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Abstract—We show that Gallager’s ensemble of Low-
Density Parity Check (LDPC) codes achieves list-decoding
capacity with high probability. These are the first graph-
based codes shown to have this property. This result
opens up a potential avenue towards truly linear-time list-
decodable codes that achieve list-decoding capacity.

Our result on list decoding follows from a much more
general result: any local property satisfied with high
probability by a random linear code is also satisfied
with high probability by a random LDPC code from
Gallager’s distribution. Local properties are properties
characterized by the exclusion of small sets of codewords,
and include list-decoding, list-recovery and average-radius
list-decoding.

In order to prove our results on LDPC codes, we
establish sharp thresholds for when local properties are
satisfied by a random linear code. More precisely, we show
that for any local property P , there is some R∗ so that
random linear codes of rate slightly less than R∗ satisfy P
with high probability, while random linear codes of rate
slightly more than R∗ with high probability do not. We
also give a characterization of the threshold rate R∗.

This is an extended abstract. The full version is

available at https://arxiv.org/abs/1909.06430.

I. INTRODUCTION

In this paper, we study sets C ⊂ Σn of strings

of length n, with the combinatorial property that not

too many elements of C are contained in any small

enough Hamming ball. In the language of coding the-

ory, such a C is a list-decodable code. List-decoding

is an important primitive in coding theory, with ap-

plications ranging from communication to complexity

theory. However, as discussed below, most construc-

tions of capacity-achieving (aka, optimal) list-decodable

codes are fundamentally algebraic, despite a rich his-

tory of combinatorial—and in particular, graph-based—

constructions of error correcting codes.

We show that a random ensemble of Low-Density
Parity-Check (LDPC) codes achieves list-decoding ca-

pacity with high probability. LDPC codes are the proto-

typical example of graph-based codes, and are popular

both in theory and in practice because of their extremely

efficient algorithms. One of the motivations for this

work is that we do not currently know any linear-time

algorithms for list-decoding any code up to capacity;

since graph-based codes offer linear-time algorithms

for a variety of other coding-theoretic tasks, our result

opens up the possibility of using these constructions for

linear-time list-decoding algorithms.

List Decoding: Formally, a code C ⊂ Σn is

(α,L)-list-decodable if for all z ∈ Σn,

| {c ∈ C : dist(c, z) ≤ α} | ≤ L.

Above, dist(c, z) is the relative Hamming distance,

dist(c, z) =
1

n
| {i : ci �= zi} |.

Elements c ∈ C are called codewords, Σ is called the

alphabet, and n is called the length of the code.

The fundamental trade-off in list-decoding is between

the parameter α and the size |C| of the code, given that

the list size L is reasonably small. We would like both

α and |C| to be large, but these requirements are at

odds: the larger the code C is, the closer together the

codewords have to be, which means that α cannot be as

large before some Hamming ball of radius α has many

codewords in it. The size of a code C is traditionally
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quantified by the rate R of C, which is defined as

R =
log|Σ|(|C|)

n
.

The rate of C is a number between 0 and 1, and larger

rates are better.

List-decoding has been studied since the work of

Elias and Wozencraft in the 1950’s [Eli57], [Woz58],

and by now we have a good understanding of what is

possible and what is not. The classical list-decoding
capacity theorem states that there exist codes over

alphabets of size |Σ| = q and of rate R ≥ 1−hq(α)−ε
which are (α, 1/ε)-list-decodable, where

hq(x) := x logq(q−1)−x logq(x)−(1−x) logq(1−x)
(1)

is the q-ary entropy function. Conversely, any such code

with rate R ≥ 1−hq(α)+ ε must have exponential list

sizes, in the sense that there is some z ∈ Σn so that

| {c ∈ C : dist(c, z) ≤ α} | = expε,α(n).
1

A code of rate R ≥ 1 − hq(α) − ε that is (α,L)-
list decodable for L = Oε,α(1) is said to achieve
list-decoding capacity, and a major question in list-

decoding is which codes have this property. By now

we have three classes of examples. First, it is not

hard to see that completely random codes achieve list-

decoding capacity with high probability. Second, a long

line of work (discussed more below) has established that

random linear codes do as well: we say that a code over

the alphabet Σ = Fq is linear if it is a linear subspace

of Fn
q ,2 and a random linear code is a random subspace.

Third, there are several explicit constructions of codes

which achieve list-decoding capacity; as discussed be-

low, most of these constructions rely importantly on

algebraic techniques.

LDPC Codes: Graph-based codes, such as LDPC

codes, are a class of codes which is notably absent from

the list of capacity-achieving codes above. Originally

introduced by Gallager in the 1960’s [Gal62], codes

defined from graphs have become a class of central

importance in the past 30 years.

Here is one way to define a code using a graph.

Suppose that G = (V,W,E) is a bipartite graph with

|V | = n and |W | = m for m ≤ n. Then G naturally

defines a linear code C ⊂ Fn
q of rate at least 1−m/n

1Here and throughout the paper, exp(n) denotes 2Θ(n), and
subscripts indicate that we are suppressing the dependence on those
parameters.

2Here and throughout the paper, Fq denotes the finite field with q
elements.

as follows:

C =

⎧⎨
⎩c ∈ Fn

q : ∀j ∈W,
∑

i∈Γ(j)
αi,jci = 0

⎫⎬
⎭ ,

where Γ(i) denotes the neighbors of i in G and αi,j ∈
Fq are fixed coefficients. That is, each vertex in W
serves as a parity check, and the code is defined as

all possible labelings of vertices in V which obey all of

the parity checks. When the right-degree of G is small,

the resulting code is called a Low-Density Parity Check

(LDPC) code.

LDPC codes and related constructions (in particu-

lar, Tanner codes [Tan81] and expander codes [SS94],

[Zém01]) are notable for their efficient algorithms for

unique decoding; in fact, the only linear-time encod-

ing/decoding algorithms we have for unique decoding

(that is, list-decoding with L = 1) are based on such

codes.

