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A B S T R A C T   

It is known that the presence of the Fermi sea modifies the scattering of an electron from a point-like impurity. 
This is due to the Friedel oscillations of the electron density around the impurity. These oscillations create an 
additional scattering potential for incident electrons. The closer the energy of the incident electron to the Fermi 
level, the stronger the additional scattering. We study this effect for the case when the impurity is not point-like 
but rather a hard disk, with a radius much bigger than the de Broglie wavelength. We start with a careful ex
amination of the full and transport cross sections from an extended target. Both cross sections approach their 
limiting values upon increasing the wave vector of the incident electron. We establish that the transport cross 
section saturates much faster than the full cross section. With regard to the interaction correction, we establish 
that it vanishes for the full cross section, while for the transport cross section, it is enhanced compared to the case 
of a point-like scatterer.   

1. Introduction 

The static polarization operator, Π(q), of the 2D electron gas contains 
a singular correction, M

πℏ2(q − 2kF)
1/2, near q = 2kF [1]. Here M is the 

electron mass and kF is the Fermi momentum. This singular behavior 
(Kohn anomaly) translates into the interaction corrections to the ther
modynamic characteristics of the 2D gas [2], such as effective mass. 
These corrections exhibit singular behavior as a function of temperature, 
T. Transport characteristics of the 2D gas, such as conductivity, also 
acquire singular interaction corrections in the ballistic regime, Tτ ≫ 1, 
where τ is the scattering time. In this regime, multiple scattering of 
electrons by the impurities can be neglected, while modification of the 
potential of individual impurities due to the Kohn anomaly [4] yields a 
correction to the scattering cross section proportional to T. This mech
anism of the anomalous temperature dependence was pointed out in 
Ref. [4]. It was subsequently elaborated upon in Refs. [5–7]. Consider
ation of Refs. [5–7] led to the following lucid prescription for incorpo
rating electron-electron interactions into the calculation of transport. 

An impurity potential, Uimp(r), causes a perturbation of the electron 
density 

n(r) − n0 = −ν0
sin(2kFr)

2πr2

∫

dr Uimp(r), (1)  

around it. Here ν0 = M
πℏ2 is the density of states. The Friedel oscillations 

Eq. (1) translate into an additional scattering potential for incident 
electrons. The correction to the scattering amplitude due to this poten
tial depends dramatically on the energy, ϵ, of the incident electron 
measured from the Fermi level, EF. Perturbative calculation of this 
correction [6] indicates that it is maximal within the angular interval ∼

|| ϵ
EF

− 11/2 near the backscattering condition. The relative magnitude of 

this correction is also ∼ ϵ
EF

− 11/2. Thus, for a typical value |ϵ − EF| ~ T, 

the relative interaction correction to the net scattering cross section can 
be estimated as T

EF
. 

The calculations in Refs. [5–7] were carried out for point-like scat
terers. Namely, it was assumed that their size is much smaller than the 
de Broglie wave length, 2π

kF
. In the present paper, we extend the theory 

[5–7] to the scatterers of an arbitrary size, a. For this purpose, we first 
analyze the Friedel oscillations from the disk and also study the behavior 
of the full and transport cross sections from the disk in the absence of 
interactions. Then we incorporate interactions and study corresponding 
corrections to these cross sections. 
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2. Friedel oscillations from the wall 

In terms of formation of the Friedel oscillations, at small distances, (r 
− a) ≪ a, the scatterer can be viewed as a hard wall. Then the electron 
density does not depend on a. To calculate this density it is sufficient to 
substitute into the definition 

n(r) =
∑

k
Θ

(

EF −
ℏ2k2

2M

)⃒
⃒
⃒
⃒Ψk(r)|

2
, (2)  

the wave functions, Ψk = eikyysin kxx, which turn to zero at the wall. 
Here Θ(z) is a step-function. Performing the integration over the com
ponents of the wave vector, we obtain 

n(x) − n0 = −n0
J1(2kFx)

kFx
, (3)  

where J1(z) is the first-order Bessel function. These oscillations are 
shown in Fig. 1. The concentration is zero at x = 0. At large distances, 
kFx ≫ 1, the relative correction to the density is small and falls off as 
(kFx)

−3/2, which is intermediate between (kFx)
−2 in 2D and (kFx)

−1 in 
1D. 

