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Abstract

Structural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact
that SVs contribute substantially to phenotypes. In this study, we discovered SVs across a population sample of 347 high-
coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-
read data set, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among data sets
revealed different features of genome variability. For example, genome alignment identified a large (�4.3 Mb) inversion
in indica rice varieties relative to japonica varieties, and long-read analyses suggest that�9% of genes from the outgroup
(O. longistaminata) are hemizygous. We focused, however, on the resequencing sample to investigate the population
genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs.
However, the site-frequency spectrum of each SV type—which included inversions, duplications, deletions, transloca-
tions, and mobile element insertions—was skewed toward lower frequency variants than synonymous SNPs, suggesting
that SVs may be predominantly deleterious. Among transposable elements, SINE and mariner insertions were found at
especially low frequency. We also used SVs to study domestication by contrasting between rice and O. rufipogon.
Cultivated genomes contained �25% more derived SVs and mobile element insertions than O. rufipogon, indicating
that SVs contribute to the cost of domestication in rice. Peaks of SV divergence were enriched for known domestication
genes, but we also detected hundreds of genes gained and lost during domestication, some of which were enriched for
traits of agronomic interest.
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Introduction
Structural variants (SVs) are commonly defined as differences
between individuals in genome order or DNA content that
span>50 bases in length (Alkan et al. 2011; Tattini et al. 2015;
Gaut et al. 2018). They remain a relatively mysterious feature
of plant genomes, for at least three reasons. The first is their
contribution to phenotypes. Numerous examples indicate
that they can affect phenotypes ( _Zmie�nko et al. 2014; Gaut
et al. 2018), such as the transposable element (TE) that
inserted near a grapevine myb gene and caused a shift in
berry color from red to green (Kobayashi et al. 2004). More
generally, however, it is not clear how often and how many

SVs contribute to phenotypic traits. The second is their prev-
alence. The fact that plant genomes vary substantially in size
among individuals (D�ıez et al. 2013; Gordon et al. 2017;
Roessler et al. 2019) suggests that SVs are common, and we
now know that they contribute to remarkable fluidity in genic
content. For example, �15% of genes within grapevine culti-
vars are hemizyogous due to SVs that cause allelic loss (Zhou
et al. 2019) and 10% of genes are nonsyntenic between maize
inbred lines (Sun et al. 2018). Yet, for most plant species, we
have little idea of the full extent of SVs, how they vary across
different SV types—such as insertions, deletions, duplications,
inversions, and translocations—or the rate at which they
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originate. A third reason is that little is known about the
population frequencies of individual SV events. This fre-
quency information is necessary to assess the forces that
shape the evolutionary fate of SVs, to evaluate their associa-
tions with phenotypes and to use them as a tool for under-
standing important processes like adaptation, speciation, and
domestication.

The first step toward addressing all of these questions is to
identify SVs in population samples. Substantial progress has
been made on SV detection over the last decade using paired-
end, short-read resequencing data (for a review, see Alkan
et al. 2011). These approaches typically map resequencing
data to a single reference genome and then use coverage
statistics and/or information from errant read orientations
to detect an SV event. Most studies suggest that SV inference
can be reasonably accurate if coverage is sufficient—that is,
usually well above 10� coverage (Layer et al. 2014). However,
the analysis of short-read data clearly underestimates some
SV events, such as large chromosomal inversions (Mahmoud
et al. 2019). For that reason, it is crucial to begin to use other
types of data, including long-read sequencing data and
whole-genome comparisons, to complement and confirm
SVs inferred from short-read data (Zhou et al. 2019).

Here, we use a variety of data sources to detect SVs in
Asian rice (Oryza sativa) and its wild relative O. rufipogon,
with our primary goal to evaluate SVs as a tool to study
domestication. The domestication history of the two main
varieties of Asian rice (O. sativa ssp. japonica and ssp. indica;
hereafter, japonica and indica) had been enigmatic until the
emergence of a recent consensus. Under this consensus, ja-
ponica was domesticated from O. rufipogon (hereafter, rufi-
pogon) in Southern China,�10,000 years ago (ya) or perhaps
earlier (Gross and Zhao 2014; Choi et al. 2017). This primary
event was facilitated by selection for agronomic phenotypes
that shifted allele frequencies at domestication genes like sh4,
which contributes to a nonshattering phenotype (Li et al.
2006), and qSW5, which affects grain width (Shomura et al.
2008). The uncertainty centered on the origin of indica. The
recent consensus posits that indica domestication was both
geographically and temporally separate from japonica domes-
tication, having occurred on the Asian subcontinent as re-
cently as �4,500 ya (Fuller et al. 2010), but indica
domestication was aided by the introgression of beneficial
domestication alleles from japonica (Huang and Han 2016;
Choi and Purugganan 2018a, 2018b).

This consensus has been achieved primarily through the
study of population genetics on large samples of resequenced
rice genomes. These studies have not only substantiated that
japonica and indica are genetically distinct, they have also
supported other discernible groups within domesticated
rice, such as the aus and aromatic varieties and temperate
versus tropical japonica (Garris et al. 2005; Huang et al. 2012;
Wang et al. 2018; Zhao et al. 2018). They have also docu-
mented complex relationships between cultivated rice and
wild O. rufipogon, because the latter commonly—and per-
haps usually—bears the signature of introgression from cul-
tivated accessions (Wang et al. 2017). They have also been an
important for identifying putative domestication genes—

such as Sh4, qSW5, qSH1, prog1, sd1, Wx, Badh2, Rc, and
others—via the identification of selective sweep regions
(Huang et al. 2012; Zhao et al. 2018). Finally, they have helped
establish that the domestication of Asian rice was associated
with a genetic cost, as measured by higher frequencies and
numbers of putatively deleterious SNPs in domesticates com-
pared with wild isolates (Lu et al. 2006; Günther and Schmid
2010; Liu et al. 2017).

Large population samples have also been the basis to study
SVs in Asian rice. For example, Fuentes et al. (2019) provided a
catalog of SVs from 3,000 cultivated rice accessions. This study
included accessions with an average coverage of 14�, so that
some accessions may have had coverage too low for reliable
SV detection. However, the study also employed unusual
rigor by applying a suite of ten different SV detection pro-
grams. Once detected, the study looked at several SV features,
such as their distribution across chromosomes and their con-
cordance with SNPs. More recently, Carpentier et al. (2019)
employed the same data set to identify SV events caused by
retrotransposon insertions. This study ultimately established
that mobile element insertions (MEIs) tend to be found in
only a handful of 3,000 individuals, suggesting either recent TE
activity in the domesticate or selection against MEIs reaching
high frequency (Wright et al. 2001; Lockton et al. 2008; Zhou
et al. 2019). Both studies relied on the comparison of two
individuals to verify their methods and SV calls (Carpentier
et al. 2019; Fuentes et al. 2019), meaning that the confirma-
tion of SVs has been limited across these large samples.

Although SVs have been studied in Asian rice, these pre-
vious studies either did not investigate SVs in wild germplasm
(Carpentier et al. 2019; Fuentes et al. 2019) or were based on
small (n¼ 13) samples of wild accessions (Zhao et al. 2018).
As a result, comparisons of SV diversity between wild and
cultivated rice have been limited, and SVs have not been used
to gain insights into rice domestication. Thus far, SV popula-
tion frequencies have been compared only between wild and
cultivated grapevines (Zhou et al. 2019). In this case, SVs
provided unique insights into regions of the genome that
have been under artificial selection, and they also reflected
an increased genetic burden associated with clonal propaga-
tion. It remains an open question, however, whether other
domesticated plants have increased SV burdens relative to
their wild relatives, whether SVs will commonly provide useful
insights into genomic regions subjected to positive selection
and whether domestication commonly includes shifts in
genic content. The identification of genes gained and lost
during domestication is an area of growing emphasis, because
such genes may contribute to agronomic phenotypes (Gaut
et al. 2018).

Here, we take advantage of the remarkable array of publicly
available rice data, including high-coverage resequencing
data, long-read data, and genome assemblies to study SVs
in cultivated and wild rice accessions. After inferring SVs from
these different data sets, we assess the reliability of SV calls
across data sets, including a comparison to a previous SV
study (Fuentes et al. 2019). We then focus on a highly curated
set of biallelic SVs: (1) to compare SV population frequencies
between wild and cultivated taxa, (2) to investigate MEI
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frequencies across different TE families, and (3) to evaluate
SVs with respect to common features associated with domes-
tication, such as its genetic cost and signatures of positive
selection.

Results

Comparing SVs among Short-Read, Long-Read, and
Whole-Genome Data
We gathered three data sets to identify, contrast, and confirm
SV calls: (1) 14 whole-genome assemblies, (2) Pacific
Biosciences (PacBio) SMRT long reads from a subset of ten
accessions included in whole-genome assembly, and (3)
paired-end resequencing data from 347 wild and cultivated
accessions that met our filtering criteria (see Materials and
Methods), especially high enough mapped coverage (>15�)
to aid accurate SV detection.

Focusing first on the resequencing data, we identified
38,717,560 SNPs and small variants (i.e., indels <50 bp). As
expected (Garris et al. 2005; Huang et al. 2012; Wang et al.
2018; Zhao et al. 2018), phylogenetic analyses based on SNPs
revealed clear group-specific clades, with the aus-indica clade
separated from the japonica-aromatic clade (fig. 1A). The excep-
tion to clear separation was O. nivara, which nested within rufi-
pogon clades, but this result was consistent with previous
analyses based on wide sampling of O. nivara and rufipogon
(Cai et al. 2019). In the phylogeny, rufipogon was represented
by two major clades: one that branched next to the outgroups
(O. meridionalis and O. longistaminata) and derived primarily
from India and Southeast Asia, and a second that rooted between
indica and japonica and included accessions primarily from China.
We include this information to emphasize population structure
among wild rice accessions, which prompted us to include only
one clade for domestication analyses (see below).

