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ARTICLE INFO ABSTRACT

Communicated by Rappoport Tatiana It is known that the presence of the Fermi sea modifies the scattering of an electron from a point-like impurity.
This is due to the Friedel oscillations of the electron density around the impurity. These oscillations create an
additional scattering potential for incident electrons. The closer the energy of the incident electron to the Fermi
level, the stronger the additional scattering. We study this effect for the case when the impurity is not point-like
but rather a hard disk, with a radius much bigger than the de Broglie wavelength. We start with a careful ex-
amination of the full and transport cross sections from an extended target. Both cross sections approach their
limiting values upon increasing the wave vector of the incident electron. We establish that the transport cross
section saturates much faster than the full cross section. With regard to the interaction correction, we establish
that it vanishes for the full cross section, while for the transport cross section, it is enhanced compared to the case
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of a point-like scatterer.

1. Introduction

The static polarization operator, I1(q), of the 2D electron gas contains
a singular correction, ”—’,‘:’Z(q - 2kp)1/2, near q = 2kp [1]. Here M is the
electron mass and kr is the Fermi momentum. This singular behavior
(Kohn anomaly) translates into the interaction corrections to the ther-
modynamic characteristics of the 2D gas [2], such as effective mass.
These corrections exhibit singular behavior as a function of temperature,
T. Transport characteristics of the 2D gas, such as conductivity, also
acquire singular interaction corrections in the ballistic regime, Tz > 1,
where 7 is the scattering time. In this regime, multiple scattering of
electrons by the impurities can be neglected, while modification of the
potential of individual impurities due to the Kohn anomaly [4] yields a
correction to the scattering cross section proportional to T. This mech-
anism of the anomalous temperature dependence was pointed out in
Ref. [4]. It was subsequently elaborated upon in Refs. [5-7]. Consider-
ation of Refs. [5-7] led to the following lucid prescription for incorpo-
rating electron-electron interactions into the calculation of transport.

An impurity potential, Ujnp(r), causes a perturbation of the electron
density

sin(2kgr)
n(r) —ng = _VOT;/dr Uimp (1), (€))

around it. Here vy = % is the density of states. The Friedel oscillations
Eq. (1) translate into an additional scattering potential for incident
electrons. The correction to the scattering amplitude due to this poten-
tial depends dramatically on the energy, ¢, of the incident electron
measured from the Fermi level, Er. Perturbative calculation of this
correction [6] indicates that it is maximal within the angular interval ~

Il — 1'/2 near the backscattering condition. The relative magnitude of

this correction is also ~ £ — 1'/2, Thus, for a typical value |¢ — Eg| ~ T,

the relative interaction correction to the net scattering cross section can
be estimated as .

The calculations in Refs. [5-7] were carried out for point-like scat-
terers. Namely, it was assumed that their size is much smaller than the
de Broglie wave length, i—f In the present paper, we extend the theory
[5-7] to the scatterers of an arbitrary size, a. For this purpose, we first
analyze the Friedel oscillations from the disk and also study the behavior
of the full and transport cross sections from the disk in the absence of
interactions. Then we incorporate interactions and study corresponding
corrections to these cross sections.
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2. Friedel oscillations from the wall

In terms of formation of the Friedel oscillations, at small distances, (r
— a) < a, the scatterer can be viewed as a hard wall. Then the electron
density does not depend on a. To calculate this density it is sufficient to
substitute into the definition

n(r) = zk:(a (EF 7%)

P ()], )

the wave functions, ¥x = e®sin k,x, which turn to zero at the wall.
Here O(2) is a step-function. Performing the integration over the com-
ponents of the wave vector, we obtain

J] (Zer)
kpx

: 3

n(x) —ny = —ny

where J;(2) is the first-order Bessel function. These oscillations are
shown in Fig. 1. The concentration is zero at x = 0. At large distances,
kpx > 1, the relative correction to the density is small and falls off as

(krx)~%/2, which is intermediate between (kpx)~2 in 2D and (kpx)™! in
1D.
2.1. Friedel oscillations from a hard disk