2.1. Friedel oscillations from a hard disk 

To calculate the radial dependence of the electron density, 

n(r)∝
∑

k,m
Θ

(

EF −
ℏ2k2

2M

)[
R(0)

m,k(r)
]2

, (4)  

we use the semiclassical form of the eigenfunctions 

R(0)

m,k(r) =

sin

[
∫r

a
dr′

(

k2 −
m2−1/4

r′ 2

)1/2
]

(

k2r2 − m2 + 1
4

)1/4 . (5)  

The oscillating part of n(r) is determined by the states with energies 
close to the Fermi level, i.e. with k close to kF. This allows to expand the 
argument of sine in R(0)

m,k with respect to δk = k − kF as follows 

⎛

⎜
⎝k2 −

m2 − 1
4

r′2

⎞

⎟
⎠

1/2

=

⎛

⎜
⎝k2

F −
m2 − 1

4
r′2

⎞

⎟
⎠

1/2

−
kFδk

⎛

⎜
⎝k2

F −
m2 − 1

4
r′2

⎞

⎟
⎠

1/2.
(6)  

It is also sufficient to set k = kF in the prefactor of R(0)

m,k. Then the inte
gration over δk yields 

∑∞

m=−∞

{

1 +

(
k2

Fa2 − m2

k2
Fr2 − m2

)1/2 }

×

sin

[

2
∫r

a
dr′

(

k2
F −

m2

r′2

)1/2
⎤

⎦

k2
F

(
r2 − a2) .

(7) 

The expansion Eq. (6) is justified for δk ≪ kF. On the other hand, 
characteristic δk in the integration is δk ∼ (r − a)

−1. Thus, the result Eq. 
(7) applies for distances (r − a)≫k−1

F . This result describes the oscil
lating part of n(r) within a numerical factor. 

As we will see later, the main contribution to the sum Eq. (7) comes 
from large momenta, m ≫ 1, but still with m ≪ ka. In this domain, one 
can expand the integrand in Eq. (7) and perform the integration over dr′, 
which yields 

∫r

a

dr′

(

k2
F −

m2

r′2

)1/2

≈ kF(r − a) −
m2

2kF

(
1
a

−
1
r

)

(8)  

We see that the condition m ≪ kFa ensures that the second term in Eq. (8) 
is much smaller than the first term. On the other hand, the second term 

in Eq. (8) defines characteristic m ∼

(
kFar
r−a

)1/2
. This value is smaller than 

kFa under the condition (r − a)≫k−1
F , which we have already assumed to 

be met. Still, this value is much bigger than one, which allows us to 
replace the summation over m by the integration. The final result for the 
oscillating part of n(r) reads 

δn(r)

n0
= −

(
32ar

π

)1/2( 1
r + a

) sin
[
2kF(r − a) − π

4

]

[2kF(r − a)]
3/2 . (9)  

In Eq. (9) we have restored the numerical factor. In the domain 
k−1

F ≪(r − a)≪a, Eq. (9) reproduces the Friedel oscillations Eq. (3) from 
a hard wall, while for (r − a) ≫ a the oscillations fall off as 1/r2 like for a 
point-like impurity. 

