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ABSTRACT

As magnetization and semiconductor based storage technologies
approach their limits, bio-molecules, such as DNA, have been
identified as promising media for future storage systems, due to
their high storage density (petabytes/gram) and long-term durability
(thousands of years). Furthermore, nanopore DNA sequencing en-
ables high-throughput sequencing using devices as small as a USB
thumb drive and thus is ideally suited for DNA storage applications.
Due to the high insertion/deletion error rates associated with base-
called nanopore reads, current approaches rely heavily on consensus
among multiple reads and thus incur very high reading costs. We
propose a novel approach which overcomes the high error rates in
basecalled sequences by integrating a Viterbi error correction de-
coder with the basecaller, enabling the decoder to exploit the soft
information available in the deep learning based basecaller pipeline.
Using convolutional codes for error correction, we experimentally
observed 3x lower reading costs than the state-of-the-art techniques
at comparable writing costs.

The code, data and Supplementary Material is available at
https://github.com/shubhamchandak94/nanopore_
dna_storage.

Index Terms— DNA storage, nanopore sequencing, convolu-
tional codes, Viterbi algorithm, basecaller-decoder integration

1. INTRODUCTION

DNA molecules have been proposed as the storage medium of the
future, promising high storage densities (100s of Petabytes per gram
[1, 2]) and long-term durability (1000s of years [3]), exceeding the
limits of magnetization and solid state storage technologies by sev-
eral orders of magnitude. DNA storage systems also allow efficient
duplication of data and random access using PCR-based techniques
[4, 5]. Fig. 1 shows a typical DNA storage system. Binary data
is encoded into short DNA sequences (oligonucleotides, or oligos
for short) with lengths limited to around 150 bases/nucleotides for
current scalable synthesis technologies [6]. Note that each DNA
nucleotide belongs to the set {A, C, G, T}. Millions of copies of
each oligo are present in the synthesized product, which are then
read back using DNA sequencing. The sequencing process involves
randomly sampling the oligos, which can lead to duplicated or lost
sequences, as well as the loss of ordering among the oligos (permu-
tation). To recover the order of the sequences, typically an index is
prepended to each sequence.
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Fig. 1. Typical DNA storage system. The input binary file is seg-
mented and encoded using error correction codes before synthesis.
The reads obtained after sequencing might have missing sequences
or corruptions, which the error correcting decoder seeks to correct.

Moreover, both the synthesis and sequencing processes are noisy
and corrupt the sequences with substitutions, insertions and/or dele-
tions of bases. The exact error characteristics are dependent on the
specific synthesis and sequencing technology. Successful recovery
of the data is facilitated by error correction mechanisms which inject
redundancy into the data before synthesis. This typically consists
of two components: (i) an outer code (e.g., Reed-Solomon [7] or
Raptor [8] code) to recover lost sequences, and (ii) an inner code
to detect and/or correct errors within each sequence. Since multiple
independent reads can be obtained for each oligo, a consensus op-
eration among the reads can reduce the effective error rate that the
inner code needs to handle. This usually involves clustering of reads
from the same oligo sequence, followed by a majority vote at each
position in the sequence to handle substitutions, and algorithms like
trace reconstruction [9] to handle insertions/deletions.

Recent works have examined various aspects of DNA storage,
including error correction [1, 5, 10, 11, 12], random access [4, 5, 13],
novel synthesis techniques [14, 15] and analysis of the fundamental
limits [16, 17, 18]. While initial works used Illumina sequencing
which provides highly accurate short reads, there is growing inter-
est in the use of nanopore sequencing [19] because it is a portable,
real-time and low-cost platform that also supports long reads. The
nanopore sequencer first outputs a current signal induced by the
DNA sequence, which is then translated back to a sequence by the
basecaller. Nanopore sequencing poses significant challenges due to
higher error rates in the basecalled reads (10% as compared to 1%
for Illumina), including a substantial number of insertions and dele-
tions, which are notoriously difficult to correct [20]. Due to the high
error rate and the lack of suitable inner codes for insertion/deletion
errors, most previous works [5, 14, 21, 22] rely heavily on consen-
sus algorithms working with a large number of reads, leading to very
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high reading costs. This is due to the similarity of consensus with
repetition coding, which is known to be suboptimal. One strategy to
avoid the high basecalling error rate and consensus could be to work
with the raw current signal which has much higher information con-
tent than the basecalled read. Unfortunately, the raw signal is hard
to model and difficult to use directly in error correction decoding.

