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ABSTRACT
Insiders cause significant cyber-security threats to organizations.
Due to a very limited number of insiders, most of the current stud-
ies adopt unsupervised learning approaches to detect insiders by
analyzing the audit data that record information about employees’
activities. However, in practice, we do observe a small number of
insiders. How to make full use of these few observed insiders to
improve a classifier for insider threat detection is a key challenge.
In this work, we propose a novel framework combining the idea
of self-supervised pre-training and metric-based few-shot learning
to detect insiders. Experimental results on insider threat datasets
demonstrate that our model outperforms the existing anomaly de-
tection approaches by only using a few insiders.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Computing methodologies → Neural
networks.
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1 INTRODUCTION
A malicious insider indicates an employee who intentionally used
his authorized access in a manner that negatively affected the con-
fidentiality, integrity, or availability of the organization’s infor-
mation. Since the insiders’ behaviors are different from behaviors
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of legitimate employees, we can detect insider threats by analyz-
ing employees’ behaviors via audit data. In general, user activities
are often grouped into sessions that are separated by operations
like “LogOn” and “LogOff”. However, due to the small number of
malicious sessions, supervised learning algorithms cannot be em-
ployed. Hence, how to leverage the limited insiders to improve the
performance of insider detection is an interesting problem.

To tackle this challenge, in this paper, we propose a framework
of combining the idea of self-supervised pre-training [1] and metric-
based few-shot learning to detect insiders [4]. Specifically, we first
design input representations of user activities in sessions, which
capture both activity type and time information, and then adopt the
transformer layer proposed in [6] to learn session representations.
In order to achieve insider threat detectionwith only a small number
of insiders, our framework is trained by two phases. The first phase
is to pre-train the transformer layer by learning an “activity model”
on a large number of user sessions. The pre-trained activity model
provides strong prior knowledge on how the user sessions are
composed. Then, the second phase is to fine-tune the model and
learn a similarity function via few-shot learning where the objective
is to separate the normal and malicious sessions in the embedding
space. After training, new malicious sessions can be detected by
having high similarity scores to the observed malicious sessions.

2 FRAMEWORK
We model a user’s behavior as a sequence of activities that can be
extracted from various types of raw data, such as user logins, emails,
and web browsing. Formally, we model the up-to-date activities
of a user as a sequence of sessions 𝑈 = {𝑆1, · · · 𝑆𝑘 , · · · } where
𝑆𝑘 = {𝑒𝑘1 , · · · , 𝑒𝑘 𝑗

, · · · , 𝑒𝑘𝑇 } indicates the 𝑘-th activity session. One
session in our scenario is a sequence of activities starting with
‘LogOn” and ending with “LogOff”. 𝑒𝑘 𝑗

= (𝑡𝑘 𝑗
, 𝑎𝑘 𝑗

) denotes the 𝑗-th
activity in the user’s 𝑘-th session and contains activity type 𝑎𝑘 𝑗

and occurred time 𝑡𝑘 𝑗
.

Given an extremely unbalanced training set D = {(𝑆𝑖 , 𝑦𝑖 )}𝑚𝑖=1,
where 𝑆𝑖 is the 𝑖-th session, and 𝑦𝑖 ∈ {0, 1} indicates malicious
or not of the session, there is a very small number of sessions
that are labeled as malicious in D. Note that we consider ses-
sions that contain malicious activities, such as uploading docu-
ments to Wikileak, as malicious sessions. The goal of learning in
our insider threat detection is to predict whether a new session
𝑆𝑘 = {𝑒𝑘1 , · · · , 𝑒𝑘 𝑗

, · · · , 𝑒𝑘𝑇 } is normal or malicious. To address the
challenge that there are usually very few records of known insider
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Figure 1: The architecture of our framework

attacks in the training data, we propose a framework that takes
advantages of both self-supervised pre-training and metric-based
few-shot learning. The pre-training phase uses the user activity se-
quences to learn session representations by self-supervised learning,
while the fine-tuning phase is to train a feed-forward neural net-
work with small parameters to derive the similarity scores among
samples. Figure 1 shows the architecture of our framework.

Specifically, we design input representations for activities in a
session by combining the activity type and time information. In
order to model user sessions, we adopt the transformer layer and
use the similar idea as Bidirectional Encoder Representations from
Transformers (BERT) to pre-train the model [1]. After pre-training,
we fine-tune the model based on a few observed insiders to achieve
malicious session detection. The metric-based few-shot learning
computes the centers of normal and malicious session representa-
tions as prototype representations of normal and malicious sessions
and then trains a neural network as a similarity function to compute
similarity scores between user sessions and prototype representa-
tions. Then, new malicious sessions expect to be detected by having
high similarity scores to the observed malicious sessions.