3. Scattering from hard disk in the absence of interactions 

3.1. Basic relations 

The general expression for the scattering cross section reads 
Fig. 1. (a) blue curve: Friedel oscillations from the wall are plotted from Eq. 
(3); yellow curve: Friedel oscillations from the disk are plotted from Eq. (9) for 
kFa = 3. (b) same dependencies as in (a) are plotted for large values of 2kFx. 
Oscillations from the disk fall of faster than the oscillations from the wall. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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σ =

∫2π

0

dϕ|f (ϕ)|
2
, (10)  

where f(ϕ) is the scattering amplitude. It is related to the scattering 
phases, δ(0)

m , as follows [8] 

f (ϕ) =
1

(2πik)
1/2

∑∞

m=−∞

(
e2iδ(0)

m − 1
)

eimϕ. (11)  

Scattering phases are determined by the long-distance behavior of the 
radial wave functions 

Rm,k(r)r→∞∝
1

r1/2 cos
(

kr −
mπ
2

−
π
4

+ δ(0)
m

)
, (12)  

where k = 1
ℏ(2mE)

1/2 is the wave vector. Performing the angular inte
gration, one recovers the textbook result [8] 

σ =
4
k

∑∞

m=−∞
sin2δ(0)

m . (13)  

The quantity that enters the conductivity is not σ but the transport cross 
section defined as 

σtr =

∫2π

0

dϕ(1 − cos ϕ)|f (ϕ)|
2
. (14)  

Substituting Eq. (11) into Eq. (14) and integrating over ϕ, one obtains 

σtr =
2
k

∑∞

m=−∞
sin2(

δ(0)
m − δ(0)

m+1
)

(15)  

3.2. Classical calculation 

Within a classical picture, a particle incident on the disk with impact 
parameter, b < a, is reflected from the boundary, see Fig. 2. The scat
tering angle, θ, is related to b as 

b(θ) = −acos
(θ

2

)
(16)  

Substituting Eq. (16) into the definitions of the full and transport cross 

sections 

σ =

∫2π

0

dθ||
∂b
∂θ

, σtr =

∫2π

0

dθ(1 − cos θ)||
∂b
∂θ

, (17)  

we get 

σ =
a
2

∫2π

0

dθsin
(θ

2

)
= 2a,

σtr =
a
2

∫2π

0

dθ(1 − cos θ)sin
(θ

2

)
=

8
3

a.

(18)  

The above calculation suggests that the classical cross section is equal to 
the diameter of the disk. Although this diameter is much bigger than the 
de Broglie wave length, the result obtained neglecting the diffraction 
effects is not supported by the quantum calculation. 

3.3. Quantum calculation 

For a hard disk of a radius, a, the form of the radial wave function at r 
> a is the linear combination 

Rm,k(r) = cos δmJm(kr) + sin δmNm(kr), (19)  

of the Bessel and the Neumann functions, Jm(z) and Nm(z), which are the 
free solutions of the Schrödinger equation. Then the exact expression for 
the phases, δm, which follows from the condition Rm,k(a) = 0, reads 

sin2δ(0)
m =

J2
m(ka)

J2
m(ka) + N2

m(ka)
. (20) 

At small ka ≪ 1 the sum Eq. (13) is dominated by the first term for 
which J0(ka) ≈ 1 and N0(ka) ≈ 2

π ln(ka). Then Eq. (13) takes the form 

σ
4aka≪1

≈
π2

4kaln2(ka)
. (21)  

The right-hand side has a minimum at ka ≈ 0.25. At this ka the terms 
with higher m in Eq. (13) are important, leading to the decay of σ with 
energy. Still, the minimum in m = 0 term manifests itself as a shallow 
minimum in the derivative dσ

d(ka)
, as illustrated by the numerical calcu

lation, see Fig. 3. 
Upon increasing energy the fall off of the cross section saturates at 

σ
4a ≈ 1, which corresponds to replacement of sin2δm by 1/2 for m < ka 
and by zero for m > ka. This value exceeds twice the classical result Eq. 
(18), which is a well-known effect in 3D, see e.g. Ref. [8]. 

