METAL
A Metadata-Hiding File-Sharing System

Weikeng Chen Raluca Ada Popa
UC Berkeley UC Berkeley
weikeng @eecs.berkeley.edu raluca@eecs.berkeley.edu
Abstract

File-sharing systems like Dropbox offer insufficient privacy because a compromised server can see the
file contents in the clear. Although encryption can hide such contents from the servers, metadata leakage
remains significant. The goal of our work is to develop a file-sharing system that hides metadata—including
user identities and file access patterns.

Metal is the first file-sharing system that hides such metadata from malicious users and that has a
latency of only a few seconds. The core of Metal consists of a new two-server multi-user oblivious RAM
(ORAM) scheme, which is secure against malicious users, a metadata-hiding access control protocol, and
a capability sharing protocol.

Compared with the state-of-the-art malicious-user file-sharing scheme PIR-MCORAM (Maffei et
al.’17), which does not hide user identities, Metal hides the user identities and is 500 x faster (in terms of
amortized latency) or 10° x faster (in terms of worst-case latency).

More details of Metal can be found on https://www.oblivious.app/.


https://www.oblivious.app/

Contents

1 Introduction

1.1 Overview of Metal’s techniques . . . . . . . . ... ... ... ... ..

2 Overview
2.1 System architecture . . . . . . . . .. e e e
2.2 Threatmodel . . . . . . . . . . e

2.3 Security UATANIEES . . . . . . ... e e e e e e e e e e e e e e
3 The layout of S2PC in Metal
4 Metal-AC: Anonymous access control

5 Metal-ORAM: Efficient two-server multi-user ORAM for file storage
5.1 Backgroundon ORAM . . . . . . . . e
5.2 Primitive Metal . . . . . .. L e
5.3 Moving data out of Yao’s protocol: Metal’s synchronized inside-outside ORAM trees . . . .
5.4 PFetching blocks in DataORAM . . . . . . . . . . . . . . .. e
5.5 Putting a block into DataORAM’sstash . . . . . . . . .. .. ... ... ... .......

5.6 Resynchronizing after eviction by tracking and permutation generation . . . . . . . . .. ..

6 Metal-SHARE: Unlinkable capability sharing
6.1 Unlinkable anonyms . . . . . . . . . . . . e e e

6.2 Capability derivation and broadcast. . . . . . . . . . ... ... ... ... ..

7 Performance
7.1 Asymptotic efficiency . . . . . . ...
7.2 Implementation . . . . . . . . . ... e e e e e e e e
7.3 Evaluation Setup . . . . . . . . e
7.4 Metal’s performance . . . . . . . . . . .. e e
7.5 Comparison with PIR-MCORAM . . . . . . . ... .. .
7.6 Comparison with AnonRAM-poly . . . . . . . .. . ...

7.7 Comparison with Primitive Metal . . . . . . .. ... ... ... L L.
8 Extensions

9 Related Work

11

13

15
15
16
16
18
19
20

22
23
25

27
27
27
28
28
29
30
30

32

33



Acknowledgment

References

A

Security proof of Metal-ORAM

A.1 Ideal functionality . . . . . . . . . . . . .
A2 Simulator . . . .o e e e
A.3 Proof of indistinguishability . . . . ... ... ... ...

Deamortization of ORAM initialization cost

Efficient authenticated encryption in garbled circuits

35

36

41
41
41
43

44

45



1 Introduction

Storing files on a cloud server and sharing these files with other users (e.g., as in Dropbox) are common
activities today. To hide the confidential contents of files from a compromised server, academia and indus-
try developed end-to-end encryption (E2EE) systems [GSMBO03; KRS+03; BCQ+11; PSV+14; HAJ+14;
LCS+14; WMZV16]; using these, the user encrypts the file contents, so a compromised server only sees
the encryption of a file, and only permitted users can decrypt the file. Unfortunately, this approach leaves
unprotected a lot of user and file metadata. Figure 1 summarizes metadata leakage in E2EE systems: notably,
the user identities and file access patterns.

A ¢ file contents i end-to-end encryption (E2EE)
¢ user identities:

« for a file access, which user made the access
Metal * user capabilities
¢ file access patterns:

« for an access, which file was accessed

* type of file operation (read vs. write)
|+ file access control lists (ACLs)

+padding ¢ timing: when each operation was performed
¢ type of operation: create account vs. file access
Figure 1: Scope of data/metadata protected by end-to-end encryption (E2EE) systems and Metal; padding in
time and computation hides more metadata.

Such metadata is sensitive, which has become notorious in a related area—communication surveillance.
Former NSA General Counsel, Stewart Baker, said “Metadata absolutely tells you everything about some-
body’s life. If you have enough metadata, you don’t really need content.” [Rus13] Former NSA Director,
Michael Hayden, stated: “We kill people based on metadata.” [Col14] Since knowing whom a user calls is
similar in spirit to knowing with whom a user shares a file, leaking metadata in file sharing is also worrisome.
To illustrate this issue, consider some privacy concerns that arise when medical data is stored on the cloud:

The sensitive user identities. Consider that patient Alice and her oncologist Bob share Alice’s medical
profile in an E2EE system. Even with encryption, the server knows that Alice and Bob share some files with
each other. With the side information that Bob is an oncologist, likely available from a Google search for
Bob’s name, the server knows that Alice is seeing an oncologist and thus infers that she suffers from cancer.

The sensitive file access patterns. Even without user identities, file access patterns are sensitive. Consider
that some doctors share a folder with disease handouts that consists of many files, one for each disease. The
server sees the access frequency of each file and can relate it to disease incidence rates, which can be found
online [WHOJ]. Thus, the server can infer the disease in each file. If the server knows the time when Alice
goes to the doctor, the server can infer Alice’s disease by seeing which file is accessed by the doctor.

Further, there are many general attacks against anonymous systems leveraging social data [Agg05;
BDKO07; NSO8; WHKK10; NKA14; JLM+15; JLG+15; GMN+16] or access patterns [IKK12; CGPR15;
ZKP16; GMN+16; WGL+17; LMP18; GLMP18; GLMP19], some of which might apply to file sharing.

The first attempt to hide such metadata is oblivious RAM (ORAM) [Gol87; Ost90; SDS+13]. However,



Work ‘ File sharing | Hide access patterns | Hide users Server complexity ‘ Server assumption

Secret-write PANDA [HOWW19] No No No Nearly polylog 1-server
AnonRAM-lin [BHKP16] No Yes Yes Linear 1-server
AnonRAM-poly [BHKP16] No Yes Yes Polylog (linear worst-case) 2-server
GORAM [MMRSI15] Yes No Partial Polylog 1-server
PIR-MCORAM [MMRS17] Yes Partial No Linear 1-server
Metal (this paper) Yes Yes Yes Polylog 2-server

Table 1: Comparison of multi-user ORAM schemes when there are an unbounded number of malicious
users. All the listed schemes assume the server(s) to be semi-honest. The server computation complexity here
is in respect to the number of files, assuming each file is of a constant size. The comparison will be discussed
in more detail in Section 9.

ORAM relies on the trustworthiness of a single client or a proxy to maintain the confidentiality of the entire
data storage. A recent line of multi-user ORAM schemes [MMRS15; BHKP16; MMRS17; HOWW19],
shown in Table 1, is more relevant to our setting. These schemes attempt to retain some oblivious guarantees
even when some users are compromised; for example, file accesses of an honest user remain hidden across
all the files accessible only by honest users. Unfortunately, there are very few such works; the schemes that
support file sharing, PIR-MCORAM [MMRS17] and GORAM [MMRS15], leak either user identities or file
access patterns, as depicted in Table 1.

This paper presents Metal, the first cryptographic file-sharing system that hides both user identities and
file access patterns both from the server and from malicious users. Figure 1 lists the various types of metadata
that Metal protects. The scheme with the closest security guarantees, PIR-MCORAM [MMRS17], has a
very high overhead. Although Metal is not a lightweight system either, it makes a big leap toward reaching
practicality—Metal’s access latency is > 500x (for amortized latency) or > 10° x (for worst-case latency)
shorter than that of PIR-MCORAM, and in absolute value, only a few seconds.

PIR-MCORAM'’s very high overhead is largely due to an unfortunate lower bound that challenges this
research area: Maffei et al. [MMRS17] showed that, to hide access patterns, a single-server file-sharing
system must basically scan all the files; hence, PIR-MCORAM scans every file in the system for each file
access. To avoid this impossibility result, AnonRAM-poly [BHKP16] adopts a two-server model, where
at least one server is honest. This model is also adopted by much prior work in related settings for similar
reasons [MZ17; WYG+17; CB17; KGK+18]. Metal adopts this two-server model as well.

Unfortunately, even in the two-server model, efficiency remains a troubling challenge. Putting aside the
fact that worst-case accesses in AnonRAM-poly are still linear, a significant inefficiency in AnonRAM-poly is
that each user’s access requires the user to generate a heavy zero-knowledge proof (to prove to the servers that
this user did not maliciously deviate from the protocol). Generating such a proof is already 20 x times slower
than the overall access time of Metal (as described in Section 7.6). Further, AnonRAM-poly does not support
file sharing; extending AnonRAM-poly to file sharing is challenging because its design makes it difficult to
hide the access patterns across files with different sharing permissions. Finally, given the complexity, the
authors of AnonRAM-poly have not implemented AnonRAM-poly.

With Metal, we propose a radically different design than AnonRAM-poly, which centers around file
sharing and obviates the need for zero-knowledge proofs while resisting malicious users. In Section 7, we
evaluate Metal extensively and show that its access time is within a few seconds for a file store of 22° 64 KB
files. We now overview Metal’s techniques.



1.1 Overview of Metal’s techniques

As a file-sharing system, Metal provides users with the ability to access files and to share permissions to
files. When a user makes a request to Metal’s servers, Metal checks if the user has the required permission,
then the user can fetch or share a file. To understand how Metal performs these operations securely, we now
overview Metal’s techniques, organized by the challenges they address.

Challenge: Single-user nature of ORAM. ORAM [Gol87; Ost90; SCSL11; SDS+13] can hide access
patterns, but it supports only a single client. To share an ORAM with many users, prior work proposes trusting
a proxy or trusting all users [WST12; SS13b; BNP+15; SZE+16; CS19], which does not guarantee security
in the presence of malicious users.

Primitive Metal: Inspired by ORAM, we start with a primitive construction of Metal (Section 5.2), which
we describe as follows. In Primitive Metal, the two servers interact and run secure two-party computation
(82PC) [Yao86; GMWS87; BMRI0], as we illustrate in Figure 2. The reader should intuitively think that what
happens inside S2PC is “safe” (albeit expensive as we will see), and what happens outside is “unsafe”. Now,
the servers can run a global single-user ORAM client inside their S2PC, which ensures that neither server sees
the state of this global ORAM client, as well as other components for access control and capability sharing.
To store and share files, the users communicate with the global ORAM client in the S2PC, which accesses
files stored in the servers’ ORAM storage on a user’s behalf.

g Server 1 8

User "' S2PC File Access \l User
|
i Metal-ORAM T

0 Metal-AC \
Client :Access Control Metal-SHARE/ Client

| Capability Sharing /'

N
/)

Server 2

Figure 2: Metal’s system architecture (described in Section 2.1).

This primitive scheme enables users to share files. For the servers to implement a service in this way, the
S2PC protocol needs to be reactive [GKK+12; LO13; NR16]: the servers repeatedly take input into the S2PC,
update some internal state, and provide output.

Challenge: Inefficiency of Primitive Metal. Though Primitive Metal has the desired security guarantees,
it is highly inefficient. Our evaluation in Section 7.7 shows that the client ORAM access in S2PC requires a
huge amount of server-server communication: > 1 GB for each file access. It also requires > 75 s to access
one file in a store of 22 64 KB files.

Metal-ORAM: In Primitive Metal, the communication is high because the trusted global ORAM client,
which runs inside S2PC, takes the file contents as input. We address this problem using our technique called
synchronized inside-outside ORAM trees (Section 5.3), as follows. Metal maintains two ORAM trees on
the servers: one containing the file contents called DataORAM and another one containing files’ indices
and locations called IndexORAM. DataORAM stays outside S2PC because it is large, and IndexORAM



stays inside S2PC because it is small. Metal maintains the two ORAMs synchronized: after locating a file’s
identifier in the IndexORAM, one can find the file contents at the same location in DataORAM.

To keep the two ORAMs synchronized, the S2PC must apply the maintenance operations of an ORAM to
IndexORAM and DataORAM in the same way; these operations include path selection and stash eviction.
However, it is unclear how to capture these operations inside S2PC and how to apply them securely to
DataORAM, which is outside S2PC.

For this problem, we develop our tracking and permutation generation technique (Section 5.6), which
works as follows. During the ORAM access in IndexORAM, our circuit inside S2PC tracks the transformations
applied to IndexORAM and converts them into a permutation. It turns out that the transformations are not
naturally a permutation, but by “resurrecting” missing blocks in a certain way, Metal succeeds to create a
permutation. Then, we use a custom S2PC protocol to apply the permutation securely and efficiently to
DataORAM.

Altogether, in Metal, the general S2PC no longer touches the file data but works with the position maps
and block locations, which reduces the overhead by ~ 20x. We call this scheme Metal-ORAM, and we
expect these techniques to be useful for other secure multi-party computation (SMPC) protocols.

Challenge: Performing oblivious access control in S2PC. A natural solution for file access control is to
obliviously verify, inside S2PC, that the user’s name appears in the file’s access control list. However, since a
file could involve thousands of users, checking the access control list in S2PC is expensive.

Metal-AC: Metal designs capability-based anonymous access control, which we call Metal-AC (AC refers
to access control); the unit of our access control, the capability, is inspired by the classical systems concept
of a capability [DH66]. The key differences in Metal are that, given a capability, the servers cannot tell which
file (or user) the capability is for, and that the capability is implemented cryptographically, checked inside
S2PC by the two servers. By doing so, Metal-AC avoids the heavy handling of access control lists.

Challenge: Establishing anonymous identities. To preserve user anonymity, users must hide their real-
world identities (e.g., email addresses) when sharing files. Simply choosing a pseudonym is insufficient
because the servers or the malicious users can link the activities that involve this pseudonym together. Even if
a user creates multiple accounts, the sharing of files between these accounts can link them together.

Metal-SHARE: In Metal, users share files via anonyms, each of which is a secret identity exclusively shared
between a pair of users. Different from traditional pseudonyms, a user’s many anonyms are unlinkable to
one another, so they will not reveal a user’s identity even when put together. Metal’s anonyms also permit
one-sided anonymity; e.g., an anonymous whistleblower can send a file to a specific journalist.

