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ABSTRACT

In modern Machine Learning, model training is an iterative, experi-
mental process that can consume enormous computation resources
and developer time. To aid in that process, experienced model de-
velopers log and visualize program variables during training runs.
Exhaustive logging of all variables is infeasible, so developers are
left to choose between slowing down training via extensive conser-
vative logging, or letting training run fast via minimalist optimistic
logging that may omit key information. As a compromise, optimistic
logging can be accompanied by program checkpoints; this allows
developers to add log statements post-hoc, and “replay” desired
log statements from checkpoint—a process we refer to as hindsight
logging. Unfortunately, hindsight logging raises tricky problems in
data management and software engineering. Done poorly, hindsight
logging can waste resources and generate technical debt embodied
in multiple variants of training code.

In this paper, we present methodologies for efficient and effective
logging practices for model training, with a focus on techniques for
hindsight logging. Our goal is for experienced model developers to
learn and adopt these practices. To make this easier, we provide an
open-source suite of tools for Fast Low-Overhead Recovery (flor)
that embodies our design across three tasks: (i) efficient background
logging in Python, (ii) adaptable periodic checkpointing, and (iii) an
instrumentation library that codifies hindsight logging for efficient
and automatic record-replay of model-training. Model developers
can use each flor tool separately as they see fit, or they can use
flor in hands-free mode, entrusting it to instrument their code
end-to-end for efficient record-replay. Our solutions leverage tech-
niques from physiological transaction logs and recovery in database
systems. Evaluations on modern ML benchmarks demonstrate that
flor can produce fast checkpointing with small user-specifiable
overheads (e.g. 7%), and still provide hindsight log replay times
orders of magnitude faster than restarting training from scratch.
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1 INTRODUCTION

Due to the growing scale and complexity of sophisticated mod-
els [14, 44, 56], exploratory model development increasingly poses
data management problems [53]. At every step of exploration,
model developers routinely track and visualize time series data
to diagnose common training problems such as exploding/vanish-
ing gradients [20], dead ReLUs [33], and reward hacking [6]. Model
developers use state-of-the-art loggers specialized to machine learn-
ing (e.g. TensorBoard [17], and WandB [1]) to efficiently trace and
visualize data as it changes over time. The following are common
examples of times series data logged in model training:

e Training Metrics: The loss, accuracy, learning rate, and
other metrics as they change over time.

o Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

e Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

In our experience, all model developers log some training metrics
by default. Whether their logging practice is characteristically con-
servative or optimistic depends on whether they log additional
training data by default. Next, we will illustrate the relevant differ-
ences between conservative and optimistic logging, by introducing
three archetypal characters: Mike for methodical conservative log-
ging, Chuck for ad-hoc optimistic logging, and Judy for methodical
optimistic logging.

1.1 Conservative Logging

Conservative logging is eager and characterized by stable expec-
tations about what data (and how much of it) will be necessary
for analysis [64]. It is especially well-suited to later stages of the
machine learning lifecycle, where models are periodically trained
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Figure 1: Conservative v. Optimistic logging performance at
100 epochs of Squeezenet on CIFAR-100 [24]. All workloads
log tensor histograms for the activations, weights, and gra-
dients 4X per epoch. Gray horizontal line corresponds to the
same training job but without any logging. Both, the purple
histogram (conservative) and purple line (optimistic) corre-
spond to flor logging.

for many hours on fresh data [55], and refinements of the model
training pipeline are usually light and limited to hyper-parameter
tuning [16].

1.1.1  Mike records everything (mnemonic for microphone). Mike
is a model developer for a major tech company. His organization’s
policy is that model developers should log training metrics, tensor
histograms, and some images and overlays by default. Although his
logging practices can add substantial overhead to training (black
bar in Figure 1), his jobs usually run as offline batches, and his
productivity is not blocked on the results of training. Moreover,
when he receives an alert from the training or monitoring system,
the execution data he needs for post-hoc analysis will be ready.

Although reducing logging overhead is not a high priority for
Mike, he is not the only developer in his organization using high-
end GPU clusters. At scale, even minor improvements to training
efficiency will translate into measurable benefits for the organiza-
tion. Later in this paper, we will present a tool for low-overhead
materialization in the background (Section 3.1). Our tool en-
ables Mike to continue to log data at the same rate and with his
logger of choice (e.g. tensorboardx), at a fraction of the original
overhead (purple bar in Figure 1).

1.2 Optimistic Logging

In contrast to conservative logging, optimistic logging is an agile
and lazy practice especially well-suited to early and unstructured
stages of exploratory model development. In optimistic logging,
model developers log training metrics such as the loss and accuracy
by default, and defer collection of additional data until analysis time,
when they may restore it selectively. Execution data is restored by
adding logging statements to training post-hoc, and replaying—
possibly from checkpoint. We refer to this practice as hindsight
logging. Optimistic logging consists of (i) logging some training
metrics by default, and (ii) selectively restoring additional training
data post-hoc with hindsight logging.

Model developers gain agility in exploration from optimistic
logging in three ways:

e Deferred Overhead: Each training batch executes and pro-
duces results as quickly as possible. Exploration time is finite,
and the more alternatives a model developer can explore, the
better.

e Flexible Cost Schedule: Model developers can selectively
restore just the data they need post-hoc. The fewer epochs
they need to probe; the fewer resources they burn.

e Separation of Concerns: Concerns about what data to log
and how much of it do not burden the developer during
design and tuning. These considerations are postponed until
analysis time.

In the fast path of the common case, model developers get all the
relevant information from the training loss, and move on. In excep-
tional cases, however, training replay may be necessary for post-hoc
data restoration.

1.2.1  Chuck doesn’t record anything (mnemonic for toss). Chuck
is a first year graduate student in Astronomy who is knowledgeable
about the latest developments in machine learning, but ill-versed
in software engineering practices. Chuck logs the training loss and
accuracy by default, but does not save checkpoints during training.