To calculate the radial dependence of the electron density,

Friedel oscillations
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Fig. 1. (a) blue curve: Friedel oscillations from the wall are plotted from Eq.
(3); yellow curve: Friedel oscillations from the disk are plotted from Eq. (9) for
kra = 3. (b) same dependencies as in (a) are plotted for large values of 2kpx.
Oscillations from the disk fall of faster than the oscillations from the wall. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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we use the semiclassical form of the eigenfunctions

sin| [dr 27w l/2}
() = [afd (" ) |

(0)
Rm.k r 1/4
(kz 2 —m? + };)

The oscillating part of n(r) is determined by the states with energies
close to the Fermi level, i.e. with k close to kr. This allows to expand the

)

argument of sine in R,(,S )k with respect to 6k = k — kp as follows

12 12
2 m? ,7% _(e- m? ,f 1 B krok .
) Pp ( mz_%)]/Z 6)

2
K=

It is also sufficient to set k = kg in the prefactor of Rr(,g l Then the inte-
gration over &k yields

r mZ 12
sin {2 [ar <k§ - r—z)

)

= 2a? —m\ "
Z {1+(k22 2) }X 272 2
= ot —m kF(r —a )

The expansion Eq. (6) is justified for 6k < kg. On the other hand,
characteristic 6k in the integration is 6k ~ (r — a)’l. Thus, the result Eq.
(7) applies for distances (r — a)>k;'. This result describes the oscil-
lating part of n(r) within a numerical factor.

As we will see later, the main contribution to the sum Eq. (7) comes
from large momenta, m > 1, but still with m <« ka. In this domain, one
can expand the integrand in Eq. (7) and perform the integration over dr’,
which yields

7 2\ 1/2 2
i, m N m* (1 1
/dr <kF - ﬁ) & kp(r—a) “% (; - ;) (8)

We see that the condition m < kra ensures that the second term in Eq. (8)
is much smaller than the first term. On the other hand, the second term

1/2
in Eq. (8) defines characteristic m ~ (kp—“r) . This value is smaller than

r—a

kra under the condition (r — a)>k; ', which we have already assumed to
be met. Still, this value is much bigger than one, which allows us to
replace the summation over m by the integration. The final result for the
oscillating part of n(r) reads

_=

on(r) _ _(@) 1/z< | ) sin [ZkF(r— a) z]. o

1o s r+a [2kr(r — a)]’?

In Eq. (9) we have restored the numerical factor. In the domain
k;1<<(r — a)<a, Eq. (9) reproduces the Friedel oscillations Eq. (3) from
a hard wall, while for (r — a) > a the oscillations fall off as 1 /r?like for a
point-like impurity.

3. Scattering from hard disk in the absence of interactions

3.1. Basic relations

The general expression for the scattering cross section reads
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2

o= / Bl @), (10)

0

where f(¢) is the scattering amplitude. It is related to the scattering
phases, 59, as follows [8]

m

5 = o D (¢ 1)t an

Scattering phases are determined by the long-distance behavior of the
radial wave functions

1
oc—cos<kr—m7”—f+a<0>), (12)

Rm~’<(r>r—>oo 172 4 m

where k = %(2mE)l/ 2 is the wave vector. Performing the angular inte-
gration, one recovers the textbook result [8]

4 S
o= > sin’sl). 13)

m=—oo
The quantity that enters the conductivity is not ¢ but the transport cross
section defined as

2n

o0 = / dp(1 - cos D))" 4

0

Substituting Eq. (11) into Eq. (14) and integrating over ¢, one obtains

Oy = — Z sin® (55,5)) - 5%1) (15)

m=—c0

3.2. Classical calculation

Within a classical picture, a particle incident on the disk with impact
parameter, b < a, is reflected from the boundary, see Fig. 2. The scat-
tering angle, 0, is related to b as

b(0) = —acos (g) (16)

Substituting Eq. (16) into the definitions of the full and transport cross

Fig. 2. A schematic of classical hard-disk scattering. A particle with impact
parameter b incident on a target with radius a. The scattering angle 6 is related
to the impact parameter b through Eq. (16).
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sections
2 ab 2r 017

o= /d9||%, ou — /d9(1 ~cos 0)5, an
0 0

we get

, (18)
a . (0 8
0 =5 /dH(l — cos 9)51n(§) =za
0

The above calculation suggests that the classical cross section is equal to
the diameter of the disk. Although this diameter is much bigger than the
de Broglie wave length, the result obtained neglecting the diffraction
effects is not supported by the quantum calculation.

