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Abstract

Hydrofracturing can enhance the depth to which crevasses propagate and, in some cases, allow
full depth crevasse penetration and iceberg detachment. However, many existing crevasse models
either do not fully account for the stress field driving the hydrofracture process and/or treat gla-
cier ice as elastic, neglecting the non-linear viscous rheology. Here, we present a non-local con-
tinuum poro-damage mechanics (CPDM) model for hydrofracturing and implement it within a
full Stokes finite element formulation. We use the CPDM model to simulate the propagation of
water-filled crevasses in idealized grounded glaciers, and compare crevasse depths predicted by
this model with those from linear elastic fracture mechanics (LEFM) and zero stress models.
We find that the CPDM model is in good agreement with the LEFM model for isolated crevasses
and with the zero stress model for closely-spaced crevasses, until the glacier approaches buoyancy.
When the glacier approaches buoyancy, we find that the CPDM model does not allow the propa-
gation of water-filled crevasses due to the much smaller size of the tensile stress region concen-
trated near the crevasse tip. Our study suggests that the combination of non-linear viscous and
damage processes in ice near the tip of a water-filled crevasse can alter calving outcomes.

1. Introduction

The mass loss from glaciers and ice sheets represents the largest contribution to eustatic sea level
rise in the 21st century (Meier and others, 2007; Moore and others, 2013). Crevasses can influence
both the mass balance and the dynamics of glaciers and ice sheets by enhancing surface ablation,
meltwater retention, basal sliding, viscous deformation and iceberg calving (e.g. Colgan and
others, 2016). Specifically, calving occurs when the combination of basal and surface crevasses
penetrates the entire thickness, thus isolating an iceberg (e.g. Benn and others, 2007b). The
mechanisms associated with crevasse initiation and propagation, however, are complex and
involve mechanical, thermal and hydraulic fracture processes (e.g. Alley and others, 2005;
Bassis and Ma, 2015). For instance, meltwater in surface crevasses or seawater in basal crevasses
apply pressure on the crevasse walls and promote crevasse growth deeper into the glacier; this
hydraulic-pressure-driven fracture is commonly referred to as hydrofracture. Thus, calving is
intricately linked to climate dynamics through processes such as hydrofracturing, and can poten-
tially contribute to rapid sea level rise (Pollard and others, 2015; DeConto and Pollard, 2016).
Scambos and others (2000, 2009) and Banwell and others (2014) proposed that meltwater-driven
hydrofracture of surface crevasses can lead to rapid fracturing of ice-shelf fronts and accelerate the
collapse of certain portions of the Antarctic ice sheet. To gain a better understanding of the
hydrofracturing process in glaciers and the conditions enabling full thickness crevasse propaga-
tion or calving, we formulate a physically-consistent, continuum poro-damage mechanics
model and compare it with existing fracture mechanics models.

Crevasses have historically been thought to be opening (mode I) fractures formed under the
action of tensile normal stress. Therefore, researchers sought to estimate crevasse penetration
depths in glaciers and ice shelves analytically using either the zero stress model (Nye, 1957) or
linear elastic fracture mechanics (LEFM) models (Weertman, 1971, 1973; Smith, 1976; van der
Veen, 1998a, 1998b). The zero stress model, first proposed by Nye (1957), estimates the pene-
tration depth of air-filled crevasses assuming that ice has zero fracture resistance or cohesive
strength, and that crevasses will propagate to the depth where the longitudinal tensile stress in
ice vanishes. Later, Jezek (1984), and most notably Benn and others (2007a) and Nick and
others (2010), extended the zero stress model for estimating the depth of water-filled crevasses
by assuming that they will propagate to the depth where the longitudinal tensile stress becomes
equal to the (compressive) water pressure. The zero stress model neglects the stress singularity
at the crevasse tip as predicted by the mathematical theory of elasticity; however, it may be
valid for a quasi-uniform field of closely spaced crevasses in an idealized rectangular glacier
(De Robin, 1974; Weertman, 1974).

To address the limitations of the zero stress model, Weertman (1971, 1973) proposed a
dislocation-based LEFM model that accounts for the stress singularity at the crevasse tip
and estimated the penetration depths of isolated water-free and water-filled crevasses such
that the crack opening displacement is positive along the fracture surface. However,
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Weertman (1973) assumed that the ice thickness is infinite, and
so this model is only applicable when the crevasse depth is
much smaller than the ice thickness. Later, Weertman (1977)
showed that the penetration depth of a uniform field of closely-
spaced water-free crevasses, calculated using dislocation-based
fracture mechanics, is equal to that found by the Nye zero stress
model provided the fracture strength of ice is taken to be zero.
Smith (1976) first proposed a stress-intensity-factor-based LEFM
model for estimating the penetration depth of water-filled crevasses
based on the assumption that the ice thickness is infinite. To
account for the finite ice thickness of real glaciers, van der Veen
(1998a, 1998b) proposed stress-intensity-factor-based LEFMmodels
that used weight functions corresponding to a single edge crack in a
finite width plate, as given by Tada and others (1973, 2000).

The aforementioned analytical crevasse depth models for
mode I fracture, including zero stress and LEFM models, consider
idealized or synthetic geometries and boundary conditions.
Existing crevasse models are strictly applicable for mode I fracture
of thin plates with rectangular geometry and with specific dis-
placement or traction boundary conditions applied on their
edges (Jiménez and Duddu, 2018b), so their relevance to iceberg
calving in real glaciers can be somewhat limited. Moreover, van
der Veen (1999) has argued that crevasses are the manifestation
of mixed-mode fracture due to combined opening (mode I), slid-
ing (mode II) and tearing (mode III) fracture. Mottram and Benn
(2009) tested crevasse depth models using a field study at
Breid. h. oamerkurjökull glacier in Iceland, and found that the
van der Veen (1998b) LEFM model performs better than the
Nye (1957) zero stress model when tuned for fracture toughness
along with input data on crevasse spacing. However, Mottram
and Benn (2009) also remarked that ‘measuring crevasse depths
accurately is difficult, dangerous and time-consuming,’ and it is
likely that the reported crevasse depths from field studies system-
atically underestimate the true depths, which makes both model
calibration and validation challenging.

An alternative approach for calculating crevasse depth involves
the use of continuum damage mechanics (CDM) within numer-
ical ice flow models (Pralong and Funk, 2005; Pralong and others,
2006; Duddu and Waisman, 2012, 2013; Duddu and others, 2013;
Mobasher and others, 2016; Jiménez and others, 2017), which
offers certain advantages. First, a CDM model can be easily incor-
porated into numerical ice sheet models without requiring com-
plicated algorithms for tracking the propagation of crevasses.
Second, in a CDM model, damage is evolved based on the
Cauchy (true) stress evaluated by the ice flow model and is
valid for any arbitrary glacier geometry or boundary conditions.
Third, a CDM model can account for crevasse initiation without
requiring the presence of pre-existing crack or damage (i.e. sub-
critical damage), unlike the stress-intensity-factor-based LEFM
model. Pralong and Funk (2005) were the first to implement a
local creep damage model within an incompressible non-linear
Stokes flow formulation to simulate crevasse propagation and gla-
cier calving. Borstad and others (2012) used the CDM concept to
estimate the damage in ice shelves based on satellite-observed sur-
face velocities, but this study focused on assessment (diagnostic)
and not on prediction (prognostic) of damage evolution.

Nonetheless, the CDM approach has its limitations. First, the
CDM model within a full Stokes numerical formulation is com-
putationally expensive for investigating crevasse propagation in
real glaciers or ice shelves. Second, the CDM model involves sev-
eral empirical parameters that may not be uniquely calibrated
from existing experiments or observations, and this parametric
uncertainty can affect its predictive capability. Third, the CDM
model will need a tensorial damage variable to treat mixed-mode
fracture under multi-axial tension-compression stress state, which
can exacerbate the issues of computational cost and parametric

uncertainty (Keller and Hutter, 2014a, 2014b). These limitations
can be addressed by implementing shallow shelf/ice or higher-
order Stokes approximations (instead of full Stokes formulations)
using parallel computing, and calibrating model parameters with
new experiments and satellite observations to reduce uncertainty.
Thus, the CDM approach is a promising technique that can
enable high-fidelity simulation and provide a better understand-
ing of the mechanisms of thermal, mechanical and hydraulic frac-
ture processes driving crevasse propagation. Furthermore, CDM
can be advantageous when examining the propagation of fractures
in different glacier geometries with spatially varying profiles of ice
temperature, viscosity, density and boundary conditions.