Next we will study the quantum correction to the scattering cross 
section, which determines the law of approach of σ to the saturation 
value in the limit ka ≫ 1. The main point is that this approach is 
dominated by a narrow domain of momenta (ka − m)≪ka. To capture 
the quantum correction analytically, we infer the expression for the 
phases by comparing the semiclassical form Eq. (5) of the radial wave 
functions to the asymptote Eq. (12). The integral in the argument of sine 
can be evaluated analytically 

Im =
∫r

a

(

k2 −
m2

r′ 2

)1/2

dr′

=
(
k2r2 − m2)1/2

−
(
k2a2 − m2)1/2

−marctan

[(
kr
m

)2

− 1

]1/2

+ marctan

[(
ka
m

)2

− 1

]1/2

.

(22)  

Taking the limit r → ∞ we obtain Fig. 2. A schematic of classical hard-disk scattering. A particle with impact 
parameter b incident on a target with radius a. The scattering angle θ is related 
to the impact parameter b through Eq. (16). 
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Im ≈ kr −
mπ
2

−
[
k2a2 − m2]1/2

+marctan

[(
ka
m

)2

− 1

]1/2

.

(23)  

With this Im, the semiclassical expression Eq. (5) matches the asymptote 
Eq. (12) for the following choice of the scattering phases 

3π
4

− δ(0)
m = m

⎧
⎨

⎩

[(
ka
m

)2

− 1

]1/2

− arctan

[(
ka
m

)2

− 1

]1/2
⎫
⎬

⎭
(24)  

In the domain (ka − m)≪ka the argument of arctangent is small, which 
allows to use the expansion z − arctan z = 1

3z
3, after which Eq. (24) 

simplifies to 

3π
4

− δ(0)
m ≈

(2m1)
3/2

3(ka)
1/2 , (25)  

where m1 = ka − m characterizes the proximity of angular momentum to 
ka. From here we get 

sin2δ(0)
m =

1
2

+
1
2

sin
[

2(2m1)
3/2

3(ka)
1/2

]

. (26)  

The argument of sine defines the characteristic m1 ~ (ka)1/3, which is 
much smaller than ka, as was assumed above. On the other hand, in the 
domain ka ≫ 1, this characteristic value is much bigger than 1, which 
allows one to replace the summation over m1 by integration. This yields 

σ
4a

− 1 =
∫∞

0

dm1

ka
sin

[
2(2m1)

3/2

3(ka)
1/2

]

=
1
2

(
2

3k2a2

)1/3∫∞

0

dzsin z
z1/3

=
π

Γ(
1
3

)

1
121/3

1
(ka)

2/3 =
α

(ka)
2/3,

(27)  

where α = π
Γ(1

3)
1

121/3 ≈ 0.51. 

The right-hand side of Eq. (27) is the amount by which the cross 
section at finite energy exceeds the limiting value, σ = 4a. 

3.4. Transport cross section in 2D 

The contribution to σ and to σtr from big momenta, |m| > ka, is 
exponentially small. For |m| ≪ ka the asymptotic expression for the 
phases is [9] 

δ(0)
m = −arctan

(
Jm(ka)

Nm(ka)

)

≈ ka −
π
2

(m + 1) −
π
4

. (28)  

A more general expression for δ(0)
m which is valid for all m smaller than ka 

can be inferred from the semiclassical expression Eq. (5) by calculating 
the integral in the argument of sine explicitly. This yields 

δ(0)
m =

[
(ka)

2
− m2 ]1/2

− marctan

[(
ka
m

)2

− 1

]1/2

+
3π
4

. (29)  

In calculating the full cross section it is sufficient to replace sin2δ(0)
m by 1/ 

2 in all 2ka + 1 terms in Eq. (13) for which the phase is big. Upon doing 
so, the standard result [9] 

σ ≈ 4a, (30)  

is reproduced. As in the 3D case [8], the result Eq. (30) does not contain 
the wavelength of the incident electron. Still, the full cross section 

