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a b s t r a c t

Hydraulic fracture (or hydrofracture) can promote the propagation of meltwater-filled surface crevasses
in glaciers and, in some cases, lead to full-depth penetration that can enhance basal sliding and
iceberg calving. Here, we propose a novel poro-damage phase field model for hydrofracturing of glacier
crevasses, wherein the crevasse is represented by a nonlocal damage zone and the effect of hydrostatic
pressure due to surface meltwater is incorporated based on Biot’s poroelasticity theory. We find that
the elastic strain energy decomposition scheme of Lo et al. (2019) with an appropriate fracture energy
threshold can adequately represent the asymmetric tensile–compressive fracture behavior of glacier ice
subjected to self-gravity loading. We assessed the performance of the model against analytical linear
elastic fracture mechanics solutions by comparing their predictions of maximum crevasse penetration
depth. The model simulates both surface crevasse propagation in the interior region of the glacier,
as well as cliff failure in the terminus region. The excellent performance of the proposed model
for air/water-filled surface crevasses in idealized land- and marine-terminating grounded glaciers
illustrates its applicability to studying the dynamic response of glaciers to atmospheric warming.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Surface crevasses are predominantly mode I fractures and are
ubiquitous in both Antarctic and Greenland glaciers [1]. Some
crevasses are extreme-scale fractures penetrating tens of meters
deep into glaciers that are hundreds of meters thick; whereas
most crevasses are relatively shallow (<10 m deep) [2], as the
longitudinal stress in glacier ice subjected to self-gravity loading
changes from tensile to compressive at lower depths. Meltwater
in surface crevasses can apply hydraulic pressure on crevasse
walls and promote crevasse growth deeper into the glacier, a
process that is often referred to as hydrofracture. Under certain
conditions, water-filled crevasses can penetrate through the full
thickness of the glacier leading to iceberg calving [3–5] and
enhance basal sliding by altering subglacial hydrology [6–8]. In
fact, hydrofracture occurs at tens of thousands of sites on the
Greenland ice sheet each summer, and its occurrence is increasing
with atmospheric warming [9]. However, the physical factors
(e.g. glacier geometry, stress state, basal and terminus boundary
conditions) enabling the full-depth propagation of hydrofractures
at these sites are poorly understood. It is crucial that we investi-
gate these physical factors to better understand iceberg calving,
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which is one of the most enigmatic glaciological processes. Ad-
vanced models for representing or parametrizing hydrofracture-
driven iceberg calving in ice sheet models [10] are essential
to reduce the large uncertainty in future sea level rise projec-
tions [11]. With this in mind, we develop a phase field model for
hydrofracture of meltwater-filled surface crevasses by extending
the notion of poro-damage mechanics [12,13].

Over shorter time scales of crevasse propagation, glacier ice
can be assumed to behave like a compressible linear elastic solid,
which is supported by observations of fracture propagation in
Icelandic glaciers [14]. Therefore, in the field of glaciology, an-
alytical linear elastic fracture mechanics (LEFM) models [3,4,15,
16] are commonly used to estimate the penetration depth of
crevasses and predict iceberg calving [17–19]. However, ana-
lytical LEFM models rely on weight functions to evaluate the
stress intensity factor that are applicable for idealized geometries
(e.g. rectangular plates) and boundary conditions (e.g. traction
free or symmetric edge), so their relevance to iceberg calving
of real glaciers and ice shelves is somewhat limited [20]. More-
over, analytical LEFM models only describe crack propagation,
so ad hoc criteria are often necessary to describe when/where
a crack will nucleate, and how much and in which direction
it will propagate [21], but these criteria can alter crack trajec-
tories and may lead to non-physical outcomes [22,23]. Despite
advances in the numerical implementations of LEFM models [24–
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28], the underlying algorithms can be cumbersome and simulat-
ing crack branching and coalescence is challenging, which limits
their usability in practice.

To address the shortcomings of the LEFM models, the phase
field model (PFM) for fracture was introduced in the seminal
works of [21,29] that describes crack propagation in solids by
minimizing the total potential energy based on Griffith’s the-
ory [30]. The PFM for fracture can be categorized as a nonlocal
continuum damage model, and as such it enables robust simula-
tion of complex crack growth, including crack initiation, propa-
gation, as well as branching and merging. For brittle fracture, the
crack is defined by a diffused damage zone and material failure is
characterized by a constitutive damage relation arising from vari-
ational [29] or thermodynamical arguments [31]. A major limita-
tion of the PFM is the difficulty in capturing asymmetric damage
growth under multi-axial, mixed-mode, and tensile–compressive
stress states. To avoid the growth of damage under compres-
sion in PFMs and inter-penetration of crack surfaces, ad hoc

approaches were proposed based on: volumetric/deviatoric split
of strain energy [32], spectral decomposition (positive/negative
split) of strain tensor [33]. Efficient hybrid formulations were also
proposed with spectral decomposition of strain tensor applied
only to damage evolution under tension [34].

In the past few years, numerous extensions and advanced
implementations of PFMs for dynamic, cohesive and fatigue crack
propagation have been developed [35–38]. A comprehensive re-
view of these developments is beyond the scope of this paper,
so here we limit the discussion to a few articles that proposed
improvements to crack driving force functions for describing frac-
ture under mixed-mode, compression–shear, and/or hydraulic
loadings. Zhang et al. [39] proposed normalizing the volumetric
and deviatoric part of the strain energy with fracture energies
under pure mode I (opening) and mode II (sliding) loading, re-
spectively, to define the crack driving force under mixed-mode
loading, which was later extended to anisotropic rocks in [40].
However, this energy splitting approach can still unphysically
evolve damage under certain stress states with all negative prin-
cipal stresses [41] and may not capture the crack boundary condi-
tions correctly under compression and shear [42]. Wang et al. [43]
implemented a strain energy decomposition scheme based on
maximum normal and shear stresses criteria to handle mixed-
mode fracture, wherein the direction of crack propagation can
be determined based on the unified tensile fracture criterion.
Zhou et al. [44] proposed a crack driving force function to cap-
ture compression–shear fractures in rock-like materials that was
validated with uniaxial compression tests.