Here we present a non-local continuum poro-damage
mechanics (CPDM) model to simulate hydrofracturing by extend-
ing the CDM model of Jiménez and others (2017), based on por-
omechanics theory (Mobasher and others, 2016). The CPDM
alleviates spurious mesh-size sensitivity and artificial diffusion
of damage in crevasse propagation simulations and accounts for
the feedback between viscous (or elastic) and damage processes
at the crevasse tip. We compare the CPDM model with more
traditional LEFM and Nye zero stress models to better understand
how the predictions of these models vary under different idealized
scenarios. We first illustrate the parametric and mesh-size insensi-
tivity of the CPDM model for estimating the crevasse penetration
depth. We next investigate the role of ice rheology, crack tip acuity
and fracture/damage process zone size on the propagation of
water-filled crevasses. Thus, through idealized simulation studies,
we address two important modeling questions related to glacier
calving: (1) Are the crevasse depths predicted by the CDPM
model consistent with those predicted by zero stress and LEFM
models? (2) What is the role of ice rheology and fracture process
zone size on crevasse propagation and calving outcomes? In add-
ition, we also address a fundamental glacier mechanics question:
‘Can a water-filled crevasse reach the bottom surface of a glacier?’
(Weertman, 1973).

The rest of the article is organized as follows: in Section 2, we
present the strong form of the governing equations of the non-
local CPDM model for hydromechanical fracture, including the
notion of poro-damage mechanics, constitutive models for ice,
and creep damage evolution law; in Section 3, we present para-
metric and sensitivity studies before comparing the depths of
water-filled crevasses predicted by CPDM, LEFM and zero-stress
models; in Section 4, we discuss the implications of the rheology
and damage model assumptions and idealized simulation results
for ice fracture and calving for real glaciers; and in Section 5,
we offer some concluding remarks. In the Appendices, we briefly
review the formulation of the analytical zero-stress and LEFM
models, and the finite element implementation of the CPDM
model.

2. Model formulation and implementation

2.1. Notion of poro-damage mechanics

We represent damage using an isotropic scalar variable D∈ [0, 1],
where D = 0 and D = 1 represent the undamaged and fully
damaged state, respectively, at a material point in the continuum.
The continuum region where 0 <D ≤ 1 describes a finite thick-
ness damage zone, which may be interpreted as partially
degraded material with distributed microcracks or microvoids
before failure (D < 1) and an open crack after failure (D = 1).
Thus, from a computational modeling perspective, CDM can
be viewed as a diffuse interface alternative to LEFM that assumes
a sharp (zero-thickness) crack interface. Typically, in the CDM
the fully damaged zones (D = 1) are physically interpreted as air-
filled or open cracks. Following the principle of effective stress
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(Kachanov, 1958; Rabotnov, 1963) and the hypothesis of strain
equivalence (Lemaitre, 1971), the effective Cauchy stress tensor
�s in ice may be defined in terms of the ‘true’ Cauchy stress
tensor σ as

�s = s

1− D( ) =
1

1− D( )

sxx sxy sxz

sxy syy syz

sxz syz szz

⎡⎣ ⎤⎦. (1)

We can extend the CDM formulation to incorporate hydraulic
fracture in the quasi-static regime, where water can permeate
the damage zone and exert hydrostatic pressure. In a finite-
thickness damage zone (0 <D < 1) saturated with water within
an otherwise undamaged ice slab, as shown in Figure 1, the iso-
tropic damage variable D may be physically interpreted as the
ratio of the area of microvoids and microcracks to the total
area on a planar surface (e.g. a principal plane) through a repre-
sentative volume element (RVE) (Murakami, 1983; Duddu and
Waisman, 2013). Thus, the damage variable D is intricately
related to porosity ϕ, which is defined as the ratio of the volume
of microvoids to the total volume within the RVE. The physical
RVE of the damage zone contains microcracks and microvoids
within which there is hydraulic pressure, while the surrounding
intact ice sustains an effective Cauchy stress. The equivalent
RVE homogenizes the mechanical response such that the macro-
scopic maximum principal stress σ1 maintains force balance with
the microscopic solid stress �s1 in ice and water pressure pw
within the voids or cracks. Thus, we can define a simple relation
for the macroscopic maximum principal stress as

s1 = (1− D)�s1 − Dpw, (2)

where pw is the hydraulic pressure acting within the damage
zone.

Extending the definition to three dimensions, the macroscopic
Cauchy stress in saturated damaged ice is given by Mobasher and
others (2016, 2017)

s = (1− D)�s− DpwI. (3)

The above definition of the macroscopic Cauchy stress resembles
that of the effective stress in a saturated porous medium according
to Biot’s theory of poroelasticity (Biot, 1955; Coussy, 1995), which
formalizes Terzaghi’s principle (Terzaghi, 1951, 2007). The term
‘poro-damage’ was first used by Bary and others (2000), although
it is less commonly used in the literature.

2.2. Constitutive model for damaged ice

The mechanical response of ice over shorter time scales (seconds
to hours) is often described by linear elastic or visco-elastic con-
stitutive models (Christmann and others, 2016), whereas glacier
and ice-sheet flow over longer times scales (days to centuries) is
best described by a non-linearly viscous constitutive model
known as Glen’s law (Glen, 1955; Cuffey and Paterson, 2010).
To better understand the role of ice rheology and fracture process
zone on crevasse propagation, we perform two sets of numerical
simulations, one with a linear elastic rheology and one with a
non-linear viscous rheology, and compare the non-local CPDM
model against LEFM and zero-stress models. Assuming the
deformation or flow of glacier ice is incompressible, the effective
stress in ice can be decomposed into deviatoric and volumetric
parts as

�s = �t− �pI, (4)

where �t is the effective deviatoric stress tensor, �p = − 1
3 trace[�s] is

the effective pressure, and I is the identity tensor. Because pres-
sure is constitutively indeterminate for incompressible deform-
ation, we use a two-field velocity–pressure formulation with
non-linear viscous rheology to define the deviatoric stress as a
function of strain-rate. Similarly, we use a two-field displace-
ment–pressure formulation with the linear elastic rheology to
define the deviatoric stress as a function of strain.

2.2.1. Non-linear viscous rheology
Assuming polycrystalline ice to be an isotropic and incompress-
ible non-Newtonian fluid, the effective deviatoric stress can be
defined as

�t = 2h(ė)ė, (5)

where ė = 1
2 (∇v + ∇`v) is the viscous strain rate defined by the

symmetric gradient of the velocity field v, and the non-linear vis-
cosity coefficient is given by

h(ė) = 1
2
A−1/n ėeq( )1/n−1

. (6)

In the above equation, A is a temperature-dependent viscosity
coefficient, n is a viscosity exponent controlling the non-linearity

of the flow model, ėeq =
�������
1
2 ė : ė

√
is the equivalent strain rate (i.e.

the second strain-rate invariant) and the colon (:) denotes inner
product between two tensors. The values of the model parameters
used in our study are listed in Table 1. We note that this rheology
model is consistent with the Glen–Nye law defined as (Glen, 1955;
Nye, 1957)

ė = A �teq( )n−1�t. (7)

For polycrystalline ice, the parameter n is generally taken to be
3. We obtained the viscosity coefficient A = 7.156 ×
10−7 MPa−3 s−1 at a temperature of − 10°C by taking the param-
eter A0 from van der Veen (2013) and then applying the
Arrhenius equation (Eqn (2.14) in van der Veen (2013)).

a

b

Fig. 1. Schematic illustration of continuum poro-damage mechanics: (a) in a damage
zone saturated with water, we assume that the microvoids and microcracks in the
representative volume element (RVE) are completely filled with water; (b) on a prin-
cipal plane of the physical RVE, hydraulic pressure pw acts in the regions of the micro-
cracks and microvoids, whereas the microscopic solid stress �s1 acts on the
surrounding intact ice. Thus, the mechanical stress response is homogenized, so
that the averaged macroscopic maximum principal stress σ1 on a principal plane
in the equivalent RVE maintains force balance according to Eqn (2).
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Combining Eqns (4) and (5) and substituting them into Eqn (3),
we obtain the constitutive equation for the non-linearly viscous
ice rheology that incorporates hydraulic pressure within the dam-
age zone as

s = (1− D) 2h(ė)ė− �pI
[ ]

− DpwI. (8)

2.2.2. Linear elastic rheology
Assuming polycrystalline ice to be an isotropic and incompress-
ible elastic solid, the effective deviatoric stress can be defined as

�t = E
(1+ n)

e, (9)

where E is the Young’s modulus and ν = 0.5 is the Poisson’s ratio,
and e = 1

2 (∇u+∇`u) is the small strain tensor defined by the
symmetric gradient of the displacement field u. For polycrystal-
line ice, we assume E = 9500 MPa at a temperature of − 10°C
(Karr and Choi, 1989; Rist and others, 2002). Combining Eqns
(4) and (9) and substituting them into Eqn (3), we obtain the con-
stitutive equation for the linear elastic ice rheology that incorpo-
rates hydraulic pressure within the damage zone as

s = (1− D)
E

(1+ n)
e− �pI

[ ]
− DpwI. (10)

Equations (8) and (10) describe the rheology of intact ice for D =
0 whilst for D = 1 they describe the stress state in water under
hydrostatic conditions. For 0 <D < 1 the stress is defined by a
combination of the effective solid (ice) stress and fluid (water)
stress, so that it satisfies microscale force balance. Thus, Eqns
(8) and (10) can be interpreted as a stress decomposition that is
valid for both linear poro-elastic and non-linear poro-viscoplastic
constitutive models, respectively. In contrast, the superposition
principle used for obtaining net stress by adding the glaciological
stress ice with the water pressure in crevasses in the zero-stress or
LEFM models (see Appendix B) is strictly valid only for linear
elastic/viscous media.