3.3. Quantum calculation

For a hard disk of a radius, a, the form of the radial wave function atr
> a is the linear combination

R (r) = c08 8ty (kr) + sin 8,,N,, (kr), 19

of the Bessel and the Neumann functions, J,;,(z) and N;,,(2), which are the
free solutions of the Schrodinger equation. Then the exact expression for
the phases, &, which follows from the condition Ry, x(a) = 0, reads

I (ka)

in250) —
sin“g))) = —"—F——.
" J*(ka) + N2 (ka)

(20)
At small ka < 1 the sum Eq. (13) is dominated by the first term for
which Jo(ka) ~ 1 and Ny(ka) ~ 2In(ka). Then Eq. (13) takes the form

c n?

— N 21
daw<  4kaln®(ka) @D

The right-hand side has a minimum at ka =~ 0.25. At this ka the terms
with higher m in Eq. (13) are important, leading to the decay of ¢ with
energy. Still, the minimum in m = 0 term manifests itself as a shallow
minimum in the derivative %, as illustrated by the numerical calcu-
lation, see Fig. 3.

Upon increasing energy the fall off of the cross section saturates at
4. ~ 1, which corresponds to replacement of sins,, by 1/2 for m < ka
and by zero for m > ka. This value exceeds twice the classical result Eq.
(18), which is a well-known effect in 3D, see e.g. Ref. [8].

Next we will study the quantum correction to the scattering cross
section, which determines the law of approach of ¢ to the saturation
value in the limit ka > 1. The main point is that this approach is
dominated by a narrow domain of momenta (ka — m)<ka. To capture
the quantum correction analytically, we infer the expression for the
phases by comparing the semiclassical form Eq. (5) of the radial wave
functions to the asymptote Eq. (12). The integral in the argument of sine
can be evaluated analytically

. PN
lm = f (kz - 7) dr
a r

_ (kzrz _ mz>‘/2 o (k2a2 _ m2)1/2 (22)
1/2

kr\ ka\? "
—marctan {() — 1| + marctan [() - l} .
m m

Taking the limit r - oo we obtain
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Full Cross Section in 2D
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Fig. 3. Full scattering cross section is calculated numerically from Eqs. (13) and
(20). In (a), the approach to the asymptotic value ¢ = 4a is shown. In (b), the
log-log plot of o(ka) calculated numerically (blue curve) is compared to the
theoretical prediction Eq. (27) (yellow curve). In (c), the slope dl‘ni"ka is plotted
versus ka. In agreement with theory, Eq. (27) the slope approaches 2/3 at large
ka. The minimum at ka ~ 0.2 originates from m = 0 term, Eq. (21). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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I, =~kr— % — [k2a2 — mz} 2

)]
+marctan [ — ) —1
m

With this I,,, the semiclassical expression Eq. (5) matches the asymptote
Eq. (12) for the following choice of the scattering phases
1/2

2 2
¥76$') =m |:<]::> — l:| — arctan |:(IZ) - 1:| 24)

In the domain (ka — m)<ka the argument of arctangent is small, which
allows to use the expansion z— arctan z = 123, after which Eq. (24)
simplifies to

12 (23)

12

3/2
3 o ~ (2my) (25)
4" 3(ka)'

where m; = ka — m characterizes the proximity of angular momentum to
ka. From here we get

3/2
22m) } . (26)

1 1
sin“6) = — 4+ —sin
m 2 2 |:3(ka)l/2

The argument of sine defines the characteristic m; ~ (k) 3, which is
much smaller than ka, as was assumed above. On the other hand, in the
domain ka > 1, this characteristic value is much bigger than 1, which
allows one to replace the summation over m; by integration. This yields

c ©dm . [2(2m)*?
——1 =) —=sin|———75-
4a o ka 3(ka)

1702 v dzsin z

“2Gea) | o5 @27)

0
T 1 | .
o) 127 G ™

where @ = 375 ~ 0.51.
The right-hand side of Eq. (27) is the amount by which the cross
section at finite energy exceeds the limiting value, 6 = 4a.