Motivating question: We currently do not know of

any linear-time algorithms to list-decode any code to

capacity. Since graph-based codes and LDPC codes in

particular are notable for their linear-time algorithms,

this state of affairs motivates the following question:

Question I.1. Are there (families) of LDPC codes that
achieve list-decoding capacity?

A. Contributions

Motivated by Question I.1, our contributions are as

follows.

(1) We show that the answer to Question I.1 is “yes.”

More precisely, we show that random LDPC codes

(the same ensemble studied by Gallager in his

seminal work nearly 60 years ago [Gal62]), achieve

list-decoding capacity with high probability.

(2) In fact, we show a stronger result: random LDPC

codes satisfy with high probability any local prop-

erty that random linear codes satisfy with high

probability. We define local properties precisely

below; informally, a local property is one de-

fined by the exclusion of certain bad sets. List-

decodability is a local property—it can be defined

by the exclusion of any big set of vectors that are

too close together—and this answers Question I.1.

(3) Along the way, we develop a characterization of

the local properties that are satisfied with high

probability by a random linear code. We show that

for any local property P , there is a threshold R∗

so that random linear codes of rate slightly less

than R∗ satisfy P with high probability, while

random linear codes of rate slightly greater than R∗
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with high probability do not. Moreover, we give a

characterization of the threshold R∗.
In [GLM+20], the above characterization is used

to compute lower bounds on the list-decoding and

list-recovery parameters of random linear codes.

This additional application does not directly relate

to LDPC codes.

We describe each of these contributions in more detail

below.
(1) Random LDPC codes achieve list-decoding

capacity: We study the so-called “Gallager ensemble”

of binary LDPC codes introduced by Gallager in the

1960’s [Gal62], as well as its natural generalization to

larger alphabets.3

Fix a rate R ∈ (0, 1) and a sparsity parameter s,

and let t = (1 − R)s. We assume that t is an integer.

To define the ensemble of random s-LDPC codes
of rate R, we need to specify a distribution on the

underlying bipartite graphs and a distribution on the

coefficients αi,j . We define the distribution on graphs

as follows. Let Gi = (V,Wi, Ei) for i = 1, . . . , t be

independent uniformly random (1, s)-regular bipartite

graphs with a shared left vertex set V of size n and

disjoint right vertex sets Wi, each of size n/s. Then

let G = (V,W,E) be the union of these graphs, where

W =
⋃t

i=1Wi. Finally, we choose the coefficients αi,j

for (i, j) ∈ E to be uniformly random in F∗q .
Our main theorem about the list-decodability of

random LDPC codes is a reduction from the list-

decodability of random linear codes:

Theorem I.2. For any R ∈ (0, 1), ε > 0, prime power
q, α ∈ (0, 1 − 1/q) and L ≥ 1 there exists s0 ≥ 1
such that the following holds for any odd s ≥ s0.
Suppose that a random linear code of rate R over Fq

is (α,L)-list decodable with high probability. Then a
random s-LDPC code of rate R− ε over Fq is (α,L)-
list decodable with high probability.

Remark I.3 (The parity of s). All of our results hold for
even s as well as odd s. However, the proof is slightly
simpler for odd s, so for clarity we state and prove the
theorem in this case.

Instantiating this with a result of [GHK11] on list

decoding of random linear codes, we get the following

corollary.

Corollary I.4. For any prime power q, α ∈ (0, 1−1/q),
and ε ∈ (0, 1 − hq(α)) there exists L = Oα(1/ε) and

3For binary codes, our definition coincides with Gallager’s. For
larger alphabets our definition is somewhat different: Gallager’s
ensemble chooses the coefficients αi,j to be all ones, while we choose
them to be random elements of F∗

q .

s ≥ 1 so that a random s-LDPC code of rate 1−hq(α)−
ε over Fq is (α,L)-list-decodable with high probability.

Remark I.5 (Other parameter regimes). We state Corol-
lary I.4 as one example of what can be obtained by
combining Theorem I.2 with one result on random linear
codes. The result of [GHK11] degrades as α→ 1−1/q,
and so Corollary I.4 degrades as well. However, there
has been a great deal of work on the list-decodability
of random linear codes as α→ 1−1/q (summarized in
Section I-B below), and Theorem I.2 implies that these
results carry over to random LDPC codes as well.

(2) Random LDPC codes achieve any local prop-
erty that random linear codes achieve: Theorem I.2

follows as a corollary of a much more general theorem.

We show that any “local” property that is satisfied

by random linear codes with high probability is also

satisfied by random LDPC codes with high probability.

Informally, a local property is a property which can

be defined by the exclusion of certain bad sets. For

example, a code C is (α,L)-list-decodable if it does

not contain any sets B ⊂ Σn of size larger than L
so that B is contained in a Hamming ball of radius

α. Along with list-decodability, local properties include

many related notions like list recovery, average-radius
list decoding, and erasure list decoding. A long line of

work (discussed more in Section I-B) has established

that these properties hold for random linear codes with

high probability, so our reduction immediately implies

that they hold with high probability for LDPC codes as

well.

Formally, we define a local property as follows. Let

π : [n] → [n] be a permutation on [n]. For a string

x ∈ Σn, we let π(x) ∈ Σn denote the string obtained by

permuting the coordinates of x according to π, and for

a subset B ⊆ Σn, we let π(B) := {π(x) | x ∈ B}. We

say that a collection B of subsets of Σn is permutation
invariant if for any B ∈ B and permutation π : [n] →
[n], we also have that π(B) ∈ B.

Definition I.6 (Local property). Let P = {Pn}n∈N,
where each Pn is a property of length n codes over
Σ. We say that P is a b-local property if for any n ∈
N there exists a permutation-invariant collection Bn of
subsets of Σn, where |B| ≤ b for all B ∈ Bn, such that

C ⊆ Σn satisfies Pn ⇐⇒ B � C for all B ∈ Bn.