We call this scheme Metal-SHARE. This scheme is efficient: even if a user creates millions of anonyms, the
user’s effort to receive a new file does not increase with the number of anonyms—Metal’s client accumulates
all file capabilities shared with a user even when they are under different anonyms.

When designing Metal with these strong privacy guarantees in mind, a number of other challenges popped
up. For example, some naive solutions enable the servers to see how many files a user has received. Padding to
the maximum number of files for each user is very expensive. Instead, Metal instantiates capability broadcast
(Section 6.2) on the servers, which hides the per-user numbers of received files.

We describe Metal’s security guarantees (Section 2.3) and provide security proof sketches in the paper.



2 Overview
We now describe Metal’s system architecture, threat model, and security guarantees.

2.1 System architecture

Figure 2 shows Metal’s system architecture, which consists of two servers and many users:

e The two servers run a secure two-party computation (S2PC) procedure (green part in Figure 2). This
procedure is a reactive S2PC protocol: it continuously receives input, updates its internal state, and produces
output.

o Each user runs a Metal client on the user’s device. The user invokes the client’s user-facing API functions
(shown in Table 2) and receives results from the Metal client.

o The Metal client sends requests to the servers. The servers convert the requests to inputs to the S2PC
procedure and run the S2PC. The servers then send the output from the S2PC procedure to the client (on
the right of Figure 2).

Components. Metal consists of three components: Metal-AC for access control, Metal-ORAM for file
access, and Metal-SHARE for capability sharing.

As Figure 2 shows, the client’s request arrives at the first component, Metal-AC, which checks whether
the user has the required permission. If so, the request is dispatched to Metal-ORAM for accessing a file or to
Metal-SHARE for sharing.

API functions. The Metal client provides the user with some API functions (shown in Table 2). The client
translates user API calls to requests to the servers, processes the servers’ responses, and returns the results to
the user. In addition, the client stores and manages the user’s secret keys and capabilities in Metal.

Syntax of user-facing API functions Description

CreateAccount() — U, {Fu,1, Fu,2, ..., Fu,eq. A user creates a new account U and creates ffie empty files on the
servers (Section 4).

ReadFile(U, F') — fileContent A user with account U reads the file identified by F' from the servers
(Section 5.3).

WriteFile(U, F, newFileContent) A user with account U writes to the file identified by F' on the servers
(Section 5.3).

NewAnonym(U) — Ay, A user with account U generates a new anonym Ay ; with anonym
index 7 (Section 6.1).

SendCapability(V, Fv, Au,;, permission) Another user with account V" and file Fy sends a capability to access

Fyv (permission is read, write, or read+write) to the user who owns
anonym Ay,; (Section 6).

ReceiveCapability(U) — (Fv, Auv,;, permission) A user with account U receives a capability to file Fy, from another
user V, sent through U’s anonym Ay,; (Section 6).

Table 2: Metal client’s user-facing API functions.

We now provide an example about how two users Alice and Bob use Metal’s API to store and share
files. First, Alice and Bob each create an account using the Create Account function. Alice can then invoke
ReadFile or WriteFile to read or write her files. Now, suppose that she wants to share a file with Bob.

To receive the file from Alice, Bob uses NewAnonym to generate a new anonym Ag,p, and sends it to
Alice via some out-of-band communication (as discussed in Section 2.2). After Alice receives this anonym,



she grants Bob read access to one of her files by calling the SendCapability function, which produces such a
capability and sends it to Bob.

Bob then uses the ReceiveCapability function to receive the capability for this file from the servers, in
which Bob knows the file is sent through Ag,p. Since Bob can have many anonyms and Bob only gives Agop
to Alice, Bob knows that the file is from Alice, assuming that her client is not compromised.

2.2 Threat model

Metal uses the following threat model: the attacker can compromise any set of users in a malicious way and
one of the two servers in a semi-honest way, while the other server is not compromised. We assume that each
user establishes secure connections with each server (such as TLS).

Metal makes two assumptions on communication:

e Anonymity network. Achieving anonymity requires users to hide their IP addresses. Metal assumes that
each user uses an anonymity tool to contact the servers. Many such tools exist, providing varying degrees
of anonymity, such as Tor [DMS04], secure messaging [CBM15; HLZZ15; AS16; TGL+17; KCDF17;
PHE+17; ACLS18; KLD20], and a trusted VPN proxy.

e QOut-of-band communication. Before sharing a file, a user must first know the recipient’s identity (an
anonym in Metal); otherwise, the user does not even know who should receive the file. Exchanging the
anonym requires some out-of-band communication between the two users, which is similar to a Bitcoin
user’s telling another user its wallet address. The users can meet in person or use secure messaging. Metal
strives to minimize the use of such out-of-band communication: every two users only need to use this
channel to exchange their Metal anonyms once, and the subsequent file-sharing activities will be performed
within Metal.

2.3 Security guarantees

We now describe Metal’s security guarantees informally. We consider a set of malicious users MalUsers who
collude with one another and with one of the servers, and consider an honest user U who can access file F'.
The malicious users can interact with the honest users, including sharing files with them. For file access,
Metal provides the following guarantees:

(a) Anonymity: Neither the servers nor anyone in MalUsers can distinguish the honest user U from other
honest users.

(b) File secrecy and integrity: If user U has never granted anyone in MalUsers read or write access to F',
MalUsers learn nothing about £ or cannot modify F, respectively.

(c) Read obliviousness: Neither MalUsers nor the servers know which file was read by user U, even if
MalUsers have read/write capability to all files. That is, MalUsers cannot distinguish a read operation
from a completely different read, by another honest user, to another file.

(d) Write obliviousness: If U never gave anyone in MalUsers the read capability to F', neither the servers
nor anyone in MalUsers realizes that file F' has changed. If someone in MalUsers has read capability,
they legitimately learn that the file is changed, but they do not learn who changed it if more than one
honest user has write permission to F'.

(e) Read/write indistinguishability: Neither the servers nor anyone in MalUsers knows whether an honest
user’s file access request is read or write, if none of MalUsers has read capability to that accessed file.



For file sharing, consider another user V' who wants to share file ' with U, and U owns two anonyms Ay ;
and Ay ; where i # j.

(f) Capability sharing secrecy: If user V' sends a file F’s capability to U via Ag;;, Metal does not reveal
to the servers or other users (besides U and V') the following: U, V, F, Ay ;, or that U and V have
access to F'.

(2) Anonym unlinkability: Neither servers nor anyone in MalUsers can link Ay ; and Ay ; unless U reveals
this linkage to compromised users.

(h) Anonym authenticity: If user U gives anonym Ay;; to someone in MalUsers, users in MalUsers cannot
send files to the other anonym Ay ; that MalUsers do not know.

Formalism and proofs roadmap. Metal achieves the guarantees above based on common cryptographic
assumptions. In Appendix A, we provide a simulation-based security definition and proof for Metal-ORAM.
In Section 4 and Section 6.1, we provide proof sketches for Metal-AC and Metal-SHARE; understanding
security for them is easier than for Metal-ORAM, so we delegate their proofs to an extended paper.

Non-guarantees. Metal does not hide when the user calls the API (timing) or which function the user is
calling (e.g., sharing a permission vs. reading a file). These two leakages can be hidden by padding in time
and in computation, which are easy to add to Metal (at an extra cost), as we discuss in Section 8. Metal does
not protect against denial-of-service attacks by a server, and Metal does not protect against either server being
malicious (beyond semi-honest), which we leave to future work.

10



3 The layout of S2PC in Metal

In this section we present the layout of the secure two-party computation (S2PC) that the two servers run in
Metal. Metal’s S2PC takes a specific form, within which we will plug in Metal’s techniques. To instantiate
the secure computation, Metal uses Yao’s protocol [ Yao86; GMW87; BMR90; KS08; BHKR13; ZRE15] in a
reactive manner.

ORAM share] Server 1
1 1
User RO | - AL O;() User

L1

S2PC by [0,
EL178 ! | |~ |
| R vao’s Protocol (0]

Client Client
@ R ‘ >
R 0®

ORAM share|  Qeapver 2

Figure 3: Metal’s two servers run Yao’s protocol to take user input and access ORAM storage.

Client sending a request. As Figure 3 illustrates, a client sends its request R (e.g., which file to access) to
the two servers secret-shared (e.g., using XOR secret-sharing) into R(") and R(?). In this way, no server sees
the request in the clear. Server i will receive R(V). Inside S2PC, the servers combine the two shares R(1) and
R® to create R.

Metal’s servers also secret-share the ORAM store such that neither server knows the data stored in the
ORAM. But, if they want to access some parts of the ORAM, they take their local shares of those parts as
input and reconstruct those parts inside the S2PC. The two servers then update the ORAM store by outputting
the updated shares from the S2PC.

Yao’s protocol. Our S2PC is based on Yao’s garbled circuits protocol. We present Yao’s protocol as a
black box here and in the form relevant to our S2PC. Yao’s protocol enables two parties (here, the two Metal
servers) to jointly compute a function over their own secret inputs without leaking the secret inputs to each
other. Concretely, suppose that Server 1 has secret input 2(1) and Server 2 has secret input (2, they can
compute a function f(z(1), 22 — (3, 4(2)) such that Server i learns only its own input z(?) and function
output ), and nothing else about the other party’s input or function output. To supply a random tape for
the function, each server independently samples a share of the random tape, takes it as input to S2PC, and
reconstructs the random tape by XORing the two shares inside the S2PC. By doing so, one of the two servers
does not know the random tape.

In Metal, 2 will consist of R(i), the ORAM share stored by Server 7, and some other state. The function
f processes the user’s request by checking the capability and running ORAM client operations or file-sharing
operations. The result of f is y, which consists of the response O to the client (as Figure 3 shows), an update
to the ORAM, and other changes to the servers’ state. The S2PC outputs O to the client in secret shares O(!)
and 0(2), where each server has one share.

Client receiving a response. The servers send the two shares to the client, who can put them together and
obtain output O.

Metal’s S2PC uses Yao’s protocol in a stateful and reactive manner like some works in S2PC [GKK+12;

11



LO13; WCSI15; NR16; ZWR+16; DS17]. That is, it does not compute just one function f within S2PC, but
instead it runs a sequence of functions { f1, fo, ...} continuously—this sequence of functions can keep state,
take new inputs, reveal some outputs midway, and continue processing in this manner for many steps. This
reactive property captures the fact that the servers offer a service, not only a one-time computation. The
stateful nature is needed to maintain IndexORAM state.

12



4 Metal-AC: Anonymous access control

Metal’s first component, Metal-AC, checks whether the user has permission to complete the request. Since it
is the simplest of our three components, we present it first as a warm-up.

One natural design for Metal-AC is to store access control lists (ACLs) on the servers. However, material-
izing ACLs is expensive—to access ACLs obliviously, each file’s ACL must first be padded to the size linear
to the number of users, then be accessed by ORAM.

Instead, in Metal, each client on a user’s machine stores the user’s capabilities, which represent a user’s
permission to read or write a file and are reminiscent of operating systems’ capabilities [DH66]. A user needs
to present a capability (in secret shares) to the servers before accessing or sharing a file.

Metal uses authenticated encryption, which provides confidentiality and unforgeability, to implement
capabilities. The two servers verify a capability by jointly decrypting the capability inside the S2PC. In Metal,
a capability is a ciphertext of the access description under a key that is secret-shared between the two servers.
For example, a capability to read and write file F' has a description “File IDp: R+W””:

C};‘*W := AuthEnc(capability_key, “File IDp: R+W”) .

Each server stores a share of the capability key, which is used for all users’ capabilities. The servers grant and
verify the capabilities inside the S2PC through secret shares, and thus one server cannot see the capabilities
or the capability key.

Granting a capability. The servers, in S2PC, grant a capability to a user in the following two situations:

— When the user creates an account (by calling the CreateAccount function), the servers, in S2PC, reserve
a continuous range of /5. file identifiers for this user, who obtains a multi-file capability for reading and
writing any of these 5. files. Later, the user operates on these /. files. The user can use this capability to
share the files.

— When the user receives a capability of a file that another user shares with this user (by calling the
ReceiveCapability function), the user obtains a capability for this file, which is generated by the servers
during the other user’s invocation of SendCapability (described in Section 6). The user can use this
capability to access the file but not to share the file.

To grant a capability, the S2PC between the servers decides an access description (e.g., file F' with permission
Pr) and proceeds as follows: the S2PC reconstructs the capability key, computes the capability, and returns
the capability in the form of secret shares to the user’s client, as described in Figure 4.

| Server 1 @

el l o[, - __

L ! '

P! O e

| Generate :& _|:| - Verify :_@
_____ 70(2) Chent: Client 0(25' o

Server 2 Server 2

Server 1

L

Grant a capability 1 Verify a capability

Figure 4: Metal-AC grants or verifies a capability C' using the capability key, which is secret-shared between
the two Metal servers.

13



Verifying a capability. Since users can be malicious, each user needs to present a capability to the servers
before accessing some file. To start with, the user’s client splits the capability into two secret shares and
provides one to each server. Since each time the client uses fresh randomness for secret sharing, the servers
do not know if the same capability is used again. Then, as Figure 4 shows, the S2PC uses the capability key
to decrypt the capability.

If the access description is valid for the operation the user wants to perform, Metal-AC invokes Metal-
ORAM or Metal-SHARE as in Figure 2 and provides the access description to the corresponding component
inside S2PC.

Security proof sketch. Metal-AC uses authenticated encryption to hide the information inside the capability
from the user, which avoids the leakage of the file owner due to file identifiers’ being reserved in owner-
specific continuous ranges during the account creation, and to prevent a malicious user from forging a
capability. Metal-AC uses S2PC to distribute the access to the capability key, so that one server cannot grant
a capability or see what is inside the capability. By using secret shares to exchange the capability between the
client and the S2PC, anyone of the servers does not even see the capability.

In relation to the security guarantees we described in Section 2.3, Metal-AC ensures anonymity since
none of the two servers can see what the capability is, and the user does not have the capability key; later
in Metal-ORAM (Section 5.3), we can see that Metal-AC helps us achieve file secrecy and file integrity by
allowing only those users with the valid capability to access that file. Metal-AC does not leak the capability
as well as the access description inside the capability, which helps achieve obliviousness and read/write
indistinguishability.