3.4. Transport cross section in 2D
The contribution to ¢ and to o from big momenta, |m| > ka, is

exponentially small. For |m| <« ka the asymptotic expression for the
phases is [9]

59 = —arctan

m

o (ka) T T
~ ka —— 1) ——. 2
(N,,,(ka)) a—zm+-7 (28)
A more general expression for 5) which is valid for all m smaller than ka
can be inferred from the semiclassical expression Eq. (5) by calculating
the integral in the argument of sine explicitly. This yields
v 3r

+—. (29)

2
O — [(ka)? — 21" = LA
80 = [(ka)® — m*] marctan | | — 1 )

In calculating the full cross section it is sufficient to replace sin?6\") by 1/
2 in all 2ka + 1 terms in Eq. (13) for which the phase is big. Upon doing
so, the standard result [9]

6~ 4a, (30)

is reproduced. As in the 3D case [8], the result Eq. (30) does not contain
the wavelength of the incident electron. Still, the full cross section
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exceeds twice the geometric cross section.
The calculation of the transport cross section is a more delicate task,

since the difference 5 — 6/, is a slow function of m. Indeed, from Eq.

m+1
(29) we get
959 ea "
50— 50~ —5 = arctan (W - 1) . (31)

From the above relation we find

. m\?2
sin” (519 —6521) ~1- (—) . (32)
ka
Then the summation over m leads to the following result for the trans-
port scattering cross section
8
oy X a. (33)
Unlike the full cross section, this result coincides with the transport cross
section calculated classically. To study the quantum correction to oy, we

express the difference 69 — 5% in terms of the Bessel functions. This

m+1
yields
O I .
i = %%a Z sin? (55,?’ - 5&21)
(34)
1 i’: [ (ka)Nyyy1 (ka) — Ny (ka)d iy (ka))
2%ka = [J3,(ka) + N, (ka)| [J},., (ka) + N, (ka)]|’

The numerator of Eq. (34) can be greatly simplified upon using the
relation [11]

Ny (ka1 (a) = ——>—. 35

J(ka)Npy 1 (ka) — p

With this simplification Eq. (34) assumes the form

O 4
4a 7 (ka)®

(36)

0

X2

1
p=t ( [/, (ka) + N, (ka)] [

m+1 (ka) + Nm+l (ka)] ) .

The brackets in the denominator can be analyzed using the integral
representation [11]

J2 (ka) + N2 (ka)

8 37)

”2

/cosh (2mt)Ko(2kasinh 7)dt,
0

where K((2) is the Macdonald function. Since the product ka is big, the
integral is dominated by small t <« 1, which allows to replace sinh t by t.
To perform the integration over t it is convenient to use the following
representation of the Macdonald function

o (2kat) /
1

Substituting Eq. (38) into Eq. (37) and integrating over t, we get
~ 7ka / 27"
| ’”[ ()’

Now the evaluation of the integral is elementary and is achieved by the
substitution s = (1 + uz)l/ 2. The result reads

1/2 exp(—2kats). (38)

J2 (ka) + N2 (ka) 39)
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/2"
irka(l fkmi)

This result applies for m < ka. For m > ka the integral Eq. (39) is zero.
Using the relation Eq. (40), the expression Eq. (36) for the transport
cross section can be cast in the form

© /2
| m? \ ' (m+1) !
or_ — - (1= 1
4a  ka Zo ( kzaz) k*a? (41)

m=

Ty (ka) + N, (ka) = (40)

If we neglect the difference between (m + 1) and m in the second
bracket, the product of the brackets will reduce to ( 1- W) Then the

summation over m will reproduce the result Eq. (33). Thus, the quantum
correction to the transport cross section is due to the difference between
the first and second brackets. To account for this difference we expand
the second bracket as follows

o\ 172
(m+1)
<1 T Ra >

~(1 m?\ m
U ka2) e

12"
2 2
ka (1 *r)

Substituting this expansion into Eq. (41) and performing summation
over m, we arrive to the corrected expression for o,

(42)

oy 2 1

ov_Z_ 43
4a 3  2ka (43)
We see that the correction is negative suggesting that the approach of o,
to the limiting value is “from below”. This is the result of the expansion
Eq. (42) underestimating the m = 0 term. Incorporating this term
explicitly, we obtain

oy 2 1

4a 3 2ka
4
7 (ka)’ [J3(ka) + N2 (ka)] [J3 (ka) + N? (ka)]’

(44)

As seen in Fig. 4, Eq. (44) leads to the approach of oy to the limiting
value “from above” for ka > 1. Moreover, it reproduces correctly the
result of numerical calculation.

