of

R<RE (B,):=1—
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the coordinates) are contained in a random linear code
of a particular rate. We hope that this characterization
will be useful in the study of random linear codes
themselves, in addition to random LDPC codes.

The full power of Theorem I1.8 (including the charac-
terization of Rf; (P) described above) is used to prove
Theorem 1.8. However, given Theorem 1.8, Theorem 1.2
readily follows from Corollary 1.12 itself:

Proof of Theorem 1.2: Let P denote the property
of being (a, L)-list-decodable. Note that P is a local
property: for any n € N, take 3, to be the collection
of all sets of L + 1 vectors in Iy contained in some
Hamming ball of radius «. Now, fix some R € (0,1)
and assume that a random linear code of rate R satisfies
P with high probability. Corollary 1.12 implies that
Rty o(P) < R+ 0psn(1).

Next, it is not hard to verify that
hmsupn—ﬂ)o RELC(P) < 1- hq(a) < 1. Indeed,
it follows from the list-decoding capacity theorem (e.g.
[LW18, Thm 1.1]) that for large enough n there are no
(o, L)-list-decodable codes of rate 1 — hy(a) + €. In
particular, this means that a random linear code of rate
1 — hg(a) + € almost surely does not satisfy P.

Theorem 1.8 now immediately yields Theorem 1.2. W

We give a high-level overview of the proof of Theo-
rem L.8 in Section II below after a discussion of related
work in Section I-B.

B. Related Work

List-decodability of random ensembles of codes:
As mentioned above, it is not hard to see that a
completely random code C' C X" achieves list-decoding
capacity. There has also been work studying more
structured random ensembles of codes, notably random
linear codes. Zyablov and Pinsker [ZP81] showed that
random linear codes of rate 1 — hy(a) — € are (o, L)-
list-decodable with high probability, where L is inde-
pendent of n but depends exponentially on 1/e. Two
decades later, [GHSZ02] showed that there exist binary
linear codes with list-size O(1/¢), and their techniques
were recently extended to hold with high probability
in [LW18]. In the meantime, [GHK11] showed that
random linear codes over any constant-sized alphabet
achieve capacity with L = O(1/¢) when « is bounded
away from 1 — 1/q; [CGV13], [Wool3], [RW14],
[RW18] extended these results to get list sizes nearly
as good even for large a, although the problem is still
open in some parameter regimes.
Several variants of list-decoding have been studied for
random linear codes, including list-recovery [RW18],
average-radius  list-decoding  [Wool3], [RW14],
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[RW18], and list-recovery from erasures [Gur03].
All of these properties are local, and so our main
theorem implies that LDPC codes satisfy them with
high probability.

List-decodability of explicit codes: Obtaining ex-
plicit constructions of codes which achieve list-decoding
capacity was a major open problem until it was solved
about a decade ago. The first explicit codes to provably
achieve capacity were the Folded Reed-Solomon Codes
of Guruswami and Rudra [GROS8]. These codes are
variants on the classic Reed-Solomon codes and are
based on polynomials over finite fields. Since then,
there have been several constructions of such codes,
also based on algebraic techniques, including Univariate
Multiplicity Codes [GW13], [Kop15], [KRSW18], vari-
ants of Algebraic-Geometry Codes [GX12], [GX13],
and manipulations of these codes [DLI12], [GK16],
[HRW17], [KRRZT19]. However, the state-of-the-art
for explicit constructions still requires quite large (but
constant) alphabet and list sizes. These codes can be
efficiently list-decoded in polynomial time; the fastest
algorithm is that of [HRW17], [KRRZ"19], which runs
in nearly-linear time O(n'*°M).

While graph-based techniques have been used to
modify the underlying algebraic constructions (for ex-
ample the expander-based distance-amplification tech-
nique of [AEL95] is used in [HRW17], [KRRZ*19]
to obtain near-linear-time list-decoding), to the best of
our knowledge there are no results establishing list-
decodability up to capacity for purely graph-based codes
such as LDPC codes or expander codes.®

Finally, we note that recent work [DHK™'19] has
given an algorithm to list-decode codes based on high-
dimensional expanders, but these results are far from
list-decoding capacity.