1.2.2  Judy uses good judgment (mnemonic for judge). Judy is an
experienced model developer with a strong software engineering
background. Like Chuck, Judy only logs the training loss and accu-
racy by default; additionally, she checkpoints training periodically,
and manages the numerous versions of her code, data, and check-
points.

When either Chuck or Judy need to restore training data post-
hoc—say, the tensor histograms for the gradients at a rate of 4X per
epoch—they will selectively add the necessary logging statements
to their training code, and re-train. In many cases, Chuck and Judy
will only want to restore data for a small fraction of training (e.g. 25%
of the epochs), near the region where the loss exhibits an anomaly
(e.g. near the middle of training). Because Judy checkpointed her
training execution, she is able to resume training at an arbitrary
epoch. Chuck, on the other hand, must retrain from the start. In
the right pane of Figure 1, we plot training plus replay times for
Chuck (blue line) and Judy (green line).

In this paper, we will concretely define the methodology that
enables Judy to achieve effective record-replay of model training
(Section 2). Our goal is for experienced model developers to learn
and adopt these best practices, for their numerous benefits. One
surprising consequence of Judy’s approach is that she can paral-
lelize replay of model training with her periodic checkpoints
(Section 2.2). The purple line in Figure 1 represents Judy’s parallel
replay.

Additionally, we evaluate (Section 4) and open-source [15] our
Fast Low-Overhead Recovery suite (abbreviated as flor) for hind-
sight logging—with the following set of tools:

e An optimized materialization library for low-overhead log-
ging and checkpointing in Python (Section 3.1).

e An adaptable periodic checkpointing mechanism to control
record overhead, so it never exceeds a user-specifiable limit
(Section 3.2).



e An instrumentation library that can transparently transform
Python training code to conform with the methodical hind-
sight logging approach (Section 3.3). This protects model
developers from incurring technical debt as a consequence
of lapses in discipline, and enables novices to restore time
series data as efficiently as experts.

Model developers may use each flor tool separately as they see
fit, or they may use flor in hands-free mode, entrusting it to in-
strument their code end-to-end for efficient record-replay.

2 METHODICAL HINDSIGHT LOGGING

In hindsight logging, model developers can choose what to log long
after model training: at analysis time and with a question in mind. In
essence, we want to query past execution state, without versioning
that state in full. We draw inspiration from the rich body of work in
databases dedicated to fast recovery [39, 62, 67]. Although that work
focuses mostly on transactions, the lessons and trade-offs transfer
naturally to execution recovery for arbitrary programs. There are
two means for recovering execution data: physically, by reading it
from disk; and logically, by recomputing it. Both a purely physical
approach and a purely logical approach are unattractive in our set-
ting, due to prohibitive overhead on record and prohibitive latency
on replay, respectively. Instead, hindsight logging—like transac-
tion logging—embraces a hybrid “physiological” [18] approach that
takes partial checkpoints on the first pass (henceforth the record
phase), and uses those checkpoints to speedup redo (henceforth
the replay phase).

In this section, we give a high-level overview of the enabling
methodology behind efficient hindsight logging:

(1) First and foremost, checkpoint periodically during train-
ing. At least once per epoch for partial replay, but much less
frequently is sufficient for parallel replay.

(2) Additionally, enclose long-running code inside a condi-
tional statement to exploit memoization speedups. On
record, the execution materializes the side-effects of each
memoized block. On replay, model developers will run their
code from the beginning without modification, and the ex-
ecution will intelligently skip the recomputation of some
blocks by loading their side-effects from memoization stor-
age.

(3) Finally, include logic to resume training from a check-
point. Replay of model training is embarrassingly parallel
given periodic checkpoints. To parallelize replay of model
training, a model developer dispatches multiple training jobs
in parallel, each loading checkpoints to resume training from
a different epoch and terminating early.

If at any point through our forthcoming discussion the program-
ming burden seems too high, the reader should note that we also
provide a tool that codifies and automatically applies these methods
for the benefit of the user: an instrumentation library that features
a hands-free mode for convenience and robustness (Section 3.3).

2.1 Periodic Checkpointing & Memoization

Many model developers already checkpoint training periodically.
This is traditionally done for warm-starting training as well as for
fault tolerance. In this section, we show how to exploit further

init_globals ()

checkpoint_resume (args, (net, optimizer))
for epoch in range(args.start,
if skipblock.step_into (...):
for batch in training_data:
net (batch .X)

loss(predictions ,

args.stop):

predictions =
avg_loss = batch.y)
avg_loss.backward ()
optimizer.step ()
skipblock .end(net, optimizer)
evaluate (net, test_data)
Figure 2: Training script prepared for methodical hindsight
logging: checkpoint resume (line 2), block memoization
(lines 4 - 10), and periodic checkpointing (line 10). The se-
mantics of SkipBlock are covered in subsection 2.1.

benefits from periodic checkpointing, without incurring additional
overheads.

In Figure 2, we provide an example of how a model developer
would materialize the model and optimizer state once per epoch
(line 10). This state serves a dual purpose. First, it comprises the
relevant side-effects of the preceding code block (lines 4-9), so it
serves a memoization purpose (computation skipping). Second, it
captures all of the state that is modified every epoch of training, so
it comprises a valid and complete checkpoint. This dual purpose
of selective state capture is a fortunate coincidence that arises
naturally from the nested loops structure of model training.