4. Incorporating interactions

We will follow a transparent procedure of incorporating the in-
teractions which was put forward in Ref. [5] for the interaction
correction to the density of states and then adopted in Refs. [6,7] for the
interaction correction to the conductivity. The main message of Ref. [5],
see also Ref. [10], is that Friedel oscillations of the electron density
translate into the oscillating Hartree potential

Vi(r) = /dr’ V(r —r)én(r). (45)

Here V(r —r') is the screened electron-electron interaction potential.
Additional scattering of the incident electron from the potential Vy(r)
modifies the scattering phases 6{™. In order to calculate the corre-
sponding corrections to the phases, we employ the procedure described
e.g. in Ref. [8].

(

As a first step, instead of the wave function Rn? l(r), we introduce an

auxiliary function ;(,S?)k (r) defined as



N.L. Foulk and M.E. Raikh

Transport Cross Section in 2D
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Fig. 4. The transport cross section in two dimensions is calculated numerically
from Eq. (36). In (a), the approach to the asymptotic value of 8a/3 is shown. In
(b), a plot of the different contributions to the sum in Eq. (36). The blue dots
represent the contribution from the terms with m > 1. The yellow dots represent
the m = 0 term. The green dots are the sum of the blue and yellow. The red
curve is a plot of Eq. (44) and is a good approximation for ka > 1. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

(46)

The function ;(,(12 }< satisfies the equation

( - l)
4
© — 0. 47)

& o
KA [ A )

In the presence of interactions, the potential Vy(r) adds to the centrifugal
potential, so that Eq. (47) assumes the form

@

d>
ﬁ){m.k + |k + Vy(r) — 2 Xmi = 0. (48)

Multiplying Eq. (47) by ymx(r) and Eq. (48) by ;(Sl)_ )k(r) and subtracting,
we arrive to the relation

d [dz,, Ak
dr drk )k dr‘%m.k = _VH}{m k){mk (49)

This relation allows to find the interaction-induced correction to the

scattering phase. Since this correction is small, the product )(f:i }()(m_k in

2
the right-hand side can be replaced by ()($ }() . Then the integration of
Eq. (49) from a to o yields
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oo

2
80, == [[ar v (%) 50)

a

The correction Aéy, to the scattering phases give rise to the following
interaction corrections to the full and to the transport scattering cross
sections

4 .
66 = % %:sm (26(”?)) A6, (51)

S0, = Zsm —01) 1 (A8, — A8,). (52)
Next the factors sin 26 and sin 2(6 — 5),) can be expressed in
terms of the Bessel functions

2J . (ka)N,, (ka)

260 = T iEd)
S 200" = 7 (ka) + N2 (k)

(53)

sin 2(6© —6))

( )N,n+1(k(l) ( )m+1(ka)

72 (ka) + N2 (ka) G4)
et s )+ s )

m+1 (ka) + m+1 (ka)

Using the fact that ka > 1 we can simplify the expressions for é¢ and So,
as follows

8cos(2ka) & m
06 = ———— —1)" A6, 55
g . E:;( )" Ad, (55)

ka 27172
A e

We see that the two expressions are very different. Since Ad,, is a smooth
function of m, the terms in Eq. (55) cancel out. The same smoothness of
Adp, allows to replace the sum over m in Eq. (56) by the integral

o= fan( - 2] e

0

Next we argue that relevant values of m are much smaller than ka. This
allows to replace the square bracket by 1 and transform Eq. (57) by
parts. This yields

80, = LA / dm(AS,,). (58)
0

k*a

To analyze the dependence of A§,, given by Eq. (50) on the wave
vector, k, of the incident electron we recall that the potential, Vy(r), is
proportional to electron density given by Eq. (4). To pinpoint the origin
of the anomaly at k = kg it is more convenient to study the derivative
on.. Within a factor, this derivative is given by

63310( / dr R, (r ]ZRm o (59)

a

From the semiclassical form of the radial wave function Eq. (5) we

conclude that the product Rﬁtk(r)an ! .kF(r) contains a slow part



N.L. Foulk and M.E. Raikh

, 1/2 12
cos 2{ far {(kz - —) - (ki - ) } }
172 .
(kzr2 - %) (kg2 — m'?) 2

Since we assumed that m and m’ are both much smaller than ka, the
above expression can be simplified as follows

cosZKk k[:)(r_a)_%<i_%):| 61)