Seemingly, the first-ever PFM for simulating hydraulic frac-
turing in linear elastic impermeable materials was developed
by Bourdin et al. [45]. Mikeli! et al. [46] further extended this
PFM for simulating fluid-driven fracture propagation in satu-
rated poroelastic medium, wherein the fluid flow inside cracks
is assumed to obey the lubrication theory, while that in the
bulk region obeys Darcy’s law and Biot equations of poroelas-
ticity. Subsequently, several PFMs were proposed to simulate
hydraulic fracture in poroelastic media [13,47–53]. However, the
aforementioned PFMs were proposed to model the process of
hydrofracturing or fracking in unconventional oil and natural gas
industry, which involves the injection of fluid at high pressure.
In contrast, hydrofracture of water-filled crevasses in glaciers can
occur without the pressurized injection of water. For example, the
slow accumulation of melted surface water in the crevasses can
trigger hydrofracture owing to the density difference between ice
(917 kg/m3) and fresh water (1000 kg/m3) and the low fracture
toughness of ice (0.1 MPa

↑

m). Thus, water-filled crevasses can
initiate at low pressures and propagate in a quasi-static, episodic
manner in glaciers, and sometimes may cease to propagate and

freeze up during winter months [9]. Therefore, it is reasonable to
assume that meltwater pressure in crevasses is hydrostatic and
utilize our poro-damage approach [12,54], and bypass modeling
fluid flow in the crevasse.

The purpose of this paper is to establish a thermodynamically-
consistent alternative to the nonlocal continuum poro-damage
mechanics model for hydrofracturing of glacier crevasses [54].
This will enable us to systematically study and understand the
physical factors at certain sites leading to full depth propagation
of crevasses and drainage of supraglacial lakes. The rest of the pa-
per is organized as follows: in Section 2, we review the phase field
formulation for brittle fracture, extend it to simulate quasi-static
hydrofracture based on the notion of poro-damage mechanics,
and implement the extended PFM based on staggered numerical
solution strategy; in Section 3, we compare the predictions of
crevasses depths for grounded glaciers using the PFM against that
using the LEFM models, and demonstrate the capability of the
PFM for simulating self-sustaining retreat of the ice terminus; in
Section 4, we conclude with a brief summary and closing remarks.

2. Model formulation

In this section, we first review the fundamental concepts of the
phase field model (PFM), where brittle fracture is described by a
scalar order parameter, that is, the phase-field/damage variable.
We next propose modified phase field model for hydrofracture
based on the notion of poro-damage mechanics that incorporates
hydrostatic pressure within the cracks and voids situated in the
nonlocal damage zone. We then summarize the strong form of
the governing equations of the poro-damage PFM for quasi-static
hydrofracture along with the respective boundary conditions.
Finally, we describe the operator-splitting strategy adopted by the
hybrid formulation of the PFM.

2.1. Review of phase field model for brittle fracture

The phase field model generally approximates the isotropic
damage state of a material point at position x and time t using
the scalar (phase-field) variable D(x, t) ↓ [0, 1], such that D = 0
represents undamaged state and D = 1 the fully damaged state.
According to Griffith’s theory of brittle fracture [30], the total
energy stored in a cracked solid body ω ↔ R2 includes internal
(εint) and external (εext) components. The regularized form of
this total energy ε can be expressed as

ε =

εint) [] ⌊⌋

ω

ϑe(ω,D) dω

] ⌊) [
εE

+

⌋

ω

Gcϖ (D, →D) dω

] ⌊) [
εD

↗

εext) [] ⌊⌋

ω

b · u dω ↗

⌋

ϱωt

t↑
· u dς , (1)

where εE is the elastic energy of the solid, εD is the fracture
energy needed for the propagation of the crack interface, ϑe is the
elastic strain energy density function, ω is the small strain tensor,
Gc is the critical strain energy release rate, ϖ is the crack surface
density function, → is the spatial gradient operator, b is the body
force, u is the displacement vector, and t↑ is the traction applied
to the external boundary ϱωt.

For isotropic linear elasticity, the strain energy density func-
tion of the undamaged (or intact) material ϑ0

e is defined as

ϑ0
e (ω) =

ϕ

2
[tr(ω)]2 + µtr(ω2), (2)
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where ϕ and µ are the Lamé parameters that can be calculated
using Young’s modulus E and Poisson’s ratio ↼. In the phase field
formulation for fracture, the strain energy density function of
damaged material ϑe can be approximated as

ϑe(ω,D) = gd(D)ϑ0
e (ω), (3)

where we assume the quadratic degradation function gd = (1 ↗

D)2. The Cauchy stress tensor can be derived as

ε =

ϱϑe

ϱω
= gd(D) [ϕtr(ω)I + 2µω] , (4)

where I represents the identity tensor. However, Eq. (3) may lead
to physically unrealistic energy release owing to the symmetric
treatment of fracture in both tension and compression. To remedy
this issue, Miehe et al. [31] proposed an ad hoc additive decompo-
sition of the elastic strain energy density and modified Eq. (3) as

ϑe(ω,D) = gd(D)ϑ+

e (ω) + ϑ↗

e (ω), (5)

where ϑ+

e and ϑ↗

e represent the contributions to the elastic
strain energy from tensile and compressive strain states. The
Cauchy stress tensor based on this strain energy decomposition is

ε =

ϱϑe

ϱω
= gd(D)

ϱϑ+

e

ϱω
+

ϱϑ↗

e

ϱω
. (6)

In the framework of the phase field theory for brittle fracture
proposed by Miehe et al. [33], the crack surface density per unit
volume of the solid is given by

ϖ (D, →D) =

D
2

2↽c
+

↽c

2
|→D|

2, (7)

where ↽c is the length scale parameter that controls the width
of the diffuse crack interface. Although the appropriate choice
of ↽c can provide experimentally supported crack growth predic-
tion [55], it is often treated as a numerical (damage) parameter.
The time evolution of phase-field variable can be obtained by
minimizing the total potential energy functional as

