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ABSTRACT 

The pelagic brown macroalga Sargassum supports rich biological communities in 
the tropical and subtropical Atlantic region, including a variety of epiphytic 
invertebrates that grow on the Sargassum itself. The thecate hydroid Aglaophenia 
latecarinata is commonly found growing on some, but not all, Sargassum forms. In 
this study, we examined the relationship between A. latecarinata and its pelagic 
Sargassum substrate across a broad geographic area over the course of 4 years 
(2015–2018). The distribution of the most common Sargassum forms that we 
observed (Sargassum fluitans III and S. natans VIII) was consistent with the 
existence of distinct source regions for each. We found that A. latecarinata hydroids 
were abundant on both S. natans VIII and S. fluitans III, and also noted a rare 
observation of A. latecarinata on S. natans I. For the hydroids on S. natans VIII and 
S. fluitans III, hydroid mitochondrial genotype was strongly correlated with the 
Sargassum substrate form. We found significant population genetic structure in the 
hydroids, which was also consistent with the distributional patterns of the Sargassum 
forms. These results suggest that hydroid settlement on the Sargassum occurs in 
type-specific Sargassum source regions. Hydroid species identification is 
challenging and cryptic speciation is common in the Aglaopheniidae. Therefore, to 
confirm our identification of A. latecarinata, we conducted a phylogenetic analysis 
that showed that while the genus Aglaophenia was not monophyletic, all 
A. latecarinata haplotypes associated with pelagic Sargassum belonged to the same 
clade and were likely the same species as previously published sequences from 
Florida, Central America, and one location in Brazil (São Sebastião). A nominal A. 
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latecarinata sequence from a second Brazilian location (Alagoas) likely belongs to a 
different species. 
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INTRODUCTION 
Sargassum, a common brown macroalgae, is distributed globally from temperate to 
tropical ocean waters. Of the more than 350 recognized species (Guiry & Guiry, 2018), 
Sargassum natans and S. fluitans are uniquely holopelagic (Butler et al., 1983; Stoner, 
1983). These two species have several distinct forms that differ in their bladder and blade 
characteristics: S. natans is comprised of forms I, II, VIII, and XI, and S. fluitans is 
comprised of forms III and IV (Parr, 1939; Schell, Goodwin & Siuda, 2015). Sargassum 
natans and S. fluitans lack holdfasts and reproductive structures (Parr, 1939), and new 
individuals derive from the fragmentation of existing individuals adrift at the sea surface. 
Pelagic Sargassum is ecologically important as an oasis of life on the oligotrophic open 
ocean. Individual clumps, 10 s of centimeters in each dimension, host abundant epiflora 
and epifauna that serve as the base of a complex food web similar to those found in benthic 
habitats (Butler et al., 1983; Coston-Clements et al., 1991). Mats of aggregated clumps 
measuring 10 s of meters across additionally provide foraging or nursery habitat for fish 
(Wells & Rooker, 2004), turtles (Witherington, Hirama & Hardy, 2012), and seabirds 
(Moser & Lee, 2012). 

Historically, pelagic Sargassum spp. was abundant in the Sargasso Sea and Gulf of 
Mexico and less abundant or absent in the Caribbean Sea (reviewed in Butler et al., 1983). 
Since 2011, coastlines on both sides of the tropical Atlantic, including the Caribbean Sea, 
have experienced three discrete and unprecedented inundations of pelagic Sargassum, 
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each lasting many months (Schell, Goodwin & Siuda, 2015; Wang et al., 2019). The most 
recent event, during 2018, was the most extreme to date (Langin, 2018). Backtracking of 
landings using archived surface current model data (Franks, Johnson & Ko, 2016), 
satellite observations (Wang & Hu, 2017; Wang et al., 2019), and biophysical modeling 
(Brooks et al., 2018) indicate that these recent inundation events originated in the 
equatorial Atlantic, a new source region for pelagic Sargassum. In situ observations 
revealed that the inundating Sargassum was dominated by a previously rare form 
(S. natans VIII) that is morphologically distinct from the two common forms (S. natans I 
and S. fluitans III) of pelagic Sargassum observed in the Sargasso Sea (Schell, Goodwin 
& Siuda, 2015; Fig. 1). 

Aglaophenia latecarinata (Allman, 1877) is a thecate hydroid that is commonly found 
on pelagic Sargassum (Calder, 1993; Calder, 1997; Cunha & Jacobucci, 2010; Fig. 2). In 
the Sargasso Sea, A. latecarinata is a dominant hydrozoan on S. fluitans III while it is rare 
or absent on S. natans I (Ryland, 1974; Niermann, 1986). Weis (1968) and Calder (1995) 
also report the absence of A. latecarinata on S. natans, though they do not report the type 
of S. natans they examined. A. latecarinata has been observed to be abundant, however, 
on S. natans VIII (Burkenroad in Parr, 1939). A. latecarinata is found on a variety of 
substrates in other parts of its range (Oliveira & Marques, 2007; Moura et al., 2018). 
Aglaophenia latecarinata forms feather-like colonies of polyps that can reach up to 10 mm 
in height (Calder, 1997). Within a colony, polyp fronds are connected via a stolon along 
the Sargassum substrate (Fig. 2). As the species lacks a medusa stage, the hydroids release 
planula larvae which settle onto nearby substrates and develop into new hydroids 
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Figure 1 Morphological differences between Sargassum forms as described in Parr (1939) and Schell, 
Goodwin & Siuda (2015). S. fluitans have thorny stems whereas S. natans have smooth stems. Bladder 
and blade attributes differ widely among forms. (A) For S. fluitans III, thorns on stem are present, blades 
are wide, bladders are devoid of spines, and bladders are oblong. (B) For S. natans I, stem is smooth, 
blades are narrow, spines are present on bladders, and bladders are spherical (C) For S. natans VIII 
(photo credit: Janet Bering), stem is smooth, blades are wide, bladders are devoid of spines, and 
bladders are spherical. Full-sizeDOI: 10.7717/peerj.7814/fig-1 