Fig. 3. Full scattering cross section is calculated numerically from Eqs. (13) and 
(20). In (a), the approach to the asymptotic value σ = 4a is shown. In (b), the 
log-log plot of σ(ka) calculated numerically (blue curve) is compared to the 
theoretical prediction Eq. (27) (yellow curve). In (c), the slope dσ

dln ka is plotted 
versus ka. In agreement with theory, Eq. (27) the slope approaches 2/3 at large 
ka. The minimum at ka ≈ 0.2 originates from m = 0 term, Eq. (21). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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exceeds twice the geometric cross section. 
The calculation of the transport cross section is a more delicate task, 

since the difference δ(0)
m − δ(0)

m+1 is a slow function of m. Indeed, from Eq. 
(29) we get 

δ(0)
m − δ(0)

m+1 ≈ −
∂δ(0)

m

∂m
= arctan

(
k2a2

m2 − 1
)1/2

. (31)  

From the above relation we find 

sin2(
δ(0)

m − δ(0)

m+1
)

≈ 1 −
(m

ka

)2
. (32)  

Then the summation over m leads to the following result for the trans
port scattering cross section 

σtr ≈
8
3

a. (33)  

Unlike the full cross section, this result coincides with the transport cross 
section calculated classically. To study the quantum correction to σtr, we 
express the difference δ(0)

m − δ(0)

m+1 in terms of the Bessel functions. This 
yields 

σtr

4a
=

1
2ka

∑∞

m=−∞
sin2(

δ(0)
m − δ(0)

m+1
)

=
1

2ka
∑∞

m=−∞

[Jm(ka)Nm+1(ka) − Nm(ka)Jm+1(ka)]
2

[
J2

m(ka) + N2
m(ka)

][
J2

m+1(ka) + N2
m+1(ka)

].

(34)  

The numerator of Eq. (34) can be greatly simplified upon using the 
relation [11] 

Jm(ka)Nm+1(ka) − Nm(ka)Jm+1(ka) = −
2

πka
. (35)  

With this simplification Eq. (34) assumes the form 

σtr

4a
=

4
π2(ka)

3

×
∑∞

m=0

(
1

[
J2

m(ka) + N2
m(ka)

][
J2

m+1(ka) + N2
m+1(ka)

]

)

.

(36)  

The brackets in the denominator can be analyzed using the integral 
representation [11] 

J2
m(ka) + N2

m(ka)

=
8
π2

∫∞

0

cosh(2mt)K0(2kasinh t)dt,
(37)  

where K0(z) is the Macdonald function. Since the product ka is big, the 
integral is dominated by small t ≪ 1, which allows to replace sinh t by t. 
To perform the integration over t it is convenient to use the following 
representation of the Macdonald function 

K0(2kat) =

∫∞

1

ds
(s2 − 1)

1/2 exp(−2kats). (38)  

Substituting Eq. (38) into Eq. (37) and integrating over t, we get 

J2
m(ka) + N2

m(ka) =
4

π2ka

∫∞

1

dss

(s2 − 1)
1/2

[

s2 −
(

m
ka

)2
]. (39)  

Now the evaluation of the integral is elementary and is achieved by the 
substitution s = (1 + u2)

1/2. The result reads 

J2
m(ka) + N2

m(ka) =
2

πka
(

1 − m2

k2a2

)1/2. (40)  

This result applies for m < ka. For m > ka the integral Eq. (39) is zero. 
Using the relation Eq. (40), the expression Eq. (36) for the transport 
cross section can be cast in the form 

σtr

4a
=

1
ka

∑∞

m=0

(

1 −
m2

k2a2

)1/2(

1 −
(m + 1)

2

k2a2

)1/2

. (41)  

If we neglect the difference between (m + 1) and m in the second 

bracket, the product of the brackets will reduce to 
(

1 − m2

k2a2

)

. Then the 

summation over m will reproduce the result Eq. (33). Thus, the quantum 
correction to the transport cross section is due to the difference between 
the first and second brackets. To account for this difference we expand 
the second bracket as follows 

(

1 −
(m + 1)

2

k2a2

)1/2

≈

(

1 −
m2

k2a2

)1/2

−
m

k2a2
(

1 −
m2

k2a2

)1/2.