⇀ ˙D =

ϱε

ϱD
↗ →·

⌈
ϱε

ϱ→D

⌉
= ↽c!D ↗

D

↽c
+ 2(1 ↗ D)

H

Gc
, (8)

where ! = → · → is the Laplace operator, ⇀ is the viscous
regularization parameter defined for numerical stabilization, and
H is the history field variable that ensures monotonic increase of
the phase-field variable (i.e. irreversible damage neglecting any
healing). Here we evaluate three different schemes proposed in
the literature for calculating the history field variable:

Miehe’s scheme: To describe brittle tensile fracture, Miehe et al.
defined the history field variable as [33]

H(x, t) = max
⇁↓[0,t]

ϑ+

e (ω(x, ⇁ )), (9)

where the positive component of elastic strain energy ϑ+

e is given
by

ϑ+

e (ω) =

ϕ

2
↘tr(ω)≃2 + µtr(↘ω≃

2), (10)

and ↘·≃ = (· + |·|)/2 denotes the Macaulay’s bracket. As noted by
Lo et al. [38], Miehe’s scheme does not guarantee the prohibition
of damage accumulation in compressive regions due to Poisson’s
ratio effects in three-dimensions.

Zhang’s scheme: To handle mixed-mode fracture, Zhang et al.
defined the history field variable based on Miehe’s scheme as [39]

H(x, t) = max
⇁↓[0,t]

⌈
HI(x, ⇁ )

GIc
+

HII(x, ⇁ )
GIIc

⌉
Gc, (11)

where HI =
ϕ
2 ↘tr(ω)≃2 and HII = µtr(↘ω≃

2) are history field vari-
ables contributing to mode I and mode II fracture, respectively.

Notably, Zhang’s scheme based on Eq. (11) recovers Miehe’s
scheme when GIIc is taken as the same as GIc, which is rarely the
case for most brittle materials.

Lo’s scheme: To ensure that compressive stress states do not
contribute to crack/damage growth, Lo et al. [38] proposed a
different decomposition scheme in three dimensions. Here, we
adapt this formulation for the two-dimensional (2-D) plane strain
case as:
{
}}}}}}⟨

}}}}}}⟩

if ↪1 ⇐ ↪2 ⇐ 0,
then ϑ+

e =
ϕ
2 (↪1 + ↪2)2 + µ(↪2

1 + ↪2
1);

elseif ↪1 ⇐ 0 ⇐ ↪2 and (1 ↗ ↼)↪1 + ↼↪2 > 0,

then ϑ+

e =

E [(1 ↗ ↼)↪1 + ↼↪2]2

2(1 ↗ 2↼)(1 ↗ ↼2)
;

else ϑ+

e = 0.

(12)

where ↪1 ⇐ ↪2 are taken as the ordered principal strains. The
history field variable can then be updated using Eq. (9).

2.2. Poro-damage phase field model for quasi-static hydrofracture

We extend the PFM formulation using the notion of poro-
damage mechanics to simulate the propagation of meltwater-
filled crevasses in glaciers; however, it is also applicable to sim-
ulate fluid-filled fractures in geological media subjected to self-
gravitation loads. As depicted in Fig. 1, the specific physical prob-
lem consists of a glacier crevasse filled with either air or melt-
water depending on the water level within the damaged region
(D > 0). Because the crevasse opening is much small compared
to the glacier length, we can approximate it as a thin, finite-
thickness damage zone. Because the glacier thickness is smaller
compared to its length and width, we consider the plane strain
approximation to simulate the crevasse problem in 2-D, which
also reduces the computational burden. Five different physical
representative volume elements (RVE) can be conceived to ex-
ist in the glacier domain to describe all the possible scenarios.
Fig. 1(a) shows an intact physical RVE (D = 0) that is far away
from the crevassed or damaged region. Fig. 1(b) and (d) show the
partially damaged physical RVEs (0 < D < 1) where smaller voids
and cracks are filled with air and water, respectively. Fig. 1(c) and
(e) show the fully damaged physical RVEs (D = 1) representing
air-filled and water-filled crack openings that are located above
and beneath the water level, respectively.

To account for the effect of hydrostatic pressure of meltwater
on surface crevasse propagation, we interpret the damaged region
of the crevasse beneath the water level as a fluid-saturated poroe-
lastic medium. According to this poro-damage interpretation, the
total internal energy stored in this region can then be defined as

εint = εE + εD + εF, (13)

where εF is the potential energy stored in the fluid. In the fully
damaged region ωD of the diffuse damage zone, the potential
energy stored in the fluid (water) can be defined as [46]

εF =

⌋

ωD

ϑf (p, → · u) dω, (14)

where p is the fluid/poroelastic pressure, and ϑf the potential
energy density of the fluid. We assume meltwater within the
crevasse to be flowing slow enough and at times stagnant, so
that the hydrostatic condition applies. In other words, we as-
sume the fluid/poroelastic pressure p within the fully damaged
region is equal to the hydrostatic pressure pw. Because we are
primarily interested in predicting the maximum crevasse depth
of water-filled crevasses, it is reasonable to simplify the model
by assuming hydrostatic conditions, thereby neglecting the fluid
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Fig. 1. Schematic illustration of the damaged glacier. The fully damaged region
(D = 1) of the crevasse is filled with either air or water depending on the
assumed water level within the crevasse. The principal planes of the physical
representative volume elements (RVE) for (a) intact ice (D = 0); (b) cracking ice
with air-filled microcracks and microvoids (0 < D < 1); (c) air-filled broken ice
(D = 1); (d) water saturated cracking ice (0 < D < 1); (e) water-filled broken
ice (D = 1).

flow within the damage zone. The potential energy density of the
fluid inside ωD can then be calculated as

ϑf (p, → · u) = ↗p↩→ · u = ↗pw↩tr(ω), (15)

where ↩ is the Biot coefficient. The hydrostatic pressure within
the damaged region can be simply determined based on the water
depth at a specific position z as

pw(z) = (fg↘hs ↗ (z ↗ zs)≃, (16)

where (f is the density of freshwater, g the gravitational acceler-
ation, hs the water level of crevasses, and zs the location of the
crevasse tip.