We say that a family of random codes C = {Cni
}i∈N

(where {ni} is an increasing sequence) satisfies P with
high probability if limi→∞ Pr[Cni satisfies Pni ] = 1.

Similarly, we say that C almost surely does not
satisfy P if limi→∞ Pr[Cni

satisfies Pni
] = 0.
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A code property is monotone decreasing if given

a code C satisfying P , it holds that every code C ′ ⊆
C also satisfies P . Note that every local property is

monotone decreasing.

A random linear code of rate R over Fq is de-

fined4 as the kernel of a uniformly random matrix

H ∈ F(1−R)n×n
q . Notice that such a code has rate R

with high probability.

For any n ∈ N and R ∈ [0, 1] such that R · n ∈ N,

we denote a random linear length n code of rate R by

Cn
RLC(R). Likewise, given s, n and R such that s | n

and R · s ∈ N, we denote a random s-LDPC code of

length n and rate R by Cn
sLDPC(R). Whenever we use

these notations, it is implicitly assumed that the relevant

divisibility conditions are satisfied.
Let P = {Pn}n∈N be a monotone decreasing prop-

erty of linear codes. We define

Rn
RLC(P) := sup {R ∈ [0, 1] : Pr[Cn

RLC(R) satisfies Pn] ≥ 1/2}
(2)

if such an R exists. Otherwise we define Rn
RLC(P) = 0.

Remark I.7. If P is a monotone decreasing property
then the function Pr[Cn

RLC(R) satisfies Pn] is monotone
decreasing in R. This can be proved by a standard
coupling argument, akin to [Bol01, Thm. 2.1].

With the notation out of the way, we are ready to state

our more general theorem about random LDPC codes.

Essentially, this theorem says that every local property

that holds with high probability for a random linear

code also holds with high probability for a random

s-LDPC code of approximately the same rate. This

approximation improves as s grows.

Theorem I.8 (Main). Let P = (Pn)n∈N be a b-local
property with R̄ := lim supn→∞Rn

RLC(P) < 1. For
any ε > 0 and prime power q, there exists s0 =
s0(ε, R̄, q, b) ≥ 1 such that for any odd s ≥ s0 and
any sequence {Rn}n∈N, if Rn ≤ Rn

RLC(P)− ε for all
n, then the code ensemble Cn

sLDPC(Rn) satisfies P with
high probability.

Remark I.9 (The dependence on ε, R̄, q, b). An inspec-
tion of the proof shows that we may take

s0 = O

(
b log(q) + log(q/ε)

h−1q (1− R̄)

)
.

4There are a few natural ways to define a random linear code: for
example we could also define it as a uniformly random subspace of
dimension Rn, or we could define it as the image of a uniformly
random n× Rn matrix, or we could define it as we do here, as the
kernel of a uniformly random (1−R)n×n matrix. It can be shown
that these distributions are quite close to each other, and in particular,
any property that holds for one with high probability holds for the
others.

The existence of a reduction like the one in Theo-

rem I.8 is surprising, at least to the authors. There is a lot

more structure in a random LDPC code than in a random

linear code. For example, we know of linear-time unique

decoding algorithms for random LDPC codes,5 but it is

unlikely that any efficient unique decoding algorithm

exists for random linear codes.6 Thus it is unexpected

that this much more structured ensemble would share

many properties—in a black-box way—with random

linear codes.

Remark I.10 (A converse to Theorem I.8?). One may
be tempted to conjecture that the converse of Theorem
I.8 holds as well. Namely, in the setting of Theorem I.8,
if Rni

≥ Rni

RLC(P)+ε for all i, then the code ensemble
CsLDPC(Rn) almost surely does not satisfy P . However,
this turns out to be false, due to the following example.
Assume that q = 2 and consider the 1-local property
P := (Pn)n∈N, where Pn is the set of all length n linear
codes that only contain even weight codewords. It is not
hard to see (e.g., using Theorem II.8) that Rn

RLC(P)
tends to 0 as n→∞. On the other hand, if n

s is even,
then every s-LDPC code (including, say, a code of rate
1
2 ) satisfies P , contradicting this conjecture.

However, the above counter-example relies on a tech-
nicality involving divisibility criteria. It is an interesting
question whether a natural converse of Theorem I.8
holds if we additionally assume that P belongs to
some natural class of “nicely behaved” properties that
precludes counter-examples of this sort.

(3) A characterization of local properties satisfied
by random linear codes: In order to prove Theorems I.2

and I.8, we develop a new characterization of the

local properties satisfied by a random linear code. Our

formal theorem is given as Theorem II.8. Informally,

this theorem implies that for any monotone decreasing

property P , there is a sharp threshold R∗ so that random

linear codes of rate slightly less than R∗ with high

probability satisfy P , while random linear codes of rate

slightly larger than R∗ with high probability do not.

Moreover, we give a characterization of R∗.
Formally, we have the following definition, recalling

the definition of Rn
RLC(Rn) from (2).

Definition I.11 (Sharpness for random linear codes).
We say that the property P is sharp for random linear
codes if for every ε > 0 there holds:

5This follows, for example, from [SS94] because the underlying
random graph is with high probability a good expander.

6Unique decoding of random linear codes is related to the problem
of Learning Noisy Parities (LNP) and Learning With Errors (LWE),
which are thought to be hard.
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• If Rn ≤ Rn
RLC(P) − ε for large enough n, then

the code ensemble Cn
RLC(Rn) (n ∈ N) satisfies P

with high probability.
• If Rn ≥ Rn

RLC(P)+ε for large enough n, then the
code ensemble Cn

RLC(Rn) (n ∈ N) almost surely
does not satisfy P .