 

Figure 2 Aglaophenia latecarinata hydroids. (A) Isolated Aglaophenia latecarinata specimen. (B) A 
colony of the epiphytic hydroid species, Aglaophenia latecarinata, attached to Sargassum stem. Arrow 
points to stolon connecting genetically identical units of a single colony. 

Full-sizeDOI: 10.7717/peerj.7814/fig-2 

(Calder, 1997). For A. latecarinata on Sargassum substrates floating over deep ocean 
regions, planulae likely originate from the same or nearby Sargassum. Additionally, 
asexual fragments or propagules from the same or nearby Sargassum may also generate 
new hydroid colonies (Pati & Belmonte, 2018). 

Species identification based on morphology in aglaopheniid hydroids is exceptionally 
challenging (Svoboda & Cornelius, 1991). Recent genetic analyses suggest abundant 
cryptic speciation in the family and that A. latecarinata falls outside the main Aglaophenia 
clade (Postaire et al., 2016; Moura et al., 2018). The geographic range of A. latecarinata 
includes the northwestern Atlantic Ocean including the Sargasso Sea, the Gulf of Mexico, 
the southwestern Atlantic Ocean, and the western Pacific Ocean (Calder, 1997); however, 
A. latecarinata from the Sargasso Sea has not been included in any of the molecular 
analyses to date. 

Here, we examined the relationship between A. latecarinata and its most common 
pelagic Sargassum substrates. We sought to determine whether we could observe 
population genetic variation as detected by the 16S gene over a vast geographic area in 
the tropical and subtropical western Atlantic Ocean, and if any observed variation could 
be associated with region and substrate type. Aglaophenia latecarinata was collected 
from both S. natans VIII and S. fluitans III from the tropical and subtropical western 
Atlantic between 2015 and 2018. We report the first observations of abundant A. 
latecarinata on S. natans VIII since the 1930s (Burkenroad in Parr, 1939) as well as a 
single observation of A. latecarinata on S. natans I. We sequenced the 16S gene from the 
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hydroids on S. natans VIII and S. fluitans III and found that haplotypes were strongly 
associated with their Sargassum substrate type. We suggest that this finding could reflect 
hydroid colonization at different Sargassum source regions. We also show that in a 
family-level phylogenetic analysis of 16S sequences, A. latecarinata falls outside the 
main Aglaophenia clade and that wide-ranging pelagic Sargassum-associated A. 
latecarinata is the same species as individuals collected in previous studies from Florida, 
Central America, and Sao Sebastiao, Brazil. 

MATERIALS AND METHODS 
Sampling 
Aglaophenia latecarinata samples were collected aboard the SSV Corwith Cramer 
between 
2015 and 2018 during Sea Education Association cruises from the Canary Islands to the 
Caribbean (2015), from San Juan, Puerto Rico to New York, New York (2015) or 
Woods Hole, Massachusetts (2016) and from Nassau, Bahamas to New York, New York 
(2017 and 2018) via Bermuda, or from San Juan, Puerto Rico to Key West, Florida (2018) 
and the cruise tracks were mapped using Ocean Data View 5.1.7 (Schlitzer, 2018) 
(Fig. 3). Cruise plans were filed with the US State Department, who obtained the required 
collection permits. No permits were required for sampling in international and US waters 
under federal jurisdiction. The cruise and permit numbers for the samples collected in this 
study are as follows: C-259 US State Department Cruise F2014-092, no permits 
necessary; C-263, US State Department Cruise F2015-044, no permits necessary; C-266, 
US State Department Cruise F2015-083, no permits necessary; C-273, US State 
Department Cruise F2016-084, Bermuda permit number SP170104, Bahamas 
MAMR/FIS/ 
13; C-277, US State Department Cruise F2017-067, Haiti permit number SEMANAH/P- 
Nav/590, Dominican Republic permit (“Official Letter”) number 26940; and C279, 
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Figure 3 Cruise tracks. Each cruise is represented by a different color. Cruise labels are Sea Education 
Association cruise numbers. C259 and C263 took place in 2015, C266 took place in 2016, C273 
took place in 2017, and C277 and C279 took place in 2018. Full- sizeDOI: 
10.7717/peerj.7814/fig-3 

US State Department Cruise F2017-112, Bermuda permit number SP171103 and 
Bahamas permit number MAMR/FIS/13. 