14



5 Metal-ORAM: Efficient two-server multi-user ORAM for file storage

In this section we describe how the two Metal servers store and obliviously access user files using Metal-
ORAM. We first provide some background about ORAM as well as the construction of Primitive Metal and
its limitation. Then, we describe Metal’s synchronized ORAM trees as well as the tracking and permutation
generation techniques, which overcome this limitation. We prove the security of Metal-ORAM in Appendix A.

5.1 Background on ORAM

Metal-ORAM wants to use ORAM for this scenario: the two servers running a S2PC procedure store an
array of files D in the S2PC state, and they want to access the z-th file D[z] inside the S2PC, without any
server knowing the secret location x. ORAM for S2PC [GKK+12; LO13; WCS15; ZWR+16; DS17] is a

cryptographic primitive that enables such oblivious data access in S2PC.

We identified Circuit ORAM [WCS15] to be appropriate for our setting: the ORAM client has competitive
performance, which is polylogarithmic to the number of files even in the worst case, while other schemes
such as SqrtORAM [ZWR+16] and Floram [DS17] have a linear worst-case complexity. Circuit ORAM has
the benefit that the user waiting time remains acceptable even in the worst case.

We now provide necessary background about Circuit ORAM for the reader to understand how Metal uses
it. Circuit ORAM stores such a file array D in a binary tree. To store N files, Circuit ORAM uses a tree with
height h = [log, N, as Figure 5 shows. Each tree node can store three fixed-size blocks. In addition to tree
nodes, a stash temporarily stores some blocks that have not been added to the tree, up to the stash size bound.

synchronized
The format of a block The format of a block The format of a block
stash E M dex|P051t10n|Dala| M [Encrypted Data] ypted Data
A
oo —> ,
leat
(the full binary tree, in Yao's protocol) (IndexORAM inside Yao's protocol) (DataORAM outside Yao's protocol)

Figure 5: Metal-ORAM moves data out of Yao’s protocol (Section 5.3). The data is too large to be processed
efficiently in Yao’s protocol.

Each block either is empty or stores the data of a file D[x]. Such a block consists of the index x, the data
D[z], and its position—the root-to-leaf tree path where this block resides. If a block is currently buffered in
the stash, the block stores which tree path the block will be evicted onto.

To locate a block in this tree, Circuit ORAM keeps a position map, which maps each index z €&
{1,2, ..., N} to the path on which the block resides if the block is not buffered in the stash. The position of
DIx] in the position map should match the position field in the block that contains D|x].

Reading. To read a file, the two servers in the S2PC first look up the file’s position in the position map,
then look up the block by a linear search of both the stash and the path corresponding to this position. The
two servers can then read the data in the block in S2PC. After reading the file, the two servers assign a new
random position to this block, put the block into the stash, and update the position map accordingly.

15



Writing. To write a file, the two servers follow the similar steps, but when they put the block back into the
stash, the two servers replace the data with the new data from the user. Note that accesses to the position map
also need to be oblivious. Metal uses the standard recursive technique [SCSL11; SSS12; SDS+13] to store
the position map in ORAM.

Stash eviction. After each read and write, Circuit ORAM needs to perform a stash eviction, in which some
blocks buffered in the stash are evicted into the tree to ensure that the stash does not overflow. For each
eviction, Circuit ORAM chooses two paths of the tree [GGH+13] and rearranges the blocks in the stash and
the blocks on these two paths. This rearrangement is the heaviest step and involves a lot of technical details
less relevant to describe here but included in [WCS15].

5.2 Primitive Metal

We now have enough background to describe Metal’s primitive scheme, which serves as the foundation for
our subsequent improvements. Recall that Metal’s primitive scheme already provides the desired security
guarantees, though it is slow. First, Circuit ORAM immediately gives us a way to achieve read/write
obliviousness and read/write indistinguishability. Recall that the two servers now can run a function f that
requests file data D[x] as input from ORAM; none of the servers knows the index z or the data D[z|. The
two servers also do not know whether the function f reads or writes the data because we pad the computation
in function f; this padding overhead is small because reading and writing are similar in ORAM. Second, we
obtain anonymity and file secrecy/integrity with the help of Metal-AC (Section 4).

We now outline this primitive scheme. In this scheme, all users’ files are arranged in a file array D stored
in the ORAM inside the S2PC and are padded to have the same size (e.g., 64 KB). A user who wants to read
or write a file D[z] first presents a capability to pass the check in Metal-AC. If the user passes the capability
check, the two servers access the ORAM on the user’s behalf. The two servers return the file data back to the
user via secret shares, as described in Section 3. Note that if the user writes to a file rather than reads, the user
receives dummy data in the response, as a result of padding.

Yet, Primitive Metal is slow: our experiments (Section 7.7) show that it takes > 75 s to read a file in a
store of 220 64 KB files. In addition, storing data in S2PC is quite expensive because every bit in S2PC is
represented as a pair of garbled circuit labels, resulting in a storage overhead of at least 256 .

The bottleneck of Primitive Metal. The primitive scheme is slow due to the data-intensive operations inside
Yao’s protocol. Recall that Yao’s protocol builds on garbled circuits; processing a large amount of data
leads to many garbled gates being generated, transmitted, and evaluated, resulting in heavy computation and
communication. In particular, the primitive scheme is (1) reading all the blocks in the stash and on an ORAM
path and (2) rearranging all the blocks in the stash and on two ORAM paths during stash eviction.

Metal-ORAM avoids this bottleneck by moving all the file data out of Yao’s protocol and processing such
data with more efficient, customized protocols.

5.3 Moving data out of Yao’s protocol: Metal’s synchronized inside-outside ORAM trees

To avoid the primitive’s limitation, Metal-ORAM splits the ORAM binary tree into two synchronized ORAM
stores, IndexORAM and DataORAM, as illustrated in Figure 5. IndexORAM only contains small metadata
with no file data, which is the only data structure that will be accessed inside Yao’s protocol. DataORAM
stores the file data outside Yao’s protocol, not accessed by Yao’s protocol.

16



IndexORAM. We use the recursive technique [SCSL11; SSS12; SDS+13] to store the position map inside
recursively larger ORAM trees; hence, IndexORAM is a set of trees of increasing sizes. This set of trees
enables looking up the position in the last tree for a given file x. However, to simplify matters for clarity,
we illustrate only the last tree in Figure 5, and we will refer to a single IndexORAM tree in the rest of the
protocol description, with the understanding that Metal-ORAM is handling the logistics of the other smaller
trees as well.

DataORAM. DataORAM—as Figure 5 shows—resembles IndexORAM’s last tree but only stores file data.
DataORAM stores the data in the form of ElGamal ciphertexts [EIG84; Ber06; Ham15; Ristretto] under a
global public key; each server has a share of the corresponding private key. Using the properties of ElGamal,
the two servers can rerandomize the ciphertexts without knowing the private keys and can work together
to decrypt ciphertexts as needed, which we will leverage in the construction of our protocols. In Metal, the
DataORAM tree is stored on Server 1’s disk.

Synchronization. Though we split the tree into two structures, we ensure that these two trees are synchro-
nized in that the data of a file is at the same location in DataORAM as its index/position is in IndexORAM.

We now describe how to read and write a file with these synchronized inside-outside ORAM trees.

Reading. To read file D[z], the two servers first find the file index in IndexORAM and retrieve the position
p of the file using Primitive Metal’s approach. After doing so, the S2PC procedure determines which block on
the path stores the file, i.e., the i-th block on the path p is the block for D[z]. Due to the synchrony between
IndexORAM and DataORAM, as Figure 5 shows, the encrypted data of D[z] can be found also in the i-th
block of the same path p in DataORAM.

However, we cannot simply have the two servers fetch the i-th block in DataORAM: while the servers
can see the path p due to ORAM’s guarantees, they should not see 7. The location ¢ is related to the block
history [RAC16], and revealing i to the servers breaks obliviousness. Therefore, Metal-ORAM combines
threshold decryption and our secret-shared doubly oblivious transfer protocol (Section 5.4) in a way that the
user receives the decryption of the i-th block on path p in DataORAM, i.e., the file data D[z], but neither
server learns i or D[z].

After reading a file, the two servers need to perform the ORAM management routines: they put the index
block into the stash of IndexORAM and put the data block into the stash of DataORAM. These blocks will
later be evicted into the tree. We will describe the details of the reading protocol in Section 5.4.

Writing. To write a file D|x], the two servers run the protocol in a similar manner, but we want to ensure
that (1) the user with write permission does not see the file contents (since such a user might not have the
read permission) and (2) the user-provided data is inserted into DataORAM.

Thus, the writing protocol makes the following changes: First, instead of reading the i-th block in the
array, the protocol reads a dummy block, which contains empty file data; therefore, a user with only write
capability does not see any file data in this operation. Second, when the two servers insert a data block
back into the DataORAM’s stash, the two servers instead write the user-provided block into the stash. The
user-provided block is created in the following manner: the user secret-shares the file contents between the
servers, each server encrypts one share, and the servers combine the two encrypted shares.

To make reading and writing indistinguishable, we merge their protocols as one protocol such that
the servers are running the same protocol for reading or writing, with little overhead, as we will show in
Section 5.4 and Section 5.5. This merged protocol does not reveal whether it is reading or writing to one
of the servers, and the protocol still preserves file secrecy and integrity: a user with read capability cannot

17



modify the file, and a user with write capability does not see the file data.

Stash eviction. The last aspect we need to take care of is stash eviction, which is needed after every read
or write. The stash eviction rearranges some blocks in the tree. The challenge is that if Metal-ORAM only
evicts the stash in IndexORAM, the synchrony between IndexORAM and DataORAM breaks.

Metal-ORAM remedies the synchrony by “somehow” capturing the rearrangement that happens to
IndexORAM and also applying it to DataORAM. We cannot simply reveal the rearrangement to the servers
since doing so breaks the ORAM obliviousness. Instead, Metal-ORAM provides a technique for secure
tracking and permutation generation, described in Section 5.6, to convert Circuit ORAM’s rearrangement into
a permutation. Then, Metal-ORAM employs a distributed permutation protocol to apply the rearrangement to
DataORAM, such that the two ORAM trees are re-synchronized.

5.4 Fetching blocks in DataORAM

We now describe how to fetch the data block in DataORAM without revealing the location 7 to the two servers.
Circuit ORAM allows the two servers to learn which path the block is assigned to, so the two servers’ task is
to fetch the data block from among the |stash| blocks in the stash and the (3 x h) blocks on the path. Let
m be the array of N = (|stash| + 3 x h) blocks that these blocks form. The S2PC knows the location ; it
secret-shares ¢ between the two servers, such that Server 1 knows i(l), and Server 2 knows (). Below, we
describe our secret-shared doubly oblivious transfer (SS-DOT) protocol, at the end of which Server 2 receives
the i-th (encrypted) block in the array, without any server learning what i is. The fetched block is encrypted
under ElGamal, and the decryption key is secret-shared between the two servers, so the two servers can run
an existing threshold decryption protocol [BHKP16] and return the file contents to the user in a secret-shared
form.

We then add read/write indistinguishability to this fetching operation. Recall that if a user only has write
capability, the user should not see the file’s data. To ensure such file secrecy as well as to make read/write
indistinguishable, the two servers add a dummy block that does not contain any file data at the end of the
array. The two servers now search from an array of (|stash| + 3 x h 4 1) blocks. If the user writes to a file
Dix], the S2PC secret-shares ¢ = (|stash| + 3 x h + 1) instead, such that the two servers fetch the dummy
block, and the user sees only dummy data. This dummy block is unused when the user is reading a file; it
merely stays in the array for padding.

Secret-shared doubly oblivious transfer. To fetch the ¢-th block, Metal uses the following customized
protocol. Recall that each server has a share of 4: i) and i(?), respectively. Server 1 has an array of file
data blocks m = {mj,ma, ...,my}. In our protocol, N = (|stash| + 3 x h + 1), and Server 1 needs
to rerandomize the blocks read from DataORAM, using the functionality of ElGamal encryption, before
executing the SS-DOT protocol.! This protocol has Server 2 obtain the i-th block without either server
learning .

Oblivious transfer (OT) [Rab81; EGL85] does not suffice for our task because in OT one server knows
the index. Doubly oblivious transfer [MRCK19] does not suffice either because it does not support two-party
secret sharing and focuses on one-out-of-two transfer instead of one-out-of-/V.

There are many ways to implement this simple functionality in S2PC, so we do not claim much novelty
for this procedure. Yet what is important for us is to find a way that is efficient for our setting because this

'A trick to implement this rerandomization efficiently is to observe that Server 2 only sees one of these N blocks, and thus one
can rerandomize these /N blocks using the same randomness, which saves a lot of computation.

18



operation runs for every file access. We develop a simple and efficient procedure as follows:

1. The two servers S and Sy, inside S2PC, reconstruct 4 from its shares () and i(?) and generate N keys
{k1,...,kn} such that S receives as output all these keys, and Ss receives only k;.

2. Foreach j € {1,..., N}, S; uses k; to symmetrically encrypt 0 and m; to obtain ciphertexts z; and c;,
respectively, with authenticated encryption. S; shuffles all the (z;, ¢;) pairs and sends them to Ss.

3. S5 uses k; to decrypt the first ciphertext of each pair: only one, say z;, will decrypt to 0. It then decrypts
the corresponding c;, obtaining m;. Note that j is independent of 7 because of Server 1’s shuffle.

This procedure has the advantages that the computation in S2PC is independent of the length of m; and
that the messages m; are symmetrically encrypted, which has small ciphertext expansion and efficient
encryption/decryption.

Security proof sketch. The security of SS-DOT, i.e., obliviousness for both parties, is a direct result of the
security of S2PC and authenticated encryption.

5.5 Putting a block into DataORAM’s stash

The next step is to put a block into the DataORAM’s stash, which will be later evicted to the tree (Section 5.6).
Recall that if the user is reading a file, Metal-ORAM should put back the file’s current data block, and if the
user is writing to a file, Metal-ORAM should insert the user-provided data block. This distinction is crucial
for file integrity because we want to avoid a malicious user who only has the read capability to tamper with
the file by changing the block.

Metal-ORAM implements this operation by a permutation. Suppose that we place in an array the
following: the blocks in the stash, the block read during the fetching (Section 5.4), and the user-provided
block in an array. The array therefore has (|stash| + 2) blocks. Suppose that the S2PC finds that the &-th block
of the stash is vacant. If the user is reading the file, S2PC can generate a permutation o,e,q that exchanges the
k-th block with the (|stash| + 1)-th block. If the user is writing the file, S2PC generates oyite that exchanges
the k-th block with the (|stash| 4 2)-th block instead. By doing so, the correct block is inserted into the stash
(i.e., the first |stash| blocks of the permuted array). The servers then discard the last two blocks.