2.3. Creep damage evolution law

We employ the gradient non-local creep damage mechanics for-
mulation originally presented in Jiménez and others (2017) to
simulate time-dependent crevasse propagation. Although the fail-
ure of ice is described by the progressive accumulation of micro-
cracks and microvoids, the creep damage evolution law
(Murakami, 1983) is phenomenologically formulated and does
not explicitly identify the micromechanical mechanisms, such
as void/crack growth or coalescence. Because damage is repre-
sented using a scalar variable, this damage evolution law cannot
account for damage-induced anisotropy depending on microcrack
orientation. We assume that isotropic damage will only increase
under a tensile stress state (i.e. wherever the pressure is negative)
to describe predominantly mode I brittle fracture. Therefore, we
define the material time-derivative of local damage in the

Lagrangian description as

Ḋ
loc = B

〈�x〉r

1− D( )ks
if �p ≤ 0,

0 if �p ≤ 0,

⎧⎨⎩ (11)

where B is a damage rate coefficient, r is a damage rate exponent,
ks is an experimentally calibrated parameter accounting for the
local damage rate enhancement due to prior damage and is
defined as

ks = k1 + k2 trace[s], (12)

�x is the effective Hayhurst stress invariant (Hayhurst, 1972;
Murakami and others, 1988) defined as

�x = a�s(I) + b�sv + (1− a− b) trace[�s], (13)

α and β are parameters describing the brittle and ductile nature of
the fracture process, respectively, �s(I) is the effective maximum
principal stress, and �sv = (32 �t : �t)1/2 is the effective von Mises
stress.

In Eqn (11), we enforce that the local damage rate is zero if the
(compressive) pressure p > 0 or the Hayhurst stress χ < 0. This
condition still allows for tensile fracture in regions where macro-
scopic shear stress is the primary cause of damage, but arrests
damage growth in regions that are confined or subject to multi-
axial compression. Alternatively, we can enforce that the local
damage rate is zero if the effective maximum principal stress
�s(I) , 0, but we note that this did not significantly affect the
final crevasse depth in our simulation studies. At initial stages,
when D≪ 1 the term (1− D)ks is not dominant and the damage
rate is determined by the Hayhurst stress χ, which describes sub-
critical crevasse nucleation and propagation (Weiss, 2004). We
also define critical damage Dcr = 0.6 to capture the transition
from slow damage growth in subcritical stages to fast damage
growth and rupture at the later stages of creep fracture. In Eqn
(13), α weights the effective Hayhurst stress toward the maximum
principal stress, describing brittle failure behavior; whereas
β weights the Hayhurst stress toward the von Mises stress, describ-
ing ductile failure behavior. The sum of these parameter values is
constrained by α + β≤ 1. Pralong and Funk (2005) previously
estimated α = 0.21 and β = 0.63 based on limited laboratory
experimental data, and so these values are not well calibrated.
A more detailed discussion of the physical meaning and signifi-
cance of all damage model parameters can be found in Duddu
and Waisman (2012) and the parameter values used in this
study are listed in Table 2.

To maintain thermodynamic consistency and alleviate mesh-
size sensitivity, we implement a non-local implicit gradient for-
mulation for the creep damage rate (Jiménez and others, 2017)

Ḋ− 1
2
l2c∇2Ḋ = Ḋ

loc
, (14)

where lc is an assumed non-local length scale. In a local damage
model, the width of the damage zone (and the amount of strain
energy dissipated) is dependent on the finite element mesh size
(Bazant, 1994), which leads to pathological mesh-size depend-
ence. By ‘smearing’ damage in a regularized manner within the
damage zone, the non-local damage model alleviates both mesh-
size dependence and directional mesh bias so long as the finite
element mesh size is sufficiently smaller than length scale lc
(Duddu and Waisman, 2013), thus ensuring thermodynamic con-
sistency. However, the length scale parameter is indicative of the

Table 1. Material properties of ice at − 10°C assumed in this study

Property Value Units

ρi 917 kg/m3

A 7.156 × 10−7 MPa−3 s−1

n 3 –
E 9500 MPa
ν 0.5 –
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length of the fracture process zone ahead of the crack tip and an
approximate estimate is given by (e.g. Hillerborg and others,
1976)

lc ≈
EGIc

s2
c

= K2
Ic(1− n2)

s2
c

, (15)

where GIc is the Griffith fracture energy. Typically, the quasi-
brittle tensile fracture of earth materials such as snow, ice and
rocks is characterized by two parameters, namely, the fracture
toughness and the fracture process zone size (Borstad and
McClung, 2013). However, only the fracture toughness of glacier
ice is well characterized with the critical stress intensity factor in
the range KIc = 0.1− 0.4MPa

���
m

√
(Paterson, 1994; van der

Veen, 1998b). The cohesive strength σc is typically much lower
in value than the tensile yield strength of ice (Schulson and
Duval, 2009). Previously, van der Veen (1998b) estimated that a
stress of 30–80 kPa is needed for a single crevasse to form,
which suggests the cohesive strength could be in that range.
Other studies (Pralong and Funk, 2005; Krug and others, 2014)
allude to the cohesive strength parameter based on a stress
threshold for damage initiation and estimate it to be in the
range of 10–200 kPa. Assuming the cohesive strength
σc = 0.1 MPa for ice, we get the length scale in the range
lc≈ 0.75−12 m. Here we take lc = 10 m based on the suggestion
in Weiss (2003). Note that as lc→ 0, the non-local CPDM mimics
the LEFM assumption of a sharp (or zero-thickness) crack, but
its implementation becomes more computationally expensive
because the finite element mesh size must be reduced
correspondingly.

2.4. Strong form of governing equations

We specify the strong form of the governing equilibrium
(momentum balance) and continuity (mass balance) equations
for the incompressible flow or deformation of ice. For the incom-
pressible non-linear viscous rheology, these equations are com-
monly known as the Stokes equations. Incorporating the
constitutive Eqn (8) and the definition of the strain-rate, the
strong form in terms of the unknown vector velocity field v and
scalar effective pressure field �p in the updated reference domain
Ω is given by

∇ · 1− D[ ]h ė(v)( ) ∇v +∇`v
[ ]{ }

− 1− D( )∇�p− ∇(Dpw) + b = 0
c(D)∇ · v = 0

⎫⎬⎭ on V (16)

where b = {0, ρi g}
T is the external body force vector due to gravity

and g is the acceleration due to gravity. If we take the water pres-
sure pw = 0, then the above poro-damage formulation becomes
equivalent to the damage formulation of Jiménez and others

(2017). Thus, we can parametrize hydrofracture by including
one additional external force term ∇(Dpw) in the CDM formula-
tion, which is elegant and computationally attractive. For the
incompressible linear elastic rheology, using the constitutive
Eqn (10) and the definition of the strain, the strong form in
terms of the unknown vector displacement field u and scalar
effective pressure field �p in the reference domain Ω is given by

∇ · 1− D[ ] E
(1+ n) ∇u+∇`u

[ ]{ }
− 1− D( )∇�p−∇(Dpw) + b = 0

c(D)∇ · u = 0

⎫⎪⎪⎬⎪⎪⎭ on V. (17)

The above equations are subject to appropriate Dirichlet and
Neumann boundary conditions,

vi = �vi or ui = �ui on GD,

sn̂ = �t on GN,
(18)

where �vi or �ui are prescribed velocities or displacements, respect-
ively, on the Dirichlet boundary GD, �t is the applied traction vec-
tor, and n̂ is the outward unit normal vector on the Neumann
boundary GN.

The function ψ(D) is incorporated in the formulation to relax
the incompressibility constraint in fully damaged material points
and is written as

c(D) = 1, if D < Dmax,

j, if D = Dmax,

{
(19)

where Dmax = 0.999 is the maximum value of damage, and
ξ = 10−16≈ 0 is chosen as a small number close to machine preci-
sion. We restrict damage to a maximum value Dmax = 0.999 to
prevent ill-conditioning and rank deficiency in the tangent stiff-
ness matrix, which allows the simulation of crevasse propagation
to proceed until the final depth or full-depth penetration is
achieved. At partially damaged material points (i.e.
0 , D , Dmax), we assume the local density is equal to that of
undamaged ice, but the viscosity is degraded. Once a material
point fails (i.e. Dmax = 0.999), we set the density to zero in the
case of a dry crevasse, thus indicating open space, or to the dens-
ity of water in the case that the material point is below the water
level within a water-filled crevasse. Thus, we can describe a two-
phase ice–water medium based on the damage variable and the
crevasse is described by a finite-thickness zone of fully failed
material. The weak form and the finite element implementation
of the CPDM model is briefly discussed in Appendix D.