(42)  

Substituting this expansion into Eq. (41) and performing summation 
over m, we arrive to the corrected expression for σtr 

σtr

4a
=

2
3

−
1

2ka
. (43)  

We see that the correction is negative suggesting that the approach of σtr 
to the limiting value is “from below”. This is the result of the expansion 
Eq. (42) underestimating the m = 0 term. Incorporating this term 
explicitly, we obtain 

σtr

4a
=

2
3

−
1

2ka

+
4

π2(ka)
3[

J2
0(ka) + N2

0(ka)
][

J2
1(ka) + N2

1(ka)
].

(44)  

As seen in Fig. 4, Eq. (44) leads to the approach of σtr to the limiting 
value “from above” for ka > 1. Moreover, it reproduces correctly the 
result of numerical calculation. 

4. Incorporating interactions 

We will follow a transparent procedure of incorporating the in
teractions which was put forward in Ref. [5] for the interaction 
correction to the density of states and then adopted in Refs. [6,7] for the 
interaction correction to the conductivity. The main message of Ref. [5], 
see also Ref. [10], is that Friedel oscillations of the electron density 
translate into the oscillating Hartree potential 

VH(r) =

∫

dr′

V(r − r′

)δn(r′

). (45)  

Here V(r − r′

) is the screened electron-electron interaction potential. 
Additional scattering of the incident electron from the potential VH(r) 
modifies the scattering phases δ(m)

m . In order to calculate the corre
sponding corrections to the phases, we employ the procedure described 
e.g. in Ref. [8]. 

As a first step, instead of the wave function R(0)

m,k(r), we introduce an 

auxiliary function χ(0)

m,k(r) defined as 
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R(0)

m,k(r) =
χ(0)

m,k(r)

(kr)
1/2. (46)  

The function χ(0)

m,k satisfies the equation 

d2

dr2χ(0)

m,k +

⎡

⎢
⎢
⎣k2 −

(

m2 − 1
4

)

r2

⎤

⎥
⎥
⎦χ(0)

m,k = 0. (47)  

In the presence of interactions, the potential VH(r) adds to the centrifugal 
potential, so that Eq. (47) assumes the form 

d2

dr2χm,k +

⎡

⎢
⎢
⎣k2 + VH(r) −

(

m2 − 1
4

)

r2

⎤

⎥
⎥
⎦χm,k = 0. (48)  

Multiplying Eq. (47) by χm,k(r) and Eq. (48) by χ(0)

m,k(r) and subtracting, 
we arrive to the relation 

d
dr

[dχm,k

dr
χ(0)

m,k −
dχ(0)

m,k

dr
χm,k

]

= −VHχ(0)

m,kχm,k. (49)  

This relation allows to find the interaction-induced correction to the 
scattering phase. Since this correction is small, the product χ(0)

m,kχm,k in 

the right-hand side can be replaced by 
(

χ(0)

m,k

)2
. Then the integration of 

Eq. (49) from a to ∞ yields 

Δδm = −

∫∞

a

dr VH(r)
(

χ(0)

m,k

)2
. (50)  

The correction Δδm to the scattering phases give rise to the following 
interaction corrections to the full and to the transport scattering cross 
sections 

δσ =
4
k

∑

m
sin

(
2δ(0)

m

)
Δδm, (51)  

δσtr =
2
k

∑

m
sin

[
2

(
δ(0)

m − δ(0)

m+1
) ]

(Δδm − Δδm+1). (52) 