2.1 Self-supervised Pre-training
Input representation. Input representations aim to map user ac-
tivities in a session into an embedding space so that the transformer
layer can encode the user activities into a session representation.
Given a user activity in a session, we have both activity type and
time information. The existing works only consider the activity type
information, like copying documents to a removable disk. However,
the timing of a user activity is also an important feature for mali-
cious session detection. For example, an insider may copy classified
documents to a removable disk at midnight. Since both activity
type and time are important for insider threat detection, input rep-
resentations should encode both type and time information of user
activities to our model. To this end, given an activity type and its
corresponding time, we map them to an embedding space. Then,
the input representation of an activity is constructed by summing
the representations of type and time. The detailed descriptions of
the activity type and time representations are given as follows.

Type representations: To obtain type representations, we first
consider each activity type as a word in a sentence, each session
as a sentence, and all activity sessions as a text corpus. Then, we
adopt the word2vec to train type representations A ∈ R𝑎∗𝑑 , where
𝑎 is the number of activity types.

Time representations: Similar to the position encodings [6], which
aim to encode the relative or absolute position information to the
model, we propose the time representations to inject the absolute
time information of an activity to the input representation. Specifi-
cally, we represent the activity time as the offset minute from 12:00
am. As a result, the time representations can be represented as
T ∈ R1440∗𝑑 , where 1440 is the total number of minutes in a day.
There are two advantages to using absolute time representations.
First, we can inject the physical time information to the model.
Second, since the transformer layer do not have recurrent struc-
ture, the absolute time can also capture the order information of
activities in a session. We adopt the same sinusoid function as the
position encoding in [6] to generate the time representations.

Finally, the input representation of the 𝑗-th activity is defined as:

x𝑗 = a𝑎 𝑗
+ t𝑡 𝑗 , (1)

where 𝑎 𝑗 and 𝑡 𝑗 indicate the indices of representations of type
and time given the 𝑗-th activity. The input representation to the
transformer can be represented as X𝑛∗𝑑 , where 𝑛 indicates the
length of session. With the well-designed input representation, the
transformer layer can encode multiple aspects of user behaviors.
Pre-training. We adopt the transformer layer to model the user
activity sessions [6] and use a similar strategy as BERT to pre-
train the transformer layer [1]. In our scenario, we consider the
log files that record all the user activities as a pre-training corpus
and adopt the masked language model to pre-train the transformer
layer. Specifically, the model takes all activities in a session with
random masks as inputs, where we randomly replace a small ratio
of activities in a session with a specific MASK token. The training
object is to accurately predict the randomly masked activity types.
The purpose of predicting MASK token is to make the transformer
layer capture the user behaviors in terms of activity types and time.
Since the behaviors of normal and malicious sessions are different,
we expect the transformer layer could encode the prior knowledge
of user behavior by training to predict the MASK tokens.

After pre-training, similar to BERT, we consider the final hidden
state of the first activity in the session, i.e., the hidden state of
“LogOn”, as the session representation s:

s = transformer_layer(X) [0], (2)

where X ∈ R𝑛∗𝑑 is the input representation of a session.

2.2 Few-shot Fine-tuning
After self-supervised pre-training, the session representations de-
rived from the transformer layer capture the information of user be-
haviors in terms of activity types and time. We further fine-tune the
session representations and design a similarity function to detect
insider threats via a small number of malicious sessions. Concretely,
the few-shot learning phase consists of two goals. The first goal is
to fine-tune the transformer layer to make the representations of
normal and malicious sessions locate separately in the embedding
space. Then, we can derive prototype representations of normal
and malicious sessions by adopting the mean operation so that each
prototype representation is surrounded by sessions in that class.
The second goal is to derive a similarity function to evaluate the
similarity between a session and prototype representations. After
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fine-tuning, a new malicious session is expected to have a higher
similarity score to the malicious prototype representation.

In few-shot learning, each training iteration is formulated as a
training episode. In each episode, we randomly sample 𝑘 normal ses-
sions and 𝑘 malicious sessions as the support set S = {(𝑆𝑖 , 𝑦𝑖 )}2∗𝑘𝑖=1 ,
and further sample 𝑞 samples from both normal and malicious ses-
sions as the query set Q = {(𝑆 𝑗 , 𝑦 𝑗 )}𝑞𝑗=1 from the training set. We
then compute the representation of each session in the support and
query sets by Equation 2. We denote the representations of 𝑆𝑖 from
the support set and 𝑆 𝑗 from the query set as s𝑖 and s𝑗 .