3. Numerical results

In this section, we simulate the propagation of water-filled surface
crevasses in idealized grounded glaciers. We first illustrate the
sensitivity of crevasse depth predictions to mesh size and model
parameters. We then compare the penetration depths of isolated
and closely spaced water-filled surface crevasses with those pre-
dicted by the LEFM and zero stress models, respectively. In all
the simulations, we consider an idealized rectangular glacier of
length L = 1000 m and height H = 125 m. For simplicity, we neg-
lect lateral shear and restrict the domain to a flow line near the
terminus of a grounded glacier with x and z representing the
along-flow and vertical coordinates. The glacier is grounded on
a rigid, frictionless (free-slip) bed and terminates at the ocean
with a seawater depth hw, as depicted in Figure 2. To discount
the free translation motion of the glacier, we apply a boundary

Table 2. Damage law parameters are all assumed from Duddu and Waisman
(2012), except for α, β and lc, which were assumed from Pralong and Funk
(2005)

Parameter Value Units

B 5.23 × 10−7 MPa−r s−1

r 0.43 –
α 0.21 –
β 0.63 –
k1 −2.63 –
k2 7.24 MPa−1

lc 10 m
Dcr 0.6 –
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condition to enforce zero horizontal flow velocity at the left edge
of the domain. The hydrostatic pressure from seawater is applied
as a traction (Neumann) boundary condition normal to the right
edge of the ice slab with magnitude −ρw g〈hw− z〉. The hydraulic
pressure pw within the crevasse (damage zone) is applied using
the poro-mechanics formulation with magnitude pw =−ρw g
〈hs− (z− zs)〉. To keep the ratio of hs/ds constant in the simula-
tion, we detect the crevasse depth ds at each time step and then
adjust the water level hs accordingly. To be consistent with the
LEFM model, damage is only permitted to nucleate beneath the
initial damage zone within a structured mesh with a constant
element size lelem.

3.1. Isolated water-filled surface crevasse: sensitivity studies

In our previous work (see Section 4.1 in Jiménez and others
(2017)), we verified the accuracy of the finite element formulation
of the non-linear Stokes equations describing ice-sheet flow by
showing that numerical results converge to a known analytical
solution with progressive mesh refinement. In this section, we
examine the sensitivity of crevasse propagation rates and the
steady-state or final depth with meltwater in the crevasse and
with seawater at the nearby terminus (hs/ds = 50%,
hw/H = 50%). For comparison, we also examine an air-filled cre-
vasse and without seawater pressure at the ice terminus (hs = 0,
hw = 0).

3.1.1. Mesh size sensitivity
We first conducted a series of crevasse growth simulations using
progressively refined finite element meshes. For each simulation,
we use a structured mesh in the anticipated damage zone with
element sizes lelem = 5, 2.5 and 1.25 m. An initial 10 m × 10 m
damage zone is centered along the top of the ice slab, and we
only permit damage to nucleate beneath the initial damage
zone to simulate the propagation of an isolated crevasse. This is
done by setting the local damage rate Ḋ

loc = 0 at integration
points beyond the distance lc from the vertical line centered at
the initial notch (i.e. at x = L/2). The results of this study are
shown in Figures 3a, c, which show the evolution of the crevasse
depth ratio ds/H with time t for an air-filled and water-filled sur-
face crevasse, respectively. The crevasse depth ds at a given time is
obtained by determining the smallest vertical coordinate of fully-
damaged material points and then subtracting it from the glacier
height. This simple post-processing scheme for identifying cre-
vasse depth within the damage mechanics approach obviates
the need for implementing crack-tip tracking algorithms. For
the air-filled crevasse, the CDM model predicts almost the same
crevasse depth ds versus time, provided that the finite element
size lelem is smaller than the characteristic length scale lc. For
the water-filled crevasse, the CPDM model predicts the crevasse
depth ds versus time with less than 8% difference between the
coarse mesh size (lelem = 5m) and the fine mesh size
(lelem = 1.25m), and with less than 2% difference between the

medium mesh size (lelem = 2.5m) and the fine mesh size. We
observed less than 1% difference between the results from the
fine (lelem = 1.25m) and finest mesh sizes (lelem = 0.0625m).

3.1.2. Length scale sensitivity
We next conducted a series of crevasse growth simulations by
progressively reducing the value of the non-local damage length
scale lc to determine if the uncertainty in lc affects the predicted
crevasse depth. For each simulation, we use a structured mesh
in the anticipated damage zone with length scales lc = 10, 5, 2.5
and 0.0625 m. An initial lc × lc m damage zone is centered along
the top of the ice slab, and we only permit damage to nucleate
beneath the initial damage zone, as in the previous study. We
take the finite element size as lelem = lc/4 to ensure the numerical
error is sufficiently small (,2%). Figures 3b, d show the length
scale sensitivity of crevasse propagation with time (ds/H versus t)
for an air-filled and water-filled surface crevasse, respectively.
Although the size of lc affects the rate of crevasse propagation, it
does not affect the final crevasse penetration depth so long as lc
is sufficiently small (i.e. lc≤ 10 m). Note that as the length scale
lc is reduced, the creep damage rate is smeared in a much thinner
fracture process zone and the crevasse propagates more rapidly,
thus describing brittle (instantaneous) crack propagation similar
to LEFM in the limit when lc→ 0.

3.1.3. Parametric sensitivity
We next conducted a series of crevasse growth simulations by
varying the damage model parameters Dmax, r, k1, and k2, to
determine the parametric sensitivity of the predicted crevasse
depth. The parameter Dmax is used to specify a small residual vis-
cosity and alleviate numerical convergence issues. The value of
this parameter does not affect the final crevasse depth if it is cho-
sen to be as close to unity as possible. Figure 4a illustrates that it is
adequate to take Dmax = 0.999 to obtain the final crevasse depth
that is insensitive to this parameter. The sensitivity studies shown
in Figures 4b–d indicate that values of r, k1 and k2 do affect the
rate of crevasse penetration, but they do not significantly influ-
ence the final crevasse depth (except for k2 = 3). The damage par-
ameter B also only affects the rate of crevasse propagation and not
the final crevasse depth, as previously demonstrated in Mobasher
and others (2017). We also studied the sensitivity to parameters α

Fig. 2. Schematic of the glacier with height H, length L, seawater level hw, surface
crevasse height ds and water level hs within an isolated surface crevasse. The origin
is set at the lower-left corner of the glacier with x and z as the horizontal and vertical
coordinates, respectively, and y is the out-of-plane coordinate forming a right-
handed system.

a b

c d

Fig. 3. Surface crevasse depth ds normalized with the domain height H = 125 m ver-
sus time for varying mesh size lelem and varying non-local length scale size lc. In sub-
figures (a) and (b), we consider a dry crevasse (hs/ds = 0%) within a land terminating
glacier (hw/H = 0%); in subfigures (c) and (d), we consider a water-filled crevasse
(hs/ds = 50%) within a marine terminating glacier (hw/H = 50%). The crevasse
depth prediction from the non-local CDM approach using the poro-damage assump-
tion is reasonably insensitive to finite element mesh size lelem and the length scale
parameter lc, so long as the mesh size and length scale are sufficiently small.
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and β in a limited scope. We find that the predicted final crevasse
depths showed negligible difference for α = 1, β = 0 (purely brittle
failure) and α = 0.21, β = 0.64 (brittle-ductile failure). This indicates
that for the ranges of values of α∈ [0.21, 1] and β∈ [0, 0.64], these
parameters appear to have no influence on the steady-state cre-
vasse depth. However, we emphasize that the material parameters
α and β cannot be chosen arbitrarily and need to be calibrated
using experimental data from fracture tests under multiaxial
loading, which is currently unavailable.

3.1.4. Summary
These studies indicate that the final crevasse penetration depth
predicted by the non-local CPDM model is insensitive to the non-
local length scale for lc < 20 m, finite element mesh size for lelem≤
lc/4 and damage control parameter for Dmax ≤ 0.999. To be con-
sistent with the LEFM and zero stress theories, henceforth we
consider only purely brittle tensile fracture. Therefore, in all the
following simulation studies we chose lelem≤ 2.5 m, lc≤ 10 m,
α = 1 and β = 0 and Dmax = 0.999. Because the final crevasse
depth is reasonably insensitive to the choice of creep damage
parameters B, r, k1, k2, we simply use the values for polycrystalline
ice calibrated in Pralong and Funk (2005) and Duddu and
Waisman (2012) using available laboratory test data.

3.2. Isolated water-filled surface crevasse: CPDM versus LEFM
models

In this section, we compare the depths of isolated, water-filled
surface crevasses predicted by the CPDM model with those
from the LEFM model (see Appendix C). We consider the
same geometry used previously, and we prescribe a 10 m × 10 m
initial defect as a pre-damaged zone centered along the top sur-
face of the slab. We first conducted crevasse growth simulations
using the incompressible non-linear viscous ice and linear elastic
rheologies. Figure 5 shows the evolution of the damage illustrating
the propagation of an isolated water-filled surface crevasse in an

rectangular ice slab of height H = 125 m for meltwater level
ratio hs/ds = 50% and seawater level ratio hw/H = 50%.