Next the factors sin 2δ(0)
m and sin 2

(
δ(0)

m − δ(0)

m+1
)

can be expressed in 
terms of the Bessel functions 

sin 2δ(0)
m =

2Jm(ka)Nm(ka)

J2
m(ka) + N2

m(ka)
, (53)  

sin 2
(
δ(0)

m − δ(0)

m+1
)

=
Jm(ka)Nm+1(ka) − Nm(ka)Jm+1(ka)

J2
m(ka) + N2

m(ka)

×
Nm(ka)Nm+1(ka) + Jm(ka)Jm+1(ka)

J2
m+1(ka) + N2

m+1(ka)
.

(54)  

Using the fact that ka ≫ 1 we can simplify the expressions for δσ and δσtr 
as follows 

δσ = −
8cos(2ka)

k
∑ka

m=0
( − 1)

mΔδm, (55)  

δσtr =
8
k

∑ka

m=0

m
ka

[

1 −
(m

ka

)2
]1/2

(Δδm − Δδm+1). (56)  

We see that the two expressions are very different. Since Δδm is a smooth 
function of m, the terms in Eq. (55) cancel out. The same smoothness of 
Δδm allows to replace the sum over m in Eq. (56) by the integral 

δσtr = −
8
k

∫ka

0

dm
(m

ka

)[

1 −
(m

ka

)2
]1/2∂Δδm

∂m
. (57)  

Next we argue that relevant values of m are much smaller than ka. This 
allows to replace the square bracket by 1 and transform Eq. (57) by 
parts. This yields 

δσtr =
8

k2a

∫∞

0

dm(Δδm). (58) 

To analyze the dependence of Δδm given by Eq. (50) on the wave 
vector, k, of the incident electron we recall that the potential, VH(r), is 
proportional to electron density given by Eq. (4). To pinpoint the origin 
of the anomaly at k = kF it is more convenient to study the derivative 
∂Δδm
∂kF

. Within a factor, this derivative is given by 

∂Δδm

∂kF
∝

∫∞

a

dr
[
rR2

m,k(r)
]∑

m′

R2
m′

,kF
(r). (59)  

From the semiclassical form of the radial wave function Eq. (5) we 
conclude that the product R2

m,k(r)R2
m′

,kF
(r) contains a slow part 

Fig. 4. The transport cross section in two dimensions is calculated numerically 
from Eq. (36). In (a), the approach to the asymptotic value of 8a/3 is shown. In 
(b), a plot of the different contributions to the sum in Eq. (36). The blue dots 
represent the contribution from the terms with m ≥ 1. The yellow dots represent 
the m = 0 term. The green dots are the sum of the blue and yellow. The red 
curve is a plot of Eq. (44) and is a good approximation for ka > 1. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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cos 2

{
∫r

a
dr′

[(

k2 − m2

r2

)1/2

−

(

k2
F − m′ 2

r2

)1/2
]}

(

k2r2 − m2

r2

)1/2(
k2

Fr2 − m′2
)1/2

. (60)  

Since we assumed that m and m′ are both much smaller than ka, the 
above expression can be simplified as follows 

cos 2
[(

k − kF)(r − a) − m2−m′ 2

2k

(
1
a − 1

r

)]

k2
Fr2

. (61)  

It is natural to measure the radial coordinate, r, from r = a. Combining 
Eqs. (58), (59) and (61), we arrive to the following expression for the 
derivative of δσtr with respect to kF 

∂δσtr

∂kF
∝

∫∞

0

dm
∫∞

0

dm′

∫∞

0

dρ
ρ + a

cos 2
[(

k − kF) −
m2 − m′2

2ka(ρ + a)

]

ρ. (62)  

We can now perform the integration over m and m′ explicitly. This yields 

∂δσtr

∂kF
∝2πka

∫∞

0

dρ
ρ cos 2[(k − kF)ρ ] (63)  