LDPC Codes Achieve Capacity on the Binary
Symmetric Channel: LDPC Codes have been studied
extensively in the context of unique decoding, especially

7List-recovery is a generalization of list-decoding where the input
is a list of sets Z1,...,Zy, of size at most £ (instead of a received
word z € X", which can be seen as the £ = 1 case), and goal is
to find all of the codewords ¢ € C' so that ¢; € Z; for at least
a 1 — « fraction of the ¢ € [n]. Average-radius list-decoding is a
strengthening of list-decoding where instead of requiring that no set
of L + 1 codewords are all close to some z, we require that no set of
L+ 1 codewords has small average distance to z. List-decoding from
erasures is a weaker notion than list-decoding, where z € (XU{L})™
has some erased symbols, and the goal is to recover all ¢ € C' which
agree with z on the observed coordinates.

8We note that [HW18] give capacity-achieving graph-based codes
for zero-error list-recovery (with erasures), where the input is lists
Z1,...,Zn so that most lists have small size, and the goal is to
return all codewords ¢ € C' that satisfy ¢; € Z; for all <. It does
not seem easy to adapt these techniques for general list-recovery and
hence for list-decoding.
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in a model of random errors. Informally, a code is
said to achieve capacity on the Binary Symmetric
Channel (BSC) if there is some algorithm which can,
with high probability, uniquely decode a code of rate
R = 1—hy(a) —¢ from an a-fraction of random errors.
It is known that Gallager’s LDPC codes nearly achieve
capacity on the BSC as n gets large, under maximum-
likelihood decoding [Gal62], [Gur06], and recently it
was shown that certain LDPC codes achieve capacity
for smaller block lengths under efficient decoding al-
gorithms as well [KRU13]. Achieving capacity on the
BSC is related to achieving list-decoding capacity (in
particular, the capacities are the same, R = 1 — hy(av)).
However, there is no formal connection along these
lines, and to the best of our knowledge these results
about the BSC do not imply anything about the list-
decodability of LDPC codes.

Relationship to graph properties: Finally, we note
that our results providing sharp thresholds of local
properties for random linear codes are reminiscent of
classic results about local properties of random graphs.
We discuss this connection more in Remark II.10.

C. Discussion and open questions

In this work, we answer Question 1.1 with a very
strong “yes.” There are LDPC codes that achieve list-
decoding capacity, and moreover there are many of
them, and moreover these codes also likely satisfy any
local property—that is, any property which can be
defined by ruling out small bad sets of codewords—
which is likely satisfied by a random linear code. Our
results raise several interesting questions:

1) What other properties are local? We have
shown that random LDPC codes satisfy with
high probability any local property that random
linear codes satisfy with high probability. There
are several natural examples of local properties,
including distance, list-decoding and list-recovery.
What other examples are there?

What other applications of Theorem II.8 are
there? In subsequent work [GLM™20], the char-
acterization of a sharp threshold for local proper-
ties of random linear codes (Theorem II.8) was al-
ready demonstrated to be useful beyond our work
on LDPC codes. We hope to see additional appli-
cations of this result. For example, Remark I1.9
implies that to prove that Crpc(R — ¢) satisfies
a local property P with probability 1 — 27("),
it suffices to show that Crrc(R) satisfies P with
some tiny probability (at least 27°(")). Are there
situations where this could be useful?

2)

Authorized licensed use limited to: Stanford University. Downloaded on March 30,2021 at 19:07:07 UTC from IEEE Xplore. Restrictions apply.



3) Derandomization? Our results hold for a random
ensemble of LDPC codes. It is natural to ask
whether (or to what extent) this construction can
be derandomized. In particular, it does not seem
as though the underlying graph being an expander
would be sufficient.

Algorithms? Our results are combinatorial, but
one of our main motivations is algorithmic. At
the moment we do not know of any truly linear-
time list-decoding algorithms for any capacity-
achieving list-decodable codes. Since essentially
all known linear-time algorithms in coding theory
arise from graph-based codes, such codes are
a natural candidate for linear-time list-decoding.
Now that we know that random LDPC codes
achieve list-decoding capacity combinatorially,
can we list-decode them efficiently?

4)

D. Organization and main building blocks

In Section II, we give a high-level overview of the
proof of Theorem 1.8. This proof relies on three building
blocks:

o First, Lemma II.7 establishes sharp thresholds for
certain local properties, and effectively character-
izes the sorts of sets B C IF;‘ that are contained
in a random linear code. We prove this lemma in
Section 3 of the full version. Using Lemma II.7
we prove Theorem II.8, which pins down a sharp
threshold for any local property of a random linear
code.