If a property P is sharp, we sometimes refer to

Rn
RLC(P) as the threshold for P .

Theorem II.8 has two corollaries. The first is that

local properties are sharp for random linear codes:

Corollary I.12. Every local property is sharp for ran-
dom linear codes.

The second corollary of Theorem II.8 is a characteri-

zation of Rn
RLC(P). This characterization requires some

definitions to state formally, so we defer the formal

statement to Theorem II.8. However, it has an intuitive

interpretation, which we sketch here.

Recall that a local property is defined by a

permutation-invariant collection Bn of excluded sets.

For simplicity of exposition, suppose that all of the sets

B ∈ Bn have size exactly b, and moreover that they all

have dimension exactly b. (This assumption is helpful

for exposition but not necessary for our analysis). In

this case, it is easy to compute the probability that each

individual set B ∈ Bn is contained in CRLC(R) (see

Fact II.2):

Pr [B ⊆ CRLC(R)] = q−(1−R)nb.

Thus, we have

E |{B ∈ Bn : B ⊆ CRLC(R)}| = |Bn| · q−(1−R)nb.

Thus, as long as

R < RE

RLC(Bn) := 1− log |Bn|
nb

,

we are guaranteed by Markov’s inequality that with

high probability, no elements of Bn appear in CRLC(R).
However, what if R > RE

RLC(Bn)? It turns out that the

statement above is not tight: in some cases it is likely

that no elements of Bn appear in CRLC(R) even if the

rate R is significantly larger than RE

RLC(Bn). We give

an example in Example II.5 of when this can occur.

Our result in Theorem II.8 pins down exactly when

this can occur. Informally, it happens only because some

projection B′n of the collection Bn is more favorable

than one might expect, in the sense that RE

RLC(B′n) is

larger than one might expect. In this case, the “correct”

threshold is precisely RE

RLC(B′n).
Thus, Theorem II.8 also provides a characterization

of which sorts of “bad” lists B (up to a permutation of

the coordinates) are contained in a random linear code

of a particular rate. We hope that this characterization

will be useful in the study of random linear codes

themselves, in addition to random LDPC codes.

The full power of Theorem II.8 (including the charac-

terization of Rn
RLC(P) described above) is used to prove

Theorem I.8. However, given Theorem I.8, Theorem I.2

readily follows from Corollary I.12 itself:

Proof of Theorem I.2: Let P denote the property

of being (α,L)-list-decodable. Note that P is a local

property: for any n ∈ N, take Bn to be the collection

of all sets of L + 1 vectors in Fn
q contained in some

Hamming ball of radius α. Now, fix some R ∈ (0, 1)
and assume that a random linear code of rate R satisfies

P with high probability. Corollary I.12 implies that

Rn
RLC(P) ≤ R+ on→∞(1).
Next, it is not hard to verify that

lim supn→∞Rn
RLC(P) ≤ 1 − hq(α) < 1. Indeed,

it follows from the list-decoding capacity theorem (e.g.

[LW18, Thm 1.1]) that for large enough n there are no

(α,L)-list-decodable codes of rate 1 − hq(α) + ε. In

particular, this means that a random linear code of rate

1− hq(α) + ε almost surely does not satisfy P .

Theorem I.8 now immediately yields Theorem I.2.

We give a high-level overview of the proof of Theo-

rem I.8 in Section II below after a discussion of related

work in Section I-B.

B. Related Work

List-decodability of random ensembles of codes:
As mentioned above, it is not hard to see that a

completely random code C ⊂ Σn achieves list-decoding

capacity. There has also been work studying more

structured random ensembles of codes, notably random

linear codes. Zyablov and Pinsker [ZP81] showed that

random linear codes of rate 1 − hq(α) − ε are (α,L)-
list-decodable with high probability, where L is inde-

pendent of n but depends exponentially on 1/ε. Two

decades later, [GHSZ02] showed that there exist binary

linear codes with list-size O(1/ε), and their techniques

were recently extended to hold with high probability

in [LW18]. In the meantime, [GHK11] showed that

random linear codes over any constant-sized alphabet

achieve capacity with L = O(1/ε) when α is bounded

away from 1 − 1/q; [CGV13], [Woo13], [RW14],

[RW18] extended these results to get list sizes nearly

as good even for large α, although the problem is still

open in some parameter regimes.

Several variants of list-decoding have been studied for

random linear codes, including list-recovery [RW18],

average-radius list-decoding [Woo13], [RW14],
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[RW18], and list-recovery from erasures [Gur03].7

All of these properties are local, and so our main

theorem implies that LDPC codes satisfy them with

high probability.

List-decodability of explicit codes: Obtaining ex-

plicit constructions of codes which achieve list-decoding

capacity was a major open problem until it was solved

about a decade ago. The first explicit codes to provably

achieve capacity were the Folded Reed-Solomon Codes
of Guruswami and Rudra [GR08]. These codes are

variants on the classic Reed-Solomon codes and are

based on polynomials over finite fields. Since then,

there have been several constructions of such codes,

also based on algebraic techniques, including Univariate
Multiplicity Codes [GW13], [Kop15], [KRSW18], vari-

ants of Algebraic-Geometry Codes [GX12], [GX13],

and manipulations of these codes [DL12], [GK16],

[HRW17], [KRRZ+19]. However, the state-of-the-art

for explicit constructions still requires quite large (but

constant) alphabet and list sizes. These codes can be

efficiently list-decoded in polynomial time; the fastest

algorithm is that of [HRW17], [KRRZ+19], which runs

in nearly-linear time O(n1+o(1)).
While graph-based techniques have been used to

modify the underlying algebraic constructions (for ex-

ample the expander-based distance-amplification tech-

nique of [AEL95] is used in [HRW17], [KRRZ+19]

to obtain near-linear-time list-decoding), to the best of

our knowledge there are no results establishing list-

decodability up to capacity for purely graph-based codes

such as LDPC codes or expander codes.8

Finally, we note that recent work [DHK+19] has

given an algorithm to list-decode codes based on high-

dimensional expanders, but these results are far from

list-decoding capacity.