A B

C D

FIG. 1. Features of the data and SV data sets (A) A phylogeny based on SNPs of n¼ 347 accessions of Asian rice with outgroups Oryza meridionalis
and O. longistaminata. (B) Population structure inference based on SNPs (top) and SVs (below) for the short-read data set of 347 individuals. The
accessions are arranged in the same order for the SNP and SV plots, the x-axis labels denote the different groups, with “aro,” “rufi,” and “niv”
referring to aromatic, rufipogon, and O. nivara. (C) A dotplot of chromosome 6 showing the large (�4.3 Mb) inversion in indica accessions relative
to the O. longistaminata outgroup. The inversion is not shared with the japonica accessions in our sample. (D) A Venn diagram based on the
combined results from three SV types (DEL, DUP, and INV) that compares SVs among three data sets based on short reads (Illumina, n¼ 347), long
reads (SMRT, n¼ 10), and genome alignments (n¼ 14). Results for each SV type separately are available in supplementary figure S3,
Supplementary Material online.
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We called SVs from the set of 347 individuals using two
approaches, following Zhou et al. (2019). First, to identify
deletion (DEL), duplication (DUP), inversion (INV), and trans-
location (TRA) events, we combined population calls from
Delly (Rausch et al. 2012) and Lumpy (Layer et al. 2014). The
combined SVs were then filtered based on minimal quality
scores and also on the requirement that a single SV had exact
breakpoints shared among accessions (see Materials and
Methods). Although this pipeline also calls insertion (INS)
events, previous studies (Mahmoud et al. 2019; Zhou et al.
2019) suggest that INS are not accurately detected from short
reads. INS may also overlap with MEIs, which we called using
separate methods (see below). For those reasons, we excluded
INS inferences from further analyses. Altogether, the ap-
proach led to a highly curated set of 824,390 biallelic SVs
across the entire data set of 347 accessions (table 1 and sup-
plementary table S1, Supplementary Material online).

We used multiple methods to assess the accuracy of the
SV calls. First, as in previous papers (Gordon et al. 2017;
Fuentes et al. 2019; Zhou et al. 2019), we assessed the con-
gruence of population structure between SNP and SV calls
from the same data—that is, the 347 resequenced individu-
als—to see if they provided similar insights into population
structure and history. To do so, we applied NGSadmix to the
SNP data, allowing the number of groups (K) to range from 2
to 10. At K¼ 10, the SNP data recapitulated the expected
population groupings—that is, indica and japonica were sep-
arate as were two distinct clades of rufipogon (fig. 1B). We
then applied ADMIXTURE to the full data set of SVs, which
identified the same major groups (fig. 1B). Per-individual
assignments were strongly correlated between SV and SNP
results (Pearson r¼ 0.853, P< 2.2� 10�16), suggesting the
suitability of our SV calls for population genetic analyses.

Second, we compared our SV inferences with those from
Fuentes et al. (2019), whose SVs were based on ten detection
methods and 3,000 cultivars (Wang et al. 2018). For this com-
parison, we included only DEL, DUP, and INV events, because
the size and location of TRA events were not always clear,
thus leading to the potential for improper comparison. Our
DEL, DUP, and INV SV calls overlapped with 90.14% of those
identified by Fuentes et al. (2019). We did have an additional
9.64% of events, however, due to the added diversity within
the rufipogon and outgroup samples. Nonetheless, the vast

majority of SV inferences within cultivated rice agreed with
previous work, suggesting that our combination of high-
coverage data with two SV-callers performed well.

Third, we compared SVs based on short-read data with
SVs inferred from two other types of sequence data: whole-
genome assemblies and SMRT reads (supplementary table S2,
Supplementary Material online). SVs were inferred from ge-
nome assemblies based on pairwise genome alignments using
MUMmer (Marçais et al. 2018) and LASTZ (Harris 2007) (see
Materials and Methods). MUMmer detects DEL, DUP, INV,
TRA, and INS events, and we further delineated INS events
into MEI and non-MEI events. Across the pairwise compari-
son of 14 genomes, including an O. longistaminata (Reuscher
et al. 2018) outgroup, we detected a total of 390,823 SVs
(table 1 and supplementary table S1, Supplementary
Material online). Notably, the SVs included a�4.3-Mb (coor-
dinates: 11,296,942–15,576,712 bp in the O. longistaminata
reference) homozygous inversion that spanned the centro-
mere of chromosome 6 and differed between the four indica
assemblies and assemblies from other Oryza species (fig. 1C
and supplementary figs. S1 and S2, Supplementary Material
online).

In addition to whole-genome assemblies, we collected raw
SMRT reads from the subset of six indica, three japonica, and
one O. longistaminata accession that were used in genome
alignment (table 1 and supplementary table S2,
Supplementary Material online) and then mapped SMRT
reads to the Nipponbare genome (Zhang et al. 2018) using
Minimap2 (Li 2018). SVs were called across all ten samples
using the Sniffles pipeline (Sedlazeck et al. 2018), identifying
531,926 SVs (table 1 and supplementary table S1,
Supplementary Material online), again detecting DEL, DUP,
INV, TRA, and INS events and further separating INS events
into MEI and non-MEI events. SMRT reads also provide the
unique opportunity to investigate within-genome hemizygos-
ity, based on the presence of alternative reads that do and do
not span a genomic region (Vondras et al. 2019; Zhou et al.
2019). Applying this approach to a japonica individual
(Nipponbare), an indica individual (93-11), and a wild out-
crossing relative O. longistaminata, we detected similar num-
bers of presence–absence variants (PAVs) in Nipponbare (257
DELs and 31 DUPs) and 93-11 (306 DELs and 18 DUPs). For
these two accessions, only 0.73% (385) and 0.35% (171) of
genes were hemizygous, whereas 56-fold more PAVs were
found in the outcrossing O. longistaminata accession, result-
ing in estimated hemizygosity for 8.89% (or 3,895) genes.

Finally, we compared the three data sets for three SV cat-
egories that were most comparable across methods: DEL,
DUP, and INV events. We first contrasted the genome and
SMRT-read data sets. For the three categories, more SVs were
detected with SMRT-reads (72,492) than with genome assem-
blies (64,262), despite the fact that data for the former
(n¼ 10) were a subset of the latter (n¼ 14; supplementary
table S2, Supplementary Material online). Notably, the pipe-
line for genome alignments detected 10-fold fewer INV
events, whereas SMRT reads yielded 10-fold fewer DUP events
(supplementary fig. S3, Supplementary Material online), sug-
gesting systematic biases in detection methods. Altogether,

Table 1. The Number of Variants Detected by Illumina Short Reads,
PacBio Long Reads, and Genome Alignment.

Variant Type Illumina PacBio

Genome Alignment

LASTZ MUMmer

Number of samples 347 10 14 14
TRA 76,835 85,279 1,332
DUP 48,132 213 3,700 2
DEL 72,930 60,747 62,953 48,153
INV 341,752 11,532 159 343
INS 103,447 70,065 113
MEI 284,741 270,708 246,340
Total 824,390 531,926 390,823
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however, the two data sets had 57.53% of DEL, DUP, and INV
events in common (fig. 1D and supplementary fig. S3,
Supplementary Material online).

We then compared short-read SVs to the two other data
sets, but this was an inherently biased process because the
sample size was much larger for short-read data, yielding
more SVs despite extensive filtering. Given this bias, we ex-
amined the overlap among data sets in a directional manner,
asking: How often do Illumina SV calls identify SVs found
within the other two data sets? The Illumina data set included
70.07% of DEL events identified within the whole-genome
and SMRT-read data sets, 75.24% of DUP events, and a lower
proportion (43.22%) of INV events (supplementary fig. S3,
Supplementary Material online). Summing across the three
SV types, the short-read data identified 65.35% of SVs found
in the two other data sets (fig. 1D). Notably, this level of
correspondence (65.35%) exceeded that between the ge-
nome and SMRT-read data sets (57.53%), again suggesting
the short-read population calls were reasonable.

Population Properties of SVs
Given concordant information with SNPs and SVs and nota-
ble overlaps among long-read and short-read SVs, we focused
on short-read SVs to investigate population dynamics. For
simplicity, we narrowed our focus to the three groups with
the largest population samples: rufipogon, indica (n¼ 96),
and japonica (n¼ 106). For rufipogon, we examined only
the clade of n¼ 40 accessions that appeared to be truly
wild, based on their phylogenetic position (fig. 1A), recogniz-
ing that combining the two distinct clades would produce
skewed population statistics.

We first characterized chromosomal positions of SVs, plot-
ting SV diversity using sliding window analyses for each taxon
(e.g., supplementary figs. S4–S6, Supplementary Material on-
line). Visually, there were no compelling patterns that sug-
gested particular regions were more prone to specific SV
events. However, SV and SNP diversity were slightly but sig-
nificantly correlated across chromosomal windows in all three
population groups (Pearson r¼ 0.0332, P¼ 1.07� 10�5 for
rufipogon; Pearson r¼ 0.0637, P¼ 2.2� 10�16 for indica;
Pearson r¼ 0.0494, P¼ 1.07� 10�10 for japonica; fig. 2A
and supplementary fig. S7, Supplementary Material online).