In this work, we propose a novel basecaller-decoder integration
approach for nanopore sequencing-based DNA storage, in which the
decoding is performed on the intermediate output of the basecaller,
rather than the final basecalled reads which exhibit high error rates.
This intermediate output is more informative about the raw signal
than the basecalled reads, while also being easier to model and in-
tegrate with error correction schemes than the raw signal itself. To
match the sequential Markov nature of the nanopore sequencing and
basecalling process, we use a convolutional coding scheme [23] as
the inner code and achieve 3x lower reading cost than the state-of-
the-art works at similar writing cost.

2. NANOPORE SEQUENCING AND BASECALLING

In this section we briefly describe nanopore sequencing and base-
calling to motivate our proposed approach. Nanopore sequencing,
in particular the MinlON sequencer by Oxford Nanopore Technolo-
gies (ONT) [19], offers a portable and real-time solution capable
of sequencing long reads. The sequencing process involves a sin-
gle strand of DNA passing through a pore leading to variations in a
measured ionic current. The current at any given time primarily de-
pends on a nucleotide subsequence of length 6 (i.e., a 6-mer) inside
the pore at that instant. This raw current signal is sampled (typically
at a frequency of 4 kHz), and is used by the basecaller to infer the
most likely base sequence that could have induced the raw signal.

Nanopore sequencing
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« Noise
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Fig. 2. Signal distortions caused by nanopore sequencing, viewed
from the channel coding perspective.

Fig. 2 shows the various causes of distortions in the nanopore
sequencing process from the channel coding perspective [24, 25].
Firstly, as the raw signal depends on multiple bases (usually 6 bases)
at a time, this causes inter-symbol interference. The “pore dwelling
time”, i.e., the number of signal samples per 6-mer, randomly varies
between 5-15 samples, leading to synchronization issues. Each sam-
ple for a given 6-mer undergoes noise and fading (variation in mean
current value for a given 6-mer). In some cases, the pore dwelling
time can be 0, leading to base skips.

Due to the challenges associated with modeling the nanopore
sequencing process, there has been a shift from analytical modeling
to deep learning based modeling in the state-of-the-art basecallers
[26, 27]. For instance, the Flappie basecaller [28] by ONT uses
a recurrent neural network to translate the raw current signal into
probabilities of transition between pairs of bases at each time step
(see Supplementary Material for the network architecture). The most
likely base sequence is then determined from these probabilities us-
ing the Viterbi algorithm [29] (Fig. 3(a)). A similar approach is used
in other basecallers such as Chiron [30] and Scrappie [31]. Despite
the advances due to deep learning based basecalling, the error rate

of basecalled nanopore reads is still around 10%, with a significant
fraction of insertion and deletion errors [27].

Unlike typical biological applications, DNA storage provides us
with the flexibility to design the DNA sequences and knowledge of
this additional structure can be leveraged in basecalling. Instead of
the approach shown in Fig. 1 where the inner code decoder oper-
ates on the basecalled sequence, we propose integrating the decoding
with the basecalling, thus taking into account the inner code struc-
ture. This is achieved by applying the decoding on the intermedi-
ate transition probabilities from the recurrent neural network in the
Flappie basecaller. By working with the transition probabilities, our
approach sidesteps the difficulties of working directly with the raw
current signal, while still utilizing much of the rich soft information
in the raw signal as distilled by the neural network.