During each cruise, instruments mounted in line with a clean seawater flow-through 
system (intake at ~3 m) continuously measured temperature and salinity (Sea-Bird 
Electronics SBE 45 MicroTSG), as well as relative chlorophyll-a fluorescence (Turner 
Designs Model 10-AU in vivo chlorophyll-a fluorometer). Sargassum specimens were 
primarily collected opportunistically from dip nets that targeted distinct clumps. Less 
frequently, Sargassum clumps were collected from a neuston net (1 × 0.5 m) with 335 mm 
mesh towed alongside the ship at two knots for 30 min. We aimed to collect a maximum 
of 10–12 clumps of each of Sargassum form at every station. Each Sargassum clump was 
photographed and identified morphologically using Parr (1939) and Schell, Goodwin & 
Siuda (2015) (Fig. 1). When present, multiple A. latecarinata polyps from one individual 
hydroid (all connected by a visible stolon, Fig. 2) were plucked from each Sargassum 
clump using sterilized forceps, preserved in 95% ethanol as a single sample, and stored at 
room temperature. Vouchers of each Sargassum sample, including the representative 
hydroid and epibiont community, were preserved in 95% ethanol. Four representative 
vouchers that include A. latecarinata polyps attached to S. natans VIII and S. fluitans III 
substrates were submitted to the Smithsonian Museum of Natural History (USNM catalog 
numbers 1578893–1578896). 

Sequencing and population analyses 
For molecular analysis, we sequenced hydroids found on S. fluitans III and S. natans VIII. 
The hydroid colony on S. natans I was not included in our analysis given that it was a 
single observation. Two to three polyps from each hydroid individual were removed from 
ethanol, rinsed in deionized water, and diced using a sterilized razor blade. Genomic DNA 
(gDNA) of each hydroid sample was extracted using a Qiagen DNeasy Blood & Tissue 
Kit (Qiagen, Germantown, MD, USA) following the manufacturer’s protocol, and the final 
product was eluted twice using 100 µL of AE buffer. A segment of mitochondrial 16S 
rDNA was amplified using hydrozoan-specific primers: HYD1: 5′-TCG ACT GTT TAC 
CAA AAA CAT AGC-3′ and HYD2: 5′-ACG GAA TGA ACT CAA ATC ATG TAA G-
3′ 
(Cunningham & Buss, 1993). PCR amplification consisted of an initial temperature of 95 
C for 3 min followed by 35 cycles at 95 C for 30 s, 45 C for 30 s and 68 C for 60 s, and a 
final extension at 68 C for 5 min. PCR products were visualized on a 1.5% agarose gel 
stained with SYBR Safe (Invitrogen, USA). PCR products were purified using QIAquick 
PCR Purification kits (Qiagen, Germantown, MD, USA) following the manufacturer’s 
protocol except that the final elution step was modified to yield 30 µL total volume. 
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Purified amplicons were quantified using a Nanodrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) and sent to MWG Eurofins Operon 
(Huntsville, AL) or the DNA Analysis Facility at Yale University (New Haven, CT) for 
bidirectional Sanger sequencing on an ABI 3730XL capillary sequencer. Sequences were 
submitted to GenBank (accession numbers MK863834–MK863972). 

Geneious versions 9.0.5 and 11.0.5 were used to assemble and curate chromatographs 
(Biomatters Ltd., Auckland, New Zealand). An alignment was generated with 
CLUSTALW (Larkin et al., 2007) using the default settings in Geneious. The alignment 
was trimmed at both ends to remove low-quality sequences. A haplotype network was 
constructed using TCS version 1.2.1 (Clement, Posada & Crandall, 2000) with gaps 
treated as a fifth character state. 

Samples were categorized into broad oceanographic regions using QGIS (QGIS 
Development Team (2018) (Fig. 4). Samples collected south of 30N (the approximate 
location of the subtropical convergence zone; Ullman, Cornillon & Shan, 2007) and north 
of the Greater Antilles were categorized as from the South Sargasso Sea. Samples 
collected north of 30N and south of the Gulf Stream were categorized as from the North 
Sargasso Sea. Samples collected within the Gulf Stream were categorized as such. 
Samples collected south of 20N in or out of the Caribbean were categorized as from the 
Caribbean or Tropical Atlantic, respectively. An analysis of molecular variance was 
performed and pairwise FST’s calculated with Arlequin ver. 3.5.2 (Excoffier & Lischer, 
2010) to test for geographic structure between these regions. 

Phylogenetic analysis 
To confirm A. latecarinata species identification, we downloaded representative 16S 
sequences for A. latecarinata and other aglaopheniid species from Genbank. Using 
ClustalW, we constructed an alignment with the Genbank sequences and one 
representative of each of our haplotypes from our short alignment. The ends of the 
alignment were trimmed and regions that contained gaps that could not be aligned with 
confidence were removed. Maximum likelihood and Bayesian analyses on this 
alignment were conducted using PAUP (Swofford, 2003) and MrBayes (Huelsenbeck & 
Ronquist, 2001) through the Geneious interface. The best-fit model for these analyses 
was selected using Akaike Information Criterion using ModelTest (Posada & Crandall, 
1998). 
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Figure 4 Geographic distribution of hydroid samples by Sargassum form. Lines indicate boundaries 
between oceanographic regions (Gulf Stream, North Sargasso Sea, South Sargasso Sea, Tropical 
Atlantic, and Caribbean) as described in the text. Each circle represents a single station and circle size 
corresponds to the number of Sargassum samples collected at each station. Yellow indicates stations 
where only S. fluitans III was collected, green indicates stations where only S. natans VIII was collected, 
and maroon indicates stations where both S. fluitans III and S. natans VIII were collected. 