Second, Lemma II.13 shows that for a set B
with a certain property called J-smoothness, the
probability that B appears in a random s-LDPC
code is not much larger than the probability that it
appears in a random linear code of the same rate.
We prove this Lemma I1.13 in Section 4 of the full
version using Fourier analysis.

Together with Lemma II.7, Lemma II.13 implies
that any property satisfied with high probability by
a random linear code is also satisfied with high
probability by a random s-LDPC code of similar
rate, provided that we can restrict our attention to
d-smooth sets B. It turns out that for any code
with good distance,” we may indeed restrict our
attention to such sets, so it remains to show that
random s-LDPC codes have good distance.

Third, Theorem II.14 shows that random s-LDPC
codes do indeed have good distance with high
probability. This was already shown by Gallager

9The distance of a code is the minimum distance between any two
codewords.
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in the binary case; we give an alternative proof of
this fact that also extends to large alphabets. We
prove Theorem II.14 in Section 5 of the full version
using techniques from exponential families.

Together, these three building blocks can be used to
establish Theorem 1.8, as we show next in Section II.

II. HIGH-LEVEL IDEA: PROOF OF THEOREM 1.8

In this section we prove our main theorem (The-
orem [.8) using the building blocks outlined in Sec-
tion I-D. We will establish these building blocks in later
sections. The purpose of this section is to give a high-
level idea of the structure of the proof, deferring the
technical parts to later sections. However, we will need
a few technical definitions, outlined in Section II-A.

A. Notation and definitions

Because we are studying local properties, we need
some notation around sets B C IFZ. For such a set B
of size ¢, it will be convienient to view B as a matrix
M e ]Fg” with the elements of B as the columns. (The
ordering of the columns will not matter.) We say that
M is contained in a code C' C Fy (written “M C C”)
if all of the columns of M belong to C.

The notion of permutation-invariant properties leads
us to think about permutations of the rows of such a
matrix M € FZL”. Motivated by this, we define 7/,
the row distribution of M, as follows: for any v € Fg,

number of appearances of v as a row in M

T (V) : -

Let D, ¢ denote the collection of possible row distri-
butions of matrices in ]FZX[, i.e., distributions 7 over Fg
where 7(v)-n € N for any v € supp(7).'° The number
of possible row distributions of matrices in FZ“ is just
the number of ways to partition n things into at most
q" groups, so

_
n+q 1>. 3)

¢ —1

Do < (

For a distribution 7 € D, 4, let M, ; denote the
collection of matrices M € IF‘;LXZ with row distribution
7. We say that a code C' contains T to mean that M C C'
for some matrix M € M,, .. Let

L. ={ne€N|7(u)-n is an integer for all u € ]Ff;}

Note that for C' to contain 7, a trivial necessary condi-
tion is that the length of C' belongs to L. Let P, denote
the /-local property of not containing any matrix from

10Notice that Dy, depends on q as well, but we suppress this
dependence in the notation for readability.
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the set M,, . Properties of the form P, are particularly
useful to us due to the following observation:

Observation II.1 (Local property decomposition). Let
P = (P,)nen be an l-local property for some £ € N.
Then, for every n € N there exists T,, C Dy, ¢ such that

C C Fy satisfies P, <= C satisfies Py for all
TeT,.

Finally, let H(7) and H,(7) denote the entropy
and base-g-entropy of a random variable distributed
according to 7:

H(7):

Y. T@)log(r(x))

xEsupp(T)

and
H,(r):= 10<gTq) .

Let d(7) := dim(span(supp(7))).

We will work with the parity-check matrix view of
a random s-LDPC code C. Let H € F{'™ ™" pe
the adjacency matrix of the graph G from the definition
of a random s-LDPC code in Section I-A. where the
nonzero entries are given by the coefficients o ; of the
parity checks. Then we can define a random s-LDPC
code C as

C={zeF;:H z=0}.

We introduce some notation to talk about the structure
of H, which we will use throughout the paper.