Note that the integral in Eq. (14) is defined over the fully dam-
aged region ωD, which changes in size as the crevasse propagates.
To account for the effect of fluid/poroelastic pressure in the entire
diffuse-crack region (0 < D ⇒ 1), we modify Eq. (15) as

ϑf (p, → · u,D) = ↗gf(D)pw↩→ · u, (17)

where gf(D) = 1↗ gd(D) is an interpolation function that satisfies
three conditions as

gf(0) = 0, gf(1) = 1, g
⇑

f (1) = 0. (18)

The first condition indicates that no fluid energy is stored in the
intact elastic medium, which contains no cracks or voids. The
second condition ensures that Eq. (17) reduces to Eq. (14) in the
fully-damaged region (i.e. D = 1). The third condition ensures
that the crack driving force vanishes as the phase-field variable
converges to one. Thus, Eq. (17) allows us to define the integral
in Eq. (14) over the whole domain ω , instead of just over ωD.

We employ the hybrid approach to solve the phase field for-
mulation for hydrofracture, wherein the elastic strain energy
decomposition is used only for the calculation of the history

field variable H. Therefore, the Cauchy stress tensor in the poro-
damage PFM is defined as

ε =

ϱϑ

ϱω
=

ϱϑe

ϱω
+

ϱϑf

ϱω
= gd(D) [ϕtr(ω)I + 2µω] ↗ gf(D)pw↩I .

(19)

To further regularize the formulation, we modify the above con-
stitutive relation as

ε = max (gd(D), )) [ϕtr(ω)I + 2µω] ↗ gf(D)pw↩I, (20)

where ) = 10↗6 is small regularization parameter. Note that
the expression max (gd(D), )) can be alternatively expressed as
(1 ↗ ))gd(D) + ) [44]. The phase field evolution equation can
be obtained by minimizing the modified total potential energy
functional as

⇀ ˙D = ↽c!D ↗

D

↽c
+ 2(1 ↗ D)

H

Gc
, (21)

where the history variable including the effect of fluid/poroelastic
pressure is given by

H(x, t) = max
⇁↓[0,t]

/
ϑ+

e (ω(x, ⇁ )) + pw↩tr (ω(x, ⇁ ))
\
. (22)

In summary, the above poro-damage PFM can be used to simulate
the propagation of both air-filled and water-filled crevasses. For
air-filled crevasses, the poroelastic pressure pw = 0 everywhere
within ω , which is the case during winter months in Greenland
when there is no surface meltwater. Clearly, in this case the poro-
damage PFM for hydrofracture reduces to that for brittle fracture
reviewed in Section 2.1.

2.3. Strong form of governing equations

The crevasse propagation problems involves solving for two
unknown fields, namely the displacement field u and the phase-
field (isotropic damage) variable D. The displacement field u is
obtained by solving the elastostatic boundary value problem. The
corresponding strong form of the static equilibrium equations and
the boundary conditions are:
{
⟨

⟩

→ · ε + b = 0 in ω,

u = u↑ on ϱωu,

ε · n = t↑ on ϱωt,

(23)

where u↑ represents a prescribed displacement enforced on ex-
ternal boundary ϱωu, n denotes the unit normal to the boundary
ϱω pointing outward from ω , and the Cauchy stress ε is defined
by the constitutive Eq. (20). The body force is due to the self-
gravitation load with a magnitude of ↗(g in the z-direction.
In the two-phase medium consisting of glacier ice and melt-
water, we approximate the material density ( based on the
poro-damage interpretation as

( = (1 ↗ D)(i + D(f, (24)

where (i is the density of ice. The strong form of the scalar
phase field evolution equation in the rate form and the associated
boundary condition are:
/

⇀ ˙D = ↽c!D ↗
D

↽c
+ 2(1 ↗ D)H

Gc
in ω,

→D · n = 0 on ϱω.
(25)

The introduction of the artificial viscosity parameter ⇀ leads to
a ‘‘pseudo’’-time dependence of damage evolution. Therefore,
the phase field equation requires an incremental time-stepping
procedure to track fracture propagation, unlike the linear elastic
fracture mechanics model that only defines the final crack length.
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Table 1
Material properties of compressible, linear elastic ice and phase field parameters
chosen in this study. The Young’s modulus and Poisson’s ratio of ice are
assumed from [57], and the densities of glacier ice and seawater are assumed
from [20].
Parameter Symbol Value [Unit]
Biot coefficient ↩ 1.0 [–]
Viscous regularization parameter ⇀ 50 [N s/m2]
Poisson’s ratio ↼ 0.35 [–]
Freshwater density (f 1000 [kg/m3]
Ice density (i 917 [kg/m3]
Seawater density (s 1020 [kg/m3]
Young’s modulus E 9500 [MPa]
Gravitational acceleration g 9.81 [m/s2]
Length scale parameter ↽c 0.625 [m]

2.4. Staggered solution strategy

The hybrid PFM formulation ensures damage accumulation is
driven only by the tensile elastic strain energy, albeit it uses the
simpler constitutive damage law for defining the Cauchy stress,
which significantly reduces the computational burden [34]. This
feature of the hybrid formulation allows the usage of a staggered
scheme, which provides flexibility and stability compared to the
monolithic scheme [44]. In this study, we employ a three-step
staggered numerical solution strategy at any given pseudo time
increment:

1. Compute the displacement u using static equilibrium along
with its boundary conditions defined in Eq. (23) and the
constitutive damage law defined by Eq. (20);

2. Evaluate the tensile elastic strain energy ϑ+

e and/or the
history variable H using Eq. (22), and then update the crack
driving force H/Gc;

3. Compute the isotropic damage variable D by solving the
phase field evolution equation (25).

We discretize and solve the governing equations of the PFM using
the standard finite element method in the open-source software
FEniCS [56]. The domain is spatially discretized using three-noded
linear triangular finite elements. To check the accuracy of our
hybrid PFM implementation, we considered the benchmark test
involving a single edge cracked specimen under uniaxial ten-
sion using three different strain energy decomposition schemes
introduced in Section 2.1. For more details see Appendix B.