Full-sizeDOI: 10.7717/peerj.7814/fig-4 

In the maximum likelihood analysis, a phylogeny was constructed using the selected 
model and support for the nodes was determined with a bootstrap analysis with 1,000 
replicates. The Bayesian analysis was run with a chain length of 1,100,000, a subsampling 
frequency of 1,000, a burn-in of 100,000, four heated chains, and a heated chain 
temperature of 0.2. 

RESULTS 
Sampling 
A total of 140 A. latecarinata colonies were collected at 47 stations across the Tropical 
Atlantic, Caribbean, South Sargasso Sea, North Sargasso Sea, and Gulf Stream regions 
(Fig. 4; Table S1) and sequenced. The distribution of A. latecarinata samples across two 
Sargassum forms was nearly even, with 68 colonies collected from S. natans VIII and 71 
colonies collected from S. fluitans III. Only one A. latecarinata colony was observed on 
S. natans I (from the North Sargasso Sea in 2015) despite frequent observations of 
S. natans I throughout multiple cruises. The temporal and geographic distribution of 
Sargassum forms represented in the dataset was quite variable due to episodic S. natans 
VIII inundations from the equatorial Atlantic and predetermined cruise tracks (Table 1). 
However, because dip net sampling was selective, sample density is not necessarily 
representative of actual Sargassum density. For a representative view of Sargassum 
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Table 1 Sample summary. Number of hydroids samples collected from each Sargassum substrate by 
geographic region. 

 2015 
 

Sn8 Sf3 

2016 
 

Sn8 Sf3 

2017 
 

Sn8 Sf3 

2018 
 

Sn8 Sf3 

Total  

Sn8 Sf3 
South Sargasso 1 0 20 8 0 36 11 14 32 58 

North Sargasso 0 0 0 0 3 2 0 6 3 8 
Tropical Atlantic 20 0 0 0 0 0 0 0 20 0 
Gulf stream 0 0 12 0 0 5 0 0 12 5 
Caribbean 0 0 0 0 0 0 1 0 1 0 
Total 21 0 32 8 3 43 12 20 68 71 

distribution and relative abundance, refer to Schell, Goodwin & Siuda (2015). In 2015, 20 
of 21 A. latecarinata samples were collected from S. natans VIII at stations in the Tropical 
Atlantic. Of the 40 samples collected in 2016, a majority were again collected from 
S. natans VIII, and some from stations in the South Sargasso Sea (n = 20) and northern 
Gulf Stream (n = 12). In contrast, most (43 out of 46) samples in 2017 were collected 
from S. fluitans III at stations in the southern Gulf Stream (n = 5), South Sargasso Sea (n 
= 36) and North Sargasso Sea (n = 2). In 2018, 11 samples were collected from S. natans 
VIII and 14 samples were collected from S. fluitans III in the South Sargasso Sea, while 
six samples were collected from S. fluitans III in the North Sargasso Sea. The number of 
Sargassum clumps collected per station ranged from 1 to 12; only at four of 47 stations 
(C266-005, C266-011, C277-020, C279-003) were we able to concurrently collect A. 
latecarinata samples from S. natans VIII and S. fluitans III. These stations were all 
located in the South Sargasso Sea. 

Sequence variation 
A 500 base pair alignment was obtained after trimming the sequence ends to remove low-
quality regions. The alignment had eight variable positions, four of which were indels, 
that comprised 10 unique haplotypes. Haplotype frequency and diversity were strongly 
associated with algal substrate, with only one haplotype (haplotype 1) growing on both S. 
natans VIII and S. fluitans III (Fig. 5). Of the 68 A. latecarinata colonies found on S. 
natans VIII, 65 were haplotype 1, two were haplotype 2, and one was haplotype 3 (Fig. 
5). Of the 71 A. latecarinata colonies found on S. fluitans III, two were haplotype 1, 44 
were haplotype 4, one was haplotype 5, four were haplotype 6, one was haplotype 7, 13 
were haplotype 8, one was haplotype 9, and five were haplotype 10 (Fig. 5). There were 
only two colonies collected from S. fluitans III that had an “S. natans VIII” haplotype 
(haplotype 1; these were 2016_SF3_41 from the South Sargasso Sea and 2017_SF3_65 
from the Gulf Stream, Table S1). No colonies on S. natans VIII possessed an “S. fluitans 
III” haplotype. To confirm that our results were consistent over a longer sequence length, 
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we constructed an alternative alignment with a subset of sequences that had expanded 
high-quality reads (590 base pairs for 99 sequences). The resulting haplotype analysis was 
consistent with the one based on the shorter, but more inclusive, alignment (Fig. S1). 