We also calculated the unfolded site-frequency spectra
(SFS) of the three taxa for a sample of ten individuals with
high-coverage and little missing data (fig. 2B–D). Each SFS
included four SV types (DUP, DEL, TRA, and INV), along
with sSNPs and nSNPs and 284,741 MEIs, which we called
separately using two separate pipelines (see Materials and
Methods). The SFSs revealed three salient features of SV
polymorphism. First, there were demonstrable differences
among taxa, because there was a higher proportion of fixed
variants (and fewer intermediate variants) in cultivated rice
compared with rufipogon. The U-shape of the SFS from
cultivated rice had been noted previously and is consistent
with both enhanced genetic drift during a domestication
bottleneck (Caicedo et al. 2007) and a shift in mating sys-
tem. Second, in all three taxa, there was a lower proportion
of fixed SVs than fixed sSNPs and nSNPs. The distributions

for each SV type were significantly different from the sSNP
distribution in all three taxa (P< 0.01, Kolmogorov–
Smirnov test). Assuming sSNPs provide a reasonable
“neutral” control, the leftward shift in the SFS suggests
either that SV variants were deleterious, on an average,
or that they have higher mutation rates than SNPs such
that many new events have not had the opportunity to
rise in frequency. Finally, the SFS varied among SV types. In
all three taxa, INV events had the most extreme SFS; in
each group, >90% of INV events were identified in three or
fewer individuals, suggesting either strong selection or per-
haps detection biases (see Discussion).

The SFSs suggest that MEIs and all SV types have lower
population frequencies, on an average, than sSNPs in all three
taxa. As a consequence, SVs may have generally lower linkage
disequilibrium (LD) values than SNPs, with the potential for a
faster decay of LD over physical distance. We calculated LD in
each of the three taxa based on SNPs, SVs, and both SNPsþSVs,
using the squared correlation coefficients (r2). The SNP data
confirmed previous observations that LD decays more slowly
in japonica than either indica or rufipogon (Mather et al. 2007)
(fig. 2E). For example, r2 for SNPs remained�0.2 over a distance
of�100 kb for japonica, but was�0.1 for indica and<0.05 for
rufipogon over the same physical distance. Note, however, that
SVs had lower r2 values than SNPs for all taxa, with values that
exceeded 0.1 only over very short (<15 kb) distances. The r2

values were even lower when based on both SNPþSV data
(fig. 2E). These results may have important implications for
detecting the effect of SVs on phenotypes.

SVs and Domestication
It is an open question in other domesticated taxa whether SV
burden increases as a consequence of domestication, whether
SVs provide useful insights into genomic regions potentially
subjected to positive selection during domestication and
whether domestication shifts genic content. We investigated
these features with our set of SVs, using the previously de-
scribed population samples of indica (n¼ 96) and japonica
(n¼ 106) and rufipogon (n¼ 40) for all analyses.

SV Burden
Because the SFS of SVs and MEIs imply that they may be del-
eterious, we predicted that they contribute to the deleterious
load, reflecting the cost of domestication in rice (Lu et al. 2006;
Günther and Schmid 2010; Liu et al. 2017). We evaluated cost by
calculating the additive SVþMEI burden per individual, which is
the number of derived heterozygous sites (the heterozygote
burden) plus two times the number of homozygous variants
(the recessive burden) (Henn et al. 2016). Comparing the addi-
tive SVþMEI burden across the three taxa, it was 35% and 25%
higher on an average for japonica and indica relative to rufipo-
gon (P< 0.005 for both contrasts, t-test; fig. 3A). Given the
differences in mating system between cultivated and wild rice,
we also expected the recessive burden to be the primary con-
tributor to differences in the additive burden. This expectation
held, because the recessive burden was >72% of the additive
burden for both cultivars, but the proportion was lower (67%)
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for rufipogon (fig. 3A). These patterns—that is, higher additive
and especially recessive burdens—held across variant types,
with the apparent exception of DEL events (supplementary
fig. S8, Supplementary Material online).

Divergence between Domesticated Taxa and Rufipogon
In theory, the genes that contribute to domestication can be
identified as regions of marked chromosomal divergence

between wild and cultivated samples. We compared rufipo-
gon to both indica and japonica by estimating SNP and SV
divergence in fixed 20-kb windows across the genome. We
calculated divergence with two measures (FST and Dxy; sup-
plementary figs. S9 and S10, Supplementary Material online)
but focus on FST results here for simplicity. Across the entire
genome, mean FST estimates were substantially higher for
SNPs (indica–rufipogon 0.2936 0.134; japonica–rufipogon

A

E

B

C

D

FIG. 2. Population information about SVs. (A) The plot graphs SNP and SV average pairwise diversity (p) for the rufipogon sample across 20-kb
windows of the genome, with the line indicating the correlation, which is weakly positive but significant (Pearson r¼ 0.0332, P¼ 1.07� 10�5).
Similar graphs for the japonica and indica samples are in supplementary figure S7, Supplementary Material online. Plots (B), (C), and (D) show the
unfolded SFS of different types of SVs in (B) rufipogon, (C) indica, and (D) japonica. Each SFS contains synonymous SNPs (Syn), nonsynonymous
SNPs (Nsyn), and SV events that fall into the duplication (DUP), deletion (DEL) translocation (TRA), mobile element insertion (MEI), and inversion
(INV) categories. (E) The decay of linkage disequilibrium (LD) of SNPs and SVs measured by r2 for the three population groups based on SNPs, SVs,
and SNPsþSVs.
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0.485 6 0.181) than for SVs (indica–rufipogon 0.122 6 0.079;
japonica–rufipogon 0.259 6 0.141), reflecting the fact that
SVs were typically at lower population frequencies (fig. 2A).

We contrasted the two cultivars to rufipogon and ranked
the top 1% FST windows (or 187 of 18,654 windows through-
out the genome) for both SNPs and SVs (fig. 3B and supple-
mentary fig. S10, Supplementary Material online). Only a
small number of FST windows were within the top 1% for
both SNPs and SVs (supplementary fig. S11, Supplementary
Material online); for example, we detected 26 such windows
for the indica–rufipogon comparison. Although a small num-
ber, 26 is far more than the�2 windows expected at random
(P< 10�3, permutation test), suggesting that the SNP and SV
data do capture some common signatures (as is expected,
given that they are in the same genomic window). Similarly,
we detected 12 such windows in the japonica–rufipogon
comparison, again representing an enrichment over a ran-
dom draw (P< 10�3, permutation test). Of these, only one
window overlapped between japonica and indica; it con-
tained a gene (LOC_Os02g43800) that was annotated as a
retrotransposon protein. Thus, arguably the strongest signal

of positive selection based on FST—that is, in a window iden-
tified from both SNPs and SVs across both cultivated taxa—
contained a gene without obvious agronomic implications.

We examined the shared SNP–SV windows for potential
candidate genes (supplementary table S3, Supplementary
Material online). For example, of the 82 genes contained in
the 26 windows for the indica–rufipogon comparison, 31
were annotated as expressed or hypothetical proteins, and
14 were annotated as TE-related; neither category were obvi-
ous candidates to contribute to agronomic phenotypes. Most
of the remaining 37 genes were assigned putative functions,
including a ribosomal protein, a male sterility protein, small
auxin up-regulated genes, receptor like-kinase genes, and
genes with other functions. GO analyses indicated that the
82 genes were enriched for a variety of putative functions,
including cellular components extrinsic to membranes and
biological processes related to superoxides (supplementary
table S4, Supplementary Material online). Similarly, the shared
SNP–SV peaks between japonica and rufipogon contained 36
genes in 12 windows, with 15 genes assigned putative func-
tions and GO enrichment in DNA replication and other

A

B

C

D

E

FIG. 3. Feature of SVs associated with domestication. (A) The genetic load of SVs for rufipogon, japonica, and indica. The selfing cultivars have a
higher recessive (homozygous) load and correspondingly larger total SV burden, suggesting a cost of domestication. (B) Manhattan plots of FST

values between rufipogon, based on SVs within 20-kb windows, with japonica on the left and indica on the right. The corresponding Manhattan
plots for SNPs are provided in supplementary figure S10, Supplementary Material online. (C) Manhattan plots of CLR values for japonica (left) and
indica (right), based on SVs within 20-kb windows. The corresponding Manhattan plots for SNPs are provided in supplementary figure S12,
Supplementary Material online. The proportion of different types of SVs under the selective sweeps detected by FST (D) and SweeD (E) analyses.
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functions. For completeness, we also analyzed the set of genes
identified in SNP-only (489) or SV-only (374) peaks for each
taxon (supplementary table S3, Supplementary Material on-
line). Not surprisingly, the genes were enriched for a variety of
GO-based functions (supplementary table S4, Supplementary
Material online).

Because we were interested in the utility of SVs to detect
selection events, we also took a candidate gene approach to
assess whether SVs enhanced their identification. To do this,
we focused on a set of 15 known domestication and improve-
ment genes (Huang et al. 2012; Wang et al. 2018) to ascertain
whether they were identified in FST scans more often than
expected at random (table 2). Among the 15, six were within
the top 1% of FST windows between rufipogon and either
indica or japonica (table 2); three of these were found with
SNPs alone (including TAC1, a gene implicated in tillering, and
shattering genes Sh1 and Sh4) and three more with SVs alone
(Bh4, Dwarf4, and SAG13) (table 2). Overall, the set of 15
genes was highly enriched to be within FST peaks at the 1%
and 10% levels for both SNPs (P< 1.19� 10�15 for 1% peaks,
P< 6.67� 10�8 for 10% peaks, Wilcoxson–Mann–Whitney
test) and SVs (P< 2.20� 10�16 for 1% peaks,
P< 2.54� 10�14 for 10% peaks, Wilcoxson–Mann–
Whitney test), suggesting that SVs do have some utility for
identifying domestication genes. We note, however, that can-
didate gene enrichment using SVs was not as evident based
on Dxy (supplementary table S5, Supplementary Material
online).

Finally, given the consensus that domestication genes were
introgressed into indica from japonica (Choi and Purugganan
2018a), a previous study remarked that domestication genes
should be enriched in regions of low divergence between the
two cultivars (Huang et al. 2012). We tested this notion by
examining the candidate set and their corresponding window
rankings in FST windows calculated between indica and ja-
ponica. None of the 15 genes was located in an FST trough, as
defined by windows ranking in the lowest 99% percentile, but

three of the genes (Wx1, Bh4, and PROG1) had either SNP or
SV values >90% (supplementary table S6, Supplementary
Material online), which is a significant enrichment
(P< 5.88� 10�3, Wilcoxson–Mann–Whitney test). In con-
trast to genes within FST troughs, several of the 15 genes
were located in FST peaks between indica and japonica, in-
cluding Dwarf4, Sd1, and TB1 (supplementary table S6,
Supplementary Material online). Altogether, these analyses
reinforce the complex history of Asian rice domestication
by suggesting that some, but not all, known domestication
genes may have a history of introgression between japonica
and indica.