3.2.1. Simulations with non-linear viscous ice rheology
Figure 6a shows the normalized crevasse depths ds/H for isolated
crevasses filled with water to varying levels, hs/ds = 0, 12.5, 25,
37.5, 50, 62.5, 75, 87.5 and 100%, within ice slabs terminating
at the ocean with varying sea levels, hw/H = 0, 50 and 90% (near-
floating case). We assumed a purely brittle fracture criterion
(i.e. α = 1 and β = 0) in the CPDM model and compared the
results against the ‘double edge cracks’ LEFM model (see
Appendix C). The CPDM model shows better agreement with
the LEFM model when hw/H = 0 and 50% because the damage
mechanics approach is able to account for stress concentration
at the isolated crevasse tip. However, when hw/H = 90% (i.e. a
near-floating glacier) and hs/ds . 50%, the CPDM model devi-
ates from the LEFM model. Our initial suspicion was that this
discrepancy in the near-floating case arises due to difference in
the assumption of ice rheology (i.e. linear elastic versus non-linear
viscous) and this led to our next set of experiments.

3.2.2. Simulations with linear elastic ice rheology
To test if the non-linear rheology of ice was responsible for the
discrepancy between the CPDM and LEFM models, we used
the incompressible linear elastic rheology to estimate the penetra-
tion depths of isolated water-filled crevasses, by assuming purely
brittle failure (i.e. α = 1 and β = 0). Figure 6b shows the corre-
sponding normalized crevasse depths ds/H for isolated crevasses
filled with water to varying levels hs/ds. We now observe crevasse
growth in the near-floatation glacier case (i.e. hw/H = 90%),
which shows a better agreement between the CPDM and the
‘double edge cracks’ LEFM model results. This indicates that
the assumptions of the elastic ice rheology and purely brittle ten-
sile fracture in the CPDM model are, not surprisingly, more con-
sistent with the LEFM model. However, the CPDM-predicted
crevasse depths still lag behind the LEFM depths. This is a conse-
quence of the non-local damage length scale lc = 10 m, which
blunts the crevasse tip and decreases the crack driving stress,
which is investigated next.

3.2.3. Comparison of stress at the crevasse tip in the
near-floating glacier
To better understand the role of stress singularity and crack tip
acuity, we conducted finite element simulations by representing
the crevasse with a non-local damage zone and a zero-thickness
(or sharp) crack by introducing double nodes along the crevasse
walls. We refine the mesh size to a few centimeters near the
crack tip to accurately capture the singularity in the stress field
and use adaptive mesh refinement to coarsen the mesh away
from the crack tip. We compared the maximum principal stress
s(I) in the vicinity of the crevasse tip (i.e. at the nearest integration
point) by considering different ice rheology (linearly elastic and
non-linearly viscous) for each case. In the sharp or zero-thickness
crack case, hydraulic pressure on the crevasse walls is applied as a
traction boundary condition; whereas, in the finite-width damage
cases, hydraulic pressure is incorporated using the CPDM formu-
lation. We evaluated the approximate stress field near the sharp
crack tip in a linear elastic material by using Westergaard’s stress
function in polar coordinates with the crack tip as the origin (see
Anderson, 2005, Section A2.3.2) and superposing with the lin-
early varying overburden pressure as

s(I)(r) = KI�����
2pr

√ − rig(ds + r), (20)

a b

c d

Fig. 4. Parametric sensitivity study of damage law parameters Dmax, r, k1, and k2
shown in subfigures (a), (b), (c), and (d), respectively. We consider an isolated water-
filled crevasse (hs/ds = 50%) in a marine terminating glacier (H = 125 m and
hw/H = 50%). For each study, we plot the normalized surface crevasse depth ds/H
versus time. These simulation studies suggest that crevasse propagation rate is sen-
sitive to damage model parameters, but the final crevasse depth is reasonably
insensitive, thus reducing the uncertainty in crevasse depth predictions.
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where r is the distance away from the crack tip along the crack
length for a crevasse with depth ds = 25 m. As shown in
Figure 7, in the near-floating case (hw/H = 90%) the maximum
principal stress at the tip of a fully water-filled crevasse
(ds/H = 100%) is positive only within a small region near the
crevasse tip. For linear elastic ice in Figure 7a, the stress
becomes zero at about r ≈ 1.2 m for a sharp crack or damage
zone with lc = 1 m, and r ≈ 0.5 m for a damage zone with lc =
10 m. For non-linear viscous ice in Figure 7b, the stress
becomes zero at about r ≈ 0.7 m for a sharp crack, r ≈ 0.2 m
for damage zone with lc = 1 m and r ≈ 0.1 m for a damage
zone with lc = 10 m. We find that the stress decay with the non-
linear viscous rheology (red line decays as ≈ r−1/4) is steeper
than with the linear elastic rheology (black line decays ≃ r−1/2)
in Figure 7b. This result matches well with the stress field near
a sharp crack tip in a power-law strain hardening elasto-
viscoplastic material defined by the so-called HRR (Hutchinson,
1968; Rice and Rosengren, 1968) singularity, as given by (see

Anderson, 2005, Section 3.2.3)

s(I)(r) = k′
J
r

( )1//(n+1)
, (21)

where k′ is a proportionality constant, r is the distance away from
the crack tip along the crack length, the viscous exponent n = 3
and J is the path-independent integral (Rice, 1968).

3.2.4. Summary
These studies indicate that the CPDM model is generally consist-
ent with the ‘double edge crack’ LEFM model. The discrepancy
between the CPDM and LEFM models in the near-floating case
can be attributed to the differences in the assumption of ice rhe-
ology and crack tip acuity. Because the stress is positive (tensile)
in a very small region, the CPDM model with non-linear viscous
rheology in Figure 6b with lelem = 2.5 m and lc = 10 m does not

Fig. 5. The evolution of the damage profile showing the
propagation of an isolated water-filled surface crevasse
in an rectangular ice slab of height H = 125 m for melt-
water level ratio hs/ds = 50% and seawater level ratio
hw/H = 50%. These finite element method (FEM) results
are obtained using the non-linearly viscous (Stokes
flow) rheological model and the continuum poro-
damage mechanics (CPDM) approach with a purely brit-
tle fracture criterion by setting α = 1 and β = 0 in Eqn
(13).

Fig. 6. Surface crevasse depth ds normalized with the domain
height H = 125 m for varying water levels hs filling the surface
crevasse. The solid, dashed and dotted lines depict the ‘dou-
ble edge cracks’ LEFM model result for different seawater
depths hw at the terminus. The markers (i.e. blue squares,
orange triangles and black dots) represent finite element
method (FEM) results using (a) non-linear viscous and (b) lin-
ear elastic rheological models. We employ the continuum
poro-damage mechanics (CPDM) approach with the maximum
principal stress (MPS)-based damage criterion by setting α = 1
and β = 0 in Eqn (13).

a b
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predict crevasse propagation. In contrast, the CPDM model with
linear elastic rheology in Figure 6a predicts crevasse propagation
because the tensile stress region near the crevasse tip is twice as
larger. Moreover, the CPDM does not exactly describe the sharp-
crack LEFM model due to the effects of crack tip blunting intro-
duced by finite size of the non-local damage zone. This study
suggests that the combination of viscous and damage processes
in ice near the tip of a water-filled crevasse in a near-floating
glacier can alter crevasse penetration depths.

3.3. Closely-spaced water-filled surface crevasses: CPDM versus
zero stress model

In this section, we compare the depths of closely-spaced, water-
filled surface crevasses predicted by the CPDM model with
those from the zero stress model (see Appendix B). We consider
the same glacier geometry used previously, but prescribe several
10 m × 20 m initial defects spaced 50 m apart as pre-damaged
zones along the top surface of the slab. To decrease the computa-
tional cost, we exploit the periodicity of crevasses and reduce the
length of the computational domain to Lr = 200 m. In all simula-
tions, gravity loading is applied as a body force, and a Dirichlet

condition on the flow velocity �vx = ėxxLr is prescribed on the
right-edge, whilst �vx = 0 is prescribed on the left-edge of the
reduced domain. The horizontal strain rate ėxx is calculated
using Eqn (7) by substituting the appropriate τxx calculated
from Eqn (A2) with the glacier height H = 125 m. With this
setup, we conducted several crevasse growth simulations and
determined the final penetration depths for both incompressible
non-linear viscous and linear elastic ice rheologies. Figure 8
shows the evolution of the damage illustrating the propagation
of closely-spaced water-filled surface crevasse in an rectangular
ice slab of height H = 125 m for meltwater level ratio
hs/ds = 50% and seawater level ratio hw/H = 50%.

3.3.1. Simulations with elastic and viscous rheology
Similar to the studies in the previous section, we estimate the
penetration depths of surface crevasses in relation to sea water
height and water level in the crevasse. In Figure 9, we show the
normalized crevasse depths ds/H of a uniform field of crevasses
filled with water to varying levels, hs/ds = 0, 12.5, 25, 37.5, 50,
62.5, 75, 87.5 and 100%, within ice slabs terminating at the
ocean with varying sea levels, hw/H = 0, 50 and 90% (near-floating
case). The CPDM model shows better agreement with the zero

a b

Fig. 7. The largest value of the maximum principal stress s(I)

in the vicinity of the crack tip is plotted for a surface cre-
vasse of depth ds = 25 m. We take ice thickness H = 125 m,
seawater level hw/H = 90% (i.e. near-floatation glacier)
and water level within the surface crevasse hs/ds = 100%
(i.e. the crevasse is fully filled). The crevasse is represented
in three different ways: as a sharp (zero-thickness) crack
and as damage zones with lc = 1 m and lc = 10 m. The stress
s(I) rapidly decays away from the crack tip in the non-linear
viscous rheology case and becomes negative within a short
distance, which explains the lack of crevasse propagation.