The challenge is to obliviously perform this permutation: neither server should learn k because leaking
k breaks the ORAM obliviousness, and neither server should know which permutation, o eadq OF Oyrite, 1S
performed because we want read/write indistinguishability.

Metal-ORAM distributes this permutation in a way that hides the permutation. Inside the S2PC, Metal-
ORAM secret-shares the permutation into two permutations o(!) and ¢(?) between the two servers where the
composition of o) and 0@ equals 0read OF Owrite- The two servers rerandomize the blocks and apply the
permutations in turn; the result is the same as when applying oyead OF Owrite directly. Formally,

1. The two servers S; and Ss, inside S2PC, sample a random permutation o") and compute ¢ = ¢ o
(e)~1 where o denotes composition of permutations and () ~! denotes the inversion such that (¢) ' oo
is the identity permutation.

2. S; rerandomizes the ciphertexts of the (|stash| + 2) blocks above, applies the permutation o), and sends
the permuted blocks to Ss.

3. S receives the blocks from Sy, rerandomizes the ciphertexts of the blocks, applies the permutation (2,
and sends them back to S.

4. & receives the blocks from S, and stores the blocks in the corresponding locations in DataORAM.

This method has been used in a similar manner in SqrtORAM [ZWR+16] to obliviously reorganize the data

19



blocks.

5.6 Resynchronizing after eviction by tracking and permutation generation

After each access to the ORAM, Metal needs to evict the stash. We can run the Circuit ORAM’s stash
eviction algorithm inside S2PC to update IndexORAM, which rearranges the index blocks, but it breaks the
synchrony with DataORAM: a file’s index block in IndexORAM is now at a new location, but the data block
in DataORAM is still at the previous location.

Metal-ORAM’s solution is to extract how blocks in IndexORAM move during the stash eviction and
apply the same movement to DataORAM. The challenge is to implement this efficiently. A prior scheme,
Onion ORAM [DDF+16], uses private information retrieval for this purpose, but it requires a large number of
data block operations that is quadratic to the number of blocks being moved, which is heavy.

Metal-ORAM instead develops an algorithm to frack the changes to IndexORAM inside the S2PC and
to convert them into a permutation. Then, Metal-ORAM uses the distributed permutation in Section 5.5 to
rearrange the blocks in DataORAM.?

We demonstrate the tracking and permutation generation process in Figure 6 and provide the algorithm in
Figure 7. We now explain the algorithm at a high level.

1 1 1 1

2 2 2 2

3 3 3 3

4 4

5. s

— —

7 4 1313 —>» 7 8 13 13

8 8 14 _14 8 7 14 14

9 7 1575 9 10 1575

10 10 16 16 10 16 16
17 17 17 17
18 18 18 18
19 15 19 15

Add trackers to blocks in IndexORAM Run Circuit ORAM’s stash eviction Extract the tracker changes Massage to a permutation

Figure 6: Metal’s tracking and permutation generation (Section 5.6).

Tracking. Before the stash eviction, as Figure 6 shows, Metal-ORAM attaches some “trackers” to the index
blocks inside S2PC. Next, it performs the stash eviction per the ORAM algorithm and then observes how
the trackers moved. In Circuit ORAM’s stash eviction, some trackers disappear because the blocks that they
were attached to were deleted (indicated by ‘---’ in Figure 6). Thus, the list of trackers directly pulled from
IndexORAM after the eviction is incomplete (i.e., with empty slots), as shown in Figure 6’s red area. We give
the details of tracking in Figure 7.

Permutation generation. These missing trackers prevent us from creating a permutation directly. Hence,
Metal-ORAM brings back those numbers to the empty slots, as Figure 6’s green area highlights. The resultant
list of trackers becomes a permutation subsuming the changes in IndexORAM. Metal-ORAM feeds this
permutation into the distributed permutation described in Section 5.5 to apply the permutation to DataORAM.
Thus, the IndexORAM and DataORAM become resynchronized, as desired, shown in Figure 7.

We have described how stash eviction works in our synchronized inside-outside ORAM trees. In our
implementation, Metal-ORAM combines the permutation in Section 5.5 with the resynchronizing permutation

The permutation does not explicitly remove the previous version’s data block from DataORAM: since the index of the previous
version has been deleted in IndexORAM, that data block becomes inaccessible (treated as dummy) in our construction. The previous
version’s data block may be indirectly discarded later, as a result of a permutation process shown in Section 5.5.

20



Before Circuit ORAM'’s stash eviction:

e Recall that Circuit ORAM evicts blocks onto two paths. The algorithm appends a number from 1 to
(stash| + 6 x h — 3) (called trackers) to each block on the two paths in IndexORAM inside S2PC
using the following order, as Figure 6 shows:

1. the blocks on the first path, from stash to leaf
2. the unnumbered blocks on the second path, from stash to leaf
After Circuit ORAM’s stash eviction:
e The algorithm “peels off” the tracker numbers from the two paths in order and constructs an array.

Some numbers will be missing (indicated by “---” in Figure 6).

e The algorithm uses linear scanning to find numbers in {1, 2, ..., |[stash| + 6 x h — 3} that have not
appeared in the array (e.g., 11 and 19 as in Figure 6).

e The algorithm uses linear scanning to find the “---” slots in the array and fills into the slots the unused

numbers. (The order is unimportant, but our algorithm starts with the smaller ones.)

Figure 7: Algorithms for tracking and permutation generation.

inside the S2PC, so every file access only uses one distributed permutation.

21



6 Metal-SHARE: Unlinkable capability sharing

We have achieved oblivious file storage, but we have not yet shown how a user shares files with other users. In
this section we describe Metal-SHARE, which contributes the functionality of file sharing without introducing
metadata leakage. We first describe two central notions of Metal-SHARE, anonyms and capability broadcast
list, and then describe the sharing protocol.

Anonyms. Anonyms are anonymous identities that a user can leverage in file sharing. An anonym is similar
to an email address for receiving emails or a Bitcoin wallet address for receiving Bitcoin; but, our usage
of anonyms has the additional benefit that it hides the anonym owner’s identity such that two anonyms of
the same user cannot be linked to each other. Every user in Metal can locally create many anonyms without
interactions with the servers. A user then gives his/her anonyms to others in order to receive file capabilities
from them. For example, a user U who wants to receive (many) files from user V' in the future can provide V
with one of the anonyms, Ay ; (where ¢ is the anonym index), as Figure 8 shows.

__________________ &U@l
/ /y
&0) generate 4 e L Ayi—>IDy,i Cys—>Cus CUF—>Enc(BKU, '1,||CUF)§\ f decrypt o
> LU d ' > Tdecrypt Tdecrypt/encrypt encrypt >, Cur
’ C ’s broadcast ke
user’s anonym key V,F M user’s broa y
. [ P o capabily key P brondeas broadeast .

Receiver U Owner V 7 masterkey & PRI 7 master ke Y / Receiver U

Server 2

Figure 8: Sending and receiving a file’s capability in Metal-SHARE.

Capability broadcast. When a user V' sends a capability to U, V puts the capability on the servers so that
the receiver U can later retrieve it from the servers. This allows U and V' to share files even if they will never
be online at the same time.

To avoid leaking metadata through network patterns of a user, Metal-SHARE has Server 1 publish a list
of encrypted capabilities so that each user can download this list. A user can only decrypt those ciphertexts
destined to the user. This is similar to a blockchain where all nodes download the blocks, but only some of
the blocks contain transactions relevant to the node. In contrast to a blockchain, though, in Metal-SHARE,
the blocks are much smaller than in a regular blockchain, and users only need to download and organize the
capabilities periodically.

To implement this broadcast, Server 1 keeps a capability broadcast list that contains the encrypted
capabilities for users to download. The two servers will encrypt, inside S2PC, each capability under the
recipient’s broadcast key, which the user receives during the account creation from the two servers’ S2PC.
When a user’s client wants to download the list, Server 1 shuffles the capabilities in the list before sending
them to the client.

After user V' obtains the capability, V' can—in the future—use this capability to access the file, without
interacting with U. If U wants to revoke the permission, U must discard the old file, create a new file, and
share the new file with other users who are supposed to retain the permission.

To prevent the broadcast list from growing monotonically, Metal-SHARE has each encrypted capability
in the list to be deleted after a fixed interval (e.g., three days).

Example. We now illustrate how to share a capability. Suppose that user V' owns file F' and wants to send
the read capability of file F' to another user U, as Figure 8 shows. The procedure is:

22



1. Get the receiver’s anonym. User V' obtains one of U’s anonyms from U, say A ;, as we discussed in
Section 2.2. This anonym can be used for all future file-sharing activities from V to U.

2. Send a capability. User V' who owns file I requests the servers to grant a capability for reading F' to the
anonym Ay ;. The servers check Vs capability C'y, , create a read capability Cp;  for user U, and encrypt
Cu,r together with 7 under U’s broadcast key, as Figure 8 shows. The ciphertext of Cy r is appended to
the capability broadcast list.

3. Receive a capability. User U’s client periodically downloads the new capability ciphertexts from Server 1’s
broadcast list and uses U’s broadcast key to decrypt each ciphertext. In this manner, it finds capabilities
that are destined to U, one of which will be capability Cy; r with the anonym index ¢ and the type of
permission. U can learn which anonym was used by the sender based on . If A;; was only provided to
V', U knows that this file is from V.

6.1 Unlinkable anonyms

We now focus on the left part of Figure 8 and discuss how the user U generates a new anonym Ag;, how the
sender V uses this anonym, and how the S2PC processes the anonym.

Generating the anonym. User U has an anonym key AKj that it received from the servers (via secret
shares) during account creation. Using this key, U can generate anonym Ay; for any anonym index <.
Informally, the anonym is an encryption of the user ID and the anonym index %.

Sending a capability to this anonym. Another user V' who owns file I receives the anonym Ay, as
Figure 8 shows. User V' has the capability C'y, » with full permission and wants to grant the read capability
to U. To do that, V' calls the server API with the anonym and V’s capability, asking the servers to create a
qualified capability (in this example, read-only) for U (request sent in secret shares as in Section 3).

Opening the anonym inside the two servers’ S2PC. The two servers secret-share the anonym master key
(AMK), which can decrypt everyone’s anonyms. Thus, the two servers can open the anonym inside S2PC, as
Figure 8 shows, and continue with the sharing protocol (Section 6.2).

Construction. Metal-SHARE implements anonyms using a special-purpose scheme that builds on Paillier
encryption [Pai99], additive secret sharing, and message authentication code (MAC). Our construction is in
Figure 9, and we now describe the intuition behind the construction to show the insights.

First, anonyms need to achieve anonym authenticity, as defined in Section 2.3. If user U gave anonym
Ay to V, V should not be able to create another anonym A under a different anonym index ¢’ # 1,
assuming that U has never leaked the anonym Ay ; to anyone in the set of colluding malicious users. Our
solution is to give user U an anonym key that is derived from the servers’ anonym master key, as the Setup
and UserKeyGen algorithms in Figure 9 show. U then needs to append a message authentication code over
the pair (1D, 7), as the AnonymGen algorithm shows, so that another malicious user cannot forge an anonym
for user U.

Second, anonyms must provide anonym unlinkability. Hence, we cannot expose D¢/, ¢, or the MAC
to another user because such information may deanonymize U. The natural solution is to use public-key
encryption to encrypt (IDys, i, mac) in such a way that it can only be recovered in the servers’ S2PC. For
efficiency, we must move the public-key operations out of S2PC: the two servers will do threshold decryption
outside S2PC, and inside S2PC they will merge the decryption results efficiently. There are a few public-key
encryption schemes that can make this merging step efficient: Paillier encryption [Pai99], Goldwasser-Micali
encryption [GMS82], and Brakerski-Gentry-Vaikuntanathan encryption with Z» slots [BGV12; SV10; SV14;

23



Anonym.Setup(1*):
Run by the servers during the setup to generate the Paillier
keys and the anonym master key.
e Forj € {1,2}, S; runs:
(skj, pk;) « Paillier.KeyGen(1*),
and publishes pk;.
e Forj € {1,2}, S; samples a secret share of anonym master
key AMK) < {0, 1}* and stores AMK 9.

Anonym.UserKeyGen(IDy, AMK®  AMK(®))
Run by the servers and user U (identified by IDy) during the
account creation to grant the anonym key AKy to user U.
e S; and S run a S2PC that takes IDy, AM K@ as input
(5 € {1,2}) and computes:
- AMK = AMK® @ AMK®).
- AKU = PRFAMK(|DU).
e S; and S use the protocol in Section 3 to share AK ¢ with

Anonym.AnonymRerand(Ay,;, pky, pky)
Run by the file owner and sender V' to rerandomize the re-
ceiver’s anonym Ay ,; before sending the anonym (in secret
shares) to the servers.
o Lets Ay = (¢V,¢®@).
e V rerandomizes the anonym:

- r<s{0,1,..., 2512},

L, « Paillier. AddPlaing, (¢, ) for j € {1,2}.

— Cnew
e Outputs the anonym A}i’?”d = (c,(éev, cr(,ia/)

Anonym.AnonymDecrypt(A{?fj"d, ski, ska)

Run by the servers upon receiving the (rerandomized) anonym
from the file owner V' to decrypt the anonym in preparation
for the capability broadcast.

e V sends Aﬁfjnd = (c,(é&,, cf,z&,) to the two servers.

e S;runs 9=

Paillier.Deca, (cih) (G € {1,2}).
e Sp and Ss run a S2PC that takes (s,(éav, AMK(j)) as input
(j € {1,2}), as follows:
Anonym.AnonymGen(IDy, i, AK vy, pky, pky) - AMK = AMK® ¢ AMK®,
Run by the receiver user U to create an anonym with index 3, — S2PC reconstructs s:
using the anonym key AK . * § = s,@v - s,(é\z,
e s:=IDy || ¢ | MACax, (IDy || ).
e U additively secret-shares s:
- sW 5{0,1,...,2lsI*rY,
- s =M 4
o ) PaiIIierAEncpkj(sm) forj € {1,2}.
e Outputs the anonym Ay; = (¢, ).

the user.
e The user stores the anonym key AK .

x Lets s be IDy || ¢ || mac.

- AKU = PRFAMK(|DU).

- If mac = MACak, (IDy || ©), valid = 1. Otherwise,
valid = 0.