We make use of the SkipBlock language construct [11], to denote
block memoization. The first two requirements for efficient record-
replay are periodic checkpointing and block memoization. Both are
achievable by the following functionality, which is encapsulated by
the SkipBlock for ease of exposition:

e Parameterized Branching: SkipBlock always applies the
side-effects of the enclosed block to the program state, but
does so in one of two ways: (a) by executing the enclosed
block, or (b) by skipping the block and instead loading the
memoized side-effects from its corresponding checkpoint.
SkipBlock automatically determines whether to execute or
skip the enclosed block. It is parameterized by relevant ex-
ecution state: i.e. record execution, replay resume, replay
execution, and whether the enclosed block is probed.

o Side-Effect Memoization (i.e. Periodic Checkpointing):
When the enclosed block is executed, SkipBlock material-
izes its side-effects (the arguments passed to the call in line
10, Figure 2). It is possible to optimize the SkipBlock for
low-overhead background materialization (Section 3.1), and
adaptable periodic materialization (Section 3.2), but these
optimizations do not alter the semantics of SkipBlock.

o Side-Effect Restoration: Whenever the enclosed block is
skipped, SkipBlock restores its side-effects from its corre-
sponding checkpoint (line 10, Figure 2). SkipBlock is able to
efficiently locate an execution’s corresponding checkpoint
on disk, and apply its side-effects to the program state.



1 init_globals ()

2 for epoch in range(0, args.stop):
3 if skipblock.step_into (...

4 && epoch >= args.start):

5 for batch in training_data:
6 predictions = net(batch.X)
7 avg_loss = loss(predictions, batch.y)
8 avg_loss.backward ()

9 optimizer.step ()

10 skipblock.end(net, optimizer)
11 lIr_scheduler.step ()

12 evaluate (net, test_data)

Figure 3: Training script prepared for methodical hindsight
logging. Training can resume from a partial checkpoint (no
1r_scheduler in checkpoint).

A block may not be skipped on replay if the model developer
adds a hindsight logging statement inside the block. Although Skip-
Block memoizes the block’s final state (that is visible to subsequent
statements), it does not materialize intermediate state, such as the
activations of the model (line 6 in Figure 2). Consequently, if the
model developer wishes to restore the model activations post-hoc,
it will not be possible to skip the nested training loop. In such
cases, parallel replay is the only option for reducing the latency of
hindsight logging.

2.2 Parallel Replay by Checkpoint Resume

As we saw in the previous subsection, our approach cannot avoid
expensive recomputation when intermediate training state, such
as the gradients or activations are logged post-hoc. In such cases,
model developers will want to reduce replay latency by utilizing
additional resources—specifically, more GPUs for parallelism. Al-
though auto-parallelizing arbitrary sequential code remains an open
challenge [8], the replay of checkpointed model training is a spe-
cial case: training replay is embarrassingly parallel given periodic
checkpoints.

As we multi-purposed periodic checkpointing in the previous
section for memoization, so too we now multi-purpose check-
point resume—a current staple in the training code of many model
developers—for parallel replay. Parallel replay enables us to sub-
stantially cut hindsight logging latency, and due to the prevalence
of checkpoint resume, this is possible without incurring a program-
ming burden. To parallelize replay, a model developer simultane-
ously resumes training from various checkpoints:

(1) First, a model developer dispatches multiple training jobs (in

parallel)

(2) Then, each job loads the checkpoint (line 2 in Figure 2) that
corresponds to the epoch it is resuming from. For example,
to resume training at epoch 25, the job loads the checkpoint
stored at the end of epoch 24.

(3) Finally, each job independently works on its share of work
(see the range in line 3 of Figure 2).

2.2.1 Pseudoresuming from partial checkpoints. When model
developers write code for periodic checkpointing themselves, they

can ensure that the objects they capture constitute a complete
checkpoint. However, when model developers entrust flor to in-
strument their code for automatic periodic checkpointing, flor
will not be able to automatically determine whether the checkpoint
is complete or partial with respect to training. As we will discuss in
Section 3.3, flor can only estimate the side-effects of blocks of code
enclosed by SkipBlocks: a restriction we use to render our static
analysis tractable. flor will not estimate the side-effects of the
program at arbitrary points, and it will not check whether the data
materialized constitutes a complete (or partial) checkpoint with
respect to training, since doing so statically (i.e. with low overhead)
would be intractable in Python [21, 41, 52].

Consequently, flor assumes checkpoints materialized automati-
cally are partial with respect to training. By partial, we mean that
there are objects modified every epoch that are not stored by the
checkpoints (e.g. the 1r_scheduler in Figure 3). As a result, it is
not possible to resume training from an arbitrary epoch merely
by loading a partial checkpoint (i.e. a physical recovery approach).
Instead, we start training from the beginning (line 2 in Figure 3),
and use the partial checkpoints to skip recomputation of memoized
blocks during the initialization — or pseudoresume — phase (lines
3-4 in Figure 3). This approach is characteristically physiological
because it relies on a combination of recomputation and disk reads
for recovery. Although pseudoresume is especially important for
auto-parallelizing replay of model training, we share this method
here because novice model developer may accidentally store par-
tial checkpoints. This technique allows them to resume training
efficiently all the same.

For illustration, suppose, that the model developer wants to
resume training from epoch 25, using the script in Figure 3.
Pseudoresume phase for epochs in the range 0-24 (inclusive):

(1) SkipBlock skips the nested training loop (lines 3-4 in Fig-
ure 3).

(2) SkipBlock loads the side-effects of the nested training loop
from disk (line 10 in Figure 3).

(3) All other statements execute normally.

Execution phase from epoch 25 onward:

(1) SkipBlock enters (steps into) the nested training loop (lines
3-4 in Figure 3).
(2) All other statements execute normally.

In summary, memoization can be used to resume model training
from an arbitrary epoch, even in the absence of complete check-
points. As we will show in the evaluation, the overhead of pseudore-
sume is amortized in parallel replay, so that the difference between
checkpoint resume and pseudoresume is imperceivable to the end-
user. This result is important because it enables us to efficiently
auto-parallelize the replay of model training, even without complete
checkpoints.