LDPC Codes Achieve Capacity on the Binary
Symmetric Channel: LDPC Codes have been studied

extensively in the context of unique decoding, especially

7List-recovery is a generalization of list-decoding where the input
is a list of sets Z1, . . . , Zn of size at most � (instead of a received
word z ∈ Σn, which can be seen as the � = 1 case), and goal is
to find all of the codewords c ∈ C so that ci ∈ Zi for at least
a 1 − α fraction of the i ∈ [n]. Average-radius list-decoding is a
strengthening of list-decoding where instead of requiring that no set
of L+1 codewords are all close to some z, we require that no set of
L+1 codewords has small average distance to z. List-decoding from
erasures is a weaker notion than list-decoding, where z ∈ (Σ∪{⊥})n
has some erased symbols, and the goal is to recover all c ∈ C which
agree with z on the observed coordinates.

8We note that [HW18] give capacity-achieving graph-based codes
for zero-error list-recovery (with erasures), where the input is lists
Z1, . . . , Zn so that most lists have small size, and the goal is to
return all codewords c ∈ C that satisfy ci ∈ Zi for all i. It does
not seem easy to adapt these techniques for general list-recovery and
hence for list-decoding.

in a model of random errors. Informally, a code is

said to achieve capacity on the Binary Symmetric
Channel (BSC) if there is some algorithm which can,

with high probability, uniquely decode a code of rate

R = 1−h2(α)−ε from an α-fraction of random errors.

It is known that Gallager’s LDPC codes nearly achieve

capacity on the BSC as n gets large, under maximum-

likelihood decoding [Gal62], [Gur06], and recently it

was shown that certain LDPC codes achieve capacity

for smaller block lengths under efficient decoding al-

gorithms as well [KRU13]. Achieving capacity on the

BSC is related to achieving list-decoding capacity (in

particular, the capacities are the same, R = 1−hq(α)).
However, there is no formal connection along these

lines, and to the best of our knowledge these results

about the BSC do not imply anything about the list-

decodability of LDPC codes.

Relationship to graph properties: Finally, we note

that our results providing sharp thresholds of local

properties for random linear codes are reminiscent of

classic results about local properties of random graphs.

We discuss this connection more in Remark II.10.

C. Discussion and open questions

In this work, we answer Question I.1 with a very

strong “yes.” There are LDPC codes that achieve list-

decoding capacity, and moreover there are many of

them, and moreover these codes also likely satisfy any

local property—that is, any property which can be

defined by ruling out small bad sets of codewords—

which is likely satisfied by a random linear code. Our

results raise several interesting questions:

1) What other properties are local? We have

shown that random LDPC codes satisfy with

high probability any local property that random

linear codes satisfy with high probability. There

are several natural examples of local properties,

including distance, list-decoding and list-recovery.

What other examples are there?

2) What other applications of Theorem II.8 are
there? In subsequent work [GLM+20], the char-

acterization of a sharp threshold for local proper-

ties of random linear codes (Theorem II.8) was al-

ready demonstrated to be useful beyond our work

on LDPC codes. We hope to see additional appli-

cations of this result. For example, Remark II.9

implies that to prove that CRLC(R − ε) satisfies

a local property P with probability 1 − 2−Ω(n),
it suffices to show that CRLC(R) satisfies P with

some tiny probability (at least 2−o(n)). Are there

situations where this could be useful?
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3) Derandomization? Our results hold for a random

ensemble of LDPC codes. It is natural to ask

whether (or to what extent) this construction can

be derandomized. In particular, it does not seem

as though the underlying graph being an expander

would be sufficient.

4) Algorithms? Our results are combinatorial, but

one of our main motivations is algorithmic. At

the moment we do not know of any truly linear-

time list-decoding algorithms for any capacity-

achieving list-decodable codes. Since essentially

all known linear-time algorithms in coding theory

arise from graph-based codes, such codes are

a natural candidate for linear-time list-decoding.

Now that we know that random LDPC codes

achieve list-decoding capacity combinatorially,

can we list-decode them efficiently?

D. Organization and main building blocks

In Section II, we give a high-level overview of the

proof of Theorem I.8. This proof relies on three building

blocks:

• First, Lemma II.7 establishes sharp thresholds for

certain local properties, and effectively character-

izes the sorts of sets B ⊆ Fn
q that are contained

in a random linear code. We prove this lemma in

Section 3 of the full version. Using Lemma II.7

we prove Theorem II.8, which pins down a sharp

threshold for any local property of a random linear

code.

• Second, Lemma II.13 shows that for a set B
with a certain property called δ-smoothness, the

probability that B appears in a random s-LDPC

code is not much larger than the probability that it

appears in a random linear code of the same rate.

We prove this Lemma II.13 in Section 4 of the full

version using Fourier analysis.

Together with Lemma II.7, Lemma II.13 implies

that any property satisfied with high probability by

a random linear code is also satisfied with high

probability by a random s-LDPC code of similar

rate, provided that we can restrict our attention to

δ-smooth sets B. It turns out that for any code

with good distance,9 we may indeed restrict our

attention to such sets, so it remains to show that

random s-LDPC codes have good distance.

• Third, Theorem II.14 shows that random s-LDPC

codes do indeed have good distance with high

probability. This was already shown by Gallager

9The distance of a code is the minimum distance between any two
codewords.

in the binary case; we give an alternative proof of

this fact that also extends to large alphabets. We

prove Theorem II.14 in Section 5 of the full version

using techniques from exponential families.

Together, these three building blocks can be used to

establish Theorem I.8, as we show next in Section II.