— Stores valid, IDy, ¢ in the S2PC’s state for the use of
capability broadcast (Section 6.2).

Figure 9: Algorithms of the customized encryption that instantiates anonyms; the use of Paillier encryption
follows the common Paillier encryption syntax. Without loss of generality, we assume that the message size of
the Paillier encryption set up by security parameter \ is larger than |s| + 2p + 1 bits where p is the statistical
security parameter (80 bits in our implementation).

HEIib]. We choose Paillier because the size of a ciphertext is small. The AnonymGen and AnonymDecrypt
algorithms in Figure 9 show how Metal-SHARE combines additively homomorphic secret sharing and Paillier
encryption to instantiate anonyms.

Note that the sender V' also needs to refresh the ciphertext such that the two servers do not realize that the
refreshed ciphertext is from the same anonym during the threshold decryption. This step avoids the linkage
among multiple uses of A ;. The sender V' rerandomizes the encrypted secret shares using the additive
homomorphism in Paillier encryption, as AnonymRerand in Figure 9 shows.

In this rerandomization step, we adapt a trick from [BPTG15] to rerandomize the anonym. As follows, p
denotes the statistical security parameter. Before the rerandomization, the distribution of each of s(!), s(2)
is statistically indistinguishable from a uniform distribution in {0, 1, ..., 2lsl+e } as a result of secret sharing.
When we rerandomize the two shares by homomorphically adding r < {0, 1, ..., 2|5|+2p}, the distribution of
each of the new 5(1), 5 is now statistically indistinguishable from a uniform distribution in {0, 1, ..., 2lsl+2p }
and is statistically independent of the original value of s(!) or s(2), which gives us the following guarantee:
even if a user calls SendCapability many times using the same anonym, one of the two servers, knowing the

24



previous rerandomized anonyms, cannot link these anonyms together.

Security proof sketch. Anonym authenticity can be proved by reducing to the unforgeability of MAC.
Anonym unlinkability can be reduced to the security properties of Paillier encryption and additive secret
sharing. Since our secret sharing has a customized design, we discuss its security as follows:

o Sharing. Recall from Figure 9 that the secret s is shared into s(1) « {0, 1, ..., 21*/*7} and s = s(1) + 5
where p is the statistical security parameter. The distribution of each share is statistically indistinguishable
from a uniform distribution in {0, 1, ..., 2‘5‘“’}. Since the two shares are then encrypted under separate
Paillier keys, if an attacker only has one of the private keys, the attacker sees only one share, not s.

o Rerandomizing. As discussed above, the rerandomization algorithm homomorphically adds r to both
shares, and the distribution of each new share (inside the Paillier encryption) is statistically indistinguishable
from a uniform distribution in {0, 1, ..., 2lsl+2p } even with the knowledge of the original share. One of the
servers does not learn s or the shares in the original anonym.

6.2 Capability derivation and broadcast

We now focus on the right part of Figure 8. Recall that the two servers secret-share the capability key, as
described in Section 4. The two servers can decrypt the capability and recreate a capability with qualified
permission, such as read-only.

Then, the S2PC encrypts the new capability C r, along with the anonym index i, using the broadcast
master key in such a way that only user U’s broadcast key can decrypt it (the user receives this key during the
account creation). The ciphertext is revealed to Server 1, who then appends this ciphertext to the broadcast
list. User U downloads the new ciphertexts during the past intervals since U was last online. U uses U’s
broadcast key to try decrypting each ciphertext, among which U can find Cy, r, the anonym index ¢, and the
type of permission. With this new capability, U can read the file F' using Metal-ORAM.

Discussion on hiding the number of incoming files. The broadcast in Metal-SHARE has an overhead
linear to the number of file-sharing operations in the whole system, which is not ideal. The benefit of this
broadcast is that it hides the number of incoming files and avoids leaking users’ use patterns.

One alternative is to use private information retrieval (PIR) like Pung [AS16; ACLS18]. However, each
invocation to Pung can only retrieve a fixed number of data entries. If a user has comparably much more
files than other users, this user has to run Pung’s protocol multiple times, from which the attacker can still
learn this user’s use patterns. Another solution is to have users send capabilities to one another via encrypted
emails (e.g., PGP [OpenPGP], Autocrypt [Autocrypt], and ClaimChain [KLI+18]), but it does not hide the
sharing patterns (the sending of emails).

One seemingly working solution to avoid the linear broadcast is to set a fixed bound NV for the number
of capabilities that a user can download during an interval 7', and a user downloads exactly IV capabilities
every interval T'. In case of insufficient capabilities, the user pads the number to the bound V. If a user cannot
retrieve all the capabilities (more than V), the user retrieves the rest of them the next time. Unfortunately,
this solution leaks use patterns, as we now discuss.

Consider the following scenario: When users receive file capabilities, they may subsequently perform a
few noticeable operations, e.g., adding a new line to the file. If a user has too many incoming capabilities
and many of them are deferred to be downloaded the next time in this approach, other users may notice this
user’s delayed responses to some files and learn that more than NV files are sent during an interval. Inevitably,
avoiding this leakage requires each user to retrieve all his/her capability ciphertexts as in Metal-SHARE.

25



Making broadcast efficient. Though capability receiving has to be linear, Metal-SHARE improves the
efficiency and makes it practical for the client. In Metal-SHARE, the capabilities are encrypted symmetrically
under the user’s broadcast key (derived from the broadcast master key, which is secret-shared between the
servers). As a result, the encryption, transmission, and decryption costs become small. Concretely, if the
broadcast list has 10* capabilities, a user only needs to download 1 MB and can decrypt all of them in 10 ms.

26



7 Performance

In this section we discuss Metal’s asymptotic efficiency and concrete efficiency, compare Metal with PIR-
MCORAM and AnonRAM-poly, and compare Metal with Primitive Metal to show how Metal’s techniques
improve the performance.

7.1 Asymptotic efficiency

Since each function (described in Table 2) of Metal may be called independently by the users’ clients, we
describe each function separately. We first describe the notation we will use.

Notation. We consider that the system supports Neer users, Nyje > Nyser files in total, file size D, and
Nanonym anonyms per user, as well as a broadcast list with Vji; entries. As follows, we use O, (+) to express
the complexity that hides a polynomial of the security parameter A, while Nyser, NVfile, Nanonym, Niist are
polynomially bounded by A. Like [WCS15], we parameterize Circuit ORAM with ﬁ failure probability
(in Metal, 2780),

Cost for CreateAccount, NewAnonym, and SendCapability. Given that Nyser, NVfile, Nanonym are poly-
nomially bounded by the security parameter A, we write their asymptotic efficiency in a way that only depends
on )\ for simplicity:

— The client’s and each server’s compute time is O (1).
— The server-server communication is O (1).
— The client-server communication is O (1).

Cost for ReadFile and WriteFile. ReadFile and WriteFile have the computational complexity and com-
munication complexity that are linear to the file size D and polylogarithmic to the number of files Ngje.
Concretely,

— Each server’s compute time is O ((D + log? Njje) log Niite) - w(1).

— The client’s compute time is Oy (D).

— The server-server communication (including the communication for SS-DOT and distributed permutation)
is Ox((D + log? Nije) log Niie) - w(1).

— The client-server communication is O (D).

Cost for ReceiveCapability. ReceiveCapability mainly returns the user the requested part of the broadcast
list. At the end of each epoch, Server 1 shuffles the encrypted capabilities, incurring an additional cost. Given
that Nyser, Vfile, NVanonym are polynomially bounded by the security parameter A, we can write the asymptotic
efficiency as follows:

— Server 1’s compute time is Oy (Njist log Njist) when shuffling.
— The client’s compute time is O (Njst ).
— The client-server communication is O) (Nt )-

7.2 Implementation

We implemented Metal in C/C++. We use Obliv-C [ZE15] for Yao’s protocol with the improved half-gate
garbling scheme for multi-instance security, as described in [GKW+19; GKWY?20], which provides 125-bit
security. We use Absentminded Crypto Kit [Doe18] for ORAM and OpenSSL for TLS.

27



. Time (s) Time (s)

API functions without Tor with Tor
CreateAccount 0.4174+0.001 4.1£0.2
ReadFile / WriteFile 3.62 + 0.01 8.0+0.2

e client preprocessing 0.056 + 0.006

e server accessing IndexORAM 0.134 +0.001

e server encryption 0.007 + 0.001

e server fetching 0.126 4+ 0.001

e server eviction 1.526 + 0.002

e server threshold decryption 0.038 = 0.001

e client postprocessing 0.009 4+ 0.001
NewAnonym 0.03 +0.01
SendCapability 1.13+£0.01  4.56 £0.19
ReceiveCapability 1.759£0.002 6.2+£04

Table 3: The latency of user-facing API functions, measured with and without Tor, for a store of 220 64 KB
files. The result is the average of one hundred measurements, with the confidence interval under two-sided
Student’s ¢ distribution with 90% confidence.

For Metal-AC’s authenticated encryption, we use the EAX mode [BRWO04], which we deemed to be the
most efficient mode for our setting after an extensive search.

The rerandomizable encryption in Metal-ORAM is implemented using ElGamal encryption over Curve25519-
Ristretto group [Ber06; Ham15; Ristretto] with a constant-time encoding and a few optimizations. This
scheme is about 80 faster than standard ElGamal encryption over a Schnorr group [EIG84] and 200 faster
than standard Paillier encryption [Pai99] for our setting.

7.3 Evaluation Setup

Machine configuration. We used two r4.2xlarge machines on Amazon EC2 as the servers, one in
Northern California, one in Oregon, each with eight CPUs and 61 GB memory. We situated them in different
regions to simulate the real-world scenario that the servers are in different trust domains. The user ran in
a t2.xlarge machine in Canada with four CPUs and 16 GB memory. We allocated the user in Canada
to simulate that the user is from a remote location. In our experiment, we measured the latency from this
machine. Metal-ORAM’s DataORAM is stored on Server 1’s Amazon gp2 volume.

Network latency. We measured the round-trip time (RTT) and bandwidth. The inter-server RTT was 19 ms,
and the client-server RTT was 70 ms. Measured under AWS’s guidelines [AWSBench], the inter-server
bandwidth per connection was ~ 290 MB/s, and the client-server bandwidth was ~ 17 MB/s.

7.4 Metal’s performance

To measure the latency of each operation in Metal, we use a setup with 22 64 KB files (in total 64 GB
of data). To measure the latency of receiving a capability from the servers, we have a user download 10*
capabilities from Server 1’s broadcast list.

We measured the latency of these operations with and without Tor in Table 3. As we remark in Section 2.2,

28



Metal can use other anonymity networks beside Tor. We evaluated on Tor [DMS04] because it is a popular
tool. The results without Tor more cleanly show the overhead specific to Metal.

We show the end-to-end benchmark result in Table 3, together with a breakdown of the cryptographic
operations in our file access APIL. From the table, we can see that the latency for each file access is a few
seconds. The latencies for creating an account and sending/receiving capabilities are also small.

4.0-
3. e "
7 3.0- T L
2 @ 4KB —e— 64KB
”E - --®-- 16KB
0o R |
T — T — .
712 "t .
Number of files

Figure 10: File access latency vs. the number of files / file size. The result is the average of one hundred
measurements.

We show the measurements of how the latency of a file access depends on the file size and the number of
files. Figure 10 has an exponential z-axis for number of files and a linear y-axis for time. We can see the
latency increases linearly to the file size and grows logarithmically to the number of files.

For large-scale measurement, we measured the setup with 22° 1 MB files (where each file is padded to
1 MB). It takes 28.8 = 0.1 s to access a file. Though Metal works with fixed-sized files, larger files can be
segmented into smaller files of fixed size, and clients fetch file segments instead of files as the user needs
them. As a result, the cost to access the file then depends on the number of segments.

Metal-ORAM does not support parallel accesses since Circuit ORAM is not parallel. Thus, a user who
wants to access a file has to wait for previous accesses to be complete. This restriction has the benefit of strong
consistency. But, one who wants to make Metal-ORAM more parallelizable can distribute the computation
(described in Section 8) or extend our techniques to parallel ORAM (e.g., Circuit OPRAM [CS17]).

Network I/0 and the size of garbled circuits. We measured the inter-server network I/O and the size of
garbled circuits (the number of AND gates) in Table 5 for different ORAM implementations. We can see that
the network I/O grows almost logarithmically to the number of files. The circuit size, which represents the
amount of computation in Yao’s protocol, does not grow with the file size.

7.5 Comparison with PIR-MCORAM

As we discussed in Section 9, only PIR-MCORAM [MMRS17] simultaneously provides file sharing and
some access patterns protection in the presence of malicious users. Unlike Metal, PIR-MCORAM leaks user
identities, but it has the advantage that it only uses a single server. However, this single-server setting results
in a latency that is at least linear to the number of files, which becomes slow. Metal’s latency, on the other
hand, is sublinear to the number of files.

29



Since PIR-MCORAM [MMRS17] is not open-source, we could not perform an end-to-end evaluation of it.
Nevertheless, the evaluation in PIR-MCORAM'’s paper [MMRS17] provides measurements and discusses the
linear behavior of the results (the main cost is in the zero-knowledge proofs). Hence, we can extrapolate the
results for amortized and worst-case time from PIR-MCORAM. We did not compare with TAO-MCORAM
[SZE+16; MMRS17], another system in the same paper, since TAO-MCORAM uses a trusted proxy, which
is not a fair comparison with Metal.

Amortized time (s) | Worst-case time (s)
216 files | 220 files | 216 files | 229 files
4 KB ~ 15 ~ 135 ~ 3000 | =~ 47600
16 KB ~ 39 ~ 519 ~ 10900 | ~ 190200
64 KB ~ 135 ~ 2055 | =~ 47600 | =~ 760700

File size

Table 4: Latencies extrapolated from PIR-MCORAM [MMRS17].

Table 4 shows the results. We can see that when the file size and the number of files are large, PIR-
MCORAM has a high latency, especially the worst-case time. For 22° 64 KB files, its amortized time for file
access is > 500x Metal’s latency (of 3.62 s). Also, PIR-MCORAM leaks user identities, which Metal hides.