Fig. 8. The evolution of the damage profile showing the
propagation of closely-spaced, water-filled surface cre-
vasses in an rectangular ice slab of height H = 125 m
for meltwater level ratio hs/ds = 50% and seawater
level ratio hw/H = 50%. These finite element method
(FEM) results are obtained using the non-linearly viscous
(Stokes flow) rheological model and the continuum
poro-damage mechanics (CPDM) approach with a purely
brittle fracture criterion by setting α = 1 and β = 0 in Eqn
(13). To decrease the computational cost, we exploit the
periodicity of crevasses and reduce the length of the
computational domain to Lr = 200 m (dark shaded
region). We then reconstruct the full glacier domain by
stitching together several periodic domains (light
shaded regions).
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stress model for hw/H = 0 and 50%, but deviates for hw/H = 90%
(i.e. a near-floating glacier) and hs/ds . 50%. Unlike in the iso-
lated crevasse studies with the linear elastic ice rheology, the
CPDM model does not predict any crevasse propagation in the
near-floating glacier case for closely-spaced crevasses. Moreover,
the stress concentration at the crevasse tip is diminished by the
interaction with neighboring crevasses, so the final crevasse
depths are smaller for closely-spaced crevasses than those
obtained for the isolated crevasses. Comparing Figures 9a, b, we
notice that the crevasse depths predicted by the CPDM model
using linear elastic and non-linear viscous ice rheologies are gen-
erally the same, except for a few cases with ds/H . 50% and
hs/ds . 75%. The anomalies (or non-monotonic behavior) in
predicted crevasse depths in Figure 9a arise from the prescribed
velocity boundary condition �vx = ėxxLr on the right edge of the
reduced domain of length Lr = 200 m. As crevasses propagate
deeper, the ice slab stretches or flows faster, so calculating �vx
with strain rate ėxx from Eqn 7 is not consistent anymore.
Specifically, in non-linear viscous rheology simulations, this
boundary condition induces additional compressive pressure for
crevasse depth ratios ds/H . 50%, which leads to crack arrest.

3.3.2. Summary
The zero stress model is independent of ice rheology parameters,
if we assume incompressibility of ice flow or deformation. The
CPDM model is generally consistent with zero stress model in
that the depths of closely-spaced crevasses are insensitive to ice
rheology and is much less than that predicted by the LEFM
model for similar boundary conditions. This is because the singu-
larity at the crevasse tips vanishes due to stress redistribution and
the stress at the crevasse tip becomes equal to that given by the
long wavelength approximation. The prescribed velocity bound-
ary condition on the right edge of the reduced domain is neces-
sary to facilitate the growth of a uniform field of closely-spaced
crevasses; however, as crevasses propagate deeper we find that
this boundary condition leads to an inconsistency with the non-
linear viscous rheology, so the predicted crevasse depths do not
agree well with the Nye zero stress model. We expect that the
implementation of periodic boundary conditions will mitigate
this issue, but this would only be an appropriate assumption
away from the glacier calving front. Near the calving front, a trac-
tion boundary is more appropriate and closely-spaced crevasses
will not propagate uniformly because the stress distribution is
non-uniform in the longitudinal (x) direction.

4. Discussion

4.1. Vulnerability of near-floating grounded glaciers to
hydrofracture

The CPDM model with non-linear viscous rheology predicts that
a fully water-filled crevasse may not penetrate the entire thickness
of a near-floating grounded glacier, which contradicts the predic-
tion of the LEFM and zero stress models. We illustrated that this
difference mainly arises due to stress redistribution in non-
linearly viscous ice drastically that reduces the size of the tensile
region at the crevasse tip. This leads us to the conclusion that
non-linear viscous and non-local damage processes can reduce
the vulnerability of near-floating grounded glaciers to hydrofrac-
ture; this has implications for Greenland glaciers with abundant
meltwater. It is possible that the CPDM model implemented
within a large-scale ice-sheet simulation would result in a more
stable calving front and predict smaller calving rates from
grounded tidewater glaciers, when compared to LEFM and zero
stress models. However, our simulations neglect the additional
effect of bending once calving fronts become buoyant and may
not be representative of floating Antarctic ice shelves (see, e.g.
Scambos and others, 2009). Moreover, a combination of surface
and basal crevasse propagation can cause calving in floating ice
shelves, which is influenced by variations in ice-front buoyancy
(Benn and others, 2017). Observations of iceberg calving indicate
diverse range of styles, for example, floating ice shelves calve epi-
sodic tabular icebergs and grounded tidewater glaciers frequently
calve smaller icebergs (Bassis and Walker, 2012). These diverse
calving styles were previously found to be related to glacier geom-
etry and boundary conditions (Bassis and Jacobs, 2013; Duddu
and others, 2013), but this study implicates that ice rheology
and crack-tip acuity can also play an important role.

4.2. Compressible elastic and incompressible viscoplastic
rheology of ice

Generally, glacier or ice-sheet flow models assume incompressible
non-linear viscoplastic rheology, which allows for efficient
numerical simulation over longer geophysical timescales using
Stokes-based approximations (Greve and Blatter, 2009). As
given by Eqns (A1) and (A2), the long wavelength stress approxi-
mation assumes incompressibility, which is used in the analytical
LEFM and zero stress models of van der Veen (1998a, 1998b) and
Nick and others (2010). For the sake of comparison, in this paper
we also considered the incompressible linear elastic rheology so

Fig. 9. Surface crevasse depth ds normalized with the domain
height H = 125 m for varying water levels hs filling the closely-
spaced field of crevasses. The solid, dashed and dotted lines
depict the zero stress model results for different seawater
depths hw at the terminus. The markers (i.e. blue squares,
orange triangles and black dots) represent finite element
method (FEM) results using (a) non-linear viscous and (b) linear
elastic rheological models. We employ the continuum poro-
damage mechanics (CPDM) approach with the maximum princi-
pal stress (MPS)-based damage criterion by setting α = 1 and
β = 0 in Eqn (13).
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that the far-field stress state in the glacier (sufficiently away from
the terminus) is the same across all models. However, on shorter
timescales ice exhibits compressible viscoelastic and incompressible
viscoplastic behavior with the Young’s modulus E = 9500 MPa and
the Poisson’s ratio ν = 0.35, as calibrated from laboratory experi-
ments (Karr and Choi, 1989). For compressible elasticity, the
bulk modulus is approximately three times the shear modulus
(i.e. same order of magnitude), but for (nearly) incompressible
elasticity the bulk modulus is several orders of magnitude larger
than the shear modulus. It is important to note that the longitu-
dinal stress variation with depth predicted by the compressible
linear elastic ice rheology is different from that given by Eqns
(A1) and (A2). We previously considered this compressible elastic
and incompressible viscoplastic rheology along with local creep
damage evolution law in Mobasher and others (2016) and find
that surface crevasses can propagate to a greater depth with this
rheology compared to purely incompressible viscous/elastic rhe-
ology used in this study. Therefore, it may be important to include
and understand the influence of compressible elastic nature of ice
on crevasse and rift propagation in glaciers and ice shelves over
short and long time scales.

4.3. Hydrofracture parameterization in ice-sheet models

In recent years, several studies implemented quasi-analytic calv-
ing criteria based on zero stress or LEFM models in
Stokes-flow-based formulations (Benn and others, 2007a, 2007b;
Nick and others, 2010; Cook and others, 2012, 2014; Krug and
others, 2014; Todd and Christoffersen, 2014; Pollard and others,
2015; Ma and others, 2017; Sun and others, 2017; Yu and others,
2017; Todd and others, 2018). These calving criteria incorporated
a simple hydrofracture parametrization by defining a net longitu-
dinal stress as the sum of the longitudinal stress generated by the
extensional flow of the glacier (glaciological stress) and the hydro-
static pressure of water filling the crevasse. It is important to note
that the net stress is not exactly the same as the Cauchy (true)
stress at the crevasse tip, but only an equivalent applied stress
for estimating the stress intensity factor at the crevasse tip in a lin-
ear elastic ice slab using the weight function method (see Jiménez
and Duddu, 2018b, for more details). Although the net stress def-
inition is not strictly applicable with viscous ice flow models due
to non-linearity, this simple parametrization still accounts for the
fact that a water-filled crevasse propagates deeper than a water-
free crevasse (Weertman, 1973). For a specific ice-shelf or glacier
this parameterization can be well-calibrated, but it is not clear
whether it can accurately represent hydrofracture in a
continental-scale simulation. As further investigation is war-
ranted, we urge caution when using quasi-analytic calving laws
relying on LEFM and zero stress theories in viscous
Stokes-flow-based ice-sheet/glacier models. In contrast, the
CPDM model uses the decomposition of stress in a saturated
damaged zone into effective stress in ice and water pressure within
crevasses. The effective stress is then computed from mass and
momentum balance equations along with the ice constitutive
law. Thus, CPDM provides an alternative approach for represent-
ing hydrofracturing that is physically-consistent and simpler to
implement in ice-sheet models.