2.2
krr

(60)

It is natural to measure the radial coordinate, r, from r = a. Combining
Egs. (58), (59) and (61), we arrive to the following expression for the
derivative of oy with respect to kg

656" 7 T dp m* —m*
0 0 0

We can now perform the integration over m and m’ explicitly. This yields

060,
oky

«2rka / %’)cos 2[(k — kr)p] (63)
0

Since the expression for the Friedel oscillations applies for p = (r — a)>

kz', the lower limit in the integral should be chosen to be p ~ kz'. Thus,
we arrive to the final result

060, kr Ep
erodn( ) = (%), (64)

From Eq. (64) we conclude that the interaction correction to the trans-

port cross section has the form oy xeln (E—:> Recall, that for point-like

impurity [6] the interaction correction has the form oy o €. Thus, the
enhancement of the interaction correction in the case of scattering from
the disk amounts to the logarithmic factor. This enhancement translates
to the temperature dependence correction to the conductivity propor-
tional to T In T as compared to T for the point-like impurities.

5. Concluding remarks

(i) InFig. 5 the numerical results for the full and transport scattering

cross sections are presented in log-log scale. It is apparent that ¢
and oy approach their limiting values ¢ = 4a and oy = %a,
respectively, at very different rates. Naturally, at small ka <« 1
both cross sections coincide. However, at large ka, the transport
cross section saturates much faster than the full cross section. On
the contrary, we have demonstrated that while the interaction
correction to oy, is a singular function of k — kg, the interaction
correction to ¢ vanishes.

(ii) Integration over momenta m and m’ in Eq. (62) leads to the slow

energy dependence of the correction "g{;‘. Note, that this inte-

gration misses a contribution from the terms m = m’, which is the
consequence of the discreteness of the angular momentum. This
contribution is comparable to the main contribution Eq. (64) for
the following reason. In integration, the characteristic values of m
and m’ are ~(ka)1/ 2, while the number of terms with m = m’ is
~ka. On the other hand, the contribution of these terms possesses
a sharp energy dependence. This contribution can be cast in the
form

066 7 dzcos z / dzsin z 65)
Okr z2+2(k —kp)a [z+2(k — kp)a]*
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Fig. 5. Full cross section (blue curve) and scattering cross section (yellow
curve) are plotted in log-log scale from Egs. (13) and (15), respectively. With
increasing the dimensionless parameter, ka, the transport cross section ap-
proaches the limiting value, & %, faster than the full cross section approaches the
limiting value, 4a. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Eq. (65) yields a narrow peak of a width (k —kg) ~a! and the
corresponding energy scale ¢ ~ £. At large (k — kr)a>1 the correc-

tion Eq. (65) falls off as Note also, that the correction Eq.

4(k— k a2’
(65) originates from the specific behavior of the Friedel oscillations
Eq. (9) from the disk as compared to the Friedel oscillations from the
point impurity. It thus contains the disk radius, a. Upon integrating
Eq. (65), we get the following shape of the peak in the transport cross
section

0

dzsin z
50y _ 66
olcx/erZ(kko)a (66)
0

The missing prefactor in Eq. (66) contains the product of the
electron-electron interaction constant [6] and the density of states,
vp. The first factor originates from the proportionality between Vy(r)
and 6n(r) in Eq. (50), while the second factor comes from the sum in
Eq. (59), which emerges upon taking the derivative with respect to
kr.
(iii) We emphasize the difference between the interaction corrections
for the cases of a point-like impurity and of a big disk with ka > 1.
For a point-like impurity [6], the corrections to the full and to the
transport scattering cross sections are related as oy = 250. This
can also be seen from Eq. (50). For ka < 1, the correction, Ady, is
much bigger than Ag,, for m # 0. By contrast, for ka > 1, the
correction, o, is small in parameter kl—a
(iv) Experimentally, the situation considered in the present paper is
naturally realized in the arrays of antidots, see e.g. Refs. [12-15].
In these experiments, the characteristic radius of antidote is a ~
200 nm, while the typical electron density is 2 x 10! em™2. This
corresponds to the product kpa ~ 2.5.