Based on the support set, we derive prototype representations
for normal and malicious sessions by a mean operation over repre-
sentations of normal and malicious sessions separately:

c𝑦 =
1
𝑘

∑
(𝑆𝑖 ,𝑦𝑖 ) ∈S𝑦

s𝑖 , (3)

where S𝑦 indicates the set of samples with label 𝑦 and 𝑦 ∈ {0, 1}.
After obtaining two prototype representations from the support

set, we further derive the similarity scores of samples in the query
set with the representation of each prototype. To this end, we first
combine the representation of a query sample with a prototype
representation by a concatenate operation r𝑗𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡 (s𝑗 , c𝑦).
Then, we adopt a fully connected neural network as a similarity
function to map the representation r𝑗𝑦 to a similarity score 𝑙 𝑗𝑦 :

𝑙 𝑗𝑦 = 𝑔(r𝑗𝑦 ;𝜃𝑔 ), (4)

where 𝑙 𝑗𝑦 measures the similarity between query 𝑗 and prototype
𝑦 ranging from 0 to 1; 𝑔(·) is a fully connected neural network
parameterized by 𝜃𝑔 .

We adopt the mean square error as the loss function to fine-tune
the transformer layer as well as the neural network 𝑔(·) [5]:

L =
∑

𝑦∈{0,1}

𝑞∑
𝑗=1

(𝑙 𝑗𝑦 − 1(𝑦 𝑗 == 𝑦))2 . (5)

The general idea is to consider the task as a regression problem. The
training procedure is to make the similarity score close to 1 if the
query sample and prototype belong to the same class, otherwise,
the similarity score should be close to 0. In the fine-tuning phase,
we update the parameters 𝜃𝑔 in 𝑔(·).
Detection.When deploy the model for malicious session detection,
we adopt all the malicious sessions in the training set to compute
the prototype representation of malicious sessions and randomly
sample the same number of normal sessions to compute the proto-
type representation of normal sessions. Given an upcoming session
as a new query set, we compute its similarity scores with the two
prototype representations. The upcoming session will be detected
as malicious if its similarity to the malicious prototype is higher
than the one to the normal prototype.

3 EXPERIMENTS
3.1 Experimental Setup
Dataset. We evaluate our proposed approach on two datasets.

CERT Insider Threat Dataset (CERT) [2] is the only compre-
hensive dataset for evaluating the insider threat detection, which
consists of records of computer-based activities over 516 days. Table
1 shows the statistics of the dataset. We extract activity types as

combinations of activity types and their context, such as “upload
to Wikileak.org”, which leads to 1435 fine-grained activity types.
We split the dataset chronologically into training and testing sets.
We use sessions occurred in the first 396 days as the training set
and randomly select 10,000 sessions from remaining 120 days as
the testing set. There are 15 malicious sessions in the training set
and 33 malicious sessions in the testing set.

Table 1: Statistics of two datasets

Dataset # of Employees # of Insiders # of Sessions # of Malicious Sessions
CERT 4000 5 1,581,358 48

Wikipedia 4073 822 10,113 4627

Training Details. In experiments, the model consists of 2 trans-
former layers. The multi-head attention sub-layer consists of 4
heads, and the dimension of each attention in multi-head attention
sub-layer is 64, so the dimension of feed-forward sub-layer is 256.
In the few-shot training phase, in each episode, we randomly select
15 normal sessions and 15 malicious sessions to compose the sup-
port set. We augment the malicious sessions by randomly shuffling
activities between “LogOn” and “LogOff”.

UMDWikipediaDataset (Wikipedia) [3] contains around 770K
edits with 17105 vandals and 17105 benign users (Table 1). We con-
sider user activities in a day as a session. If a session contains activ-
ities that are reverted by administrators, the session is malicious.
We filter out sessions with activity numbers less than 15.

Training Details. To represent the type information, we adopt
7 binary features: whether or not the user edited on a meta-page;
if the edited page is a meta-page, whether or not this meta-page
is empty; whether or not the user consecutively edited the pages
in less than 1 minute, 3 minutes, or 15 minutes; whether or not
the user’s current edit page had been edited before; whether or
not the current edit will be reverted by the platform. In the few-
shot training stage, for each episode, we randomly pick 50 normal
sessions and 50 malicious sessions to construct the support set.
Baselines. We compare our model with three baselines, Recurrent
Neural Network (RNN), One-class SVM (OCSVM) and Isolation
Forest (iForest). We replace the transformer layers with RNN and
adopt the same objective function defined in Equation 5 to train the
RNN. For OCSVM and iForest, we use activity types to compose
the input feature vector, and the value each feature is the number
of the corresponding activity in a session.