Selective Sweeps within Domesticates
We also searched for taxon-specific signals of selective sweeps
using the composite likelihood method (Pavlidis et al. 2013).
We again investigated the top 1% of 20-kb windows for both
SVs and SNPs (fig. 3C and supplementary fig. S12,
Supplementary Material online). Qualitatively the results
exhibited fewer but clearer peaks compared with FST

(fig. 3B) or Dxy analyses (supplementary fig. S9,
Supplementary Material online). The selection signals
detected in SVs are dominated by INVs (�50%) in both FST

(fig. 3D) and SweeD (fig. 3E) analyses. However, there was little
correspondence between the top 1% windows based on SVs
and SNPs (supplementary fig. S13, Supplementary Material
online); the two data types shared two windows in common
for rufipogon, only one for indica, and ten for japonica, which
is the only taxon that had shared windows more often than
expected by chance (P< 10�3, permutation test). None of
these windows contained any obvious candidate genes (sup-
plementary table S7, Supplementary Material online) or the
previously identified set of 15 domestication/improvement
genes. For completeness, we have listed all of the genes within
CLR peaks (supplementary table S8, Supplementary Material
online) with their GO enrichment categories (supplementary
table S9, Supplementary Material online).

Table 2. Previously Identified Putative Domestication or Improvement Genes with Their ID, Function, and % Ranking in FST Windows.

Locus Gene ID (MSU7/IRGSP1.0) Function

FST (i–r) FST (j–r)

SNPs SVs SNPs SVs

Sh4 LOC_Os04g57530/Os04g0670900 Shattering 0.18 17.05 5.08 81.02
qSW5 LOC_Os05g09520/Os05g0187500 Grain width 97.09 1.44 84.78 68
qSH1 LOC_Os01g62920/Os01g0848400 Shattering 58.21 94.51 5.06 96.65
Sd1 LOC_Os01g66100/Os01g0883800 Semidwarfing 31.78 51.96 5.64 5.99
Wx LOC_Os06g04200/Os06g0133000 Grain quality 32.07 42.17 27.02 58.23
Badh2.1 LOC_Os04g39020/Os04g0464200 Flavor or fragrance 84.57 70.14 7.46 64.06
Rc LOC_Os07g11020/Os07g0211500 Red pericarp 47.21 52.79 7.01 55.86
Bh4 LOC_Os04g38660/Os04g0460200,

LOC_Os04g38670/Os04g0460200,
LOC_Os04g38680/Os04g0460300

Hull color 3.18 0.95 6.51 4.67

PROG1 LOC_Os07g05900/Os07g0153600 Tiller angle 1.79 2.16 14.18 6.17
OsCl LOC_Os06g10350/Os06g0205100 Leaf sheath color 26.58 75.83 14.01 73.61
TAC1 LOC_Os09g35980/Os09g0529300 Tiller angle 77.05 31.3 0.85 54.12
Dwarf4 LOC_Os03g12660/Os03g0227700 Leaf architecture 9.2 80.98 1.53 0.35
SAG13 LOC_Os03g16230/Os03g0269100 Senescence 48.3 47.08 30.39 0.56
TB1 LOC_Os03g49880/Os03g0706500 Tillering 2.22 81.45 5.23 78.2
Sh1 LOC_Os03g44710/Os03g0650000 Shattering 0.8 4.46 23.75 18.3
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Gene Gain and Loss
We focused on the subset of SVs that included genes and
determined whether they were private (i.e., variable within
only one taxon) or fixed (i.e., in alternative states) between
taxa. For example, between rufipogon and japonica, we
detected 114,840 SVs that were private in rufipogon;
144,600 that were private in japonica; 180,798 that were
shared SVs between taxa; and only one fixed SV, correspond-
ing to one gene that was annotated as related to retrotrans-
position. Focusing on the subset of private SVs that include
genic DUP and DEL events, we found 148 genes gained and
138 lost in our japonica sample relative to the rufipogon
sample. Similarly, we detected 3,410 genes gained and 181
lost in indica relative to rufipogon (supplementary table S10,
Supplementary Material online). Some of the genes lost dur-
ing domestication had validated functions related to physio-
logical and morphological traits, such as sterility
(LOC_Os01g11054/Os01g0208700), culm leaf (LOC_Os04
g39780/Os04g0473900), flowering (LOC_Os03g05680/
Os03g0151300), and stress tolerance (LOC_Os01g64970/
Os01g0869900). In addition to these functions, genes inferred
to be gained during domestication involved functions that
contribute to eating quality, including starch storage and bio-
synthesis (e.g., LOC_Os01g65670/Os01g0878700, LOC_Os02g
32350/Os02g0523500, LOC_Os03g09250/Os03g0192700,
LOC_Os03g49350/Os03g0700400, LOC_Os03g52340/Os03g
0733800, and LOC_Os09g26880/Os09g0440300) (Wang
et al. 2018). A complete list of private genes and their GO
enrichments are listed in supplementary tables S10 and S11,
Supplementary Material online; the important point is that
SV analyses between Asian rice and rufipogon yield reason-
able candidate genes for traits involved in domestication or
improvement.

MEIs for Specific TE Families
We called MEIs separately and assigned them to specific fam-
ilies, providing an opportunity to compare population dy-
namics among TE families and types. We separated MEIs
into ten distinct TE families—Gypsy, Copia, LINE, SINE,
CACTA, hAT, Mutator, Harbinger, Mariner, and Helitron ele-
ments—and calculated their SFSs based on calls from two
methods, PoPoolationTE2 and TE-locate. Focusing on the
PoPoolationTE2 results from rufipogon for simplicity
(fig. 4A), but with similar results from two methods used to
call MEIs (supplementary figs. S14 and S15, Supplementary
Material online), all TE families had fixation frequencies lower
than sSNPs, with each distribution significantly different from
sSNPs (P< 0.01, Kolmogorov–Smirnov test). However, there
were also marked differences among TE families (fig. 4A and
supplementary figs. S14 and S15, Supplementary Material on-
line). The most obvious deviation was for SINE and Mariner
elements, for which only a small proportion of MEIs were
fixed; hAT and Harbinger elements also demonstrated a sub-
stantial leftward trend relative to Gypsy, Copia, and other
element types. Consistent with this observation, estimation
of the distribution of fitness effects (DFEs) suggests that se-
lection was more severe against these four TE families (fig. 4B),
with the lowest proportion of putatively adaptive variants (a)

for SINEs (a ¼ 0.12%) followed by Mariner (a ¼ 1.52%),
Harbinger (a ¼ 6.32%), and hAT (a ¼ 5.91%) (fig. 4C).

What might cause apparent differences in population
dynamics among TE families? One explanation concerns
the timing of TE insertion; if SINEs have been active
more recently, it is possible that the SFS reflects a lack of
sufficient time for insertions to reach fixation. To test this
idea, we estimated the insertion time of individual elements
within the japonica reference (see Methods), producing a
distribution of insertion times for all ten families (fig. 4D).
The distribution of insertion times was similar among TE
families (P> 0.05, t-test) with Gypsy and Copia elements
(but not SINEs) biased toward slightly more recent inser-
tions. Hence, more recent activity does not seem to be an
adequate explanation for the SFS of SINE and Mariner
elements. Another explanation is stronger purifying selec-
tion against some element families. To assess this idea, we
examined the distribution of MEIs relative to genes in the
japonica reference. We found that a lower proportion of
SINE, Mariner, Harbinger, and hAT MEIs were inserted
within exons relative to other TE families (supplementary
fig. S14, Supplementary Material online). This observation
could be fueled by insertion biases, but they may also point
to stronger selection against these four families. Consistent
with the latter interpretation, the ratio of homozygous to
heterozygous variants was lower for these four families than
for the other families (fig. 4E), suggesting stronger selection
when these elements are uncovered from a heterozygous
state and experience recessive selection.

Discussion
SVs remain unexplored for most crops, and this is particularly
true with respect to comparing population frequencies be-
tween crops and their wild relatives. Here, we have performed
a genome-wide analysis of SVs in Asian rice and its wild pro-
genitor O. rufipogon, with the goal of understanding more
about the evolutionary processes that act on them and their
fate during domestication. Most of our inferences have been
based on SVs called from a large (347 accession) data set
consisting of high-coverage (average 50�, median 28�),
short-read data. Given these calls, it is important to note
two important caveats. First, we have focused on biallelic
SVs that were useful for population genetic inference, mean-
ing that the SVs were filtered both for quality and to avoid
complex events, such as overlapping SVs. Given this curation,
it is important to convey that we did not expect, nor intend,
our set of SVs to represent a comprehensive catalog, as was
the intent for a previous study that lacked rufipogon samples
(Fuentes et al. 2019). Second, like previous studies (Carpentier
et al. 2019; Fuentes et al. 2019), all of our inferences rely on
mapping to the Nipponbare genome, which may introduce a
reference bias that makes it more difficult to identify novel
SVs from non-japonica samples. Nonetheless, three features
of our SV calls suggest they are reasonable: (1) they provide
population structure information that is highly concordant to
(and strongly correlated with) information from SNPs
(fig. 1B), (2) they overlap substantially (>90%) with SVs
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reported previously, based on different data sets and analyt-
ical methods (Fuentes et al. 2019), and (3) there is some
agreement across data types, where overlap is less impressive
but still substantial (fig. 1D).