Since the expression for the Friedel oscillations applies for ρ = (r − a)≫ 
k−1

F , the lower limit in the integral should be chosen to be ρ ∼ k−1
F . Thus, 

we arrive to the final result 

∂δσtr

∂kF
∝ln

(
kF

k − kF

)

= ln
(

EF

ϵ

)

. (64)  

From Eq. (64) we conclude that the interaction correction to the trans

port cross section has the form δσtr∝ϵln
(

EF
ϵ

)

. Recall, that for point-like 

impurity [6] the interaction correction has the form δσtr ∝ ϵ. Thus, the 
enhancement of the interaction correction in the case of scattering from 
the disk amounts to the logarithmic factor. This enhancement translates 
to the temperature dependence correction to the conductivity propor
tional to T ln T as compared to T for the point-like impurities. 

5. Concluding remarks  

(i) In Fig. 5 the numerical results for the full and transport scattering 
cross sections are presented in log-log scale. It is apparent that σ 
and σtr approach their limiting values σ = 4a and σtr = 8

3 a, 
respectively, at very different rates. Naturally, at small ka ≪ 1 
both cross sections coincide. However, at large ka, the transport 
cross section saturates much faster than the full cross section. On 
the contrary, we have demonstrated that while the interaction 
correction to σtr is a singular function of k − kF, the interaction 
correction to σ vanishes.  

(ii) Integration over momenta m and m′ in Eq. (62) leads to the slow 
energy dependence of the correction ∂δσtr

∂kF
. Note, that this inte

gration misses a contribution from the terms m = m′, which is the 
consequence of the discreteness of the angular momentum. This 
contribution is comparable to the main contribution Eq. (64) for 
the following reason. In integration, the characteristic values of m 
and m′ are ~(ka)1/2, while the number of terms with m = m′ is 
~ka. On the other hand, the contribution of these terms possesses 
a sharp energy dependence. This contribution can be cast in the 
form 

∂δσ̃tr

∂kF
∝

∫∞

0

dzcos z
z + 2(k − kF)a

=

∫∞

0

dzsin z
[z + 2(k − kF)a]

2. (65)  

Eq. (65) yields a narrow peak of a width (k − kF) ∼ a−1 and the 
corresponding energy scale ϵ ∼ EF

ka. At large (k − kF)a≫1 the correc
tion Eq. (65) falls off as 1

4(k−kF)
2a2. Note also, that the correction Eq. 

(65) originates from the specific behavior of the Friedel oscillations 
Eq. (9) from the disk as compared to the Friedel oscillations from the 
point impurity. It thus contains the disk radius, a. Upon integrating 
Eq. (65), we get the following shape of the peak in the transport cross 
section 

δσ̃tr∝
∫∞

0

dzsin z
z + 2(k − kF)a

. (66)  

The missing prefactor in Eq. (66) contains the product of the 
electron-electron interaction constant [6] and the density of states, 
ν0. The first factor originates from the proportionality between VH(r) 
and δn(r) in Eq. (50), while the second factor comes from the sum in 
Eq. (59), which emerges upon taking the derivative with respect to 
kF.  

(iii) We emphasize the difference between the interaction corrections 
for the cases of a point-like impurity and of a big disk with ka ≫ 1. 
For a point-like impurity [6], the corrections to the full and to the 
transport scattering cross sections are related as δσtr = 2δσ. This 
can also be seen from Eq. (50). For ka ≪ 1, the correction, Δδ0, is 
much bigger than Δδm for m ∕= 0. By contrast, for ka ≫ 1, the 
correction, δσ, is small in parameter 1

ka.  
(iv) Experimentally, the situation considered in the present paper is 

naturally realized in the arrays of antidots, see e.g. Refs. [12–15]. 
In these experiments, the characteristic radius of antidote is a ~ 
200 nm, while the typical electron density is 2 × 1011 cm−2. This 
corresponds to the product kFa ≈ 2.5. 
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