3 TOOLING FOR HINDSIGHT LOGGING

We provide a suite of Fast Low-Overhead Recovery tools—flor for
short—as aid to the developer. Model developers may use each
tool separately as they see fit, or they may use flor in hands-free
mode, entrusting it to instrument their code end-to-end for efficient
record-replay. flor provides the following tools:



e An optimized materialization library for low-overhead log-
ging and checkpointing (Section 3.1).

e An adaptable periodic checkpointing mechanism to control
record overhead, so it never exceeds a user-specifiable limit
(Section 3.2).

e An instrumentation library that can transparently transform
training code to conform to the methodical hindsight log-
ging approach (Section 3.3). This protects model developers
from incurring technical debt as a consequence of lapses in
discipline, and enables novices to restore time series data as
efficiently as experts.

3.1 Background Logging

flor provides a background materialization mechanism optimized
for PyTorch, which is compatible with model developer’s machine
learning logging service of choice (for example, TensorBoard [17],
MLFlow [65], and WandB [1]). Background logging is used na-
tively by SkipBlocks for low-overhead periodic checkpointing (Sec-
tion 2.1). It is also available separately as a library for end-users.

Both logging and checkpointing can add measurable overhead
to training because they require moving data from GPU memory
to DRAM, serializing it into byte arrays, and then writing those
arrays to disk. Of the latter two, serialization is typically much
more expensive than I/O: by an average factor of 4.3x according to
our microbenchmarks [30]. Consequently, after copying select data
from GPU memory to DRAM (so it is protected from overwrites),
we would like to take materialization (both serialization and I/O)
off the main thread—which is dedicated to model training—and do
it in the background.

Despite its maturity and widespread popularity, Python makes
this very difficult. The Python interpreter has a notorious Global
Interpreter Lock that prevents parallelism among Python threads.
Unfortunately, the Python IPC schemes (e.g., the multiprocessing
library) also require serialization by the sending process—returning
us to our original problem. To avoid serialization we could use a
solution like Apache Plasma, but it only avoids serialization for a
subset of Python data types (notably dataframes and arrays) and
actually cannot serialize other data types including Pytorch tensors.
We eventually found a workaround at the operating system level,
using fork() as a mechanism to achieve efficient one-shot, one-
way IPC between a parent and child process, with copy-on-write
concurrency. To materialize a record checkpoint, the main process
forks and then immediately resumes model training; the child pro-
cess serializes the checkpoint, writes it to disk, and then terminates.
To prevent too many calls to fork(), we buffer up checkpoints and
process them in batches of 5000 objects. Given the short lifespan
of these child processes and an infrequent rate of forking due to
batching, we have never seen more than two live children at any
point in our evaluations—including in models that ran for many
hours (Section 4).

In a technical report [30], we provide a more detailed discussion
of the design and performance of our background materialization
mechanism. This mechanism cuts logging overheads by 73.5% on av-
erage, according to our microbenchmarks [30]. Execution speedups
due to background logging are modest for workloads whose log-
ging overheads are dominated by periodic checkpointing (1 = 4.76%

Table 1: Symbol table for Adaptable Periodic Checkpointing

Symbol l Description ‘

M; time to materialize side-effects of block identified by i
R; time to restore side-effects of block identified by i

Ci time to compute block identified by i

n; count of executions (so far) for block i

ki count of checkpoints (so far) for block i

G degree of replay parallelism

c constant scaling factor

€ tunable parameter denoting overhead tolerance

overhead down to p = 1.74%). This is because periodic checkpoint-
ing is already light and doesn’t add much overhead to training.
However, as we saw in Figure 1, background logging can have a
drastic effect when used for conservative logging (180% overhead
down to 26%), since logging overheads account for a much larger
fraction of end-to-end training times in those cases.

3.2 Adaptable Periodic Checkpointing

In this section, we present a decision rule for dynamically calculat-
ing an appropriate checkpointing period or frequency. This condi-
tion is automatically tested by SkipBlocks to adapt the frequency
of checkpointing to each training workload. For many developers,
checkpointing once per epoch is a good default, but in general, the
right checkpointing frequency depends on the training workload:
e.g. how fast or slow the code executes relative to the size of its
checkpoints. The goal of adaptable periodic checkpointing is to
automatically materialize checkpoints as frequently as will increase
expected replay speedups, subject to the constraint that record
overhead does not exceed a user-specifiable limit.

Next we derive the invariants we use for adaptable periodic
checkpointing. We refer the reader to the notation in Table 1.

3.2.1 The Record Overhead Invariant. We require that the ma-
terialization overhead of a block is at most a small fraction of its
computation time: M; < €C;. This simplistic invariant is enough
to ensure that record never exceeds a user-specifiable overhead
(€), but it is all-or-nothing: a block is memoized always or never.
Since blocks are often nested inside loops, and model developers
may parallelize replay even with a small number of checkpoints
(e.g. 2 checkpoints: 3x parallelism), we need to relax our invari-
ant to account for periodic checkpointing. Specifically, due to the
nested loops structure of model training, we introduce n; and k;,
as follows:

% < n;e

kiMi < njeCj = G k_l

(1)
3.22 The Replay Latency Invariant. To avoid regret, record-
replay should always be faster than two vanilla executions (with
neither overhead nor speedups). Even for hindsight logging work-
loads that do not permit partial replay, the speedups from parallel
replay alone should more-than-offset the overhead incurred on
record. Accounting for record overhead, we can assess each block i
for this condition as follows:

M,'+Ri+(% —1) Ci < niC; (2)



The —1 in Equation 2 accounts for the fact that each parallel worker
resumes from a stored checkpoint and does not need to compute
its first iteration.

Because G is determined on replay and is not known during
record, we satisfy the Replay Latency Invariant by testing Equa-
tion 3 instead. Equation 3 guarantees the Replay Latency Invariant
as long as there is some parallelism (G > 2); we omit the details for
brevity.

n;
M; +R; < k—Ci and R; =cM;
i

Mi nj (3)
G S k(v

Because the time to restore is not known at record time, we as-
sume that it is proportional to the time to materialize. Our naive
assumption is ¢ = 1.0, and this estimate is refined after observ-
ing materialization and restoration times from record-replay. In
our case, the average scaling factor over all measured workloads
(Table 3) turned out to be ¢ = 1.38.