Let ' € {0,1}("/9)*" be the matrix F = (F; |
Fy | ... | F,s), where each F; € {0,1}("/$)* has
all-ones i-th row, and the rest of the rows are all-zeros.
Let IT € {0,1}™*™ be a random permutation matrix,
and let D € Fy*™ be a diagonal matrix with diagonal
entries that are uniform in Fj. Let Hy, ..., H1_g)s
be sampled independently according to the distribution
F-1-D. Then let H € F{'""™"*" be the matrix
obtained by stacking Hi, ..., H_R).s on top of each
other. Then H is the parity-check matrix for a random
s-LDPC code of rate R. We will refer to each H; as a
“layer” of H.

We will also require the following standard facts:

Fact I1.2. A matrix M € IF:;M is contained in a

random linear code C' C Fy of rate R with probability
qf(lfR)-rank(M)n.

Fact IL.3 ( [CST04], Lemma 2.2). For any distribution
T E 'Dn’g,

1
)n n+qz_]' Vn
§He™) < o > < [ Mo a| < gflaln.
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B. Sharp thresholds for local properties for random
linear codes

The first building block is Lemma II.7 below, which
shows that for every distribution 7 € D,, 4, the property
P, is sharp for random linear codes. Moreover we
give a simple characterization of Rrpc(P-). As an
easy corollary, we get Theorem I1.8, which generalizes
Lemma II.7 to any local property, not necessarily of the
form P.

Before stating Lemma II.7 we give some intuition.
Fix some distribution 7 over Ffl. Let C be a random
linear code of length n € L, and rate R. We seek
a threshold rate, above which C' is likely to contain
7. It is natural to attempt a first-moment approach to
this problem and ask what is the expected number
of matrices from M, . which are contained in C.
Note that |M,, .| = ¢« . poly(n). Indeed, if
U, ..., Uge are an enumeration of Fg, then M,, , is
in one-to-one correspondence with partitions on [n]
into ¢° subsets of sizes n7(uy),...,n7(ug). That is,
|M"77| = (nT(ul),..T.L,n‘r(qu) anq(Tg : pOIY(n),
where the last estimate follows from Fact I1.3, and relies
on our assumption that n € L.

Given M € M,, ;, the code C contains M with
probability ¢~ (1=F)d(7) (see Fact I1.2). Hence, in
expectation, C' contains roughly ¢™ (Ha(m)—(1=R)-d())
matrices from M, . In particular, this expectation
grows (resp. decays) exponentially in n, when R is
larger (resp. smaller) than 1 — Z‘ES) This motivates
the following definition.

Definition I1.4 (Expectation threshold). Given a distri-
bution T over ]Ff;, define the expectation-threshold

Hy(7)
d(r)

It follows immediately from a first-moment argument
that if R < RE; () then C satisfies P, with proba-
bility 1 — e=*(")_ In particular, as n grows we get the
lower bound

R]IE{LC(T) =1-

fc(Pr) = Ripe(r) —o(1). €
However, as the following example shows, this bound
is not tight.

Example ILS. Let ¢ = 2, { = 3 and consider the
distribution T over Fs, given by the following table:

l u | 7(w) |
(1,0,0) 1/4
(0,1,0) 1/4
(1,0,1) 1/4
(0,1,1) 1/4

Every other vector 0
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It is straightforward to compute RI}E{LC(T) =1-
We claim that Rf;

2X3
= 100) € F57° represent the
coordinates. Let 7' denote the distribution of Au, where

Ha(r) _ 1 _2_1
amy 3= 3

(P:) is bounded away from
R]IE:{LC(T>' Let A : .Eo 10 J
linear map which projects a vector onto its first two
u is a random vector sampled from 1. Thus, 7' is
distributed as follows:

l U [ 7(u) |
(1,0) 1/2
(0,1) 1/2
Every other vector 0

Note that a code C which contains a matrix M from
M, - must contain the first two columns of M: that
is, the matrix M A™T. Consequently, every code which
satisfies Py also satisfies P, and so Ry c(Pr) >
RﬁLC (PT’)-

Finally, (4) yields

Hy(r'
Rio(Pr) 2 Ripo(r) —o(1) =1 - 2200 _ o)
d(t’)
1 1
and we conclude that
1 1
rLc(Pr) > 57 o(1) > 3= I1E1LC(T)

for large n.