4.4. Realistic simulation of glacier calving process

The CPDM model accounts for the gradual degradation of ice vis-
cosity due to damage accumulation and represents open crevasses
as fully damaged zones, so it captures the influence of subcritical
damage and crevasse propagation on glacier and ice-sheet dynam-
ics. The CPDM model can handle arbitrary glacier geometries and
frictional basal boundary conditions, whereas the weight functions

in LEFM are specific to rectangular geometries and idealized
boundary conditions, namely, free slip or no slip at the glacier
base (Jiménez and Duddu, 2018b). In this paper, however, we con-
sidered only an idealized case – a rectangular grounded glacier
with free basal slip and initialized it with a pre-crack or notch –
to make a direct comparison between the CPDM model and the
quasi-analytic LEFM and zero stress models. Note that the ‘double
edged crack’ weight function used in the LEFM model is specific to
an idealized rectangular plate with free tangential slip and zero
normal displacement at the basal surface (see Appendix C). The
CPDM approach proposed here can be used with any ice rheology
or damage evolution law. For example, if we use the linear elastic
ice rheology and a strain-energy-based phase field damage evolu-
tion law (e.g. Lo and others, 2019), then CPDM can emulate
LEFM without having to determine stress intensity factors or
appropriate weight functions. However, the drawback is that it is
computationally more expensive due to mesh size and length
scale restrictions, which may be overcome through length scale
insensitive formulations (e.g. Wu and Nguyen, 2018). Thus, the
CPDM approach is versatile and can enable realistic simulation
of glacier calving process, even when the damage zone ahead of
crevasses tips is not vanishingly small and the viscous flow of
the ice cannot be neglected. However, to fully assess the role of vis-
cous and non-local damage processes on fracture propagation,
more detailed experiments and observations are required to better
constrain the damage evolution law and other physical aspects,
such as ice compressibility or fabric evolution.

4.5. Mixed-mode fracture propagation under multi-axial stress

Usually, brittle and quasi-brittle materials like glacier ice, concrete
and rocks are weaker in tension and are susceptible to mode
I fracture. The creep damage model accounts for brittle-ductile
nature of failure in polycrystalline materials in the form of micro-
voids and microcracks in a phenomenological way, but it is
mainly suited for mode I (opening) fracture under tension–
torsion loadings (Murakami, 1983). Under macroscopic shear,
torsion or biaxial tensile loading, brittle fracture in ice can still
be determined by maximum tensile (principal) stress and the
creep damage model based on scalar stress invariants can capture
the propagation of inclined or curved fractures, as demonstrated
in Duddu and Waisman (2013). Therefore, we assume that iso-
tropic damage will evolve only under a tensile stress state,
which is also consistent with the assumptions of LEFM and
zero stress models for mode I hydrofracture. However, mode II
(sliding) fracture is plausible in ice under compressive stress
states, leading to the propagation of wing or comb cracks near
existing inclined cracks (Schulson and Duval, 2009). We note
that the creep damage model does not describe mode II fracture
due to sliding and interfacial shear stress at the crack tip.
Although LEFM or cohesive zone models can resolve mode
I and mode II fracture, a key challenge is that mode II fracture
toughness of brittle glacier ice is difficult to determine directly
from laboratory experiments, and data are scarce in the existing
literature. Further work is necessary for developing a mixed-mode
fracture criteria through integrated laboratory experiments and
numerical simulations.

5. Conclusion

In this paper, we presented a non-local CPDM model for hydro-
fracturing and used it to simulate the propagation of water-filled
surface crevasses. When crevasses are air-filled, this model
reduces to the standard non-local CDM model (Jiménez and
others, 2017). We first illustrated that the CPDM model-predicted
final crevasse depths are independent of the mesh size and the
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damage length scale, and insensitive to creep damage parameters.
We then compared the CPDM-predicted penetration depths of
surface crevasses with two existing models in the literature: the
zero-stress model (Nick and others, 2010) and the
stress-intensity-factor-based LEFM model (Krug and others,
2014; Jiménez and Duddu, 2018b). The CPDM model simulates
the time-dependent propagation of water-filled crevasses;
whereas, the LEFM or Nye zero stress models predict if a crevasse
with a specified depth will propagate or not. Therefore, we com-
pared the final (or steady-state) crevasse depth obtained from the
CPDM model (after 2 years of real-time, when crevasses cease to
propagate in all simulated cases) with the depths obtained from
LEFM or Nye zero stress models. The CPDM model illustrates
that the presence of water pressure within crevasses results in dee-
per penetration into the glacier, which is in agreement with
Weertman (1973). The CPDM model results show good agree-
ment with those of the LEFM model for isolated water-filled cre-
vasses and the zero stress model for closely-spaced water-filled
crevasses, so long as the glacier does not approach buoyancy.
However, as the glacier approaches buoyancy (i.e. near-floating
case hw/H = 90%), the CPDM model does not allow the propa-
gation of water-filled crevasses, contradicting the zero stress and
LEFM models that allow full depth propagation.

In conclusion, the non-local CPDM approach combining
poro-mechanics and damage-mechanics theories is suited for
simulating hydrofracturing. The broader applicability of the
CPDM model can be realized through its ability to describe cre-
vasse formation and propagation in relation to complex glacier/
ice-shelf geometries and boundary conditions, thus improving
our understanding of the calving process. This is because the
CPDM model consistently accounts for the effects of water pres-
sure within crevasses (i.e. damage zone) on the local stress field
and ice rheology. The CPDM model within a full Stokes flow for-
mulation is only viable for simulating fracture propagation in
small, idealized cases and not for real glacier simulations, owing
to the restrictions on time-step size and mesh resolution (see dis-
cussion in Appendix D). However, using shallow shelf or
depth-integrated viscosity approximations and higher order
Runge–Kutta time-update schemes for damage can reduce the
computational cost and enable realistic ice-shelf fracture simula-
tion. The CPDM model can also be useful in developing simpler
calving criteria that can be incorporated into large-scale ice-sheet
models, as an alternative to LEFM or Nye zero stress models.
Finally, we acknowledge the need to validate crevasse models,
including the proposed CPDM model, using crevasse depth and
spacing measurements, although there is some uncertainty asso-
ciated with current observational data on crevasse depths
(Mottram and Benn, 2009; Enderlin and Bartholomaus, 2019).
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Appendices

APPENDIX A. Long wavelength approximation

Crevasse models predict penetration depth as a function of the horizontal
Cauchy stress σxx. In the long wavelength ‘shallow’ approximation for an
incompressible fluid, σxx varies linearly with depth (Weertman, 1957) and
can be decomposed into a (constant) deviatoric stress τxx and a linearly varying
lithostatic stress (e.g. Bassis and Walker, 2012),

sxx(z) = 2txx − rig〈H − z〉, (A1)

where x, z are the in-plane horizontal and vertical coordinates (see Fig. 2), ρi =
917 kg/m3 is the density of ice, g is gravitational acceleration, H is the height of
the glacier, and the Macaulay brackets 〈x〉 = 1

2 (x + |x|). A force balance at the
terminus shows that in the long wavelength approximation, the horizontal
deviatoric stress τxx is given by

txx =
1
4
rigH − 1

4
rwg

h2w
H

, (A2)

where ρw = 1020 kg/m3 is the density of seawater and hw is the seawater depth
at the glacier terminus. The long wavelength approximation relies on four
idealizations that: (i) far from the terminus (i.e. in the so-called ‘far-field’
region of the glacier), the stresses in ice only vary with the z coordinate; (ii)
ice deformation under isothermal conditions is incompressible; (iii) there is
no resistance to flow at the basal boundary (i.e. basal friction is negligible);
and (iv) the out-of-plane strain rate is negligible (i.e. flow is confined
ėyy = 0). Under the above conditions, the longitudinal strain rate ėxx is con-
stant with depth, and the far-field stress σxx is independent of ice rheology,
as noted in Bassis and Walker (2012). We verified that the constant τxx
approximation is valid when the above four conditions are satisfied in our
finite element simulations, which allows us to compare CPDM model with
analytical crevasse models.