SV Comparisons among Data Sets
Our results are consistent with previous work claiming
that different data types provide different information.
For example, genome alignments can be poor for detect-
ing heterozygous SVs, because primary assemblies ignore
alternative haplotypes (Mahmoud et al. 2019). Instead,
they tend to be best at identifying large SV events, such

as large insertions (Nattestad and Schatz 2016). In con-
trast, SMRT-read mapping should be efficient for most SV
detection, outperforming short-read data (Sedlazeck et al.
2018; Chaisson et al. 2019). However, the development of
SMRT-read methods is still nascent (Mahmoud et al.
2019) and by no means perfected, as perhaps evidenced
by the very low number of DUP events that were detected
with SMRT reads (table 1 and supplementary table S1,
Supplementary Material online). Finally, paired-end short
reads are probably accurate for SV calls, given sufficient
coverage (Layer et al. 2014), but they often miss large and
complex SV events (Sedlazeck et al. 2018).

A B

C

D

E

FIG. 4. Features of TE diversity in rice. Plot (A) provides the SFS for ten element types along with synonymous SNPs (Syn) and nonsynonymous SNPs
(Nsyn). This plot is for rufipogon; analogous plots for japonica and indica are provided in supplementary figures S14 and S15, Supplementary
Material online. (B) The inferred distribution of fitness effects (DFE) in rufipogon relative to nSNPs. The y-axis provides the proportion of TE
insertions, and the x-axis reports Nes. The color scheme for TE families is the same as (A). (C) The estimated proportion of adaptive variation (a) for
each TE family and each of the three taxonomic groups. (D) Distributions of inferred insertion times for TE families in the Nipponbare reference. (E)
The ratio of homozygous to heterozygous MEI variants in the three taxa for each TE family, which shows that the families under strong selection
have relatively fewer homozygous variants.
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Given the strength and limitations of different approaches,
our comparative data sets provide different insights into rice
SVs. For example, whole-genome alignments reveal the pres-
ence of a large centromeric inversion on chromosome 6 that
differentiates indica from japonica and the outgroups in our
sample (fig. 1C). This inversion has been reported previously
to contain 404 genes (Du et al. 2017), and it was also identified
in O. brachyantha compared with indica assemblies (Liao
et al. 2018). Another SV feature is genic hemizygosity, which
can be estimated reasonably from SMRT reads (Zhou et al.
2019). Based on remapping SMRT reads to the Nipponbare
reference, we estimate that<1% of genes are hemizygous in a
japonica and an indica accession, which is consistent with the
expectation of high homozygosity for predominantly selfed
lineages. These estimates are low enough that they may re-
flect the false-positive rate of the method. In contrast,�9% of
genes are hemizygous for the O. longistaminata individual.
Superficially 9% seems high, but it is similar to the �10%
PAV differences between inbred lines of maize (Sun et al.
2018) and lower than the �10–14% genic hemizygosity of
grapes (Vondras et al. 2019; Zhou et al. 2019). This observa-
tion adds to a growing appreciation that outcrossed plants
harbor a substantial fraction of SVs that lead to genic
hemizygosity.

Our filtering of short-read SVs was purposefully biased
against the detection of complex, overlapping SV regions,
because we sought to identify discrete biallelic loci for popu-
lation genetic analysis. It is worth emphasizing, however, that
complex SV regions do exist. For example, we used genome
alignments to investigate SVs in the region surrounding an
NBS-LRR gene (LOC_Os01g05600/Os01g0149350) that was
detected as gained during domestication, based on short-

read SVs. In this region the cultivated individuals in our sam-
ple have an additional NBS-LRR gene relative to the wild
individuals; among cultivars, the region is marked by the
movement of both DNA and RNA transposons that alter
distances among genes (fig. 5A). Similarly, we examined the
Submergence1 (SUB1) region (fig. 5B), which contains CNVs
that affect flooding tolerance (Xu et al. 2006; Mickelbart et al.
2015). This locus contains a cluster of three ethylene response
factor (ERF) genes, Sub1A, Sub1B, and Sub1C. Among them,
only the Sub1A-1 (an allele of the Sub1A gene) confers flood-
ing tolerance and it was present in only a few indica cultivars
(fig. 5B). Among the cultivars investigated, the region has
expanded nearly 2-fold in 93-11 and Tetep due to transposon
element insertions and a genic copy number variant (Sub1A-
2). Altogether, these analyses accentuate the prevalence of
SVs in rice (Wang et al. 2018; Fuentes et al. 2019) and the
fluidity of Oryza genomes (Stein et al. 2018; Zhao et al. 2018).

SVs Are Typically at Lower Population Frequencies
than SNPs
In each of the three taxa, the SFS of each SV type differs
significantly from the SFS of “neutral” (4-fold synonymous)
sSNPs. Previous work has shown that plant SVs tend to be
deleterious in plant populations (Flagel et al. 2014; Gaut et al.
2018; Zhou et al. 2019). Our results are consistent with this
view, but such differences could also be caused by different
mutational mechanisms and rates. Nonetheless, the SFSs also
suggests heterogeneity among SVs, because they follow an
apparent hierarchy in which INV events have the most left-
leaning SFS, followed by MEI, TRA, DEL, and DUP events. One
pertinent question is whether detection biases somehow fuel
this heterogeneity because, for example, INV events have a

A B

FIG. 5. Two example regions of complex SVs across Oryza taxa. (A) A segmental tandem duplication of an NBS-LRR-encoding gene
(LOC_Os01g05600/Os01g0149350) that was found to be gained in indica and japonica relative to rufipogon. The synteny map is shown for a
region corresponding to a 35-kb region in japonica (Nipponbare). (B) Gene and TE copy number variation in a 100-kb region of chromosome 9 that
includes the Sub1A gene, which confers flooding tolerance. Both an indica accession and O. longistaminata contain three copies of genes. For both
(A) and (B), gene copies are tracked by dotted red lines.
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lower percentage of overlap among data sets than DEL and
DUP events (fig. 1D and supplementary fig. S3,
Supplementary Material online). There are systematic biases
for all SV types—for example, ascertainment biases—that
may tend to skew the SFS leftward (Emerson et al. 2008).
The question here is whether INVs are especially prone to
these biases. We do not believe that this is the case for three
reasons: (1) the SFS are based on the individuals with highest
coverage, which limits false-negative results (Cridland and
Thornton 2010); (2) some studies suggest similar false-
discovery rate across SV types (Layer et al. 2014); and (3)
SMRT-read analyses also indicate that INV events are found
at low frequency, because 86% of INVs are found in only one
indica individual, which is significantly lower than other SV
types (P< 0.05, t-test). Overall, our results suggest that poly-
morphic INV events are at especially low frequencies in pop-
ulation samples, suggesting the possibility that they are
particularly deleterious.

SVs are typically found at lower population frequencies
than SNPs, which affects LD. We have shown that LD between
SNPs and SVs declines far more rapidly than that of SNPs
alone and slightly more rapidly that of SVs alone (fig. 2E). This
relationship may provide a challenge for association analyses,
because it implies that causative SVs in rice will not be easily
tagged by anchoring SNPs. There is remarkably little informa-
tion about LD based on SVs, but thus far it seems as if SVs are
usually not in high LD with SNPs across plants. For example,
20% of maize copy number variants (Chia et al. 2012), 27% of
maize SVs (Sudmant et al. 2015), and �70% of arabidopsis
MEIs cannot be anchored by nearby SNPs (Stuart et al. 2016).
SVs appear to have substantial explanatory power when they
are included in GWA analyses (Chia et al. 2012; Yao et al. 2015;
Fuentes et al. 2019), but they may require methods that in-
corporate the possibility of detecting associations with SVs
(Voichek and Weigel 2020).

We also examined the SFS for potential differences in the
population dynamics of MEIs from different TE families, given
that previous work focused only on the frequency of retro-
transposons and only in cultivated accessions (Carpentier
et al. 2019). We found that several element families, but
particularly SINE elements, have dramatically different popu-
lation frequencies than other element families. Relatively few
SINEs were fixed, and most were found at low frequency. This
finding does not appear to be due to more recent activity
(fig. 4D) but rather to stronger selection, as implied by the low
frequency of SINEs in and near genes (supplementary figs. S14
and S15, Supplementary Material online) and the relative
dearth of homozygous variants (fig. 4E). This last observation
supports the growing consensus that deleterious variants can
accrue as heterozygotes because they are typically under re-
cessive selection (Zhou et al. 2017; Huber et al. 2018; Zhou
et al. 2019), but the mating system of rice ensures that new,
heterozygous TE insertions do not remain heterozygous for
long. We note that in our study retrotransposon insertions
(Gypsy and Copia elements) were not found at particularly
low frequencies based on two detection methods. That is,
unlike Carpentier et al. (2019), we did not find that �50% of
retrotransposon insertions are at low (<5%) population

frequencies (fig. 4A and supplementary figs. S14 and S15,
Supplementary Material online). We suspect that the princi-
pal difference between their study and ours is that they fo-
cused on full-length—and therefore presumably functional
and recently active—elements.

SVs and Domestication
To date, the fate of SVs during domestication has been in-
vestigated in only one domesticated taxon, grapevines (Zhou
et al. 2019), where SVs provided insights into regions of the
genome that may have been under artificial selection and into
the SV burden associated with cultivation. Grapevines are,
however, distinct from rice and other annuals in that they
are clonally propagated and lack evidence of a domestication
bottleneck (Myles et al. 2011), a history that leads to the
accumulation of recessive deleterious mutations that do
not affect load (Zhou et al. 2017) and leads to increased SV
numbers in the domesticate (Zhou et al. 2019). Here, we have
characterized SVs in both cultivated and wild rice to begin to
extend the many previous studies of rice domestication to
include this novel genomic component.