=

3.2.3 The Joint Invariant. The Joint Invariant is automatically
checked by SkipBlocks at record time for adapting the frequency of
checkpointing. Blocks are tested after executing, but before materi-
alization. By restricting memoization to blocks that pass the Joint
Invariant test, flor simultaneously satisfies the Record Overhead
and Replay Latency invariants. This follows from the fact that the
Joint Invariant is derived by algebraic manipulation of the two
invariants.

M; <M min ( ! ,€)

C; ki+1 1+c¢ (4)

¢ =1.38,€ =0.0667

Note the k; + 1 in Equation 4: this accounts for the fact that the
test is performed after the execution of the block but before the
materialization of its checkpoint. The goal is for the invariant to
continue to hold if the checkpoint is materialized. We derive the
Joint Invariant, Equation 4, from Equation 1 and Equation 3. Both
invariants are satisfied when the computed ratio, M; /C;, is less than
the minimum of both thresholds.

3.3 Instrumentation for Hands-Free Mode

As desired by the user, flor can instrument their model training
code for automatic and efficient record-replay. The principal objec-
tives of flor instrumentation are twofold:

(1) Memoization and periodic checkpointing by nesting loops
inside a SkipBlock, and then statically estimating their side-
effects.

(2) Auto-parallelization of training replay by a syntax-directed
transformation of loop iterators, enabling pseudoresume from
partial checkpoints (Subsection 2.2.1).

3.3.1 Autorecording Model Training. The first goal of instru-
mentation is to efficiently and correctly memoize loop executions
for the model developer—without their intervention. flor memo-
izes loops because, in machine learning, they correspond to long-
running code, and unlike arbitrary “long-running code”, loops can
be detected statically. Ensuring correct and efficient memoization
requires (i) capturing all of the loop’s side-effects, and (ii) avoiding

Table 2: Set of rules for static side-effect analysis. At most
one rule is activated by each program statement. The rules
are sorted in descending order of precedence.

‘ Rule ‘ Pattern ‘ AChangeset ‘
0 01, ...,0p = U1, ..., Um A Jv; € Changeset | No Estimate
1 01, ...,0np = obj.method(argi, ..., argm) {obj,v1,...,0n}
2 v1,...,0n = func(argy, ..., argm) {v1, ..., 0n}
3 U1y O = UL, .o, Um {v1, ..., 0n}
4 obj.method(argu, ..., argm) {obj}
5 func(argy, ...,argm) No Estimate

the capture of too many redundancies. Unfortunately, due to the
language’s dynamic features and extensive reliance on (compiled)
C extensions, an exact and efficient side-effect analysis in Python
is intractable [21, 41, 52]. Past work overcomes Python’s analysis
limitations by restricting the expressiveness of the language [7, 26],
making some assumptions (e.g. that the variables don’t change
types [9]), or relying on user source annotations [60]. In a similar
vein, we achieve efficient side-effect analysis by assuming that loop
bodies in model training are predominantly written in PyTorch [43].
To the extent that loops deviate from our assumption, our static
analysis will be unsafe (i.e. may misdetect side-effects), so we will
automatically perform deferred correctness checks after replay and
report any anomalies to the programmer. We find that our assump-
tion holds frequently enough to be useful for hindsight logging
purposes.

Model developers do not typically build models or write training
algorithms from scratch. Instead, they rely on popular machine
learning frameworks such as PyTorch. Like many 3rd-party libraries,
PyTorch has a well-defined interface by which it modifies the user’s
program in limited ways [3]. The effects of PyTorch on the user’s
program are limited to (i) assignments and (ii) encapsulated state
updates from method calls. As a result, all the side-effects of PyTorch
code can be detected statically, with two notable exceptions: when
an optimizer modifies a model, and when a learning rate scheduler
modifies an optimizer [4].

First, flor estimates a set of changes (“changeset”) for each block
using the six rules in Table 2. flor walks the abstract syntax tree
statement by statement, testing which rule is activated by each
statement. The changeset for a block accumulates the individual
changes of its member statements. Rules have a precedence such
that at most one is activated per statement. Statements that activate
no rule are ignored.

Next, flor performs a filtering step on the changeset to remove
variables that are scoped to the body of the loop. flor removes
from the changeset any variable that is defined in the body of the
loop (henceforth “loop-scoped variable”), under the assumption
that this variable is local to the loop and is not read after the end of
the loop.

Finally, we make use of our encoded library-specific knowledge
to augment the changeset at runtime (this is the only step that is not
done statically). For PyTorch, it suffices to encode two facts [4]: (i)
the model may be updated via the optimizer; and (ii) the optimizer
may be updated via the learning rate schedule. flor augments
the changeset to include side-effects which were not detected by



I def flor.generator (»args):

2 pseudoresume_sgmnt, work sgmnt = partition («args)
3 skipblock.set_state ( 'replay ', 'skip')

4 for element in pseudoresume_sgmnt:

5 yield element

6 skipblock.set_state('replay ', 'step_into')

7 for element in work_sgmnt:

8 yield element

9

10 for epoch in flor.generator(range(N), PID, NPARTS):
11

Figure 4: flor instrumentation nests the main loop’s iterator
inside a generator to parallelize replay (with pseudoresume).
A generator defines an iterator, and enables us to control
global state between iterations of the main loop.

the rules, but which can be inferred from other elements in the
changeset.