II. HIGH-LEVEL IDEA: PROOF OF THEOREM I.8

In this section we prove our main theorem (The-

orem I.8) using the building blocks outlined in Sec-

tion I-D. We will establish these building blocks in later

sections. The purpose of this section is to give a high-

level idea of the structure of the proof, deferring the

technical parts to later sections. However, we will need

a few technical definitions, outlined in Section II-A.

A. Notation and definitions

Because we are studying local properties, we need

some notation around sets B ⊆ Fn
q . For such a set B

of size �, it will be convienient to view B as a matrix

M ∈ Fn×�
q with the elements of B as the columns. (The

ordering of the columns will not matter.) We say that

M is contained in a code C ⊆ Fn
q (written “M ⊂ C”)

if all of the columns of M belong to C.

The notion of permutation-invariant properties leads

us to think about permutations of the rows of such a

matrix M ∈ Fn×�
q . Motivated by this, we define τM ,

the row distribution of M , as follows: for any v ∈ F�
q ,

τM (v) :=
number of appearances of v as a row in M

n
.

Let Dn,� denote the collection of possible row distri-

butions of matrices in Fn×�
q , i.e., distributions τ over F�

q

where τ(v) ·n ∈ N for any v ∈ supp(τ).10 The number

of possible row distributions of matrices in Fn×�
q is just

the number of ways to partition n things into at most

q� groups, so

|Dn,�| ≤
(
n+ q� − 1

q� − 1

)
. (3)

For a distribution τ ∈ Dn,�, let Mn,τ denote the

collection of matrices M ∈ Fn×�
q with row distribution

τ . We say that a code C contains τ to mean that M ⊂ C
for some matrix M ∈Mn,τ . Let

Lτ = {n ∈ N | τ(u) · n is an integer for all u ∈ F�
q}.

Note that for C to contain τ , a trivial necessary condi-

tion is that the length of C belongs to Lτ . Let Pτ denote

the �-local property of not containing any matrix from

10Notice that Dn,� depends on q as well, but we suppress this
dependence in the notation for readability.
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the set Mn,τ . Properties of the form Pτ are particularly

useful to us due to the following observation:

Observation II.1 (Local property decomposition). Let
P = (Pn)n∈N be an �-local property for some � ∈ N.
Then, for every n ∈ N there exists Tn ⊆ Dn,� such that

C ⊆ Fn
q satisfies Pn ⇐⇒ C satisfies Pτ for all

τ ∈ Tn.

Finally, let H(τ) and Hq(τ) denote the entropy
and base-q-entropy of a random variable distributed

according to τ :

H(τ) := −
∑

x∈supp(τ)
τ(x) log(τ(x))

and

Hq(τ) :=
H(τ)

log q
.

Let d(τ) := dim(span(supp(τ))).
We will work with the parity-check matrix view of

a random s-LDPC code C. Let H ∈ F(1−R)n×n
q be

the adjacency matrix of the graph G from the definition

of a random s-LDPC code in Section I-A. where the

nonzero entries are given by the coefficients αi,j of the

parity checks. Then we can define a random s-LDPC

code C as

C =
{
x ∈ Fn

q : H · x = 0
}
.

We introduce some notation to talk about the structure

of H , which we will use throughout the paper.

Let F ∈ {0, 1}(n/s)×n be the matrix F = (F1 |
F2 | . . . | Fn/s), where each Fi ∈ {0, 1}(n/s)×s has

all-ones i-th row, and the rest of the rows are all-zeros.

Let Π ∈ {0, 1}n×n be a random permutation matrix,

and let D ∈ Fn×n
q be a diagonal matrix with diagonal

entries that are uniform in F∗q . Let H1, . . . , H(1−R)·s
be sampled independently according to the distribution

F · Π · D. Then let H ∈ F(1−R)n×n
q be the matrix

obtained by stacking H1, . . . , H(1−R)·s on top of each

other. Then H is the parity-check matrix for a random

s-LDPC code of rate R. We will refer to each Hi as a

“layer” of H .

We will also require the following standard facts:

Fact II.2. A matrix M ∈ Fn×�
q is contained in a

random linear code C ⊆ Fn
q of rate R with probability

q−(1−R)·rank(M)·n.

Fact II.3 ( [CS+04], Lemma 2.2). For any distribution
τ ∈ Dn,�,

qHq(τ)·n ·
(
n+ q� − 1

q� − 1

)−1
≤ |Mn,τ | ≤ qHq(τ)·n.

B. Sharp thresholds for local properties for random
linear codes

The first building block is Lemma II.7 below, which

shows that for every distribution τ ∈ Dn,�, the property

Pτ is sharp for random linear codes. Moreover we

give a simple characterization of RRLC(Pτ ). As an

easy corollary, we get Theorem II.8, which generalizes

Lemma II.7 to any local property, not necessarily of the

form Pτ .

Before stating Lemma II.7 we give some intuition.

Fix some distribution τ over F�
q . Let C be a random

linear code of length n ∈ Lτ and rate R. We seek

a threshold rate, above which C is likely to contain

τ . It is natural to attempt a first-moment approach to

this problem and ask what is the expected number

of matrices from Mn,τ which are contained in C.

Note that |Mn,τ | = qn·Hq(τ) · poly(n). Indeed, if

u1, . . . , uq� are an enumeration of F�
q , then Mn,τ is

in one-to-one correspondence with partitions on [n]
into q� subsets of sizes nτ(u1), . . . , nτ(uq�). That is,

|Mn,τ | =
(

n
nτ(u1),...,nτ(uq�

)

)
= qnHq(τ) · poly(n),

where the last estimate follows from Fact II.3, and relies

on our assumption that n ∈ Lτ .

Given M ∈ Mn,τ , the code C contains M with

probability q−n·(1−R)·d(τ) (see Fact II.2). Hence, in

expectation, C contains roughly qn·(Hq(τ)−(1−R)·d(τ))

matrices from Mn,τ . In particular, this expectation

grows (resp. decays) exponentially in n, when R is

larger (resp. smaller) than 1 − Hq(τ)
d(τ) . This motivates

the following definition.