Domestication bottlenecks accelerate genetic drift, which
can contribute to a cost of domestication. An appropriate
measure of cost is the average number of deleterious variants
per genome (dg) (Moyers et al. 2018). Interestingly, dg is not
expected to vary substantially before and after a demographic
shift under some conditions, such as a strict genetic bottle-
neck with outcrossing and additive (h¼ 0.5) variants (Simons
et al. 2014). However, it can vary substantially with deviations
from these conditions (Henn et al. 2016). For example, clonal
variants tend to accrue recessive deleterious variants over
time, because these variants are under recessive selection
and permanently held in a heterozygous state (Zhou et al.
2017). Similarly, forward simulations have shown that mod-
erately and weakly deleterious variants accumulate under
various demographic regimes (Robinson et al. 2018). Here,
we have shown that the SV burden is elevated by 25–35%
in our japonica and indica samples relative to rufipogon
(fig. 3A). Although the estimated increase of dg undoubtedly
depends on the composition of the samples under compar-
ison, this observation is consistent with previous studies sug-
gesting a cost of domestication in Asian rice (Lu et al. 2006;
Günther and Schmid 2010; Liu et al. 2017). Nonetheless, the
potential for an SV-associated cost in rice has not been dem-
onstrated previously.

Positive selection can also be pervasive during domestica-
tion (Wright et al. 2005; Doebley et al. 2006; Hufford et al.
2012; Zhou et al. 2017). We examined the SV and SNP data for
signals of positive selection throughout the genome, relying
either on divergence between rufipogon or signals of selective
sweeps within cultivars. For divergence, as measured by FST,
only a small number of windows fell within the top 1% of
peaks for both SVs and SNPs, with 12 windows for japonica–
rufipogon and 26 for indica–rufipogon. Although small, the
numbers are enriched relative to random expectation. None
of these windows contains obvious candidate genes, at least
under our examination, but the lists of genes within FST peaks
may prove useful for researchers studying domestication and
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improvement traits in indica and japonica (supplementary
tables S3 and S4, Supplementary Material online). The shared
windows between SNPs and SVs also do not include any of
the set of 15 domestication genes (table 2), but these genes
are enriched significantly in high-ranking FST peaks when
SNPs and SVs are considered separately, lending some cred-
ibility to the basic approach. Importantly, FST analyses suggest
that SV calls aid the detection of divergent genomic regions,
because some of the 15 genes were detected with SVs only
(table 2). We thus believe that some of the regions identified
by SV divergence between rufipogon and cultivated rice rep-
resent bona fide selection events.

We also searched for signals of positive selection using
population-specific signals of selective sweeps. One expects
a priori that SVs have lower power to detect selection, given
that there are fewer of them and that they tend to be at lower
standing population frequencies than SNPs (so that the rel-
ative effect of sweeps is less readily detectable relative to
background frequencies). Consistent with this premise, few
windows of putative selection overlapped between SNPs and
SVs, although there was a slight enrichment for overlapping
windows in japonica. These regions again yielded no obvious
candidate genes for contributing to domestication traits, but
again the list of genes may prove useful for functional analyses
in rice (supplementary tables S8 and S9, Supplementary
Material online).

Finally, our analysis of private SVs in cultivars versus rufi-
pogon yielded a set of genes enriched for agronomic traits.
We found hundreds of genes that differed between rufipogon
and either indica or japonica (supplementary tables S10 and
S11, Supplementary Material online). Many of them are im-
plicated to contribute to abiotic stresses, such as salt toler-
ance, and eating quality, including starch storage and
biosynthesis. Clearly, our work represents only a preliminary
resolution of this question in rice; further work is necessary
both to confirm the private status of genes across additional
samples and to substantiate their function and potential phe-
notypic impacts. With few exceptions (Zhao et al. 2018;
Hübner et al. 2019), the topic of gene gain and loss during
domestication has been systematically understudied (Gaut
et al. 2018). Our results nonetheless suggest that the genomic
effects of domestication include substantial genic variation.

Materials and Methods

Data Samples and Preprocessing
We collected three kinds of data to detect SVs: whole-
genome assemblies, PacBio SMRT reads, and paired-end
short-read (Illumina) data. For whole-genomes, we down-
loaded 14 assemblies from previous publications (supplemen-
tary table S2, Supplementary Material online), including an
O. longistaminata outgroup (Reuscher et al. 2018) that was
used to infer the ancestral state of SVs. For the PacBio data,
we gathered SMRT reads for ten accessions that were a subset
of the whole-genome data set (supplementary table S2,
Supplementary Material online) and included data from six
indica, three japonica, and one O. longistaminata accession.
For the third data set, we compiled paired-end, short-read

resequencing data, requiring a minimum of 15� coverage per
genome. We downloaded an initial set of genome sequences
representing 393 individuals. The data for this article are all
publicly available, with their sources listed in supplementary
tables S12 and S13, Supplementary Material online.

Both SMRT and Illumina reads were preprocessed. SMRT
reads were extracted and filtered from h5 files using
Dextractor v1.0 (https://github.com/thegenemyers/
DEXTRACTOR) with a minimum length 1,000 and a mini-
mum quality score 750. Paired-end Illumina reads were
trimmed to remove adapters and low-quality bases (<20)
and filtered for reads <40 bp using Trimmomatic 0.36
(Bolger et al. 2014). The quality of raw and filtered reads
was computed using FastQC 1.0.0 (https://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc/). Filtered short reads were
then mapped to the reference genome japonica Nipponbare
(Zhang et al. 2018) using BWA-MEM (Li and Durbin 2010).
Reads with mapping qualities <10 were filtered to remove
nonuniquely mapped reads using SAMtools 1.9 (Li 2011). To
account for the occurrence of PCR duplicates introduced
during library construction, we used MarkDuplicates in the
picard-tools v1.119 (https://github.com/broadinstitute/pi-
card) to remove reads with identical external coordinates
and insert lengths. The bam files were then sorted and
indexed using SAMtools for downstream analyses.

Joint Variant Calls across Population Samples
SNP Calling with Short-Read Data
We used an initial data set of 393 individuals with >15�
mapped coverage that represented the five major rice sub-
populations (Garris et al. 2005) (temperate japonica, tropical
japonica, indica, aus, and aromatic), two wild relatives
(O. rufipogon and O. nivara, which is often considered an
annual form of rufipogon), and two outgroup species
(O. meridionalis and O. longistaminata). We mapped these
resequencing data to an updated version of the Nipponbare
genome (Zhang et al. 2018), called SNPs, and then subjected
the sample to clustering analyses. SNPs and short (<50 bp)
indels were called for the entire data set of 393 individuals
using the HaplotypeCaller in GATK v4.1.2.0. SNPs were fil-
tered using the VariationFiltration in GATK v4.1.2.0, accord-
ing to the following criteria: variant quality (QD)>2.0, quality
score (QUAL) >40.0, mapping quality (MQ) >30.0, and
<80% missing genotypes across all samples. More than 90%
of the reads uniquely mapped to the reference genome after
filtering (90.22% 6 3.79% for outgroup samples and 93.79%
6 5.02% for other samples). SNP variants were then anno-
tated to be synonymous or nonsynonymous according to the
gene annotation from MSU7 Rice Genome Annotation
Project (http://rice.plantbiology.msu.edu/) (Kawahara et al.
2013) using the SnpEff v4.0 (Cingolani et al. 2012) with the
structural annotation of the reference based on Maker ver-
sion 2.31.8 (Holt and Yandell 2011). These SNP variants were
used for population assignment and inference but not for
estimates of nucleotide diversity (see below).

Based on population structure and phylogenetic analyses
of SNPs from the 393 accessions, we detected 46 individuals
(11.39%) that did not cluster with their reported group of

Structural Variation in Asian Rice Domestication . doi:10.1093/molbev/msaa185 MBE

3519

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/12/3507/5873527 by guest on 31 M
arch 2021

https://github.com/thegenemyers/DEXTRACTOR
https://github.com/thegenemyers/DEXTRACTOR
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
http://rice.plantbiology.msu.edu/


origin, suggesting they were misidentified in public databases
(supplementary table S12, Supplementary Material online).
After their removal, the curated data set consisted of 347
accessions: 244 cultivated rice representing indica (n¼ 96),
japonica (n¼ 106), aus (n¼ 24), and aromatic (n¼ 18) vari-
eties; 97 wild rice, including O. rufipogon (n¼ 90) and
O. nivara (n¼ 7) accessions; and outgroup accessions from
O. meridionalis (n¼ 3) and O. longistaminata (n¼ 3) (sup-
plementary table S13, Supplementary Material online). The
mean coverage among the 347 accessions was 50�, with a
range of 15� to 333� (supplementary table S13,
Supplementary Material online), providing sufficient coverage
for high-sensitivity SV calls (Layer et al. 2014).

SV Discovery
We used separate methods to infer SVs in the three different
data sets. For genome alignment, we performed comparisons
between pairs of assemblies with MUMmer v4 (Marçais et al.
2018). The minimum length of a single exact match (-l 1000)
and a cluster of matches (-c 1000), and the maximum diag-
onal difference between two adjacent anchors in a cluster (-D
5) were set using the nucmer program (nucmer -maxmatch -
noextend). Dot plots were generated to visualize chromo-
somal collinearity and large SVs, using mummerplot. SVs be-
tween pairs of assemblies were discovered using the show-diff
program in MUMmer v4; collinear regions and SV break-
points were shown using the show-coords program. The
chromosome 6 inversion and other major SVs were verified
in the IGV browser (Robinson et al. 2017) from bam files that
mapped the SMRT and/or Illumina reads to both the
O. longistaminata (Reuscher et al. 2018) and the
Nipponbare (Zhang et al. 2018) assemblies. Genome
assembly-based SV discovery was also performed using the
pipeline previously described (Liao et al. 2020). Briefly, soft
masked target and query genomes were first aligned using
LASTZ (Harris 2007), and then processed with CHAIN/NET/
NETSYNTENY tools (Kent et al. 2003) to construct the syn-
tenic blocks. SV calling and further filtering were processed
using custom perl scripts which are available at https://github.
com/yiliao1022/LASTZ_SV_pipeline.