3.3.2 Autoparallelizing Replay. The second goal of instrumen-
tation is to autoparallelize replay of model training, assuming partial
checkpoints exist due to SkipBlocks. Replay instrumentation con-
sists of wrapping the main loop’s iterator inside a flor.generator
(line 10 in Figure 4), to model the pseudoresume behavior we cov-
ered earlier (in Subsection 2.2.1 and Figure 3). We can identify the
main loop at replay time, by having measured loop execution times
during record. We define the longest-running loop as the main loop.
Generators define an iterator by a series of yield statements, and
allow us to control global program state between iterations of the
main loop; namely, toggle the SkipBlocks from a skip state to a step-
into state between epochs (lines 3, 6 in Figure 4). We implement
parallel replay by having every parallel worker (NPARTS in total)
execute the same instrumented code (as in Figure 4), and flor sets
PID to a different value for each worker so they work on distinct
segments of the main loop.

3.3.3 Deferred Checks for Correctness. As we have discussed,
Python’s dynamic features and extensive reliance on (compiled)
C extensions, make an exact and efficient side-effect analysis in-
tractable. flor’s approach to detecting side-effects is efficient but
unsafe: it may misdetect side-effects and thus fail to checkpoint
sufficient state for correct replay. To mitigate risk, we automatically
check that common user-observable state between record and re-
play matches [5]. The standard training metrics that get logged by
default (e.g. the loss and accuracy) form a fairly unique fingerprint
of a model’s training characteristics, so it’s hard to perturb state or
data that the model depends on without this being reflected in one
of the model’s metrics. Consequently, at the end of replay, we run
diff, and warn the user if the replay logs differ from the record logs
in any way other than the statements added for hindsight logging.

4 EVALUATION

To assess flor’s ability to meet the goals of Section 1 in prac-
tice, we evaluated eight diverse machine learning workloads, taken
from three separate benchmarks: classic computer vision, the Gen-
eral Language Understanding and Evaluation (GLUE) [61], and ML

Figure 5: Comparison of model training times, with and
without checkpointing, in hours. “Periodic Checkpointing”
measures the time achievable when a model developer judi-
ciously selects the contents of a checkpoint, at a frequency
of once per epoch. The overhead added by flor Record is
denoted by the text labels over each group of bars.

Perf [36] (Table 3). These workloads vary in their tasks, model archi-
tectures, execution time scales, and software engineering patterns;
they are jointly representative of a large class of model training
workloads. Every experiment was run on P3.8xLarge EC2 instances
with 4 Tesla V100 GPUs, 64 GB of GPU memory in aggregate, 32
vCPUs, 244 GB of RAM, and an EBS bandwidth (IO throughput)
of 7Gbps. The checkpoints generated by flor record were spooled
from EBS to an S3 bucket by a background process.

4.1 Flor Record Overhead is Low

We compared the overhead added by manual periodic checkpoint-
ing, at a rate of once per epoch, against the overhead added by au-
tomatic flor record (Figure 5). We did not manually set the period
for any of the flor record experiments. The checkpointing period
was automatically calibrated by the mechanism in Section 3.2. flor
record does not add significant overhead to training, so it may be
enabled by default. Moreover, the flor instrumentation library is
able to achieve the same effect as hand-tuned periodic checkpoint-
ing, with competitive performance, and without intervention from
the user. For manual periodic checkpointing, we assume that each
checkpoint is complete with respect to training. For flor record
we only assume partial checkpoints: each checkpoint corresponds
to the side-effects of the code block it memoizes (Section 2.1), but it
may be incomplete with respect to training.

Takeaway: flor record adds minor overhead, so it can be enabled
by default. A novice model developer who uses flor can achieve
similar performance to an experienced model developer.

4.2 Flor Record Overhead is Adaptable

Different model developers have different sensitivies to overhead.
In this section, we measured that flor record is able to adjust
its checkpointing frequency to stay within the user-specifiable
overhead limits (e.g. € = 6.67%). The nested training loops in most
model training workloads are memoized every epoch by flor’s
adaptive checkpointing mechanism. This is because the time to
materialize their checkpoints is negligible compared to the time it
takes to execute them. In contrast, the sharp drop in overhead for
fine-tuning workloads is due to their less frequent checkpointing



Table 3: Computer vision and NLP benchmarks used in our evaluation.

| Name | Benchmark | Task | Model | Dataset | Train/Tune | Epochs |

RTE GLUE Recognizing Textual Entailment | RoBERTa RTE Fine-Tune | 200
CoLA | GLUE Language Acceptability RoBERTa CoLA Fine-Tune | 80

Cifr Classic CV | Image Classification Squeezenet Cifar100 Train 200
RsNt | Classic CV | Image Classification ResNet-152 Cifar100 Train 200
Wiki | GLUE Language Modeling RoBERTa Wiki Train 12

Jasp MLPerf Speech Recognition Jasper LibriSpeech | Train 4

ImgN | Classic CV | Image Classification Squeezenet ImageNet Train 8

RonT | MLPerf Language Translation RNN w/ Attention | WMT16 Train 8

Figure 6: Impact of adaptivity on flor record overhead.
The two upward arrows denote extreme values: adaptivity-
disabled overhead is 91% for RTE and 28% for CoLA. The
user-specifiable overhead tolerance (6.67%) is denoted by
the gray horizontal line. No workload exceeds the overhead
limit with adaptive checkpointing.

(Figure 6) . Fine-tuning workloads are checkpointed less frequently
because their loops have poor materialization time to computation
time ratios. In other words, their checkpoints are massive relative
to their short execution times. This is the case because the vast
majority of weights are frozen in model fine-tuning, so a loop
execution quickly updates a small fraction of values in an enormous
model [22].

Takeaway: Adaptive checkpointing drastically reduces overhead
on model fine-tuning workloads (RTE & CoLA), and ensures that
no workload exceeds the user’s overhead tolerance.

4.3 Flor Replay Latency is Low

In this section, we measure the replay speedups achieved by flor
replay, assuming flor record checkpoints were materialized during
training. Consequently, we measure the replay speedups when
flor instruments model developers’ code end-to-end for efficient
hindsight logging—without intervention from the developer.
Replay latencies are query dependent: they depend on the posi-
tion of hindsight logging statements in the code. In cases when the
model developer probes only the outer loop of training (as in line
13 of Figure 7), partial replay can provide latencies on the order of
minutes, even when model training takes many hours to execute.
This is achieved by skipping unnecessary recomputation with loop
memoization (e.g. skipping the nested training loop). The top sub-
plot in Figure 9 shows outer-loop probe latencies for each of our

models. Note the improvements range from 7x to 1123X—with the
more significant improvements favoring the longer experiments
(recall Figure 5).