7.6 Comparison with AnonRAM-poly

AnonRAM-poly [BHKP16] is another anonymous storage system that also uses the two-server model but
does not support file sharing among users. AnonRAM-poly [BHKP16] is not implemented. To estimate a
lower bound of its latency we implemented the zero-knowledge proofs for file uploading used in AnonRAM-
poly—which the users generate and the servers verify for every access. We implemented them using the
disjunctive Schnorr’s protocol [Sch89; CDS94; JJ99], and we evaluated its performance under the same
evaluation setup as in Section 7.3. Even with multi-threading, such zero-knowledge proofs take > 80 s per file
access for a store of 22° 64 KB files. In addition, AnonRAM-poly has other expensive components, such as
the zero-knowledge proofs in oblivious PRF and oblivious sorting between the two servers. AnonRAM-poly
is therefore at least > 20x slower than Metal.

7.7 Comparison with Primitive Metal

We described Metal’s primitive construction in Section 5.2, which directly comes from Yao’s protocol
and does not use Metal-ORAM techniques to move file data out of Yao’s protocol. It provides the desired
functionality and security but not efficiency. To demonstrate the poor performance of Primitive Metal, we
measured the latency of a single ORAM access of the strawman using three state-of-the-art ORAM schemes
[WCS15; ZWR+16; DS17] with the implementation in Absentminded Crypto Kit [Doel8]. Note that these
implementations only support in-memory storage, which makes them prone to running out of memory but
enjoy faster I/O since Metal stores data on the gp2 storage. Table 5 shows the measurements, which we now
discuss alongside with how Metal improves it, on three dimensions:

e Storage overhead reduction. Table 5 shows that Primitive Metal soon runs out of memory because the
implementation has a storage size blowup of 128x. Instead, Metal stores the data outside S2PC and
therefore has a smaller blowup.

30



# Files Amortized time (s) Network I/0 (MB) # X 10°% AND gates Worst-case time (s)

File SiZe 212 216 220 212 216 220 212 216 220 212 216 220
(This paper) Metal, as discussed in Section 7.4. This is the end-to-end benchmark including time for Metal-AC.

4KB 1.34 143 1.61 | 25.7 39.0 55.2 | 1.43 219 3.16 * * *

16 KB 1.66 1.82 2.05 | 32.0 46.7 644 | 143 219 3.16 * * *

64 KB 2.85 316 3.62 | 60.7 814 105 143 219 3.16 * * *
Primitive Metal using Circuit ORAM [WCS15], as discussed in Section 7.7, considering only ORAM access time.

4KB 3.56  4.46 T 430 508 T 13,5 16.0 T * * *

16 KB 13.6 16.2 T 1690 1976 } 53.1 622 t * * *

64 KB 55.5  66.8 T 6717 7844 } 212 247 t * * *
Primitive Metal using SQORAM [ZWR+16], as discussed in Section 7.7, considering only ORAM access time.

4 KB 3.10 14.7 T 319 1477 } 6.57  30.2 } 437 9810 1

16 KB T T T T T 1 T T T T ] T

64 KB ] 1 ] ] 1 1 ] ] 1 T ] 1
Primitive Metal using Floram [DS17], as discussed in Section 7.7, considering only ORAM access time.

4KB 3.62 4,55 9.76 100 129 290 277 277 277 | 404 933 88.0

16 KB 6.67 9.80 31.2 399 514 1152 | 11.0 11.0 11.0 | 7.54 30.1 342

64 KB 19.5 323 T 1592 2048 T 44.1 441 T 24.0 110 T

Table 5: Metal-ORAM'’s file access latencies compared with Primitive Metal (% same as amortized,
1 = out-of-memory). Network I/O is measured using iftop. All results are the average of (at least) one
hundred ORAM write operations.

Latency reduction. By extrapolating Table 5’s result, we estimate the file access latency for Primitive
Metal is > 75 s for 22° 64 KB storage (for Circuit ORAM [WCS15]). Metal uses tree-based ORAM,
which has a polylogarithmic worst-case complexity and significantly less computation. In particular, Metal
avoids the linear worst-case time as in SqrtORAM [ZWR+16] and Floram [DS17].

Network I/0 reduction. Metal reduces the amortized network I/O because it no longer does data-intensive
computation in Yao’s protocol (as shown in the circuit size in Table 5) and only transfers a few file data
blocks per file access. If we extrapolate Table 5’s result, the amortized network I/O of Primitive Metal is
> 1 GB accessing a 64 KB file in 220 files. In comparison, the network I/O for Metal is about 105 MB, as
Table 5 shows.

31



8 Extensions

In this section we discuss certain extensions to Metal.

Parallel accesses. We can leverage a system technique called quorum consensus [ABD90]. For example, we
can improve the read performance by having K pairs of Metal servers with the same file data but independent
ORAM store. They can load-balance the user’s read requests and are very likely to improve the throughput
by K x. The write performance will decrease because a user needs to submit the write request to all K pairs
of the servers. In systems where the write requests happen very infrequently, such a design can be helpful in
reducing the average latency. Note that this direction to improve the performance often has to sacrifice the
read/write indistinguishability.

Padding to hide timing and type of operation. The leakage of timing and type of operation can be hidden
by padding in time and computation. To do so, we first modify Metal server API functions to support a dummy
mode that does not make any actual change but exhibits the same execution patterns. We will not discuss how
to implement this dummy mode, but it will rely mostly on general techniques. Then, we ask each user’s client
to routinely call each server API function; when a client is expected to call a server API function but has
nothing to do, the client simply invokes the function in the dummy mode. Nevertheless, such padding is very
expensive (e.g., the broadcast list will be lengthy).

32



9 Related Work

We organize the related work in the following categories:

(1) E2EE storage systems. A line of storage systems uses end-to-end encryption. Academic works include
DepSky [BCQ+11], M-Aegis [LCS+14], Mylar [PSV+14], Plutus [KRS+03], ShadowCrypt [HAJ+14], Sieve
[WMZV16], and SiRiUS [GSMBO03]. In industry, there are Keybase [KBFS], PreVeil [PreVeil], and Tresorit
[Tresorit]. These systems are practical, but they leak user identities and file access patterns.

(2) Anonymous storage systems. There has been a line of works on anonymous storage systems. Earlier
academic works include Eternity [And96], Publius [WRCO00], Freenet [CSWHO1], and Free Haven [DFMO1].
Some peer-to-peer file-sharing systems have been deployed in the real world, including Napster, Gnutella,
and Mojo Nation [MojoNation].

(3) Single-user oblivious storage systems. Oblivious storage systems are designed to conceal file access
patterns and provide strong privacy. Single-user oblivious storage systems focus on the setting where there is
only one user [Gol87; Ost90; PR10; GM11; SSS12; MLS+13; DSS14; RFK+15] or a group of trusted users
that can be treated as one user’s multiple clients [WST12; SS13b; BNP+15; SZE+16; BMN17; CS19]. A
number of works add the support of asynchronous access [WST12; SS13b; BNP+15; SZE+16; CS19] and
improve the security against malicious servers [BMN17]. Multi-cloud ORAM [SS13a; LO13] uses multiple
non-colluding servers to achieve a high throughput, but it does not support malicious users using the same
ORAM store.

(4) Multi-user oblivious storage systems. Multi-user oblivious storage systems are more challenging
since every single user is not fully trusted. There are only a few works in this direction [MMRS15; ZZQ16;
BHKP16; MMRS17; KPK17; HOWW19]. We discuss them as follows.

Secret-write PANDA [HOWW19] is a multi-user oblivious storage that does not support data sharing, and
thus differs from Metal in terms of functionality. Another disadvantage is that it needs to bound the number
of malicious users—which is difficult for systems with open membership—and the performance degrades
linearly to this bound. If the number of malicious users is not bounded sufficiently at the setup of the scheme,
the scheme cannot provide the desired privacy guarantees. In addition, secret-write PANDA runs expensive
cryptography, and the performance is likely very impractical.

AnonRAM-lin and AnonRAM-poly [BHKP16] enable many mutually distrusting users to use the same
ORAM storage anonymously, but these users cannot share files. AnonRAM-lin has a linear overhead, the
performance of which can be prohibitive. And though AnonRAM-poly has a poly-logarithmic overhead,
extending it with file sharing is hard: it reveals at which level the data block is in the Goldreich-Ostrovsky
ORAM (GO-ORAM) [Gol87; Ost90; GO96], which involves file access history. This is not a problem in
AnonRAM-poly because users do not share files. But, if we add file sharing, a group of users sharing the same
file will now learn information about one another’s access patterns. Fixing this problem requires substantial
changes. Moreover, AnonRAM-poly has a linear worst-case overhead, which is undesirable for practical
systems [SCSL11].

GORAM [MMRS15] is a multi-user oblivious storage system with anonymity and obliviousness against
servers. Its limitation is that GORAM does not provide obliviousness against malicious users, which makes
GORAM harder to be used for open systems like Dropbox [Dropbox] where any user can sign up. In addition,
GORAM does not hide the owner of a file.

PIR-MCORAM [MMRS17] is a multi-user oblivious file-sharing system that uses a single server and

33



hides a very large class of metadata, including file access patterns (except whether the operation is reading or
writing), but it reveals the user identities to the server when the user writes to a file. Metal improves over
PIR-MCORAM by avoiding the linear complexity and hides the user identities in both reading and writing.
Compared with Metal, PIR-MCORAM has the benefit of using only one single server.

There are also some multi-user ORAM schemes that focus on multiple semi-honest users’ sharing files
[ZZQ16; KPK17].

(5) RAM-model secure computation. Primitive Metal builds on top of RAM-model secure computation
(RAM-SC) [GKK+12; LO13; WHC+14; WCS15; ZWR+16; DS17]. With Primitive Metal being limited in
functionality and performance, Metal represents a comprehensive solution for file storage.

(6) Miscellaneous. Secure messaging [CBM15; HLZZ15; AS16; TGL+17; KCDF17; PHE+17; KLD20]
also strives to hide metadata in user communication. Nevertheless, it does not store data persistently and
usually requires users to stay online, which is difficult in practice. Metadata-hiding storage can also be
constructed using hardware enclaves [MPC+18; AKSL18; SGF18], but it requires additional hardware
assumptions.

34



Acknowledgment

We thank our shepherds Thomas Schneider and Amos Treiber, who provide clear and detailed revision
guidelines to this paper. In particular, we want to thank them for pointing out the necessity to use the new
half-gate garbling scheme (as in [GKW+19]) in Obliv-C for better computational security.

We thank the anonymous reviewers for their valuable feedback on this manuscript or their earlier versions.
The manuscript has been improved significantly across the submissions.

We thank Pratyush Mishra, Sam Kumar, Wenting Zheng, Rishabh Poddar, and many other colleagues at UC
Berkeley for feedback on the early drafts of this paper.

We thank Samee Zahur for the help with the Obliv-C platform, and we thank Chenkai Weng for implementing
the new half-gate garbling scheme, as in EMP-toolkit [EMP].

This work has been supported by the NSF CISE Expeditions Award CCF-1730628, Jim Gray Fellowship, J.
K. Zee Fellowship, as well as gifts from the Sloan Foundation, Bakar, Okawa, and Hellman Fellows Fund,
Alibaba, Amazon Web Services, Ant Financial, Capital One, Ericsson, Facebook, Futurewei, Google, Intel,
Microsoft, Nvidia, Scotiabank, Splunk, and VMware. Our benchmark received support from the AWS Cloud
Credits for Research program.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation and other funding parties.

35



References

[ABD90]

[ACLS18]

[Agg03]
[AKSL18]

[And96]
[AS16]

[Autocrypt]
[AWSBench]

[BCQ+11]

[BDKO7]

[Ber06]
[BGV12]

[BHKP16]
[BHKR13]

[BMN17]

[BMROI0]
[BNP+15]

[BPTG15]

[BRWO04]
[BS16]

[CB17]

[CBM15]

[CDS%4]

[CGPRI15]

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing systems,” in
PODC’90, 1990.

S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with compressed queries and amortized query process-
ing,” in S&P’18, 2018.

C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in VLDB’05, 2005.

A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A data oblivious file system for Intel
SGX.,”in NDSS’18, 2018.

R. Anderson, “The Eternity service,” in PRAGOCRYPT’96, 1996.

S. Angel and S. Setty, “Unobservable communication over fully untrusted infrastructure,” in OSDI’16,
2016.

Autocrypt: Convenient end-to-end encryption for e-mail, https://autocrypt.org/.

Benchmark network throughput between Amazon EC2 Linux instances in the same VPC, https://aws.
amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/.

A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky: Dependable and secure storage
in a cloud-of-clouds,” in EuroSys’11, 2011.

L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579x?: Anonymized social networks,
hidden patterns, and structural steganography,” in WWW’07, 2007.

D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in PKC’06, 2006.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption without
bootstrapping,” in ITCS 12, 2012.

M. Backes, A. Herzberg, A. Kate, and 1. Pryvalov, “Anonymous RAM,” in ESORICS’16, 2016.

M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling from a fixed-key blockci-
pher,” in S&P’13, 2013.

E.-O. Blass, T. Mayberry, and G. Noubir, “Multi-client oblivious RAM secure against malicious
servers,” in ACNS’17, 2017.

D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,” in STOC 90, 1990.

V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Practicing oblivious access on cloud
storage: The gap, the fallacy, and the new way forward,” in CCS’15, 2015.

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over encrypted data,”
in NDSS’15, 2015.

M. Bellare, P. Rogaway, and D. Wagner, “The EAX mode of operation,” in FSE 04, 2004.

R. Bost and O. Sanders, “Trick or tweak: On the (in)security of OTR’s tweaks,” in ASIACRYPT’ 16,
2016.

H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable computation of aggregate statis-
tics,” in NSDI’17, 2017.

H. Corrigan-Gibbs, D. Boneh, and D. Mazieres, “Riposte: An anonymous messaging system handling
millions of users,” in S&P’15, 2015.

R. Cramer, 1. Damgard, and B. Schoenmakers, “Proofs of partial knowledge and simplified design of
witness hiding protocols,” in CRYPTO 94, 1994.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against searchable encryption,”
in CCS’15, 2015.

36


https://autocrypt.org/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/

[Col14]

[CS17]

[CS19]

[CSWHO1]

[CTT94]

[DDF+16]

[DEMO1]

[DH66]

[DMS04]

[Doel8]

[Dropbox]
[DS17]
[DSS14]

[EGL3S5]

[E1G84]

[EMP]
[GGH+13]

[GKK+12]

[GKW+19]

[GKWY20]

[GLMP18]

[GLMP19]

[GM11]

D. Cole, “We Kkill people based on metadata,” in The New York Review of Books—NYR Daily May 10,
2014, 2014.

T.-H. H. Chan and E. Shi, “Circuit OPRAM: Unifying statistically and computationally secure ORAMs
and OPRAMs,” in TCC’17, 2017.