3. Results and discussion

In this section, we use the poro-damage PFM to simulate
hydrofracture of water-filled crevasses in grounded glaciers. We
compare the predicted maximum crevasse depths against those
obtained from the linear elastic fracture mechanics (LEFM) model
detailed in Appendix C. We assume that glacier ice on smaller
time scales of crevasse propagation exhibits compressible elas-
tic behavior [14]. Material properties and related phase field
parameters assumed in this study are listed in Table 1; these
properties correspond to laboratory-made ice, which we used in
our prior studies [54,57]. Owing to the porosity and heterogeneity
of glacier ice, the material properties we assumed only represent
those of ice cores extracted from lower depths [58,59].

As listed in Table 1, we take the length scale parameter ↽c =

0.625 m in all the following simulation studies, unless specified
otherwise. Although it is possible to conduct experiments to
calibrate the phase field model (e.g. [55]), it is quite challenging
to conduct experiments on glacier or polycrystalline ice due to
its low melting point and low tensile strength, which requires
specialized equipment and laboratory infrastructure. Owing to

Fig. 2. Schematic diagram of marine-terminating grounded glacier with free
slip at the left edge and the base. A hydrostatic load with hydraulic head hw
is applied to the right edge of the domain as a depth-varying (triangularly)
distributed load. A rectangular pre-damaged zone (D = 0.99) with width 4↽c
and depth d

0
s is defined to initiate the propagation of surface crevasse. The

horizontal distance between the left edge of the domain and the center of the
pre-damaged zone is denoted by x

0
s .

the lack of detailed experiments, we resort to simple estimates
for the length scale parameter. According to Hillerborg et al. [60],
↽c is indicative of the size of the fracture/damage process zone
ahead of the crack tip and can be related to the cohesive strength
σc as

↽c ⇓

EGIc

σ 2
c

=

(1 ↗ ↼2)K 2
Ic

σ 2
c

, (26)

where KIc is the critical stress intensity factor (SIF) for mode I
fracture. For the glacier ice, the stress intensity factor can be
obtained from chevron notch tests conducted by Rist et al. [61],
and cohesive strength can be assumed based on the range sug-
gested by previous studies on glacier ice [4,17]. Thus, taking
KIc = 0.1 MPa

↑

m and cohesive strength σc = 0.1185 MPa,
we get ↽c ⇓ 0.625 m. We also tested our model with a smaller
length scale parameter (i.e., larger cohesive strength) and find
that the choice of the length scale parameter does not affect
the predicted maximum crevasse depth, although it alters the
width of the damage zone and nucleation of damage elsewhere.
From a glacier mechanics perspective, crevasse depth is the most
important variable as it reveals the limits of iceberg calving, so
the assumed value of ↽c is reasonable.

3.1. Idealized land/marine-terminating grounded glaciers

We consider a rectangular glacier domain of length L = 500
m and height H = 125 m under the plane strain assumption. As
shown in Fig. 2, the free slip boundary condition is enforced at the
left and bottom edges of the domain (indicated by rollers). We
use the Cartesian coordinate system with (x1, x2, x3) = (x, y, z),
where x and z represent in-plane horizontal and vertical coordi-
nates, respectively; and the direction of y-axis must point into the
x-z plane to obey the right-handed rule. The origin is set at the
lower-left corner of the glacier. We consider a varying seawater
depth hw at the terminus (i.e. the right edge) of the grounded
glacier. In the case of land-terminating glacier (i.e. hw = 0),
the zero traction boundary condition is naturally enforced at the
glacier terminus. In the case of a marine-terminating grounded
glacier (i.e., hw > 0), hydrostatic pressure with hydraulic head
hw is applied at the glacier terminus as a depth-varying (trian-
gularly) distributed load. To simulate the propagation of a single
isolated surface crevasse in the glacier and compare the result
with the LEFM model, we prescribe a rectangular pre-damaged
zone (D = 0.99) with 4↽c in width and d

0
s in depth. The horizontal

distance between the left edge of the domain and the center of
the pre-damaged zone is denoted by x

0
s .
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Fig. 3. Stress and strain states of pristine land-terminating glaciers under plane
strain assumptions using the finite element method (FEM): (a) σxx: normal stress
in x-direction; (b) σzz: normal stress in z-direction; (c) σxz: shear stress in x-z
plane; (d) ↪xx: normal strain in x-direction.

3.2. Stress state and crack driving force

We first evaluate the stress state in a land-terminating glacier
(i.e., hw = 0) without any pre-damaged zone. As per the plane
strain assumption, we have three independent components of
the Cauchy stress tensor, including two normal stress compo-
nents and one shear stress component in the x-z plane, which
are plotted in Fig. 3(a)–(c). The traction-free condition at the
terminus leads to non-uniformity in normal stress components,
but this free boundary/edge effect diminishes in the far-field
region (i.e. away from the terminus). Consequently, the normal
stress components in the far-field region do not vary in the
longitudinal (x) direction and vary linearly in the vertical (z)
direction. In contrast, the in-plane shear stress in the far-field re-
gion is negligibly small; whereas near the terminus it shows some
non-uniform distribution. Furthermore, the far-field longitudinal
stress σxx is tensile (i.e. positive) near the top surface and linearly
changes to compressive (i.e. negative) with depth. The far-field
stresses in Fig. 3 are consistent with the elasticity stress solutions
derived in Appendix A, which partly verifies our finite element
implementation in FEniCS. Because most crevasses are mode I
(opening) vertical fractures driven by tensile stress, they cannot
propagate beyond a certain depth where the longitudinal stress
becomes zero. Also, due to the self-gravitational load of glaciers,
the vertical stress σyy is compressive (i.e. negative) everywhere.