 
Figure 5 Haplotype network of Aglaophenia latecarinata sequences. Circle size reflects the number of 

hydroids found on S. fluitans individuals possessing a given haplotype (n). Yellow indicates 
10.7717/peerj.7814/fig-5 III and green indicates hydroids found on S. natans VIII. Full-sizeDOI: 

Table 2 Analysis of molecular variance (AMOVA) results.  

Source of variation df Sum of squares Variance components Percentage of variation 

Among populations 3 6.171 0.07200 Va 19.77 

Within populations 135 39.433 0.29210 Vb 
Total 138 45.604 0.36410 
Fixation index 0.19774 

80.23 

Table 3 Population pairwise FST’s (below the diagonal) and p-values (above the diagonal). 

 TA SS NS GS 

TA – 0.00000 ± 0.0000 0.00000 ± 0.0000 0.01802 ± 
0.0182 

SS 0.29003 – 0.22523 ± 0.0389 0.00901 ± 
0.0091 

NS 0.62631 0.02030 – 0.00901 ± 
0.0091 

GS 0.12084 0.10557 0.24759 – 
Note: 

TA, Tropical Atlantic; SS, South Sargasso Sea; NS, North Sargasso Sea; GS, Gulf Stream. 
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We found significant geographic structure between regions (Table 2). Pairwise FST 

values ranged from 0.02030 between the South and North Sargasso Seas, to 0.62631 
between the North Sargasso Sea and the Tropical Atlantic (Table 3). All comparisons 
were significant (p < 0.05) except for between the South and North Sargasso Seas. 
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Phylogenetic placement 
We combined representative sequences of each of our A. latecarinata haplotypes with 16S 
sequences from aglaopheniid species on Genbank (Table 4). In instances when multiple 
sequences for a given species were present, we selected one sequence to represent that 
species, with the exception of A. latecarinata, for which we used all available sequences. 
The GenBank A. latecarinata sequences originated from two locations in the southern 
hemisphere (São Sebastião and Alagoas, Brazil), and five locations in the northern 
hemisphere ranging from Panama to Fort Pierce, Florida. The Florida sequence, which 
interestingly was the only specimen noted to originate from a hydroid colony on 
Sargassum, although the species of Sargassum was not given; (Moura et al., 2018), 
matched one of our haplotypes. The rest of the Genbank A. latecarinata sequences were 
unique. Our trimmed alignment was 378 base pairs. Our maximum likelihood and 
Bayesian phylogenetic analyses showed that the northern hemisphere sequences 
(including ours) formed a weakly supported clade (bootstrap and Bayesian posterior 
probability values were 66 and 0.69, respectively; Fig. 6). This clade, plus the São 
Sebastião sequence, formed a strongly supported clade (bootstrap and Bayesian posterior 
probability values were 98 and 1, respectively; Fig. 6). The A. latecarinata sequence from 
Alagoas, Brazil, fell outside of the main A. latecarinata clade and clustered strongly with 
A. rhynchocarpa (ML bootstrap and Bayesian posterior probability values were 100 and 
1, respectively; Fig. 6). The genus Aglaophenia was not monophyletic although support 
for the arrangement of the nodes was generally weak—often less than 50 in the ML 
bootstrap analysis, but occasionally higher in the Bayesian analysis (Fig. 6). 

DISCUSSION 
Our results add to growing evidence from field and satellite observations that Sargassum 
forms have different source regions and dispersal patterns (Gower & King, 2011; Gower, 
Young & King, 2013; Schell, Goodwin & Siuda, 2015; Wang & Hu, 2017). The distinct 
but overlapping geographic ranges of S. fluitans III and S. natans VIII observed in Schell, 
Goodwin & Siuda (2015) are also evident in our pattern of opportunistic sample 
collection. Sargassum natans VIII was abundant in the Tropical Atlantic and also present 
in the northern Gulf Stream during some years. Sargassum natans VIII and S. fluitans III 
co-occurred in the South Sargasso Sea. 

Prior to 2011, the primary forms of Sargassum in the Sargasso Sea were S. fluitans III 
and S. natans I (Schell, Goodwin & Siuda, 2015). Satellite data from this time suggests 
these forms range from the Caribbean to the Sargasso Sea and likely originate from the 
Gulf of Mexico (Gower & King, 2011). In contrast, S. natans VIII is likely transported 
from its source in the North Equatorial Recirculation Region via the North Equatorial 
Current, which splits into the Caribbean Current in the Caribbean Sea and the Antilles 
Current that runs north of the Greater Antilles (Franks, Johnson & Ko, 2016; Putman et 
al., 2018; Brooks et al., 2018; Wang et al., 2019). Sargassum natans VIII from the 
Caribbean may then be carried into the Gulf of Mexico and on to the Gulf Stream, where 
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it could mix and travel north along with the S. natans VIII from the Antilles Current 
(Wang et al., 2019). Because the boundary between the Antilles Current and South 
Sargasso Sea is weak, both 

Table 4 Aglaopheniid sequences from GenBank used in the phylogenetic analysis.  