When the model developer logs data post-hoc from the inner
training loop (as in line 10 in Figure 7), then that loop must be
re-executed on replay, and it will not contribute to savings from
loop memoization. For these workloads, we will need to rely on
parallelism to reduce latencies. We measured the hindsight logging
latencies when a full re-execution of model training was neces-
sary by running replay on multiple machines—this is shown in the
bottom subplot in Figure 9).

The parallel replay workloads used as many machines from the
pool of 4 machines as would provide further parallelism gains. Each
machine has 4 GPUs. In the limit, every epoch may re-execute in
parallel, but the degree of parallelism may be increased even further
by checkpointing additional state, which we leave as future work.

Takeaway: Assuming no work or guidance from the model
developer, beyond the insertion of a couple hindsight logging state-
ments, flor automatically parallelizes and conditionally skips com-
putation on the re-execution of model training (Section 3.3.2). It
achieves the greatest replay speedups from partial replay, but may
scale out replay to multiple machines for further speedups.

4.4 Ideal Parallelism and Scale-out

Next, we compare the performance of parallel replay with check-
point resume against parallel replay with checkpoint pseudoresume
(refer to Section 2.2.1). An expert model developer, such as Judy,
who does periodic checkpointing by-hand can ensure that the check-
points are complete with respect to training. Thus, they can achieve
the checkpoint resume performance. On the other hand, when flor
instruments training code on behalf of the developer, it will rely
on checkpoint pseudoresume, because as we discussed earlier, flor
cannot automatically ensure that its checkpoints are complete with
respect to training, and it assumes that the checkpoints are partial.
Our results show that, although pseudoresuming training adds ini-
tialization overhead, this overhead is amortized through the course
of parallel replay, such that there is a negligible difference between
checkpoint resume and checkpoint pseudoresume.

In Figure 10, we measured parallel replay performance, and ob-
serve it achieves near-ideal parallelism. Ideal parallelism is denoted
by the gray horizontal line in each subplot. Because parallel workers
do not need to communicate or coordinate, flor replay is especially



init_globals ()

1
2 checkpoint_resume (args, (net, optimizer))
3 for epoch in range(args.start, args.stop):
4 if skipblock.step_into (...):
5 for batch in training_data:
6 predictions = net(batch.X)
avg_loss = loss(predictions, batch.y)
8 avg_loss.backward ()
9 optimizer.step ()
10 tensorboard.add_histogram (net.params())
11 skipblock.end(net, optimizer)
12 evaluate (net, test_data)
13 tensorboard.add_overlays(net, test_data)

Figure 7: Model training example with checkpoint re-
sume. Lines 10 and 13 correspond to hindsight logging
statements, or logging statements added after training,.

Figure 9: Replay latency, factored by the position of hind-
sight logging statements. The top plot reports partial and
parallel replay speedups when the model developer probes
only the outer main loop (as in line 13 of Figure 7). The
bottom plot reports parallel-only replay speedups when the
model developer probes the inner training loop and a full
re-execution is needed (as in line 10 of Figure 7). Each work-
load uses as many machines, from a pool of four machines,
as will result in parallelism gains. Text labels show speedup
factors relative to naive re-execution.

well-suited for elastic and horizontally scalable cloud computing,
in which it can scale out to more GPUs at low marginal costs. This
level of parallelism is achievable because model training replay is
embarrassingly parallel given (complete or partial) checkpoints.
To assess our parallel performance, in Figure 11 we illustrate the
near-ideal speedup as we add 4-GPU machines. We choose RsNt as
our experiment because it has 200 epochs to parallelize. The modest
gap between our results and ideal here is due to load balancing

init_globals ()
for epoch in range(0, args.stop):
if skipblock.step_into (...
&& epoch >= args.start):
for batch in training_data:
net(batch .X)

loss (predictions ,

predictions =
avg_loss = batch.y)
avg_loss.backward ()
optimizer.step ()
tensorboard.add_histogram (net.params ())
skipblock .end(net,
Ir_scheduler.step ()
test_data)

tensorboard.add_overlays(net,

optimizer)

evaluate (net,
test_data)

Figure 8: Model training example with checkpoint pseu-
doresume. Lines 10 and 14 correspond to hindsight log-
ging statements, or logging statements added after train-

ing.

Figure 10: Parallel replay time of model training jobs (4x par-
allelism), as fraction of a serial re-execution. RTE & CoLA
only have 6 work partitions each, so parallelism on 4 GPUs
leads to at best 2/6 = 33% replay time.

Figure 11: Replay time wusing GPUs from multiple
P3.8xLarge machines, on experiment RsNt. The “check-
point resume” speedup relative to a sequential execution is
denoted by the text labels.

limitations: balancing 200 epochs over 16 parallel workers results
in each worker doing up to 13 epochs of work. Consequently, the
maximum achievable speedup for this workload on 16 GPUs is %:
15.38X.

Takeaway: Model training replay is embarrassingly parallel given
periodic checkpoints. Parallel replay is achieved by resuming from a



checkpoint. When no complete checkpoint is available, it is possible
to pseudoresume from a partial checkpoint. Although pseudore-
suming adds initialization overhead to parallel replay, the cost is
amortized over the course of replay, such that there is a negligi-
ble difference between checkpoint resume and partial checkpoint
pseudoresume.