APPENDIX B. Zero stress model

Nye (1957) first proposed the zero stress model by assuming that crevasses will
penetrate through a glacier to the depth where tensile stresses vanish. In prac-
tice, two assumptions are commonly made with the application of this model:
(i) that ice has zero cohesive strength; and (ii) that the stress singularity at cre-
vasse tips can be neglected, owing to interaction of stress fields in a uniform
field of closely-spaced crevasses. Although the zero stress model is rheology

independent, ice is generally assumed to be an incompressible material, and
Eqn (A1) is solved such that σxx(zs) = 0, where zs is the vertical position of
the crevasse tip measured from the bottom of the glacier. The maximum pene-
tration depth of a surface crevasse ds =H− zs in the long wavelength approxi-
mation away from the calving front is given by

ds = 2
txx
rig

. (B1)

Under idealized conditions, for a glacier that terminates on land (i.e. the sea-
water level hw = 0), the deviatoric stress txx = 1

4 rigH, and the predicted surface
crevasse depth ds = 1

2H.
The original Nye zero stress model did not account for the presence of

hydraulic pressure in water-filled crevasses, however, later works (Jezek,
1984; Nick and others, 2010; Bassis and Walker, 2012) included an additional
term into the horizontal stress balance that incorporates hydraulic pressure,

sxx(z) = 2txx − rig〈H − z〉 + sw(z), (B2)

where σw(z) is the depth-varying hydraulic pressure acting on the crevasse
walls. Because the hydraulic pressure acts to open the crevasse, it is assumed
in the literature that this pressure induces a positive (tensile) stress within
the ice, and crevasses are expected to penetrate to the depth where the net
stress vanishes to zero (Weertman, 1980; Jezek, 1984). The pressure term σw
can be expressed as

sw(z) =
rwg〈hs − (z − zs)〉 if z [ [zs, zs + hs],
0 otherwise,

{
(B3)

where hs is the hydraulic head within the surface crevasse. By solving Eqn (B2)
for σxx(zs) = 0, we obtain the depth of a surface crevasse in the long wavelength
limit:

ds =

2txx
rig − csrwg

if cs <
ri
rw

,

H if cs ≥
ri
rw

,

⎧⎪⎪⎨⎪⎪⎩ (B4)

where hs = csds denotes the level of water in the crevasse and cs∈ [0, 1] is the
fraction of the crevasse depth filled by water. For cs ≥ ri/rw, the horizontal
stress σxx(zs) > 0 for any zs, thus indicating full depth penetration of the surface
crevasse. For cs , ri/rw the problem is nonlinear, so we use an iterative algo-
rithm based on the bisection method to solve for ds. The zero stress model
results are show in Fig. 9.

Previously, Weertman (1977) derived an approximate analytical solution
to show that the crevasse penetration depth is equal to the Nye depth when
the cohesive (fracture) strength of ice is essentially zero and the crevasse spa-
cing is much smaller than crevasse depths. Thus, the Nye zero stress model can
be categorized as a fracture-mechanics-based model, but its applicability is
limited to a perfectly or nearly uniform crevasse field (De Robin, 1974;
Weertman, 1974). Due to its simplicity, researchers employed the zero stress
model (Nick and others, 2010; Bassis and Walker, 2012; DeConto and
Pollard, 2016; Sun and others, 2017), although it would underestimate the
penetration depth of isolated or widely spaced surface crevasses. The restric-
tion to the long wavelength approximation is overly limiting, but the zero
stress model can also be directly applied without resorting to this approxima-
tion when the full Cauchy stress is available from full Stokes 2D and 3D simu-
lations (Todd and Christoffersen, 2014; Todd and others, 2018). Here we focus
on only the long wavelength approximation because it provides a simple test
case for comparing different crevasse models and is used in shallow ice
dynamics models.

APPENDIX C. LEFM model

To address the limitations of the zero stress model, LEFM models were pro-
posed by Smith (1976); van der Veen (1998a, b) and Krug and others
(2014). The models are ideally suited for a rectangular-plate-like glacier
made of linear elastic ice with a single surface crack subjected to the far-field
stress state given by Eqns (A1) and (B2). In the LEFM models, crack growth is
governed by the stress intensity factor at the crack tip, which is proportional to
the applied far-field stress and the square root of the initial crack length.
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The maximum penetration depth of surface crevasses can be determined by
equating the net stress intensity factor Knet

I at the crevasse tip to the experi-
mentally measured critical stress intensity factor KIc (Rist and others, 1999).
The net stress intensity factor is evaluated as

Knet
I =

∫ds
0
M(z′,H, ds)sxx(z = H − z′)dz′, (C1)

where z′ =H− z is the vertical coordinate measured from the top of the ice
slab, and M(z′, H, d) is an appropriate weight function (Tada and others,
1973, 2000).

The LEFM models of van der Veen (1998a) and Krug and others (2014)
used weight functions corresponding to a finite-width plate with a single
edge crack that requires the boundary opposite of the crack (i.e. the basal
boundary) to be a traction-free surface. Therefore, they are not appropriate
for a grounded glacier with free tangential slip at the basal boundary
(Jiménez and Duddu, 2018b). Instead, we use the following weight function
for a finite-width plate with symmetric double edge cracks:

M(z′,H, ds) =
2����
2H

√ 1+ f1
z′

ds

( )
f2

ds
H

( )[ ]
f

ds
H
,
z′

ds

( )
, (C2)

where the functions f1 and f2 are given as

f1
z′

ds

( )
= 0.3 1− z′

ds

( )5/4
[ ]

, (C3)

f2
ds
H

( )
= 1

2
1− sin

pds
2H

( )[ ]
2+ sin

pds
2H

( )[ ]
. (C4)

The penetration depth of surface crevasses is determined by equating the net
stress intensity factor Knet

I to the experimentally determined critical stress
intensity factor KIc = 0.1MPa

���
m

√
. Because the net stress intensity factor is

a nonlinear function of the surface crevasse depth ds, we use an iterative algo-
rithm based on the bisection method to solve for ds. Thus, our LEFM results
shown in Fig. 6 are appropriate for idealized grounded glaciers with free basal
slip.

APPENDIX D. Finite element implementation

We follow the standard Galerkin method of weighted residuals to derive the
weak forms for the incompressible nonlinear viscous rheology and damage
evolution equations, which involves multiplying by test functions w, q, and
w, integrating by parts, and then applying the divergence theorem. For brevity,
we only show the weak form for the nonlinear viscous rheology, which can be
stated as

Find v [ V, �p [ P, and Ḋ [ D such that ∀ w [ V, q [ P, e [ D:

�
V
∇w : 1− D[ ]h ė(v)( ) ∇v +∇`v

[ ]{ }
dV

−
�
V

1− D[ ]∇ · w �p dV−
�
V
w · b dV

−
�
V
D ∇ · w pw dV−

�
GN w · T̂ dG

+
�
V
c(D) q ∇ · v dV = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on V, (D1)

∫
V

e Ḋ dV+ l2c
2

∫
V

∇e · ∇Ḋ dV−
∫
V

e Ḋ
loc

dV = 0, on V, (D2)

where V is a vector function space and P, D are scalar function spaces with
appropriate smoothness for the bulk field and their variations. The above
weak form is implemented in the open source finite element software
FEniCS (Alnæs and others, 2015). The advantage of FEniCS is that the
weak form corresponding to any coupled boundary value problem can be dir-
ectly specified using the Python application program interface, and FEniCS
interprets, assembles and solves the discretized linear system.

We employ a decoupled solution procedure that is explicit in time and
consists of two sequential computations at each time-step. First, we compute
the flow velocity and effective pressure using the variational form of the full
Stokes equations (D1) using a mixed finite element discretization, and apply
the Picard iteration scheme while holding damage constant at its previous
time-step value. We then use the converged velocity and pressure solutions
to determine the effective Cauchy stress and the local damage (production)
rate at the current time-step. Second, we compute the damage rate using the
variational form of the nonlocal gradient damage evolution Eqn (D2) using
the standard finite element discretization, and apply the forward Euler scheme
to update damage at the current time-step. Because the solution to the non-
linear Stokes equations is time-independent (steady-state) and damage evolu-
tion equation is time-dependent and highly nonlinear, it is simpler to use an
explicit-time forward Euler scheme to update the damage separately. In con-
trast, the implicit-time backward Euler scheme will require a monolithic
solve of the Stokes and damage evolution equations, so it can become very
cumbersome.

For numerical accuracy, efficiency and stability, we ensure that the damage
increment is sufficiently small (i.e. ΔD < 0.05) at any integration point at each
time step and determine the time-step size as

Dt = min
0.05

max(Ḋloc)
, 2 hours

( )
, (D3)

Thus, the full-Stokes CPDM model is computationally intensive because we
use small time-step sizes (≤2 hours) and mesh sizes (≤2.5 m) to alleviate
numerical instability and mesh sensitivity. Additionally, we use the P2-P1
(Taylor-Hood) element for the Stokes equations, wherein the velocity v is
resolved using quadratic (P2) interpolation on a six-noded triangle and the
effective pressure �p is resolved using linear (P1) interpolation on a three-noded
triangle. However, we use three Gauss integration points for both P2 and P1
element, so that we can interpolate the variables at the same integration points.
To determine the effective Cauchy stress, we evaluate the effective deviatoric
stress at the three integration points using the nodal velocity field of the P2
element and add it to the corresponding effective pressure (i.e. at the same
three integration points) computed using the nodal pressure field of the P1
element. The damage rate Ḋ is also resolved using the P1 element with
three integration points because its evolution is dictated by the Cauchy stress.
The nonlinear viscosity parameter h(ė(v)) is a function of the velocity, so we
apply a Picard (i.e. fixed-point) iteration scheme to implicitly solve the finite
element system of equations. The full details of the numerical implementation
are described in Jiménez and others (2017) and sample codes are available for
download from the project website (Jimenez and Duddu, 2018a).
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