To infer SVs from SMRT reads, we mapped SMRT reads
from each accession to the Nipponbare reference genome
(Zhang et al. 2018) using minimap2 v2.15 (Li 2018). The pop-
ulation calling model of the Sniffles pipeline (Sedlazeck et al.
2018) was used to genotype SV across all ten accessions (sup-
plementary table S2, Supplementary Material online). The
SVs calls were then filtered following (Zhou et al. 2019) by
removing SVs with: (1) flags “IMPRECISE” and
“UNRESOLVED,” (2) length<50 bp, and (3) support by fewer
than four SMRT reads.

SV calls from paired-end Illumina reads were based on two
methods: DELLY2 (Rausch et al. 2012) and LUMPY 0.2.13
(Layer et al. 2014). Both programs were used to call and ge-
notype SVs across the 347 accessions as a single sample.
Technically, this means that SVs were called with
�18,000� coverage of the reference genome. For DELLY,
SV calling was performed with the recommended workflow

(Rausch et al. 2012). For LUMPY, read lengths and insert sizes
were extracted from bam files for each sample using
SAMtools 1.9 (Li 2011), and the SVs were genotyped using
SVTyper (Layer et al. 2014). Both DELLY and LUMPY SV calls
were filtered following Zhou et al. (2019). SV calls from DELLY
and LUMPY were merged using SURVIVOR v1.0.3 (Jeffares
et al. 2017). We excluded SVs that overlapped existing TE
annotations, based on the RepeatMasker version 1.332
(http://www.repeatmasker.org) output using a curated rice
TE library (Ou et al. 2019). The final SV calls were filtered
with the additional criteria, including length >50 bp, missing
genotype <80%, and identical breakpoints across all 347
individuals.

Mobile Element Insertions
We used separate approaches to examine MEIs, because these
are often large enough that they are called incorrectly by
short-read SV callers. Insertion frequencies of mobile ele-
ments in population samples were detected using
PoPoolationTE2 (Kofler et al. 2011) using Illumina PE reads
across the 347 accessions using four steps. First, the sequences
of all TEs with length>50 bp were extracted from an existing
TE annotation across all major TE families of reference ge-
nome japonica Nipponbare (Zhang et al. 2018). These TE
regions were then masked in the reference. The TE-merged
reference was generated by merging TE sequences and the
masked reference genome (Kofler et al. 2016). Second,
Illumina PE reads were mapped to the TE-merged reference
using BWA-MEM (Li and Durbin 2010). Third, the insertion
frequencies of TEs across population samples were identified,
using the recommended workflow of PoPoolationTE2 with
the joint algorithm and default parameters. Finally, the MEIs
were genotyped for each individual based on the number of
supporting reads; an MEI or non-MEI allele was genotyped as
missing when there were <4 reads at the breakpoints that
support either allele. An MEI supported by <4 reads was
genotyped as 0/0 (homozygous non-MEI); an MEI supported
by most of the reads (<4 reads support non-MEI) was gen-
otyped as 1/1 (homozygous MEI); and the remaining cases
were genotyped as 0/1 (heterozygous MEI).

To assess the results of MEIs detected by PoPoolationTE2,
we also identified MEIs across all 347 accessions using TE-
locate (Platzer et al. 2012), which is reported to have high
sensitivity and precision in the detection of reference TE
insertions (Vendrell-Mir et al. 2019). We again based our
inferences on the TE reference in gff3 format. We included
all major TE families with length >50 bp, which were
extracted from the TE annotation of reference genome ja-
ponica Nipponbare (Zhang et al. 2018). Using the TE refer-
ence as the input file, the insertion events of TEs were then
identified using the program TE_loacate.pl. Insertion events
with <4 supporting reads were marked as missing, and >5
reads were considered evidence of presence of the TE in an
individual. For this analysis, insertion events were further fil-
tered if supported by less than five individuals (1% minimum
frequency) across population samples.
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Population Genetic Analyses
Our variant calls resulted in filtered bam files, a vcf file for
SNPs, a vcf for SVs, and MEI genotypes based on population
samples that were used in downstream evolutionary genomic
analyses. Only biallelic variants were used. The annotation
files used in this article, along with the unfiltered vcfs are
available at https://zenodo.org/deposit/3758509.

Population Structure
We used the SNP vcfs to examine population structure. These
analyses were performed in ANGSD v0.929 (Korneliussen
et al. 2014) using genotype likelihoods in the beagle file as
an input to NGSadmix. Population structure inference was
based on SNP variants with a minimal quality score of 20 and
a minimal mapping quality of 30. The number of genetic
clusters (K) ranged from 2 to 10, and the maximum iteration
of the EM algorithm was set to 2,000. The filtered SNPs across
all samples were used to construct a phylogenetic tree in the
FastTree v2.1.11 program with GTRþCAT model (Price et al.
2009) with O. longistaminata and O. meridionalis used as
outgroups. The assignment tables from SNP and SVs were
compared by flattening the matrix and calculating the
Pearson correlation coefficient.

The population structure inference for SV variations were
conducted using ADMIXTURE 1.3.0 with a block relaxation
algorithm (Alexander et al. 2009). The termination criterion
for the algorithm was when the log-likelihood increased by
<0.0001 between iterations. The binary fileset (.bed) as
ADMIXTURE’s input was created from the SV vcf by PLINK
1.9.0 (Purcell et al. 2007). For downstream population genetic
analyses, we only chose samples with clear classifications sup-
ported by population structure analyses.

Population Genetic Statistics
Given SNP calls on the filtered set of 347 accessions, we used
ANGSD v0.929 (Korneliussen et al. 2014) to estimate
genome-wide nucleotide diversity, primarily to assess
whether our samples reflected the well-substantiated hierar-
chy of diversity within Oryza and were therefore reasonable
representatives of genetic diversity. The data did indeed re-
capitulate the known hierarchy—that is, rufipogon had
higher diversity (hw ¼ 0.0213 6 0.0022, p ¼
0.0129 6 0.0015, n¼ 90) than indica (hw ¼
0.0100 6 0.0017, p ¼ 0.0094 6 0.0018, n¼ 96), which was
more diverse than japonica (hw ¼ 0.0057 6 0.0012, p ¼
0.0039 6 0.0012, n¼ 106). Because these diversity estimates
were based on genomic likelihoods, they were higher and
likely more accurate (Kim et al. 2011) than previous
genome-wide reports based on filtered SNPs (Huang et al.
2012).

Linkage disequilibrium decay along physical distance was
measured by the squared correlation coefficients (r2) between
all pairs of SNPs, SVs, and all variants (SNPs þ SVs) within a
physical distance of 300 kb using PopLDdecay (Zhang et al.
2019). Genome-wide genetic diversity was assessed from ge-
notype likelihood in the ANGSD v0.929 (Korneliussen et al.
2014), based on SNP variants. The�doSaf option was used to

calculate the site allele frequency likelihood at all sites, and
then the�realSFS was used to obtain a maximum likelihood
estimate of the unfolded SFS using the EM algorithm (Kim
et al. 2011). Population genetic statistics, including
Watterson’s hw and pairwise differences p, were calculated
for each population group using the thetaStat program
(Korneliussen et al. 2014). Genetic diversity (p) for SNPs
and SVs in each group was compared using VCFtools
v0.1.15 (Danecek et al. 2011).

The unfolded SFS was calculated from the allele counts for
each position using three O. longistaminata and three
O. meridionalis accessions as outgroups. For japonica, indica,
and rufipogon, we downsampled to ten samples with the
highest coverage and the least missing data to calculate the
SFS for each variant type, including sSNPs that were outside
outlier windows based on SweeD analyses (see below), nSNPs
(Nsyn), and SVs (DEL, DUP, TRA, INV, MEI). For MEIs, we also
classified them into ten families, including four retrotranspo-
son families (Gypsy, Copia, LINE, SINE) and six DNA transpo-
son families (CACTA, Mutator, Helitron, hAT, Harbinger,
Mariner), and calculated the SFS for each family. The number
of derived alleles were calculated for each type of variant using
O. longistaminata and O. meridionalis as outgroups. We ex-
cluded sites with missing data at all six outgroup samples in
the SFS estimation. The genetic burden was calculated under
additive (2� homozygous variants þ number of heterozy-
gous variants) (Henn et al. 2016; Zhou et al. 2017).

Selection on SVs and SNPs
SweeD v3.3.2 (Pavlidis et al. 2013) was used to detect genomic
signatures of selection in the indica, japonica, and rufipogon
samples, based on a sliding window size of 20 kb. The genes
underlying the outlier windows were then annotated based
on the MSU7 annotation (Kawahara et al. 2013). Gene
Ontology (GO) analyses for these genes were run in agriGO
v2.0 (Tian et al. 2017).

We used the SweeD results to define neutral sSNPs, be-
cause we assumed that sSNPs outside putative selective
sweeps were neutral. The neutral sSNPs were used for calcu-
lating the SFS; the sSNP SFS was compared with the SFS of
other variant types using the Kolmogorov–Smirnov test in R
v3.5.1. For the SFS of individual TEs, we used the unfolded SFS
to estimate DFE and a, using polyDFE v.2.0 (Tataru and
Bataillon 2019). The results were presented with 95% confi-
dence intervals obtained from the inferred discretized DFEs
from 20 bootstrap data sets.

Pairwise genetic differentiation (FST) and genetic diver-
gence (Dxy) for SNPs and SVs along chromosome between
each pair of three groups, indica, japonica, and rufipogon,
were estimated using VCFtools v0.1.15 (Danecek et al.
2011) and PBScan v1.0 (H€am€al€a and Savolainen 2019) with
20-kb fixed windows. Genes underlying the FST and Dxy outlier
windows were annotated based on the MSU7 annotation
(Kawahara et al. 2013). GO analyses were conducted in
agriGO v2.0 (Tian et al. 2017).