3. METHODS

We now describe the encoding and decoding architectures in our pro-
posed approach. We follow the framework shown in Fig. 1 for the
most part, using a Reed Solomon code [7] as the outer code and a
convolutional code [23] along with CRC error detection [32] as the
inner code. The major difference is that the basecaller and the in-
ner code decoder are now integrated, allowing us to utilize the rich
soft-information in the raw signal. We next describe the individ-
ual components of our system followed by a brief discussion of the
complete framework. Details regarding the parameters and the im-
plementation are available in the Supplementary Material.
Convolutional code as the inner code: In convolutional codes, the
encoder encodes a stream of message bits into a sequence of encoded
bits, which are computed as a linear combination (over [F2) of a past
window of m input bits (m denotes the memory of the code). At any
given time step, the value of the past m input bits denotes the “state”
of the convolutional code, e.g., Fig. 3(b) shows a snippet of the state
transition diagram (showing the states along with the input/output
on the transitions) for a convolutional code with . = 6 and rate
1/2, producing 2 output bits per input bit. As m increases, the code
becomes more powerful, while the decoding becomes slower due to
an exponential increase in the number of states with m.

We use rate 1/2 convolutional codes with m = 8,11, 14 that
were among the best short block codes studied in [33]. To achieve
rates higher than 1/2, we use the technique of puncturing, which re-
moves a pre-defined pattern of bits from the output [34]. As seen be-
low, the sequential structure of convolutional codes make them a nat-
ural fit for integration with the basecalling process for the nanopore
raw current signal which can be modeled as a sequential hidden
Markov process [26]. Convolutional codes also provide an elegant
method to handle reverse complemented reads based on the fact that
the reverse of a convolutional code is also a convolutional code with
similar error correction capabilities.

Basecaller-decoder integration: The decoding of the convolutional
code is performed using the transition probabilities generated by the
basecaller, rather than the final basecalled sequence. As shown in
Fig. 3, a combined state is formed from the state of the basecaller,
the state of the convolutional code and the position in the codeword.
The code structure dictates the possible transitions while the proba-
bilities from the basecaller are used for scoring possible paths. The
most likely path is obtained using the Viterbi algorithm [29] (dy-
namic programming) and the corresponding input message bits are
obtained based on its state transitions.

List decoding and CRC: In spite of the improved inner code decod-
ing error rate due to the proposed approach, there remains a sizable
fraction of incorrectly decoded reads that are difficult to handle with
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Fig. 3. Integrating basecaller and convolutional code decoder. (a) The architecture of the Flappie basecaller, which consists of a recurrent
neural network (RNN) that predicts the probabilities of base transitions at each time step 1, ..., 7 in the raw signal which are then fed into a
Viterbi decoder to obtain the most likely base sequence. To distinguish between “stay transitions” (i.e., no movement of DNA) and transitions
due to repeated bases (e.g., AA), two states (4, —) are used per base and a collapsing operation is performed to obtain the basecalled sequence.
(b) The encoding circuit for a rate 1,/2 convolutional code with a shift register storing the current state, a snippet of the state transition diagram,
and the Viterbi decoding process illustrated as a trellis with the optimal path highlighted. (c) Basecaller-decoder integration by combining
the convolutional code state with the basecaller state, producing the most likely path that forms a valid codeword. A snippet of the combined
state transition diagram is shown. The state also includes the position in the codeword to ensure correct length of the optimal path.

the outer code alone. Therefore, we add a 8-bit cyclic redundancy
check (CRC) to the the payload and index (Fig. 4(a)), which allows
detection and removal of erroneously decoded sequences. Note that
for an 8-bit CRC, there is a 1/256 probability of an erroneous se-
quence satistfying the check, and hence the outer code needs to be
designed to handle a small number of errors.

The use of the CRC error detection also enables list decoding
for the convolutional code, wherein a list of the L most likely input
message sequences are generated by the Viterbi decoder. Out of
these, the topmost element satisfying the CRC is chosen (if any). The
list decoding is based on [35] with modifications made to account for
the possibility of multiple state sequences leading to the same input
message due to the stay transitions (see Fig. 3(c)).

Reed-Solomon outer code: We use a Reed-Solomon (RS) code
with field size 2'¢ as the outer code to recover lost sequences and
to correct any errors left undetected by the CRC. The amount of ad-
ditional RS redundancy can be chosen to tradeoff the writing and
reading costs [12], and is set to 30% by default. Our RS implemen-
tation is similar to that in [5] and is based on the Schifra library [36].