In Example I1.5, the bound of RE; (7) was not tight,
in that the rate can actually be much higher than we
would expect from a first-moment argument. The reason
was that there was some linear map A so that 7/ = At
had a larger value of RE; (7). We will show below
that this is the only reason that R () might not be
the right answer. To make this precise, we introduce the
following definition.

Definition I1.6 (Implied distribution). Let 7 be a distri-
bution over Ffl and let A € IF;”XZ be a rank m matrix
for some m < (. The distribution of the random vector
Au, where u is randomly sampled from T, is said to be
T-implied. We denote the set of T-implied distributions
by Z,.

Note that whenever 7/ € Z,, a linear code satisfying
P must also satisfy P,. Indeed, in the setting of
Definition I1.6 assume that C' contains a matrix M €
M., . By linearity, C also contains the matrix )M AT,
which belongs to M, ». Hence, not satisfying P,
implies not satisfying P,.. Consequently, R (P-) >
Rire (Pr).

Inequality (4) now yields the stronger bound

Rric(P)" > max Ripc() —o(1).

&)
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Lemma I1.7 below essentially says that (5) is tight, and
that P, is sharp for random linear codes. We prove this
Lemma in Section 3 of the full version.

Lemma I1.7 (Sharp threshold for P, for random linear
codes). Let ¢ € N and let T be a distribution over Fg.
Denote R: = max, ¢z, Rip (7). Then

TFL{LC(PT) = R:— + 0no00(1).

for n € L.. Moreover, P, is sharp for random linear
codes. Specifically, fix any € > 0, and let C' be a random
linear code of rate R and length n € L. The following
holds:

1) If R< R: —¢, then
Pr3M e M, .M CC]<q °".

2) If R > R: +¢, then
n+q* -1
q2£_1

3
> 'q—an.

Theorem II.8 (Sharp thresholds for local properties for
random linear codes). Fix ¢ € N. Let P = (Pp)nen
be an {-local property and let (T,,)nen be as in Obser-
vation II.1. Then P is sharp for random linear codes
and

Pr[3M e M, ,,M C C] > 1-(

We now can conclude a more general result.

Ric(P) = min max Rypo(7') £ 0nsoo(1)-

Remark IL9 (Probability of satisfying P in Theorem
IL.8). Fix € > 0. An inspection of the proof of Theorem
I1.8 shows that Cp «(Ry o (P) — €) satisfies P with
probability 1 — 27 Likewise, C2; (R ;.o(P) +¢)
satisfies P with probability 2~

Remark 1II.10 (Relationship to random graphs).
Lemma 11.7 has an analog in the theory of random
graphs. Fix a constant-sized graph H and let G be a
random graph in the G(n,p) model. A natural problem
is to determine the threshold for the appearance of H as
a sub-graph of G. The answer (see for example [Bol0l,
Sec. 4.2]) is that a copy of H is likely to occur in G
whenever p is large enough so that every subgraph of H
has, in expectation, w(1) copies as subgraphs of G. To
complete the analogy, equate H with T, and a subgraph
of H with a T-implied distribution.

We also mention the recent breakthrough result of
Frankston et al., which studies this relationship be-
tween thresholds and expectations of sub-structures in
a more general framework [FKNPI19]. However, since
the properties that they study are not necessarily local,
it is impossible for that work to precisely pinpoint the
thresholds, as we do in our work.
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C. Probability that a matrix is contained in a random
5-LDPC code

The second building block shows that given a matrix
M € Fg“, the probability that M is contained in a
random s-LDPC code is not much larger than that of
appearing in a random linear code, provided that M is
d-smooth (defined below).

Definition IL.11 (Smooth distribution). Let 6 > 0.
We say that a distribution T over Ff; is 6-smooth if
Pry. [(u,v) # 0] > & for all u € F,\ {0}. If
M € FZIL” is such that T); is d-smooth, we also say
that M is 6-smooth.

Remark II.12 (Relationship to distance). In coding-
theoretic terms, Tyy is §-smooth if and only if the code
{M U uE Ff;} has relative distance at least 6 and M
is full-rank. Indeed, the relative weight of any codeword
M in this code is

1
E Z 1<u,elTM>7$0 = UEI;_[<U7U> 7& 0]
1€[n]

The following lemma bounds the probability that a
matrix with smooth row distribution is contained in
a random LDPC code with sufficiently large sparsity
parameter. We prove this lemma in Section 4 of the full
version.