Author statement

Nathan L. Foulk: Formal Analysis, Investigation, Writing - Original
Draft, Writing - Review & Editing, Visualization, Funding acquisition,
Software. M. E. Raikh: Conceptualization, Methodology, Formal Anal-
ysis, Writing - Original Draft, Writing - Review & Editing, Supervision,
Funding acquisition.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.



N.L. Foulk and M.E. Raikh

Acknowledgements

N.F. acknowledges the support of the National Science Foundation
(NSF) award No. 1950409. M.E.R. was supported by the Department of
Energy, Office of Basic Energy Sciences, Grant No. DE-FG02-
06ER46313.

References

[1] F. Stern, Polarizability of a two-dimensional electron gas, Phys. Rev. Lett. 18
(1967) 546.

[2] A.V. Chubukov, D.L. Maslov, Nonanalytic corrections to the Fermi-liquid behavior,
Phys. Rev. B 68 (2003), 155113.

[4] A. Gold, V.T. Dolgopolov, Temperature dependence of the conductivity for the two-
dimensional electron gas: analytical results for low temperatures, Phys. Rev. B 33
(1986) 1076.

[5] A.M. Rudin, LL. Aleiner, L.I. Glazman, Tunneling zero-bias anomaly in the
quasiballistic regime, Phys. Rev. B 55 (1997) 9322.

[6] G. Zala, B.N. Narozhny, LL. Aleiner, Interaction corrections at intermediate
temperatures: longitudinal conductivity and kinetic equation, Phys. Rev. B 64
(2001), 214204.

[71
[81
[91

Solid State Communications 324 (2021) 114113

Y. Adamov, 1.V. Gornyi, A.D. Mirlin, Interaction effects on magneto-oscillations in
a two-dimensional electron gas, Phys. Rev. B 73 (2006), 045426.

L.D. Landau, E.M. Lifshitz, Quantum Mechanics ( Non-relativistic Theory), Course of
Theoretical Physics, third ed., vol. 3, Pergamon, 1985.

LR. Lapidus, Scattering by two-dimensional circular barrier, hard circle, and delta
function ring potentials, Am. J. Phys. 54 (1986) 459.

[10] K.A. Matveev, Dongxiao Yue, L.I. Glazman, Tunneling in one-dimensional non-

[11]

[12]

[13]

[14]

[15]

Luttinger electron liquid, Phys. Rev. Lett. 71 (1993) 3351.
H. Bateman, A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher
Transcendental Functions, vol. 2, McGraw-Hill, New York, 1955.
D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, G. Weimann,
Electron pinball and commensurate orbits in a periodic array of scatterers, Phys.
Rev. Lett. 66 (1991) 2790.
A. Lorke, J.P. Kotthaus, K. Ploog, Magnetotransport in two-dimensional lateral
superlattices, Phys. Rev. B 44 (1991) 3447(R).
G.M. Gusev, Z.D. Kvon, L.V. Litvin, Yu.V. Nastaushev, A.K. Kalagin, A.I. Toropov,
Magnetoresistance oscillations in a two-dimensional electron gas with a periodic
array of scatterers, J. Phys. Condens. Matter 4 (1992) L269.
G. Berthold, J. Smoliner, V. Rosskopf, E. Gornik, G. Bohm, G. Weimann,
Magnetoresistance and temperature effects in dotlike lateral surface superlattices,
Phys. Rev. B 47 (1993) 10383.


http://refhub.elsevier.com/S0038-1098(20)30611-6/sref1
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref1
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref2
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref2
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref4
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref4
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref4
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref5
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref5
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref6
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref6
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref6
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref7
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref7
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref8
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref8
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref9
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref9
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref10
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref10
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref11
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref11
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref12
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref12
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref12
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref13
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref13
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref14
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref14
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref14
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref15
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref15
http://refhub.elsevier.com/S0038-1098(20)30611-6/sref15

	Scattering of electron from a disk in 2D electron gas: Full cross section, transport cross section, and the interaction cor ...
	1 Introduction
	2 Friedel oscillations from the wall
	2.1 Friedel oscillations from a hard disk

	3 Scattering from hard disk in the absence of interactions
	3.1 Basic relations
	3.2 Classical calculation
	3.3 Quantum calculation
	3.4 Transport cross section in 2D

	4 Incorporating interactions
	5 Concluding remarks
	Author statement
	Declaration of competing interest
	Acknowledgements
	References