A. Chakraborti and R. Sion, “ConcurORAM: High-throughput stateless parallel multi-client ORAM,”
in NDSS’19, 2019.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous information
storage and retrieval system,” in International Workshop on Designing Privacy Enhancing Technologies
2001, 2001.

R. Card, T. Ts’o, and S. Tweedie, “Design and implementation of the second extended filesystem,” in
Dutch International Symposium on Linux’94, 1994.

S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs, “Onion ORAM: A constant
bandwidth blowup oblivious RAM,” in TCC’16, 2016.

R. Dingledine, M. J. Freedman, and D. Molnar, “The Free Haven Project: Distributed anonymous
storage service,” in PET’01, 2001.

J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed computations,” in
CACM’66, 1966.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,” in SEC’04,
2004.

J. Doerner, Absentminded Crypto Kit, https://bitbucket.org/jackdoerner/absentminded- crypto-Kkit,
2018.

Dropbox, https://www.dropbox.com/.
J. Doerner and A. shelat, “Scaling ORAM for secure computation,” in CCS’17, 2017.

J. Dautrich, E. Stefanov, and E. Shi, “Burst ORAM: Minimizing ORAM response times for bursty
access patterns,” in SEC’14, 2014.

S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,” in CACM’85,
1985.

T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” in
CRYPTO’84, 1984.

Efficient multi-party computation toolkit. [Online]. Available: https://github.com/emp-toolkit.

C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs, “Optimizing ORAM and
using it efficiently for secure computation,” in PETS’13, 2013.

S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis, “Secure two-party
computation in sublinear (amortized) time,” in CCS’12, 2012.

C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu, “Better concrete security for half-gates garbling (in the
multi-instance setting),” in JACR ePrint 2019/1168, 2019.

C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and secure multiparty computation from fixed-key
block ciphers,” in S&P’20, 2020.

P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Pump up the volume: Practical database
reconstruction from volume leakage on range queries,” in CCS’18, 2018.

——, “Learning to reconstruct: Statistical learning theory and encrypted database attacks,” in S&P’19,
2019.

M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of outsourced data via oblivious
RAM simulation,” in ICALP’11,2011.

37


https://bitbucket.org/jackdoerner/absentminded-crypto-kit
https://www.dropbox.com/
https://github.com/emp-toolkit

[GM&2]

[GMN+16]

[GMWS8T7]
[GO9Y6]

[Gol87]

[GSMBO3]

[HAJ+14]

[Ham15]
[HElib]
[HKM15]

[HLZZ15]

[HOWW19]

[IKK12]

[JJ99]
[JLG+15]

[JLM+15]

[KBFS]
[KCDF17]

[KGK+18]

[KLD20]

[KLI+18]

[KPK17]

[KRS+03]

[KS08]

S. Goldwasser and S. Micali, ‘“Probabilistic encryption & how to play mental poker keeping secret all
partial information,” in STOC’82, 1982.

P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov, “Breaking web applications
built on top of encrypted data,” in CCS’16, 2016.

0. Goldreich, S. Micali, and A. Wigderson, “How to play ANY mental game,” in STOC’87, 1987.

0. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious RAMs,” in JACM 96,
1996.

O. Goldreich, “Towards a theory of software protection and simulation by oblivious RAMs,” in
STOC 87, 1987.

E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted storage,” in
NDSS’03, 2003.

W. He, D. Akhawe, S. Jain, E. Shi, and D. Song, “ShadowCrypt: Encrypted web applications for
everyone,” in CCS’14, 2014.

M. Hamburg, “Decaf: Eliminating cofactors through point compression,” in CRYPTO’15, 2015.
HEIib: An implementation of homomorphic encryption, https://github.com/homenc/HElib.

V. T. Hoang, J. Katz, and A. J. Malozemoff, “Automated analysis and synthesis of authenticated
encryption schemes,” in CCS’15, 2015.

J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela: Scalable private messaging
resistant to traffic analysis,” in SOSP’15, 2015.

A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs, “Private anonymous data access,” in EURO-
CRYPT’19, 2019.

M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on searchable encryption: Ramifi-
cation, attack and mitigation,” in NDSS’12, 2012.

M. Jakobsson and A. Juels, “Millimix: Mixing in small batches,” in DIMACS TR’99, 1999.

S. Ji, W. Li, N. Z. Gong, P. Mittal, and R. Beyah, “On your social network de-anonymizablity: Quan-
tification and large scale evaluation with seed knowledge,” in NDSS’15, 2015.

S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah, “SecGraph: A uniform and open-source evaluation system
for graph data anonymization and de-anonymization,” in SEC’15, 2015.

Keybase filesystem (KBFS), https://github.com/keybase/kbfs.

A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom: Horizontally scaling strong anonymity,”
in SOSP’17,2017.

N. Kilbertus, A. Gascon, M. Kusner, M. Veale, K. Gummadi, and A. Weller, “Blind Justice: Fairness
with encrypted sensitive attributes,” in ICML’18, 2018.

A. Kwon, D. Lu, and S. Devadas, “XRD: Scalable messaging system with cryptographic privacy,” in
NSDI’20, 2020.

B. Kulynych, W. Lueks, M. Isaakidis, G. Danezis, and C. Troncoso, “ClaimChain: Improving the
security and privacy of in-band key distribution for messaging,” in WPES’18, 2018.

N. P. Karvelas, A. Peter, and S. Katzenbeisser, “Using oblivious RAM in genomic studies,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technology’17, 2017.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file sharing
on untrusted storage,” in FAST’03, 2003.

V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and applications,” in
ICALP’08, 2008.

38


https://github.com/homenc/HElib
https://github.com/keybase/kbfs

[LCS+14]
[LMP18]
[LO13]
[Min14]
[MLS+13]
[MMRS15]

[MMRS17]
[MojoNation]
[MPC+18]

[MRCK19]
[MV04]
[MZ17]
[NKA14]
[NR16]

NS08]
OpenPGP]
Ost90]
Pai99]

[
[
[
[
[PHE+17]
[Poi]

[PR10]
[PreVeil]
[PSV+14]

[Rab81]

[RAC16]

B. Lau, S. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva, “Mimesis Aegis: A mimicry privacy
shield—a system’s approach to data privacy on public cloud,” in SEC’14, 2014.

M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruction attacks on encrypted data
using range query leakage,” in S&P’18, 2018.

S. Lu and R. Ostrovsky, “Distributed oblivious RAM for secure two-party computation,” in TCC’13,
2013.

K. Minematsu, “Parallelizable rate-1 authenticated encryption from pseudorandom functions,” in
EUROCRYPT’ 14, 2014.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song, “PHAN-
TOM: Practical oblivious computation in a secure processor,” in CCS’13, 2013.

M. Maffei, G. Malavolta, M. Reinert, and D. Schroder, ‘“Privacy and access control for outsourced
personal records,” in S&P’15, 2015.

——, “Maliciously secure multi-client ORAM,” in ACNS’17, 2017.
Mojo Nation, https://sourceforge.net/projects/mojonation/.

P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An efficient oblivious search index,”
in S&P’18, 2018.

E. V. Mangipudi, K. Rao, J. Clark, and A. Kate, “Towards automatically penalizing multimedia
breaches,” in EuroS&PW’19, 2019.

D. A. McGrew and J. Viega, “The security and performance of the Galois/counter mode (GCM) of
operation,” in INDOCRYPT 04, 2004.

P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-preserving machine learning,
inS&P’17,2017.

S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn, “Community-enhanced de-anonymization of online social
networks,” in CCS’14, 2014.

J. B. Nielsen and S. Ranellucci, “Reactive garbling: Foundation, instantiation, application,” in ASI-
ACRYPT’16, 2016.

A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in S&P’08, 2008.

bl

OpenPGP, https://www.openpgp.org/.
R. Ostrovsky, “Efficient computation on oblivious RAMs,” in STOC’90, 1990.

P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in EURO-
CRYPT’99, 1999.

A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The Loopix anonymity system,” in
SEC’17,2017.

D. Poirier, The second extended file system: Internal layout, https://www.nongnu.org/ext2-doc/ext2.
html.

B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in CRYPTO’10, 2010.
PreVeil: End-to-end encryption for secure communication, https://www.preveil.com/.

R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and H. Balakrishnan, “Building web applications
on top of encrypted data using Mylar,” in NSDI’14, 2014.

M. O. Rabin, “How to exchange secrets with oblivious transfer,” in Technical Report TR-81, Aiken
Computation Lab, Harvard University’81, 1981.

D. S. Roche, A. Aviv, and S. G. Choi, “A practical oblivious map data structure with secure deletion
and history independence,” in S&P’16, 2016.

39


https://sourceforge.net/projects/mojonation/
https://www.openpgp.org/
https://www.nongnu.org/ext2-doc/ext2.html
https://www.nongnu.org/ext2-doc/ext2.html
https://www.preveil.com/

[RBBKO1]
[RFK+15]

[Ristretto]
[Rus13]

[Sch&9]
[SCSL11]

[SDS+13]
[SGF18]

SS13a]
SS13b]
SSS12]

[
[
[
[SV10]

[SV14]
[SZE+16]

[TGL+17]

[Tresorit]
[WAP+19]

[WCS15]
[WGL+17]
[WHC+14]
[WHKK10]
[WHO]
[WMZV16]
[WRCO00]

[WST12]

P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A block-cipher mode of operation for efficient
authenticated encryption,” in CCS’01, 2001.

L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas, “Constants count:
Practical improvements to oblivious RAM,” in SEC’15, 2015.

The Ristretto group, https://ristretto.group/ristretto.html.

A. Rusbridger, “The Snowden leaks and the public,” in The New York Review of Books—NYR Daily
November 21, 2013, 2013.

C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in CRYPTO’89, 1989.

E. Shi, T. H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with O((logIN)?) worst-case cost,” in
ASIACRYPT’11,2011.

E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path ORAM: An
extremely simple oblivious RAM protocol,” in CCS’13, 2013.

S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious memory primitives from Intel SGX,”
in NDSS’18, 2018.

E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in CCS’13, 2013.
——, “ObliviStore: High performance oblivious cloud storage,” in S&P’13, 2013.
E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,” in NDSS’12, 2012.

N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small key and ciphertext
sizes,” in PKC’10, 2010.

——, “Fully homomorphic SIMD operations,” in Designs, Codes and Cryptography’14, 2014.

C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro, “TaoStore: Overcoming asynchronicity in
oblivious data storage,” in S&P’16, 2016.

N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich, “Stadium: A distributed metadata-private
messaging system,” in SOSP’17, 2017.

Tresorit: Secure file sharing & content collaboration with encryption, https://tresorit.com/.

L. Wang, G. Asharov, R. Pass, T. Ristenpart, and A. shelat, “Blind certificate authorities,” in S&P’19,
2019.

X. Wang, H. Chan, and E. Shi, “Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower bound,”
in CCS’15, 2015.

L. Wang, P. Grubbs, J. Lu, V. Bindschaedler, D. Cash, and T. Ristenpart, “Side-channel attacks on
shared search indexes,” in S&P’17, 2017.

X. Wang, Y. Huang, T.-H. H. Chan, A. shelat, and E. Shi, “SCORAM: Oblivious RAM for secure
computation,” in CCS’14, 2014.

G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack to de-anonymize social network
users,” in S&P’10, 2010.

World health organization (WHO): Health statistics and information systems, https://www.who.int/
healthinfo/en/.

F. Wang, J. Mickens, N. Zeldovich, and V. Vaikuntanathan, “Sieve: Cryptographically enforced access
control for user data in untrusted clouds,” in NSDI’16, 2016.

M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-evident, censorship-resistant
web publishing system,” in SEC’00, 2000.

P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A parallel oblivious file system,” in CCS 12, 2012.

40


https://ristretto.group/ristretto.html
https://tresorit.com/
https://www.who.int/healthinfo/en/
https://www.who.int/healthinfo/en/

[WYG+17]

[Yao86]
[ZE15]

[ZKP16]

[ZRE15]

[ZWR+16]

[ZZQ16]

F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia, “Splinter: Practical private queries
on public data,” in NSDI’17, 2017.

A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS’86, 1986.

S. Zahur and D. Evans, “Obliv-C: A language for extensible data-oblivious computation,” in JACR
ePrint 2015/1153, 2015.

Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are [sic] belong to us: The power of
file-injection attacks on searchable encryption,” in SEC’16, 2016.

S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole: Reducing data transfer in garbled
circuits using half gates,” in EUROCRYPT’15, 2015.

S. Zahur, X. Wang, M. Raykova, A. Gascén, J. Doerner, D. Evans, and J. Katz, “Revisiting square-root
ORAM: Efficient random access in multi-party computation,” in S&P’16, 2016.

J. Zhang, W. Zhang, and D. Qiao, “MU-ORAM: Dealing with stealthy privacy attacks in multi-user
data outsourcing services,” in JACR ePrint 2016/073, 2016.

41



A Security proof of Metal-ORAM

In Section 4 and Section 6.1 we provided the security proof sketches for Metal-AC and Metal-SHARE, which
we believe are sufficient to reconstruct a formal proof. In this section we prove the security of Metal-ORAM
in the following real-ideal paradigm:

— In the real world two servers run the Metal-ORAM protocol. An adversary A sees the view of one of the
servers and can control a set of users in a malicious way.

— In the ideal world an ideal functionality Fyeta-oraM realizes Metal-ORAM with the desired security
guarantees. The simulator Sim forges A’s view like in the real world.

Metal-ORAM is secure if A’s output in the real world is computationally indistinguishable from Sim’s in the
ideal world.

A.1 Ideal functionality

The ideal functionality Fyueta-oraM Stores the file data in array FileData, where FileData[ID ¢| stores the file
identified by ID . Furetai-oraM has the following interface:

Configure. Ask Sim which server to compromise, denoted by CompromisedSrvID € {1, 2}.

Read. On receiving (C’EF , NewFileData, READ) from a user in two shares, check if C’I{fF is valid (using
Metal-AC), check NewFileData’s format, and if both checks pass,

— obtain IDy from Metal-AC, find FileData[ID ], and secret-share FileData[ID z] into TargetData™) and
TargetData(Q); send TargetData(l) and TargetData(2) to the user.

— send Sim (NEW_REQUEST, TargetData(j), NewFiIeData(j), CﬁF’(j)) where j = CompromisedSrvID. (This
message reflects the communication between the user and the compromised server.)