We next calculate the crack driving force in the undamaged
land-terminating glacier using the three strain energy decompo-
sition schemes described in Section 2.1. As shown in Fig. 4(a),
the maximum crack driving force computed from Miehe’s scheme
is at the bottom surface of the near-terminus region. The max-
imum crack driving force computed from Zhang’s scheme is at

Fig. 4. Crack driving force of pristine land-terminating glaciers H/Gc using
three different strain energy decomposition schemes proposed by: (a) Miehe
et al. [33]; (b) Zhang et al. [39]; (c) Lo et al. [38].

the top surface of the far-field region, as shown in Fig. 4(b).
However, with Zhang’s scheme we notice that the crack driving
force at the bottom surface of the near-terminus region is still
relatively larger than that at the surrounding area. Furthermore,
the disparity in the magnitudes of crack driving forces computed
from Miehe and Zhang schemes is quite significant. Regardless
of the differences, the major concern is that both Miehe’s and
Zhang’s schemes lead to finite crack driving force in regions
where longitudinal normal stress σxx is negative, so they predict
fracture nucleation and propagation in the most compressive
regions of the glacier. This contradicts the results of the linear
elastic fracture mechanics model for mode I fracture and violates
the condition that damage should only evolve on in the tensile
regions.

To further clarify the issue with Miehe’s and Zhang’s schemes,
we calculate the in-plane horizontal strain of the land-terminating
glacier. As shown in Fig. 3(d), the longitudinal strain ↪xx is positive
almost everywhere; whereas the longitudinal stress σxx becomes
negative with depth in the far-field region, as shown in Fig. 3(b).
Because the vertical strain ↪zz must be negative everywhere due
to the self-gravitational load, the longitudinal strain must be
positive everywhere due to the Poisson’s ratio effect. According to
Eqs. (9) and (11), the history field variable is dictated by the trace
of ↘ω≃

2, which is positive everywhere as the longitudinal strain is
positive everywhere. This explains why the crack driving force
evaluated using Miehe’s and Zhang’s schemes are positive in the
regions where the longitudinal stress σxx is compressive. This is
a fundamental limitation of these two schemes that restricts its
applicability to geological media subjected to self-gravitational
load. To ensure that the compressive longitudinal stress does
not contribute to mode I fracture nucleation or propagation, Lo
et al. introduced a modified scheme applicable for masonry-like
materials that exhibit tension–compression asymmetry [38]. As
shown in Fig. 4(c), the crack driving force obtained from the
Lo’s scheme is zero in the regions where the longitudinal stress
is negative, and is maximum at the top surface in the far-field
region where the longitudinal stress is positive. Thus, we find
that only the Lo’s scheme provides a consistent description of

6
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mode I fracture compared to the LEFM model by accounting for
the tension–compression asymmetry of glacier ice subjected to
self-gravitational load.

3.3. Damage evolution with Lo’s scheme

We next simulate the evolution of damage field corresponding
to an air-filled surface crevasse in a land-terminating glacier
using the Lo’s scheme for crack driving force. We define the pre-
damaged zone at x

0
s = 250 m with depth d

0
s = 0.08H = 10

m, and then conduct the simulation for 100 pseudo time steps
to examine the evolution of the phase field damage variable and
predict final depths of surface crevasses.

The damage fields of grounded glaciers predicted by the Lo’s
scheme is plotted in Fig. 5(a). It shows the localization of damage
with a crack-like feature propagating to a final depth ds =

0.955H , which is consistent with the LEFM model result. We
also notice that a second crack-like feature nucleates and prop-
agates near the left edge of the domain. The left crack seems
to develop as the central crack ceases to propagate, illustrating
the ability of the PFM to capture crevasse initiation. Thus, the
PFM can be an indispensable approach for understanding the
fracture mechanics of closely-spaced glacier crevasses that are
widely observed [1]. However, in this study our aim is to verify
the PFMwith the LEFMmodel for isolated crevasses by comparing
the predicted maximum (or final) depth, and then examine the
conditions that enable the full-depth penetration under different
meltwater and seawater conditions. Therefore, to promote the
localized propagation of an isolated surface crevasse at the pre-
damaged zone (i.e. x0

s
= 250 m) and to prevent the initiation

of surface crevasses elsewhere, we decreased ↽c to 0.1 m. This
is equivalent to assuming the cohesive strength σc of glacier ice
to be 0.2962 MPa, so that damage evolution can only occur at
pre-damaged zone due to the local stress concentration. Fig. 5(b)
shows the final damage field based on the Lo’s scheme with
↽c = 0.1 m at the pseudo time step n = 100. The maximum
penetration depth of this surface crevasse is predicted to be ds =

0.949H , which shows good agreement with the previous result
ds = 0.955H for ↽c = 0.625 m. This study suggests that the choice
of the larger length scale does not affect the predicted maximum
crevasse depth, although it alters the width of the damage zone
and nucleation of damage elsewhere.

Upon comparing Fig. 5(a) to (b), we find that the final damage
field with smaller length scale is more localized and resembles
an isolated surface crevasse. Because this corresponds to the
assumption of larger cohesive strength of glacier ice, this sup-
presses the initiation of damage except near the pre-damaged
zone. However, a significant drawback of decreasing ↽c is the
increased computational burden arising from the need to resolve
the damage zone with an extremely fine mesh. For the sake of
numerical accuracy of the PFM, it is customary that the finite
element mesh size be sufficiently smaller than the chosen length
scale. Consequently, defining ↽c = 0.1 can be unnecessarily bur-
densome for evaluating the depth/height of glacier crevasses. In
this work, we implement a somewhat ad hoc approach to localize
the surface crevasse at the pre-damaged zone by assuming a
threshold F

th for the crack driving force. Specifically, at each
pseudo time step, we evaluate the crack driving force H/Gc at
each integration point using the Lo’s scheme and set it to zero if
H/Gc ⇒ F

th. Our approach is inspired by that of Miehe et al. [62],
where an energetic criterion with a threshold was proposed to
avoid damage nucleation at lower stress levels.