Genus Species Reference GenBank accession# Location (A. latecarinata) 

Aglaophenia latecarinata Moura et al. (2018) MH212420 Carrie Bow Key, Belize 

  Moura et al. (2018) MH212421 Ft. Pierce, FL, USA 
(on Sargassum) 

  Moura et al. (2018) MH212422 Isla Tambor, Panama 

  Moura et al. (2018) MH212423 Isla Uvita, Costa Rica 

  Moura et al. (2018) MH212424 Key Biscayne, FL, USA 

  Maronna et al. (2016) KT266600 Barra do São Miguel, Alagoas, Brazil 

  Leclère, Schuchert & Manuel (2007) DQ855936 Ponta do Baleeiro, São Sebastião, 
Brazil 

 acacia Leclère et al. (2009) FJ550507  

 cupressina Postaire et al. (2016) KM587399  

 elongata Leclère et al. (2009) FJ550508  

 harpago Moura et al. (2012) JN560129  

 kirchenpaueri Moura et al. (2012) JN560124  

 lophocarpa Moura et al. (2012) JN560112  

 octodonta Leclère, Schuchert & Manuel (2007) DQ855915  

 parvula Moura et al. (2012) JN560097  

 picardi Moura et al. (2012) JN560105  

 pluma Moura et al. (2012) JN560130  

 postdentata Postaire et al. (2016) KM587408  

 rhynchocarpa Maronna et al. (2016) KT266601  

 sinuousa Postaire et al. (2016) KM587411  

 struthionides Maronna et al. (2016) KT266602  

 tubiformis Leclère, Schuchert & Manuel (2007) DQ855917  

http://www.ncbi.nlm.nih.gov/nuccore/MH212420
http://www.ncbi.nlm.nih.gov/nuccore/MH212421
http://www.ncbi.nlm.nih.gov/nuccore/MH212422
http://www.ncbi.nlm.nih.gov/nuccore/MH212423
http://www.ncbi.nlm.nih.gov/nuccore/MH212424
http://www.ncbi.nlm.nih.gov/nuccore/KT266600
http://www.ncbi.nlm.nih.gov/nuccore/DQ855936
http://www.ncbi.nlm.nih.gov/nuccore/FJ550507
http://www.ncbi.nlm.nih.gov/nuccore/KM587399
http://www.ncbi.nlm.nih.gov/nuccore/FJ550508
http://www.ncbi.nlm.nih.gov/nuccore/JN560129
http://www.ncbi.nlm.nih.gov/nuccore/JN560124
http://www.ncbi.nlm.nih.gov/nuccore/JN560112
http://www.ncbi.nlm.nih.gov/nuccore/DQ855915
http://www.ncbi.nlm.nih.gov/nuccore/JN560097
http://www.ncbi.nlm.nih.gov/nuccore/JN560105
http://www.ncbi.nlm.nih.gov/nuccore/JN560130
http://www.ncbi.nlm.nih.gov/nuccore/KM587408
http://www.ncbi.nlm.nih.gov/nuccore/KT266601
http://www.ncbi.nlm.nih.gov/nuccore/KM587411
http://www.ncbi.nlm.nih.gov/nuccore/KT266602
http://www.ncbi.nlm.nih.gov/nuccore/DQ855917
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 tubulifera Moura et al. (2012) JN560117  

 sp. 1 (CM 2011) Moura et al. (2012) JN560094  

 sp. 2 (CM 2011) Moura et al. (2012) JN560101  

Cladocarpus cartieri Moura et al. (2012) JN560085  

 integer Leclère et al. (2009) FJ550512  

Gymnangium allmani Postaire et al. (2016) KM587415  

 eximium Postaire et al. (2016) KM587417  

 gracilicaule Postaire et al. (2016) KM587438  

 hians Postaire et al. (2016) KM587446  

 montagui Moura et al. (2012) JN560075  

 sp. 1 (BP 2015) Postaire et al. (2016) KM587460  

Lytocarpia brevirostris Boissin et al. (2018) MH108512  

 canepa Maronna et al. (2016) KT266645  

 myriophyllum Moura et al. (2012) JN560089  

 nigra Postaire et al. (2016) KM587482  

 phyteuma Postaire et al. (2016) KM587489  

 sp. 1 (BP 2015) Postaire et al. (2016) KM587509  

(Continued) 
Table 4 (continued).    

Genus Species Reference GenBank accession# Location (A. latecarinata) 