Definition II.4 (Expectation threshold). Given a distri-
bution τ over F�

q , define the expectation-threshold

RE

RLC(τ) := 1− Hq(τ)

d(τ)
.

It follows immediately from a first-moment argument

that if R < RE

RLC(τ) then C satisfies Pτ with proba-

bility 1 − e−Ω(n). In particular, as n grows we get the

lower bound

Rn
RLC(Pτ ) ≥ RE

RLC(τ)− o(1). (4)

However, as the following example shows, this bound

is not tight.

Example II.5. Let q = 2, � = 3 and consider the
distribution τ over F32, given by the following table:

u τ(u)

(1, 0, 0) 1/4
(0, 1, 0) 1/4
(1, 0, 1) 1/4
(0, 1, 1) 1/4

Every other vector 0
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It is straightforward to compute RE

RLC(τ) = 1 −
H2(τ)
d(τ) = 1− 2

3 =
1
3 .

We claim that Rn
RLC(Pτ ) is bounded away from

RE

RLC(τ). Let A :=
(
1 0 0
0 1 0

) ∈ F2×32 represent the
linear map which projects a vector onto its first two
coordinates. Let τ ′ denote the distribution of Au, where
u is a random vector sampled from τ . Thus, τ ′ is
distributed as follows:

u τ ′(u)
(1, 0) 1/2
(0, 1) 1/2

Every other vector 0

Note that a code C which contains a matrix M from
Mn,τ must contain the first two columns of M : that
is, the matrix MAT . Consequently, every code which
satisfies Pτ ′ also satisfies Pτ , and so Rn

RLC(Pτ ) ≥
Rn
RLC(Pτ ′).
Finally, (4) yields

Rn
RLC(Pτ ′) ≥ RE

RLC(τ
′)− o(1) = 1− H2(τ

′)
d(τ ′)

− o(1)

= 1− 1

2
− o(1) =

1

2
− o(1)

and we conclude that

Rn
RLC(Pτ ) ≥ 1

2
− o(1) >

1

3
= RE

RLC(τ)

for large n.

In Example II.5, the bound of RE

RLC(τ) was not tight,

in that the rate can actually be much higher than we

would expect from a first-moment argument. The reason

was that there was some linear map A so that τ ′ = Aτ
had a larger value of RE

RLC(τ
′). We will show below

that this is the only reason that RE

RLC(τ) might not be

the right answer. To make this precise, we introduce the

following definition.

Definition II.6 (Implied distribution). Let τ be a distri-
bution over F�

q and let A ∈ Fm×�
q be a rank m matrix

for some m ≤ �. The distribution of the random vector
Au, where u is randomly sampled from τ , is said to be
τ -implied. We denote the set of τ -implied distributions
by Iτ .

Note that whenever τ ′ ∈ Iτ , a linear code satisfying

Pτ ′ must also satisfy Pτ . Indeed, in the setting of

Definition II.6 assume that C contains a matrix M ∈
Mn,τ . By linearity, C also contains the matrix MAT ,

which belongs to Mn,τ ′ . Hence, not satisfying Pτ

implies not satisfying Pτ ′ . Consequently, Rn
RLC(Pτ ) ≥

Rn
RLC(Pτ ′).
Inequality (4) now yields the stronger bound

RRLC(Pτ )
n ≥ max

τ ′∈Iτ
RE

RLC(τ
′)− o(1). (5)

Lemma II.7 below essentially says that (5) is tight, and

that Pτ is sharp for random linear codes. We prove this

Lemma in Section 3 of the full version.

Lemma II.7 (Sharp threshold for Pτ for random linear

codes). Let � ∈ N and let τ be a distribution over F�
q .

Denote R∗τ = maxτ ′∈Iτ R
E

RLC(τ
′). Then

Rn
RLC(Pτ ) = R∗τ ± on→∞(1).

for n ∈ Lτ . Moreover, Pτ is sharp for random linear
codes. Specifically, fix any ε > 0, and let C be a random
linear code of rate R and length n ∈ Lτ . The following
holds:

1) If R ≤ R∗τ − ε, then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

2) If R ≥ R∗τ + ε, then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≥ 1−
(
n+ q2� − 1

q2� − 1

)3

·q−εn.

We now can conclude a more general result.

Theorem II.8 (Sharp thresholds for local properties for

random linear codes). Fix � ∈ N. Let P = (Pn)n∈N
be an �-local property and let (Tn)n∈N be as in Obser-
vation II.1. Then P is sharp for random linear codes
and

Rn
RLC(P) = min

τ∈Tn

max
τ ′∈Iτ

RE

RLC(τ
′)± on→∞(1).

Remark II.9 (Probability of satisfying P in Theorem

II.8). Fix ε > 0. An inspection of the proof of Theorem
II.8 shows that Cn

RLC(R
n
RLC(P) − ε) satisfies P with

probability 1− 2−Ω(n). Likewise, Cn
RLC(R

n
RLC(P)+ ε)

satisfies P with probability 2−Ω(n).

Remark II.10 (Relationship to random graphs).
Lemma II.7 has an analog in the theory of random
graphs. Fix a constant-sized graph H and let G be a
random graph in the G(n, p) model. A natural problem
is to determine the threshold for the appearance of H as
a sub-graph of G. The answer (see for example [Bol01,
Sec. 4.2]) is that a copy of H is likely to occur in G
whenever p is large enough so that every subgraph of H
has, in expectation, ω(1) copies as subgraphs of G. To
complete the analogy, equate H with τ , and a subgraph
of H with a τ -implied distribution.