To examine gene gain and loss during domestication, we
identified private sites in each species, and also identified
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shared and fixed sites between each pair of the three groups
(japonica, indica, and rufipogon). The corresponding genes
were inferred based on the MSU7 annotation (Kawahara et al.
2013). GO analyses were conducted in agriGO v2.0 (Tian et al.
2017) for each category.

TE Analyses on the Nipponbare Reference
To calculate parameters such as TE insertion time and dis-
tance from gene, we focused on the Nipponbare reference
and relied on its TE annotation (Zhang et al. 2018) and the
gene annotation from MSU7 annotation (Kawahara et al.
2013). Given the TE annotations, a multiple alignment file
was generated for each TE family using MAFFT v7.305b
with FFT-NS-2 method (Katoh et al. 2002; Katoh and
Standley 2013). A consensus sequence of each TE family
was extracted from the multiple alignment, and the sequence
divergence between each TE copy and the consensus se-
quence was calculated using EMBOSS 6.5.7.0 (Rice et al.
2000). The TE insert time for each TE copy was estimated
based on the sequence divergence (dk) and a substitution rate
6.5� 10�9 substitutions per site per year (Gaut et al. 1996).

Data Availability
The gene and TE annotations of the reference genome and
raw SV calls are available at https://zenodo.org/deposit/
3758509. The LASTZ Pipeline for SV detection is available at
https://github.com/yiliao1022/lastz_sv_pipeline.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

NOTE.—FST (i–r) refers to FST between indica and rufipo-
gon, with additional columns for japonica–rufipogon (j–r).
Cells are colored as to whether the gene is in a 1% peak
(dark gray), a 10% peak (medium gray), or an extreme valley
(�90%) (light gray) based on either SNPs or SVs.
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Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A.
2018. MUMmer4: a fast and versatile genome alignment system.
PLoS Comput Biol. 14(1):e1005944.

Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan
MD. 2007. The extent of linkage disequilibrium in rice (Oryza sativa
L.). Genetics 177(4):2223–2232.

Mickelbart MV, Hasegawa PM, Bailey-Serres J. 2015. Genetic mechanisms
of abiotic stress tolerance that translate to crop yield stability. Nat
Rev Genet. 16(4):237–251.

Moyers BT, Morrell PL, McKay JK. 2018. Genetic costs of domestication
and improvement. J Hered. 109(2):103–116.

Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B,
Reynolds A, Chia J-M, Ware D, et al. 2011. Genetic structure and
domestication history of the grape. Proc Natl Acad Sci U S A.
108(9):3530–3535.

Nattestad M, Schatz MC. 2016. Assemblytics: a web analytics tool for the
detection of variants from an assembly. Bioinformatics
32(19):3021–3023.

Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott
TA, Ware D, Peterson T, et al. 2019. Benchmarking transposable
element annotation methods for creation of a streamlined, compre-
hensive pipeline. Genome Biol. 20(1):275.

Pavlidis P, �Zivkovi�c D, Stamatakis A, Alachiotis N. 2013. SweeD:
likelihood-based detection of selective sweeps in thousands of
genomes. Mol Biol Evol. 30(9):2224–2234.

Platzer A, Nizhynska V, Long Q. 2012. TE-locate: a tool to locate and
group transposable element occurrences using paired-end next-gen-
eration sequencing data. Biology (Basel) 1(2):395–410.

Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol Biol
Evol. 26(7):1641–1650.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D,
Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. 2007. PLINK: a tool set
for whole-genome association and population-based linkage analy-
ses. Am J Hum Genet. 81(3):559–575.

Structural Variation in Asian Rice Domestication . doi:10.1093/molbev/msaa185 MBE

3523

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/12/3507/5873527 by guest on 31 M
arch 2021

https://www.biorxiv.org/content/10.1101/2020.05.13.094516v1
https://www.biorxiv.org/content/10.1101/2020.05.13.094516v1


Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. 2012.
DELLY: structural variant discovery by integrated paired-end and
split-read analysis. Bioinformatics 28(18):i333–i339.

Reuscher S, Furuta T, Bessho-Uehara K, Cosi M, Jena KK, Toyoda A,
Fujiyama A, Kurata N, Ashikari M. 2018. Assembling the genome
of the African wild rice Oryza longistaminata by exploiting synteny in
closely related Oryza species. Commun Biol. 1(1):162.

Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular
biology open software suite. Trends Genet. 16(6):276–277.

Robinson JA, Brown C, Kim BY, Lohmueller KE, Wayne RK. 2018. Purging
of strongly deleterious mutations explains long-term persistence and
absence of inbreeding depression in island foxes. Curr Biol.
28(21):3487–3494.e4.

Robinson JT, Thorvaldsd�ottir H, Wenger AM, Zehir A, Mesirov JP. 2017.
Variant review with the Integrative Genomics Viewer (IGV). Cancer
Res. 77(21):e31–e34.

Roessler K, Muyle A, Diez CM, Gaut GRJ, Bousios A, Stitzer MC, Seymour
DK, Doebley JF, Liu Q, Gaut BS. 2019. The genome-wide dynamics of
purging during selfing in maize. Nat Plants. 5(9):980–990.

Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von
Haeseler A, Schatz MC. 2018. Accurate detection of complex struc-
tural variations using single-molecule sequencing. Nat Methods.
15(6):461–468.

Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.
2008. Deletion in a gene associated with grain size increased yields
during rice domestication. Nat Genet. 40(8):1023–1028.

Simons YB, Turchin MC, Pritchard JK, Sella G. 2014. The deleterious
mutation load is insensitive to recent population history. Nat
Genet. 46(3):220–224.

Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao
D, Iwata A, Goicoechea JL, et al. 2018. Genomes of 13 domesticated
and wild rice relatives highlight genetic conservation, turnover and
innovation across the genus Oryza. Nat Genet. 50(2):285–296.

Stuart T, Eichten SR, Cahn J, Karpievitch YV, Borevitz JO, Lister R. 2016.
Population scale mapping of transposable element diversity reveals
links to gene regulation and epigenomic variation. eLife 5:e20777.

Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A,
Huddleston J, Zhang Y, Ye K, Jun G, Fritz M-Y, et al. 2015. An inte-
grated map of structural variation in 2,504 human genomes. Nature
526(7571):75–81.

Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y,
Dong X, et al. 2018. Extensive intraspecific gene order and gene
structural variations between Mo17 and other maize genomes.
Nat Genet. 50(9):1289–1295.

Tataru P, Bataillon T. 2019. polyDFEv2.0: testing for invariance of the
distribution of fitness effects within and across species.
Bioinformatics 35(16):2868–2869.

Tattini L, D’Aurizio R, Magi A. 2015. Detection of genomic structural
variants from next-generation sequencing data. Front Bioeng
Biotechnol. 3:92.

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. 2017. agriGO v2.0: a
GO analysis toolkit for the agricultural community, 2017 update.
Nucleic Acids Res. 45(W1):W122–W129.

Vendrell-Mir P, Barteri F, Merenciano M, Gonzalez J, Casacuberta JM,
Castanera R. 2019. A benchmark of transposon insertion detection
tools using real data. Mob DNA. 10:53.

Voichek Y, Weigel D. 2020. Identifying genetic variants underlying phe-
notypic variation in plants without complete genomes. Nat Genet.
52(5):534–540.

Vondras AM, Minio A, Blanco-Ulate B, Figueroa-Balderas R, Penn MA,
Zhou Y, Seymour D, Ye Z, Liang D, Espinoza LK, et al. 2019. The
genomic diversification of grapevine clones. BMC Genomics
20(1):972.

Wang H, Vieira FG, Crawford JE, Chu C, Nielsen R. 2017. Asian wild rice is
a hybrid swarm with extensive gene flow and feralization from do-
mesticated rice. Genome Res. 27(6):1029–1038.

Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T,
Fuentes RR, Zhang F, et al. 2018. Genomic variation in 3,010 diverse
accessions of Asian cultivated rice. Nature 557(7703):43–49.

Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD,
Gaut BS. 2005. The effects of artificial selection on the maize genome.
Science 308(5726):1310–1314.

Wright SI, Le QH, Schoen DJ, Bureau TE. 2001. Population dynamics of an
Ac-like transposable element in self- and cross-pollinating arabidop-
sis. Genetics 158(3):1279–1288.

Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail
AM, Bailey-Serres J, Ronald PC, Mackill DJ. 2006. Sub1A is an
ethylene-response-factor-like gene that confers submergence toler-
ance to rice. Nature 442(7103):705–708.

Yao W, Li G, Zhao H, Wang G, Lian X, Xie W. 2015. Exploring the rice
dispensable genome using a metagenome-like assembly strategy.
Genome Biol. 16(1):187.

Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. 2019. PopLDdecay: a fast
and effective tool for linkage disequilibrium decay analysis based on
variant call format files. Bioinformatics 35(10):1786–1788.

Zhang Q, Liang Z, Cui X, Ji C, Li Y, Zhang P, Liu J, Riaz A, Yao P, Liu M, et al.
2018. N6-methyladenine DNA methylation in Japonica and Indica
rice genomes and its association with gene expression, plant devel-
opment, and stress responses. Mol Plant. 11(12):1492–1508.

Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L,
Huang T, et al. 2018. Pan-genome analysis highlights the extent of
genomic variation in cultivated and wild rice. Nat Genet.
50(2):278–284.

Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. 2017. Evolutionary
genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc
Natl Acad Sci U S A. 114(44):11715–11720.

Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, Cantu D, Gaut
BS. 2019. The population genetics of structural variants in grapevine
domestication. Nat Plants. 5(9):965–979.

_Zmie�nko A, Samelak A, Kozłowski P, Figlerowicz M. 2014. Copy number
polymorphism in plant genomes. Theor Appl Genet. 127(1):1–18.

Kou et al. . doi:10.1093/molbev/msaa185 MBE

3524

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/12/3507/5873527 by guest on 31 M
arch 2021