Macrorhynchia philippina Postaire et al. (2016) KM587516  

 phoenicea Postaire et al. (2016) KM587526  

 sibogae Postaire et al. (2016) KM587537  

 spectabilis Postaire et al. (2016) KM587539  

 sp. 1 (BP 2015) Postaire et al. (2016) KM587538  

 sp. 2 (BP 2015) Postaire et al. (2016) KM587510  

http://www.ncbi.nlm.nih.gov/nuccore/JN560117
http://www.ncbi.nlm.nih.gov/nuccore/JN560094
http://www.ncbi.nlm.nih.gov/nuccore/JN560101
http://www.ncbi.nlm.nih.gov/nuccore/JN560085
http://www.ncbi.nlm.nih.gov/nuccore/FJ550512
http://www.ncbi.nlm.nih.gov/nuccore/KM587415
http://www.ncbi.nlm.nih.gov/nuccore/KM587417
http://www.ncbi.nlm.nih.gov/nuccore/KM587438
http://www.ncbi.nlm.nih.gov/nuccore/KM587446
http://www.ncbi.nlm.nih.gov/nuccore/JN560075
http://www.ncbi.nlm.nih.gov/nuccore/KM587460
http://www.ncbi.nlm.nih.gov/nuccore/MH108512
http://www.ncbi.nlm.nih.gov/nuccore/KT266645
http://www.ncbi.nlm.nih.gov/nuccore/JN560089
http://www.ncbi.nlm.nih.gov/nuccore/KM587482
http://www.ncbi.nlm.nih.gov/nuccore/KM587489
http://www.ncbi.nlm.nih.gov/nuccore/KM587509
http://www.ncbi.nlm.nih.gov/nuccore/KM587516
http://www.ncbi.nlm.nih.gov/nuccore/KM587526
http://www.ncbi.nlm.nih.gov/nuccore/KM587537
http://www.ncbi.nlm.nih.gov/nuccore/KM587539
http://www.ncbi.nlm.nih.gov/nuccore/KM587538
http://www.ncbi.nlm.nih.gov/nuccore/KM587510
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Streptocaulus multiseptatus Moura et al. (2012) JN560080  

 dollfusi Moura et al. (2012) JN560081  

Aglaopheniidae sp. (CM 2011) Moura et al. (2012) JN560079  

Note: 
Sampling locations are given for A. latecarinata sequences. 

 

Figure 6 Maximum likelihood phylogeny of the Aglaopheniidae. Support for nodes is indicated by ML bootstrap values before the slash (only 
those above 50 are shown) and Bayesian posterior probabilities after the slash (only those above 0.5 are shown). A. latecarinata sequences 
are highlighted in red. Full-sizeDOI: 10.7717/peerj.7814/fig-6 

http://www.ncbi.nlm.nih.gov/nuccore/JN560080
http://www.ncbi.nlm.nih.gov/nuccore/JN560081
http://www.ncbi.nlm.nih.gov/nuccore/JN560079
http://dx.doi.org/10.7717/peerj.7814/fig-6
http://dx.doi.org/10.7717/peerj.7814/fig-6
http://dx.doi.org/10.7717/peerj.7814/fig-6
http://dx.doi.org/10.7717/peerj.7814/fig-6


 
 

 
Govindarajan et al. (2019), PeerJ , DOI 10.7717 /peerj. 781 4 16 / 23 

S. fluitans III and S. natans VIII are commonly found in this region (Schell, Goodwin & 
Siuda, 2015). 

The seasonality of the blooms and their associated dispersal may also contribute to 
the maintenance of distinct distributions of each Sargassum type and their associated A. 
latecarinata genotypes. Both the Gulf of Mexico and the tropical Atlantic exhibit 
Sargassum blooms in spring (Wang et al., 2019). We suggest that the Gulf of Mexico 
Sargassum (which likely includes S. fluitans III) may be exported to the North Atlantic 
before the tropical Atlantic Sargassum (which is likely S. natans VIII) arrives there, thus 
minimizing the potential for interaction of their associated hydroids. Additional sampling 
of both the hydroids and the Sargassum in the Gulf of Mexico and equatorial Atlantic 
source regions will be necessary to test our proposed mechanism for maintaining distinct 
A. latecarinata populations. 

Our frequent observations of A. latecarinata on S. fluitans III and S. natans VIII and 
single observation of A. latecarinata on S. natans I are consistent with previous findings. 
Burkenroad (in Parr, 1939) reported that A. latecarinata (reported as A. minuta) was the 
dominant hydroid on both S. fluitans III and S. natans VIII. Ryland (1974) and Niermann 
(1986) also did not report A. latecarinata on their surveys of epibionts on S. natans I. Weis 
(1968) did not find A. latecarinata on S. natans and Calder (1995) identified A. latecarinata 
as the dominant hydrozoan on S. fluitans, but noted that it was entirely absent from S. 
natans. Neither Weis (1968) nor Calder (1995) specified the type of S. natans that they 
observed, but we suggest that it was likely the S. natans I form. Settlement specificity of 
hydroid species has been observed both within and between other Sargassum species 
(Nishihira, 1965; Nishihira, 1971; Calder, 1995). 

The species-specific substrate pattern that we observed could be due to several factors 
including substrate selection by planula larvae or substrate availability. For example, 
larvae of the epiphytic hydroid Coryne uchidae (Stechow) showed larval settlement 
preferences when presented with multiple algal substrates including different non-pelagic 
Sargassum species (Nishihira, 1968a). Substrate selection in C. uchidae appears to be 
influenced by chemical cues present in substrate extracts (Nishihira, 1968b; Kato et al., 
1975). We are not aware of any similar experiment with A. latecarinata larvae. However, 
A. latecarinata hydroids have been successfully transplanted on to S. natans I (Burkenroad 
in Parr, 1939) suggesting that the hydroids can grow on this Sargassum form if settlement 
occurs. If the different Sargassum species have distinct source regions as recent research 
suggests (Schell, Goodwin & Siuda, 2015; Franks, Johnson & Ko, 2016; Wang & Hu, 
2017), and larval settlement occurs in these source regions where the Sargassum species 
are not found together, it is possible that substrate availability is primarily responsible for 
our, and previous, observations. Hydroid colonies could also potentially originate 
asexually via dislodged fragments attaching to Sargassum, and this could lead to species-
specific patterns if re-attachment were substrate-specific. More research is needed to 
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determine the degree of substrate specificity as well as the mechanisms driving any 
specificity, both for pelagic A. latecarinata and for aglaopheniids in general. 