We also mention the recent breakthrough result of
Frankston et al., which studies this relationship be-
tween thresholds and expectations of sub-structures in
a more general framework [FKNP19]. However, since
the properties that they study are not necessarily local,
it is impossible for that work to precisely pinpoint the
thresholds, as we do in our work.
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C. Probability that a matrix is contained in a random
s-LDPC code

The second building block shows that given a matrix

M ∈ Fn×�
q , the probability that M is contained in a

random s-LDPC code is not much larger than that of

appearing in a random linear code, provided that M is

δ-smooth (defined below).

Definition II.11 (Smooth distribution). Let δ > 0.
We say that a distribution τ over F�

q is δ-smooth if
Prv∼τ [〈u, v〉 �= 0] ≥ δ for all u ∈ F�

q \ {0}. If
M ∈ Fn×�

q is such that τM is δ-smooth, we also say
that M is δ-smooth.

Remark II.12 (Relationship to distance). In coding-
theoretic terms, τM is δ-smooth if and only if the code{
Mu : u ∈ F�

q

}
has relative distance at least δ and M

is full-rank. Indeed, the relative weight of any codeword
Mu in this code is

1

n

∑
i∈[n]

1〈u,eTi M〉
=0 = Pr
v∼τ

[〈u, v〉 �= 0].

The following lemma bounds the probability that a

matrix with smooth row distribution is contained in

a random LDPC code with sufficiently large sparsity

parameter. We prove this lemma in Section 4 of the full

version.

Lemma II.13 (Probability that a random LDPC code

contains a matrix). For any δ, ε > 0, prime power q,
and � ≥ 1 there exists s0 ≥ 1 such that the following
holds for any odd s ≥ s0, and sufficiently large n. Let
M ∈ Fn×�

q be δ-smooth. Then the probability p that M
is contained in a random s-LDPC code of length n and
rate R satisfies

p ≤ q−(1−ε)·(1−R)·�·n.

Given a smooth distribution τ , in light of Fact II.2,

Lemma II.13 says that the expected number of matrices

from Mn,τ in a random s-LDPC code is not much

larger than this number for a random linear code.

If we ignore the constraint that τ must be smooth,

then together with Lemma II.7 the above would imply

Theorem I.8. Indeed, if a distribution τ is unlikely to

appear in a random linear code then Lemma II.7 shows

that some τ -implied distribution τ ′ appears o(1) times in

expectation in the random linear code. By Lemma II.13,

τ ′ appears o(1) times in the random LDPC code as

well, so the LDPC code is unlikely to contain τ ′. Thus,

it is also unlikely to contain τ . (Of course, we cannot

ignore the constraint that τ must be smooth; we will

address this in our next building block discussed in

Section II-D).

The proof of Lemma II.13 proceeds by Fourier

analysis. The basic idea is as follows: since C is a

random s-LDPC code, each parity-check corresponds

(essentially) to an independent and uniformly random

set of s coordinates in [n].11 Thus, the probability that

a matrix M ∈ Mn,τ is in C can be derived from

the probability that s random vectors v1, . . . , vs ∼ τ
sum to zero. This probability is given by a convolution

τ∗s(0) = τ ∗ τ ∗ · · · ∗ τ(0) of τ with itself s times.

The convolution is in turn controlled by s’th powers of

the Fourier coefficients τ̂(w) of τ . As we will see, the

condition that τ be δ-smooth implies that the nonzero

Fourier coefficients τ̂(w) are bounded away from 1, and

this means that if s is large enough, the contributions

τ̂(w)s of the nonzero coefficients to τ∗s(0) will become

small.

D. Distance of random s-LDPC codes

As noted above, the first two building blocks show

that for any δ-smooth distribution τ ∼ F�
q , a random

LDPC code of rate slightly below Rn
RLC(Pτ ) is un-

likely to contain τ . The third and final building block

shows that we may restrict our attention to δ-smooth

distributions.

As noted in Remark II.12, the condition that M
be δ-smooth is the same as the condition that the

code generated by M has relative distance at least δ.

Thus, if C ⊂ Fn
q has relative distance at least δ, it

does not contain any matrices that are not δ-smooth.

Fortunately, it is well-known that binary random s-

LDPC codes have good distance, and that in fact the

distance approaches the Gilbert-Varshamov (GV) bound

with high probability.12 Theorem II.14 generalizes this

result to s-LDPC codes over any alphabet. Below, hq(x)
is the q-ary entropy function (as in (1)).

Theorem II.14 (Random LDPC codes achieve the GV

bound). For any δ ∈ (0, 1 − 1/q), ε > 0, and prime
power q there exists s0 ≥ 1 such that the following
holds for any s ≥ s0. Let R ≤ 1 − hq(δ) − ε. Then a
random s-LDPC code of rate R over Fq has relative
distance at least δ with high probability.

Remark II.15 (Comparison to Gallager’s proof).
Gallager’s proof for binary random s-LDPC codes
in [Gal62] uses generating functions. We give an al-
ternative proof using ideas from exponential families,
which follows the approach of recent work by Linial and

11This is not exactly true because the parity checks that belong to
the same layer are not independent; however, we show that this does
not significantly affect the probability of the event of interest.

12The GV bound refers to the rate-distance trade-off R = 1 −
hq(δ), which is approached by a random linear code.
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the first author [LM20]. Our proof extends to random s-
LDPC codes over any alphabet. We note that Gallager
left it as an open problem in [Gal62] to obtain a
result like this for larger alphabets, but his definition
was slightly different than ours: the coefficients αi,j

in his parity checks were all 1’s, while ours are taken
randomly from F∗q .

Despite having different frameworks, our proof and
that of [Gal62] turn out to yield similar equations. In
particular our proof of Lemma 5.2 in the full version is
very similar to the corresponding proof in [Gal62] at a
technical level.

E. Proof of Theorem I.8
Theorem I.8 is proven in the full version as an

immediate consequence of the building blocks above.
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