Fig. 4 shows the overall inner code encoding and decoding pro-
cedure. During encoding, an index is prepended to each segment
produced by the outer RS code and then a CRC of the index and
payload is appended to it. This is encoded with the convolutional
code and then mapped to DNA using a 2 bits/base encoding (00— A,
01—C, 10—G, 11—T). The decoding process, as discussed above,
involves list decoding of the convolutional code, selection of the
message from the list based on the CRC and outer RS code decoding.

4. EXPERIMENTAL SETUP

We evaluated the proposed scheme by performing experiments with
various settings of the parameters m (convolutional code memory),
7 (convolutional code rate) and outer RS code redundancy. For
each experiment, the same file was encoded into DNA sequences
of length ~ 115. The sequences were synthesized by Customar-
ray (http://www.customarrayinc.com/) in a single pool
of 12K oligos after adding primer sequences of length 25 on both

Segment #265

Attach index
l and CRC

Convolutional
list decoding

12-bit Payload 8-bit
index CRC x
Convolutional —— x
l encoding
Select topmost list element
‘ with correct CRC (if any)
Map to DNA ——

(2 bits per base) Segment #265

(a) Inner code encoding (b) Inner code decoding

Fig. 4. Inner code encoding and decoding. (a) Index and CRC are
added to each segment produced by the outer code. This is followed
by convolutional encoding and mapping to the DNA alphabet. (b)
During decoding, the raw signal is decoded into a list of most likely
codewords by the Viterbi decoder. The topmost element in the list
that satisfies the CRC (if any) is used for outer code decoding.

sides, leading to a total oligo length ~ 165. The primers are required
for PCR amplification before sequencing. The encoded file of size
11 KB consisted of several texts including the UN declaration of hu-
man rights, the Gettysburg Address, the “I Have a Dream” speech,
a set of poems and the lyrics of Rick Astley’s “Never Gonna Give
You Up”. The files were compressed and encrypted before encoding
so that the input to the encoder appears random and does not pro-
duce excessive homopolymers (e.g., GGGG) which cause synthesis
and sequencing errors [12]. The synthesized pool of oligos was am-
plified with PCR and sequenced using an ONT MinIlON sequencer
(R9.4.1 pore). For convenience, the raw signals corresponding to
each parameter experiment were separated computationally. In prac-
tice, this can be achieved using PCR-based random access [5] using
the experiment-specific primers.

For each experiment, the minimum number of reads required
for successful decoding was obtained. To ensure robustness, ran-
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dom subsampling of reads was performed and the reported results
indicate success in 10 out of 10 such trials. We used writing cost
(measured in bases synthesized per information bit) and reading cost
(measured in bases sequenced per information bit) as the figures of
merit (excluding the primers for both quantities). A recent work [12]
showed a tradeoff between these quantities in the context of Illumina
sequencing based DNA storage and recommended the use of read-
ing cost as the metric rather than coverage (measured in bases se-
quenced per bases synthesized). We compare our results to previous
works [5, 22]. While there have been other works on DNA storage
using nanopore sequencing [14, 21], their results are not included
in the comparison due to the use of significantly different synthe-
sis strategies, different pore versions (R7 vs. R9.4.1) and/or limited
information regarding the minimum reading cost achieved.

We note that a direct comparison across works is difficult due
to the use of different synthesis providers, different amounts of en-
coded data and different oligo lengths. Furthermore, [5] and [22] use
MinION’s 1D? sequencing mode which has lower error rates (7%)
and lower throughput as compared to 1D sequencing mode used in
this work. Despite this, the comparison is useful in providing an
estimate of the benefits of the proposed strategy.

More details about the experiments, including the removal of the
primers for convolutional code decoding and the handling of reverse
complemented reads, are available in the Supplementary Material at
https://github.com/shubhamchandak94/nanopore_
dna_storage.

5. RESULTS
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Fig. 5. Comparison of writing and reading cost achieved by the
proposed scheme and previous works. Multiple parameters (con-
volutional code memory m, rate r, list size L) were considered,
achieving 3x lower reading cost than the previous state-of-the-art
at the same writing cost. Note that the writing and reading cost are
bounded below by 0.5 since each base can represent at most 2 bits.