3.2 Experimental Results
Few-shot Malicious Session Detection. Table 2 shows the pre-
cision, recall, F1, and false positive rate (FPR). Compared to base-
lines, our proposed model achieves the best performance in terms
of F1 score and FPR on both datasets. Since OCSVM and iForest
only adopt normal sessions for training, these two approaches
cannot achieve good performance for malicious session detection.
Although OCSVM achieves high recall value, the precision is ex-
tremely low. Since the RNNmodel is also trained in the same setting
of few-shot learning, it achieves better performance than OCSVM
and iForest. However, the F1 score of RNN is still lower than that of
our model. It indicates that using transformer layers with carefully
designed input representations to model user sessions can improve
the performance of few-shot malicious session detection.
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Table 2: Comparison of our framework with baselines

Dataset Models Precision Recall F1 FPR

CERT

OCSVM 0.0026 0.8182 0.0051 0.1818
iForest 0.0056 0.3939 0.0110 0.6060
RNN 0.3038 0.7273 0.4286 0.0055

Our model 0.9200 0.6970 0.7931 0.0001

Wikipedia

OCSVM 0.5576 0.9870 0.7126 0.7830
iForest 0.4920 0.1230 0.1968 0.1270
RNN 0.9548 0.8257 0.8856 0.0393

Our model 0.9920 0.8626 0.9228 0.0069

Table 3: Performance of our framework trained by various
numbers of malicious sessions

Dataset # of Malicious Sessions Precision Recall F1 FPR

CERT

5 0.0047 0.8140 0.0096 0.7194
8 0.8824 0.3750 0.5263 0.0001
10 0.7333 0.5789 0.6471 0.0007
15 0.9200 0.6970 0.7931 0.0001

Wikipedia

5 0.4994 0.9529 0.6554 0.9497
15 0.6939 0.8440 0.7616 0.3709
30 0.9807 0.8637 0.9185 0.0171
50 0.9920 0.8626 0.9228 0.0069

Various numbers of malicious sessions in the training set.
We further evaluate the performance of our model trained by vari-
ous numbers of malicious sessions in the training set. Table 3 shows
the experimental results. Overall, on both CERT and Wikipedia,
F1 scores are decreasing as the number of malicious sessions re-
duces. Meanwhile, we can observe that, even with few malicious
sessions, the proposed few-shot insider threat detection model can
still achieve a reasonable F1 score and a low false positive rate.
Ablation studies. In order to better understand our framework,
we conduct ablation experiments on the CERT dataset. First, the
input representations consist of two components, i.e., the represen-
tations of activity type and time. We train the model by removing
one components at each time, rather than using both components.
Meanwhile, since our framework is trained by two phases, we also
study the performance without pre-training or without few-shot
fine-tuning. In the scenario without few-shot fine-tuning, we adopt
the L2-distance as the similarity score to label sessions.

Table 4: Performance after removing various components

Precision Recall F1 FPR
w.o. type representation 0.1013 0.2424 0.1429 0.0070
w.o. time representation 0.8519 0.6970 0.7667 0.0003
w.o. pre-training 0.8519 0.6970 0.7667 0.0003
w.o. few-shot fine-tuning 0.0085 0.5758 0.0168 0.2197

Table 4 shows the experimental results. As we expect, without
using the representations of activity types in a session, the model
cannot achieve malicious session detection. Meanwhile, by remov-
ing the time representations, the F1 score also slightly reduces. For
the two training phases, we can also notice that the performance
of the model reduces without pre-training, and the model cannot
achieve reasonable performance without few-shot fine-tuning.
Visualization.We adopt PCA to project the session embeddings
to a two-dimensional space and visualize the normal and malicious

(a) Before few-shot learning (b) After few-shot learning

Figure 2: The visualization of session embeddings. The red
and black dots indicate malicious and normal sessions, re-
spectively, while the red and black stars indicate the proto-
types of malicious and normal sessions, respectively.

sessions. We adopt all malicious sessions and the same number
of normal sessions in the training set to compute the prototype
embeddings. Then, we select all malicious sessions and randomly
choose 800 normal sessions from the testing set. Figure 2 shows
the visualization of malicious and normal sessions as well as two
prototype representations before and after the few-shot learning
phase. We can observe that before the few-shot learning phase,
malicious and normal sessions are mixed together, and prototypes
of malicious and normal sessions close to each other. After the few-
shot learning phase, malicious and normal sessions are separated
into two parts, and prototypes of two types of sessions have a long
distance in the two-dimensional space.

4 CONCLUSION
We have developed a novel framework that consists of two training
phases, self-supervised training phase and few-shot learning phase,
for insider threat detection. In the pre-training phase, a “masked
activity model” is adopted to pre-train the transformer layer so that
the model can learn the prior knowledge of user sessions. After
that, the few-shot learning phase adopts a few insiders to derive a
similarity function that can evaluate the similarity between new
user sessions and observed normal or malicious sessions. A session
with a high similarity score to the observed malicious sessions can
be labeled as malicious sessions. Experimental results demonstrated
the effectiveness of our framework.
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