If CII?F is invalid or NewFileData is malformed, send the user and Sim INVALID_CAPABILITY or INVALID_FORMAT,
respectively. For invalid formats, send which shares are malformed.

Write. On receiving (C?F, NewFileData, WRITE), check CgF and NewFileData. If both checks pass,

— obtain IDp and change FileData[ID ] to NewFileData.

— use the dummy file data as TargetData, secret-share it into TargetData(l) and TargetData(Q), and send
them to the user. '

— send Sim (NEWBEQUEST,TargetData(j), NewFiIeData(j), C’I{fF’(J)) where j = CompromisedSrvID.

Otherwise, send to the user and Sim INVALID_CAPABILITY or INVALID_FORMAT, as described above.

A.2 Simulator

The simulator Sim learns from Fyera1.0rRAM Certain information about a request and knows the system setup,
such as the number of files supported by the servers. Sim works as follows:

Initialize. Run A and control A’s execution and network. Let A choose CompromisedSrvID and forward it to
FMetal-oraAM- Sample two ElGamal key pairs, one for each server. Send both public keys and the compromised
server’s private key to A. Merge the public keys into one global public key. If CompromisedSrvID = 1,
instantiate DataORAM.

42



Initiate a file access request. When A wants to send a request to the servers, forward the request to
JMetal-ORAM -
Forge the compromised server’s view. On receiving a message from JFyera1.orAM, Simulate the compro-

mised server’s view and provide this view to A. In what follows, we describe the case when A compromises
Server 1, and we omit the case for Server 2, which is similar.

If the request is valid, parse the message from Fyjera.oraM a8 (NEW_REQUEST, TargetData (1), NewFileData(!) , C’,J;F’(l))

and run as follows:

— invoke the simulator for Yao’s protocol for the capability check.
— simulate the view in which Server 1 checked the format of NewFileData") and exchanged the results of

the format check with Server 2.

— invoke the simulator for Yao’s protocol for ORAM access to a random path in IndexORAM and for sharing

a fake block location (denoted by ¢); this step corresponds to reading the file index in Section 5.3.

— simulate the SS-DOT to act as if Server 2 would obtain the ¢-th block on that path (or a dummy block), as
follows:

— invoke the simulator of Yao’s protocol for the first step of SS-DOT, which, within S2PC, reconstructs %,
samples N = |stash| + 3 x h + 1 keys, and outputs these IV keys to Server 1 and the i-th key to Server 2.

— simulate the view where Server 1 read blocks from the (fake) storage, encrypted and rerandomized the
blocks as the protocol specifies, and sent the encrypted blocks to Server 2.

— simulate the threshold decryption as follows:

— encrypt TargetData(") with the global public key (the ciphertext is denoted by FakeReadData).

— simulate the view where Server 1 engaged in the threshold decryption of FakeReadData with Server 2,
obtained TargetData(l), and sent TargetData(l) to the user.

— simulate the joint encryption of the user-provided new file data (in secret shares), as follows:

— encrypt NewFileData") provided by the user.

— simulate the view in which Server 1 received a random encrypted data block from Server 2 and
homomorphically added the ciphertext together; the resultant ciphertext is denoted by FakeNewData.

— simulate the distributed permutation as follows:

— sample a permutation ¢(!) of the numbers {1,2, ..., |stash| + 6 x h — 1}.

— invoke the simulator for Yao’s protocol for the ORAM eviction in IndexORAM and the permutation
generation inside S2PC, where Server 1 received o),

— simulate the view where Server 1 constructed an array of the size |stash|+6x h—1, which began with data
blocks from the two paths selected by the reverse lexicographic order and followed by FakeReadData
and FakeNewData.

— simulate the view where Server 1 rerandomized and permuted the array according to o*) and sent the
array to Server 2.

— sample an array of |stash| + 6 x h — 1 encrypted dummy data blocks, denoted by FakePermutedArray.

— simulate the view where Server 1 received from Server 2 FakePermutedArray and stored it in the
storage.

— provide Server 1’s view to A.

(1)

If the request is invalid because C}FDF " is invalid, proceed as follows:

— invoke the simulator for Yao’s protocol for the capability check, which fails.
— simulate the view where Server 1 responded to the user that the request was invalid.
— provide Server 1’s view to A.

43



If the request is invalid because the data format is incorrect (though C'EF W) 4 valid), proceed as follows:

— invoke the simulator for Yao’s protocol for the capability check, which passes.

— simulate the view where Server 1 performed the format check of NewFileData(".

— simulate the view where Server 1 exchanged the format check results with Server 2 and responded to the
user that the request was invalid.

— provide Server 1°s view to A.

Continue running A and output whatever A outputs.

A.3 Proof of indistinguishability

We use the following hybrids (denoted by H.) to show that the view that Sim forges is computationally
indistinguishable (denoted by =) from the compromised server’s view in the real world. As follows, we focus
on the case where Server 1 is compromised, and particularly, the situation when Sim receives a NEW_REQUEST
message from Fyfetal-ORAM -

Consider g requests, where ¢ is polynomially bounded by the security parameter. Our proof will replace
the simulated view of each of the g requests one by one, starting from the first request, with the view in the
real execution for the same ¢ requests. We use H; ; to denote the ¢-th sub-hybrid of the ¢-th hybrid, in which ¢
requests have been handled. We start with Hg o, which is the same as the simulated view in the ideal world.
Foreacht € {0,1,...,q¢ — 1}, we define:

— Hiois Hoo (if t = 0) or H;—y 7 (if t # 0). In the following hybrids, we focus on the handling of the
(t + 1)-th request.

— Hg,1 replaces the simulated view of capability check with the real execution’s view. Security of S2PC
implies Hy 1 ~ Hy 0.

— Hq 2 replaces the simulated view of the ORAM access to IndexORAM with the real execution’s view. Both
views have the same distribution of ORAM access patterns. Security of S2PC implies H; o ~ H; 1.

— Hq 3 replaces the simulated view of the first step of SS-DOT with the real execution’s view where both
views generate the same N random keys. Security of S2PC implies H; 3 ~ H; 2.

— Hg 4 replaces the simulated view for threshold decryption with the real execution’s view. In the simulation,
Sim encrypts Target Data(!), pretending to be from Server 2, and has Server 1 decrypt this ciphertext, in
which the view of Server 1 (receiving and decrypting) has the same distribution as in the real execution.
Thus, we have H; 4 ~ Hy 3.

— Hq 5 replaces the simulated view for joint encryption with the real execution’s view. The difference between
the two views is that, in H; 4, Server 1 receives a random data block, while in H; 5, Server 1 receives the
ciphertext of NewFileData(®, encrypted by Server 2. Using semantic security of EIGamal encryption, we
have H; 5 ~ Hy 4.

— Hg g replaces the simulated view for ORAM eviction in IndexORAM and for permutation generation with
the real execution’s view that generates the same share of permutation oM for Server 1. Security of S2PC
implies H; 6 ~ Hy 5.

— Hg 7 replaces the simulated view for the rest of the distributed permutation (the parts after S2PC) with the
real execution’s view, which writes the data blocks into the storage (and updates the rest of the transcript
accordingly). The main difference is that Server 1 receives a random data block array instead of the one
permuted by o(?). Because these data blocks are encrypted under randomness unknown to Server 1, Server
1 cannot distinguish these two arrays in different views. The rest is the same, and thus H; 7 = H;¢.

The last hybrid, H,_1 7, has the same distribution as the real world’s view. The hybrid arguments show that

44



the simulated view is computationally indistinguishable from the real world’s view. Therefore, we have the
following theorem:

Theorem 1. (informal) Assuming standard cryptographic assumptions and in the random oracle model,
Metal-ORAM’s protocol provides the claimed security guarantees.

B Deamortization of ORAM initialization cost

Metal uses Circuit ORAM [WCS15] for its low amortized and worst-case ORAM complexity. One issue
with Circuit ORAM is its high initialization cost, as discussed by Zahur et al. [ZWR+16]. The experiment in
Zahur et al.’s paper shows that the initialization can take about 10° seconds for a store of 22° four-byte data
blocks. Though initialization is a one-time effort, it is useful to deamortize such a heavy cost. Metal-ORAM
deamortizes the cost to initialize IndexORAM and DataORAM, as follows.

Deamortizing IndexORAM’s initialization. The main challenge in deamortizing IndexORAM is to
initialize the IndexORAM’s position map in an oblivious and efficient manner. Recall that IndexORAM is a
standard Circuit ORAM store, which uses the recursive technique to store the position map, as follows. To
store the position map for IV blocks, the recursive technique first packs every C blocks’ position records
into a block (we call it a level-1 record block) and then stores these level-1 record blocks in an ORAM data
structure, which consists of V/C' level-1 record blocks. Next, the recursive technique creates the position
map for these N/C record blocks, which can be stored in an ORAM data structure of N/C? blocks; we
call them level-2 record blocks. By repeating this manner for £ = O(log N) times, we can have a constant
number of level-¢ record blocks. The creation of these £ ORAM data structures dominates the initialization
cost in Circuit ORAM.

Metal-ORAM deamortizes this cost by having IndexORAM work with an incomplete position map.
Our changes are as follows. Metal-ORAM first changes the record block’s structure by appending a new
bit IsInit € {0, 1} at the beginning of each record block. If a record block’s IsInit = 0, the record block is
considered as uninitialized. To start with, all these record blocks in IndexORAM’s position map are filled
with all zeros (i.e., IsInit is also 0), which is inexpensive in our secure computation platform Obliv-C [ZE15]
since instantiating data structures in S2PC with zeros does not require network communication. These record
blocks therefore all have IsInit = 0 and are uninitialized. That is to say, after our initialization, all data blocks
D[z] have not been assigned a random position.

After such an initialization of IndexORAM, when Circuit ORAM algorithm accesses IndexORAM and
runs into an uninitialized record block, it initializes this record block by assigning new random positions for
the C' next-level blocks in this record block and setting this block’s IsInit to be 1. Note that the next-level
blocks do not exist in those positions at this moment, but we pad the computation inside S2PC (by accessing
a random path in the next level) such that the two servers do not know whether the record blocks being
accessed are initialized or not.

This deamortizing technique reduces the initialization time, but the cost is in fact added into all future
ORAM accesses (though, which is not the bottleneck in Metal-ORAM). We acknowledge that the total
amount of work in the long term with our IndexORAM’’s initialization is larger than the full initialization
described in [WCS15; ZWR+16]; our initialization mainly enables the two servers to set up in a much shorter
time.

Metal-ORAM’s initialization of IndexORAM takes 3.69 s under our experiment setup (Section 7.3).

45



Deamortizing DataORAM’s initialization. Recall that DataORAM is a binary tree in which each node
stores encrypted data blocks. To store 22° 64 kB files, DataORAM takes ~ 405 GB. The traditional way to
initialize DataORAM is to create a ciphertext that encrypts dummy data and to populate the whole DataORAM
with this ciphertext; this approach eventually takes ~ 33 minutes under our experiment setup (Section 7.3)
due to disk I/O (to an Amazon SSD gp2 store), which is heavy.

Metal-ORAM deamortizes this initialization cost by using sparse files [Poi; CTT94], a widely supported
file type in which, initially, a file only has metadata, with no space assigned to the file. Then, when a program
wants to read N bytes on an unassigned part, the operating system (OS) returns /N bytes of zeros as the data,
while the part stays unassigned. Only when a program writes data to an unassigned part of the file, the OS
assigns actual disk space for that part and stores the new data on the disk. As a result, a sparse file can be
created instantly (even if the file is supposed to be very large). When Metal-ORAM reads a ciphertext from
an unassigned part (which is all-zero), Metal-ORAM instead uses a dummy ciphertext, so the rest of the
protocol remains unchanged.

Metal-ORAM'’s creation of DataORAM takes < 1 ms under our setup by using Linux’s truncate
command.

C Efficient authenticated encryption in garbled circuits

Metal-AC (Section 4) uses authenticated encryption (AE) for capabilities. To our knowledge, an extensive
search for efficient AE in Yao’s protocol has never appeared in the literature. We offer as follows.

The go-to solutions for authenticated encryption in modern CPU today are the GCM mode [MV04] or
the OCB mode [RBBKO1]. However, GCM requires complicated polynomial evaluation, which is slow in
Yao’s (also noted by Wang et al. [WAP+19]), and OCB requires inverse cipher, which is also slow.

Thus, our goals is to search for an efficient AE scheme with three properties: (1) minimal calls to the
cipher; (2) no call to the inverse cipher; and (3) no complicated Galois field computation. We find two types
of AE schemes that can meet such properties:

e The EAX mode [BRWO04] by Bellare, Rogaway, and Wagner, which calls the cipher 1 + 2 x |M| times,
where | M| is the message size in blocks. For | M| = 1, it takes only 3 calls.
e The OTR mode [Minl14; BS16] by Minematsu and its unpatented counterparts discovered by Hoang, Katz,

and Malozemoff through automated synthesis [HKM15], which call the cipher 2 + 2 x [%1 times, no
inverse cipher needed.

Metal’s capability description can fit in one AES block; for this case, EAX makes fewer calls to the block
cipher, so AES-EAX is most suitable for AE in Metal-AC.

46



	Abstract
	Contents
	1 Introduction
	1.1 Overview of Metal's techniques

	2 Overview
	2.1 System architecture
	2.2 Threat model
	2.3 Security guarantees

	3 The layout of S2PC in Metal
	4 Metal-AC: Anonymous access control
	5 Metal-ORAM: Efficient two-server multi-user ORAM for file storage
	5.1 Background on ORAM
	5.2 Primitive Metal
	5.3 Moving data out of Yao's protocol: Metal's synchronized inside-outside ORAM trees
	5.4 Fetching blocks in DataORAM
	5.5 Putting a block into DataORAM's stash
	5.6 Resynchronizing after eviction by tracking and permutation generation

	6 Metal-SHARE: Unlinkable capability sharing
	6.1 Unlinkable anonyms
	6.2 Capability derivation and broadcast

	7 Performance
	7.1 Asymptotic efficiency
	7.2 Implementation
	7.3 Evaluation Setup
	7.4 Metal's performance
	7.5 Comparison with PIR-MCORAM
	7.6 Comparison with AnonRAM-poly
	7.7 Comparison with Primitive Metal

	8 Extensions
	9 Related Work
	Acknowledgment
	References
	A Security proof of Metal-ORAM
	A.1 Ideal functionality
	A.2 Simulator
	A.3 Proof of indistinguishability

	B Deamortization of ORAM initialization cost
	C Efficient authenticated encryption in garbled circuits