Here, we define the value of F
th equal to the maximum

crack driving force calculated based on the stress state of the
undamaged glacier; therefore, its calibration is valid only for the
specific glacier geometry and boundary conditions. The thresh-
olds assumed for grounded glaciers with different seawater levels

Fig. 5. Final damage fields predicted by PFM using the Lo’s scheme for an
air-filled surface crevasse (i.e., hs = 0) in a land-terminating glacier with: (a)
↽c = 0.625 m; (b) ↽c = 0.1; (c) ↽c = 0.625 m and F = 3.271; (d) ↽c = 0.625 m
and F = 32.71.

at terminus in this study are listed in Table 2. Note that for a near-
floatation grounded glacier (i.e., hw = 0.9H), F th

= 0 because
the compressive seawater pressure at the terminus nullifies the
crack driving force in the far-field region of the glacier. With
the threshold applied, the final damage field corresponding to
an air-filled surface crevasse in a land-terminating glacier looks
like an inverted teardrop as shown in Fig. 5(c), which may not
be physical; however, the predicted maximum penetration depth
ds = 0.953H is consistent with the LEFM model. The application
of threshold F

th
= 3.271 successfully localizes the propagation

of the crevasse near the assumed pre-damaged region. To test
the sensitivity of the predicted maximum depth to the threshold
value, we assumed the threshold as F

th
= 32.71 (i.e. ten-

fold increase). As shown in Fig. 5(d), the width of the damaged
zone decreases significantly, but the predicted maximum depth
remains at ds = 0.953H , indicating its insensitivity.

3.4. Comparison with the LEFM model

We next assess the accuracy of the proposed poro-damage
PFM for estimating the maximum crevasse penetration depth
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Table 2
Thresholds of crack driving force for grounded glaciers with different seawater
level at terminus.
hw/H 0% 50% 90%

F
th 3.271 0.754 0

relative to that obtained from the LEFM model. Fig. 6 shows
the normalized final crevasse depths ds/H for isolated surface
crevasses filled with freshwater to different levels, hs/ds = {0,
12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100}%, within grounded glaciers
terminating at the ocean with varying sea levels, hw/H = {0, 50,
90}%. As before, surface crevasses are initiated by a pre-damaged
zone at x0s = 250 m with depth d

0
s = 0.08H = 10 m. Following

the studies in the previous section, we use the Lo’s scheme with
the threshold to calculate crack driving force and take ↽c = 0.625
m to manage the computational cost. The LEFM model results are
obtained using the symmetric double edge-cracked plate weight
functions as detailed in Appendix C. From Fig. 6, it is evident that
the PFM results are in excellent agreement with those from the
LEFM model for all cases.

In the case of the land-terminating glaciers (i.e., hw = 0) with
free slip at the base, an air-filled surface crevasse can propagate
to 95.5% of the thickness of glacier. This is because the lack of
compressive seawater pressure acting on the terminus along with
the free slip basal condition allows the glacier to flow fast and
generate large tensile stress and crack driving force. However, this
case is rarely observed in reality owing to a complex interplay
between basal friction, basal surface topology, and subglacial
water pressure. As the seawater level at terminus is increased, the
propagation of surface crevasses requires the presence of melt-
water to trigger hydrofracturing. For example, a surface crevasse
in a marine-terminating grounded glacier with seawater level
hw/H = 50% can propagate to 65% of the glacier thickness if it is
partially filled with meltwater (hs = 0.375ds). The same crevasse
if filled with more meltwater (hs/ds ⇐ 50%) can penetrate the
entire thickness of the marine-terminating glacier, leading to ice-
berg calving. However, in a grounded marine-terminating glacier
that is near-floating (i.e., hw/H ⇓ 90%), the propagation of surface
crevasse is arrested even if there is enough meltwater to fully-fill
the crevasse. The above study leads us to the conclusion that a
near-floatation glacier is less vulnerable to hydrofracturing and
consequent iceberg calving, owing to the compressive seawater
pressure at the terminus.

3.5. Cliff failure of near-floatation grounded glaciers

We examine the propagation of an isolated water-filled sur-
face crevasse in the terminus region of a near-floatation grounded
glacier (i.e., hw/H ⇓ 90%). As shown in Fig. 7(a), we define the
pre-damaged zone at x0s = 475 m with depth d

0
s = 0.08H = 10

m, and assume the meltwater level within the crevasse hs/ds =

100%. We conduct the simulation for 60 pseudo time steps to
demonstrate cliff failure that resembles slumping. As shown in
Fig. 7(b), the fully water-filled isolated surface crevasse at the
terminus of the near-floatation glacier can propagate and form a
curved crack-like feature, which leads to cliff failure and iceberg
calving. We find that this failure is driven by both hydrofracturing
and considerable in-plane shear stress near the glacier terminus.
However, if we assume that crevasse is air-filled (i.e., hs/ds = 0),
we do not see any damage evolution or cliff failure.

We next consider the plausibility of a self-sustaining retreat
of the ice terminus, based on the hypothesis of marine ice cliff
instability [10,63]. As shown in Fig. 8(a), we define two pre-
damaged zones at x

0
s = 425 and 475 m, respectively, with the

same depth d
0
s = 0.08H = 10 m. To demonstrate the progressive

Fig. 6. Surface crevasse depth ds normalized with the domain height H = 125
m for varying freshwater levels hs filling the surface crevasse within grounded
glaciers. The solid and dashed lines depict the ‘double edge cracks’ LEFM model
result for different seawater depths hw at the terminus. The markers (i.e. black
squares, red dots, and blue triangles) represent phase field method (PFM) results
based on strain energy decomposition scheme proposed by Lo et al. [38] with
threshold F

th applied.