5 RELATED WORK

ML lifecycle management. The machine learning lifecycle en-
compasses many tasks, including model design and development,
training, validation, deployment, inference, and monitoring [16].
There is a wide range of research and tooling being developed to
support these many tasks. ML lifecycle management is especially
challenging because it involves many cycles of trial-and-error [27],
and its dependencies are hard to scope [49]. When something goes
wrong, ML engineers may need to rollback their model to an earlier
version [38, 59], inspect old versions of the training data [23, 25, 35],
or audit the code that was used for training [37, 48]. Those activi-
ties require the proper management, versioning, and provenance
tracking of data, models, code, and other context; existing solu-
tions provide some support [10, 19, 28, 29, 65]. Hindsight logging
is a novel contribution in the lifecycle, and its minimalist, low-
friction interface makes it complementary to the prior work. flor
is designed to be compatible with any of the tools in the Python
ecosystem. In terms of training libraries, we have focused on Py-
Torch, but adopting another training library involves only encoding
any side-effects in the library’s API (Section 3.3.1).

Model Debugging. There are many tools and techniques for help-
ing users understand the behavior of their models [2, 34, 46, 47, 50],
and for inspecting model internals [31, 42, 45, 57, 58]. These tech-
niques only inspect the models themselves, and are complementary
to our work here, which focuses on the execution data generated
while training the models.

The value of execution data is evidenced by widespread use
of domain-specific loggers and visualization tools for that data,
including TensorBoard [17], MLflow Tracking [65], and WandB [1].
Hindsight logging allows developers to keep their current logging
practices and tools, but if they find they missed or forgot to log
necessary execution data, we enable them to “query the past”.

Partial Materialization. Inspired by classical work on material-
ized views [12], a new body of work addresses partial materializa-
tion of state in ML workflows, to aid in iterative tasks like debugging.
As representative examples, Columbus [66] accelerates the explo-
ration of feature selection by choosing to cache feature columns;
Helix [63] focuses on choosing to cache and reuse the outputs of
black-box workflow steps; Mistique [58] focuses on techniques for
compressing model-related state and deciding whether to materi-
alize or recompute. These systems introduce bespoke languages
for pre-declaring what to capture prior to computation; they also
provide custom query APIs to interrogate the results. Hindsight
logging is complementary: it enables post-hoc materialization in
cases when it was not prespecified. Precisely because flor does
not dictate a new AP, it is compatible with this prior work: users
of these systems (or any library with pre-declared annotations)
can benefit from flor to add annotations in hindsight, and benefit
from flor’s efficient replay to add materialized state. At a more

mechanistic level, some of the policies and mechanisms from this
work (e.g., the model compression of Mistique) could be adapted
into hindsight logging context to further improve upon our results.

Recovery and Replay Systems. Our techniques are inspired by
literature on both database recovery and program replay. Hind-
sight logging is a redo-only workload, and we use a “physiological”
approach [18]: in our view, a model training script is a complete
logical log (in the WAL sense) of a model training execution, and
occasional physical checkpoints serve solely to speed up redo pro-
cessing. Parallel and selective redo recovery was studied as early as
ARIES [39, 62]. Parallelism in those techniques is data-partitioned
and recovers the most recent consistent state; we are in essence
time-partitioned and recover all prior states. In that sense our work
bears a resemblance to multiversion storage schemes from POST-
GRES [54] onward to more recent efforts (e.g., [32, 40]). These
systems focus on storing complete physical versions, which is in-
feasible in our setting due to constraints on runtime overhead.

Numerous program record-replay systems have been used in
the past for less data-oriented problems. Jalangi is a system for
dynamic program analysis that automatically records the required
state during normal processing, and enables high-fidelity selective
replay [51]. This is achieved by identifying and storing memory
loads that may not be available at replay time, using a “shadow
memory” technique. Unlike flor, Jalangi replay has strict correct-
ness guarantees. flor uses side-effect analysis rather than shadow
memory because the former is lighter on overhead: in this sense, we
risk replay anomalies to reduce record overhead and replay latency.

Prior work on Output Deterministic Replay [5] makes a similar
trade-off as we do. However that work pays for higher latencies to
enable reproduction of nondeterministic bugs; we can avoid that
overhead in Python model-training scenarios because sources of
non-determinism (e.g. random seeds) are typically captured, and
model-training frameworks are increasingly designed for repro-
ducibility. An interesting line of work enables reverse replay with
relatively high fidelity and without overhead by using memory
dumps on a crash [13]—this impressive result is made possible by
the spatial locality of bugs in the vicinity of execution crashes; one
complication with model debugging is that training errors, such as
over-fitting, may not crash the program. We borrow the SkipBlock
language construct from Chasins and Bodik’s record-replay system
for web scraping [11].

6 CONCLUSION

At every step of exploration, model developers routinely track and
visualize time series data to assess learning. Most model developers
log training metrics such as the loss and accuracy by default, but
there soon arise important differences between what additional
training data model developers log—with major implications for
data management.

In contrast to conservative logging, optimistic logging is an agile
and lazy practice especially well-suited to early and unstructured
stages of exploratory model development. In optimistic logging,
model developers log training metrics such as the loss and accu-
racy by default, and defer collection of more expensive data until
analysis time, when they may restore it selectively with hindsight
logging. In the common case, or fast path, model developers get all



the relevant information from the training loss, and move on. In
exceptional cases, however, training replay may be necessary for
post-hoc data restoration. In this paper, we documented a system
of method for efficient record-replay of model training. Methodical
hindsight logging consists of: (i) periodic checkpointing, (ii) block
memoization, and (iii) checkpoint resume. To extend the benefits of
methodical hindsight logging to novices and experts alike, we open
source the flor suite for hindsight logging, which includes tools
for: (i) low-overhead background logging, (ii) adaptable periodic
checkpointing, and (iii) end-to-end instrumentation for efficient and
fully automatic record-replay. We evaluated methodical hindsight
logging to show that it achieves the goal of efficient record-replay,
and then compared the instrumentation library provided by flor
against the methodical expert-tuned approach, and find that the
performance is comparable.
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