Fig. 5 shows the tradeoff between writing and reading costs
achieved by the proposed scheme and the previous works. For the
proposed scheme, it shows results for convolutional codes with
memory m = 8,11, 14, each with three rates r = 1/2,3/4,5/6.
Comparing the m = 11,7 = 5/6 code to the previous state-of-
the-art [5, 22], we observe a 3x improvement in the reading cost
at the same writing cost. This suggests that the basecaller-decoder
integration approach can lead to significant improvements over the
traditional approach of applying the decoder on the basecalled reads
with heavy reliance on consensus. Our work brings the read/write
cost tradeoff achieved for nanopore based DNA storage closer to the
state-of-the-art for Illumina based DNA storage [12]. In particular,
we require only 2x higher reading cost, despite the former having an
order of magnitude higher basecalling error rate than the latter.

Comparing the results for a fixed memory m of the convolu-
tional code, as we increase the rate r, we observe lower writing cost
and higher reading cost. This is because the error correction capa-
bility of the code decreases with increasing r. As m increases, we
observe lower reading cost at the same writing cost, at the cost of
slower decoding, with diminishing returns beyond m = 11.

The results for the proposed scheme shown in Fig. 5 were ob-
tained with list size L. = 8 for m = 8, 11. List size L = 4 was used
for m = 14 due to computational constraints. Recall that the convo-
Iutional code decoder produces a list of L candidate sequences, out
of which the topmost candidate satisfying the CRC is chosen. As the
list size increases, we observe a reduction in the reading cost because
of an increase in the probability of the true sequence being part of
the list. However, at very high list sizes (= 32), we observe an in-
version in this trend. This is due to an increase in the probability of
an incorrect sequence satisfying the CRC appearing in the list. This
probability can become significant due to the short CRC length of 8
bits (chosen to minimize the writing cost), leading to higher reading
costs since more of the outer code redundancy is used up for error
correction rather than for the recovery of missing oligos. The frac-
tion of reads for which the correct sequence was present in the list
varied from 20% to 80% depending on the values of m, r and L. In
particular, form = 11,r = 5/6, L = 8, this fraction was 25%, sug-
gesting that on an average only 4 copies of an oligo were required
to decode it successfully. More detailed results on various parame-
ters including list size and outer code redundancy are available in the
Supplementary Material.

Computationally, the convolutional code decoding is the most
expensive step in the proposed decoding algorithm, with time and
space complexity O(2™ L) where m is the convolutional code mem-
ory and L is the list size. For the current implementation written in
C++, decoding a single read for (m = 11,7 = 5/6, L = 8) took
roughly 270 s with RAM consumption of 1.3 GB (Ubuntu 18.04.1
server with 2.2 GHz Intel Xeon processor, single-threaded). As part
of future work, we plan to explore algorithmic and implementation
improvements to speed up the decoding.

6. CONCLUSIONS AND FUTURE WORK

We proposed a novel basecaller-decoder integration approach for
nanopore sequencing based DNA storage which achieves 3x lower
reading cost compared to earlier works at similar writing cost. In-
stead of working with the basecalled reads which exhibit high error
rates, the proposed decoder utilizes the soft information available
in the basecaller pipeline. We use convolutional coding as the in-
ner code, with its sequential Viterbi decoding integrated with the
nanopore basecaller architecture. Future work includes optimiza-
tion of convolutional code parameters, finetuning of neural network
parameters in the basecaller, improvements in computational effi-
ciency using approximate decoding and combining the strengths of
this framework with those of consensus-based techniques.

The basecaller-decoder integration approach is useful beyond
convolutional codes and can also be applied to novel synthesis tech-
niques such as enzymatic synthesis [14] and k-mer-by-k-mer synthe-
sis [37]. It can also be useful for utilizing the information in the raw
current signal for bioinformatics applications beyond DNA storage.

Finally, we believe that this hybrid approach of combining ML-
based modeling with analytical error correction coding schemes can
be extended to other communication and storage problems. This is
a natural approach towards combining recent advances in machine
learning with the significant research done in information theory and
communication.
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