For the S. fluitans III and S. natans VIII, which had abundant A. latecarinata 
colonization, we found a striking correlation between hydroid mitochondrial genotype and 
Sargassum species. We also found significant population genetic structure in 
A. latecarinata between North Atlantic regions, which was likely due to the distribution 
of the Sargassum substrates. These findings are consistent with the hypothesis that 
substrate availability associated with Sargassum species source regions is driving A. 
latecarinata colonization patterns. However, the detection of two S. fluitans III-derived A. 
latecarinata colonies in haplotype 1, which was the most common haplotype for S. natans 
VIII-derived colonies, points to the potential for limited genetic exchange to take place 
when the Sargassum forms co-occur. We found that S. fluitans III and S. natans VIII were 
sometimes found together at the same sampling site in a given year, as was the case for 
one of the S. fluitans III-derived A. latecarinata colonies with haplotype 1. While we did 
not simultaneously collect S. natans VIII along with the other S. fluitans III-derived 
A. latecarinata colony with haplotype 1, it is possible that it had encountered S. natans 
VIII previously as it drifted through other regions. As such, the dominant population 
genetic pattern observed in A. latecarinata is likely maintained through settlement on 
substrates that differ in geographic origins. 

Aglaophenia species typically lack a planktonic medusa stage (Svoboda & Cornelius, 
1991) and have been hypothesized to have limited dispersal capabilities, which could lead 
to population genetic structuring and speciation (Postaire et al., 2016). However, benthic 
or fixed stages can also disperse via rafting on algal or other substrates (Ronowicz, 

Kukliński & Mapstone, 2015; Boissin et al., 2018). In contrast to the pattern observed in 
A. latecarinata, the Sargassum shrimp Latreutes fucorum, which has a long-lived 
planktonic larval period, exhibited no population genetic structure over the same region 
(Sehein et al., 2014). This finding could reflect the greater potential of L. fucorum to 
disperse independently of Sargassum, and reinforces our hypothesis that substrate 
availability is an important driver of A. latecarinata settlement patterns. 

Several studies that utilize 16S sequences suggest cryptic species are common in 
aglaopheniid taxa. Schuchert (2014) found that in the aglaopheniid genus Plumularia, 
nominal morphologically-defined species showed a high degree of genetic variability 
indicating possible cryptic speciation. Postaire et al. (2016), employing multiple species 
delimitation methods, found significant variation in mitochondrial 16S sequences within 
aglaopheniid morphospecies, which also likely indicates cryptic species. In another study 
of the family, Moura et al. (2012) found that their 16S A. latecarinata sequence from Brazil 
fell outside of the Aglaophenia clade. Our family-level genetic analysis suggests that the 
different pelagic Sargassum-associated hydroid genotypes represent intraspecific 
variation and not cryptic species. Furthermore, our results show that these 
Sargassumassociated specimens are also likely the same species as those collected from 
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Central America and Florida in Moura et al. (2018) and from São Sebastião in Brazil 
(Leclère, 
Schuchert & Manuel, 2007). However, the sequence from Alagaos, Brazil (Maronna et 
al., 2016) fell well outside the A. latecarinata clade and so may represent a cryptic 
species or a misidentification. At a deeper level, our phylogeny indicated that the genus 
Aglaophenia is polyphyletic, as in previous studies (Moura et al., 2018). Taxonomic 
studies, coupled with molecular analyses utilizing multiple genetic markers, will be 
necessary to fully understand aglaopheniid diversity and evolutionary relationships. 

CONCLUSIONS 
Aglaophenia latecarinata hydroids were abundant on S. natans VIII and S. fluitans III, but 
rare on S. natans I. For the hydroids on S. natans VIII and S. fluitans III, hydroid 
mitochondrial genotype was strongly correlated with Sargassum substrate form. There 
was significant population genetic structure in the hydroids, which likely reflects the 
distribution of their different algal substrates, with S. natans VIII likely annually sourced 
primarily from the equatorial Atlantic and S. fluitans III likely annually sourced primarily 
from the Gulf of Mexico. As cryptic speciation appears to be common in aglaopheniids, 
we conducted a family-level phylogenetic analysis that showed that the genus 
Aglaophenia was polyphyletic, and that all A. latecarinata haplotypes associated with 
pelagic Sargassum belonged to the same clade as published sequences from Florida, 
Central America, and one location in Brazil (São Sebastião). A nominal A. latecarinata 
sequence from a second Brazilian location (Alagoas) likely belongs to a different species. 
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