Lemma II.13 (Probability that a random LDPC code
contains a matrix). For any 0, > 0, prime power g,
and £ > 1 there exists sy > 1 such that the following
holds for any odd s > sy, and sufficiently large n. Let
M € FZXZ be d-smooth. Then the probability p that M
is contained in a random s-LDPC code of length n and
rate R satisfies

p < q—(1—8)~(1—R)'Z~7L'

Given a smooth distribution 7, in light of Fact 11.2,
Lemma II.13 says that the expected number of matrices
from M,, ; in a random s-LDPC code is not much
larger than this number for a random linear code.
If we ignore the constraint that 7 must be smooth,
then together with Lemma IL.7 the above would imply
Theorem 1.8. Indeed, if a distribution 7 is unlikely to
appear in a random linear code then Lemma I1.7 shows
that some 7-implied distribution 7/ appears o(1) times in
expectation in the random linear code. By Lemma II.13,
7' appears o(1) times in the random LDPC code as
well, so the LDPC code is unlikely to contain 7’. Thus,
it is also unlikely to contain 7. (Of course, we cannot
ignore the constraint that 7 must be smooth; we will
address this in our next building block discussed in
Section II-D).
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The proof of Lemma II.13 proceeds by Fourier
analysis. The basic idea is as follows: since C is a
random s-LDPC code, each parity-check corresponds
(essentially) to an independent and uniformly random
set of s coordinates in [n].!! Thus, the probability that
a matrix M € M, . is in C can be derived from
the probability that s random vectors vy, ...
sum to zero. This probability is given by a convolution
7*(0) = 7% 7 % -+ x 7(0) of 7 with itself s times.
The convolution is in turn controlled by s’th powers of
the Fourier coefficients 7(w) of 7. As we will see, the
condition that 7 be §-smooth implies that the nonzero
Fourier coefficients 7(w) are bounded away from 1, and
this means that if s is large enough, the contributions
7(w)* of the nonzero coefficients to 7*°(0) will become
small.

yUs ™~ T

D. Distance of random s-LDPC codes

As noted above, the first two building blocks show
that for any d-smooth distribution 7 ~ Ff;, a random
LDPC code of rate slightly below Rp;~(P-) is un-
likely to contain 7. The third and final building block
shows that we may restrict our attention to §-smooth
distributions.

As noted in Remark II.12, the condition that M
be J-smooth is the same as the condition that the
code generated by M has relative distance at least .
Thus, if C C ]Fg has relative distance at least ¢, it
does not contain any matrices that are not J-smooth.
Fortunately, it is well-known that binary random s-
LDPC codes have good distance, and that in fact the
distance approaches the Gilbert-Varshamov (GV) bound
with high probability.!? Theorem II.14 generalizes this
result to s-LDPC codes over any alphabet. Below, h,(z)
is the g-ary entropy function (as in (1)).

Theorem II.14 (Random LDPC codes achieve the GV
bound). For any 6 € (0,1 —1/q), € > 0, and prime
power q there exists sg > 1 such that the following
holds for any s > so. Let R < 1 — hy(d) —e. Then a
random s-LDPC code of rate R over F, has relative
distance at least § with high probability.

Remark II.15 (Comparison to Gallager’s proof).
Gallager’s proof for binary random s-LDPC codes
in [Gal62] uses generating functions. We give an al-
ternative proof using ideas from exponential families,
which follows the approach of recent work by Linial and

UThis is not exactly true because the parity checks that belong to
the same layer are not independent; however, we show that this does
not significantly affect the probability of the event of interest.

12The GV bound refers to the rate-distance trade-off R = 1 —
hq(8), which is approached by a random linear code.
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the first author [LM20]. Our proof extends to random s-
LDPC codes over any alphabet. We note that Gallager
left it as an open problem in [Gal62] to obtain a
result like this for larger alphabets, but his definition
was slightly different than ours: the coefficients o ;
in his parity checks were all 1’s, while ours are taken
randomly from F.

Despite having different frameworks, our proof and
that of [Gal62] turn out to yield similar equations. In
particular our proof of Lemma 5.2 in the full version is
very similar to the corresponding proof in [Gal62] at a
technical level.

E. Proof of Theorem 1.8

Theorem 1.8 is proven in the full version as an
immediate consequence of the building blocks above.
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