Fig. 7. Damage fields of a near-floatation grounded glacier with an isolated
surface crevasse near the right terminus: (a) initial condition; (b) prediction
at pseudo time step n = 100 using PFM based on the Lo’s scheme.

propagation of two fully water-filled crevasses near the terminus,
we conduct the simulation for 300 pseudo time steps. We observe
three stages of damage evolution: (i) the crevasse closer to the
terminus propagates and reaches the right terminus that leads to
cliff failure and iceberg calving, as in Fig. 8(b); (ii) As the new
calving front is established at x

0
s = 475 m, the surface crevasse

at x0s = 425 m subsequently begins to propagate, as in Fig. 8(c);
(iii) Under the action of hydraulic pressure and in-plane shear the
crevasse propagates and reaches the new ice terminus leading to
another iceberg calving event, as in Fig. 8(d). The movie showing
the evolution of damage through the three stages is provided as
supplementary material. While cliff failure is hypothesized for
ice termini that are 100 m or more taller over the sea level,
our study indicates that hydrofracture can lead to the failure of
much shorter cliffs. However, this study does not represent failure

8



X. Sun, R. Duddu and Hirshikesh Extreme Mechanics Letters 45 (2021) 101277

Fig. 8. Damage fields of a near-floatation grounded glacier with two surface
crevasses near the right terminus predicted by PFM using the Lo’s scheme at
different pseudo time steps: (a) n = 0; (b) n = 60; (c) n = 220; (d) n = 275.

at the terminus of floating ice shelves and does not consider
the effect of buoyancy force that pushes the entire glacier up
to floatation. Therefore, further studies are needed that consider
realistic glacier geometry and basal boundary condition to better
understand the plausibility of marine ice cliff instability.

In Figs. 7 and 8, we see that the damage zone thickness is
larger than the length scale parameter. This is because damage
evolution is driven by a multi-axial stress state near the terminus
of a glacier due to internal body force (self-weight), which causes
both normal and shear stresses (see Fig. 3. We acknowledge that
our current phase field model with the crack energy density
in Eq. (7) may not be appropriate and that modifications are
necessary to handle mixed-mode fracture to accurately represent
the opening (mode I) and sliding (mode II) mechanisms at the
terminus. As evident from the movie provided as supplementary
material, at time step 35 the damage zone looks like a crack
emanating from the notch closest to the terminus. By time step
50 the damage zone thickness increase and it curves to reach
the terminus, thus causing an ice block above the crack to slide
off into the ocean and giving birth to a small iceberg. However,
we made major simplifications in conducting this preliminary
simulation study: (i) we considered the physical status of the fully
damage zone to be water, that is, as ice fails we assumed that

it gets converted to water in the damage zone; (ii) we ignore
mass conservation as the meltwater seeping into the damaged
zone alters the amount of mass in the simulation region, and
currently we do not track the volume of meltwater; (iii) we do
not model the flow of meltwater out of the damage zone in
to the seawater, and instead apply the hydrostatic pressure on
crack surface. Thus, the weight of the iceberg above the crack
is still there, but the density of meltwater in the damage zone
applies hydrostatic pressure causing the iceberg to float up. We
acknowledge that improvements can be made in representing the
mixed-mode nature of fracture and the physical state of ice in the
failure zone, but here wish to simply demonstrate the potential of
the phase field model to describe progressive crack propagation
and the plausibility of marine ice cliff instability.

4. Conclusions

In this paper, we present a poro-damage phase field model
(PFM) for hydrofracturing and use it to simulate the propagation
of air-filled or water-filled crevasses in grounded glaciers. Assum-
ing glacier ice to be a brittle, compressible, linear elastic solid,
the displacement and damage fields are solved in a staggered
manner using the standard finite element method in the open-
source software FEniCS. Three elastic strain energy decomposition
schemes are implemented to calculate the crack driving force (or
history field variable) that were proposed by Miehe et al. [33],
Zhang et al. [39], and Lo et al. [38], respectively. The maximum
penetration depths of crevasses in grounded glaciers evaluated
from the poro-damage PFM are compared to the corresponding
predictions from the linear elastic fracture mechanics (LEFM)
model. The results of our study reveal several important findings
relevant to the broader mechanics and earth science community:

1. The crack driving force calculated using the schemes pro-
posed by Miehe et al. and Zhang et al. allow damage
accumulation in regions where the longitudinal normal
stress is compressive. This contradicts the LEFM result as
it violates the tension–compression asymmetry of damage
evolution normally assumed for brittle materials;

2. The modified strain energy decomposition scheme pro-
posed by Lo et al. nullifies the crack driving force in regions
where the longitudinal stress is compressive, thus leading
to an accurate description of brittle fracture, especially in
geological media that are subjected to self-gravitational
load;

3. For land- and marine-terminating grounded glaciers, ap-
plying a sufficiently large threshold on crack driving force
calculated using Lo’s scheme is an effective (but ad hoc)
approach to localize the propagation of crevasses at the
pre-damaged zone without significantly affecting the pre-
diction of their final depths;

4. The maximum penetration depths of air- and water-filled
surface crevasses within grounded glaciers predicted using
PFM are in good agreement with those evaluated based on
double edge crack LEFM model;

5. In a near-floatation grounded glacier, an isolated surface
crevasse in the far-field region may not propagate, de-
spite the level of meltwater filling the crevasse. However,
water-filled surface crevasses in the terminus region can
propagate progressively and lead to iceberg calving events,
owing to hydrofracturing and in-plane shear stress.

In conclusion, the poro-damage PFM based on the strain en-
ergy decomposition scheme proposed by Lo et al. [38] can cap-
ture the tension–compression asymmetry and simulate glacier
crevasses propagation resulting from hydraulic pressure and self-
gravitational load in an accurate and efficient manner. However,
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Fig. A.1. (a) Schematic diagram of the floating ice shelf (L ⇔ H) with no
tangential traction at the base. A body force with magnitude ↗(ig in the z-
direction is applied as the gravity loading. And a hydrostatic load with hydraulic
head hw is applied to the right terminus of the ice shelf as a depth-varying
(triangularly) distributed load. The out-of-plane direction is denoted by y; (b)
Free body diagram of forces in x-direction applied on the far-field section of the
ice shelf cut at the red dashed line with the surface normal vector denoted by
n.

the current PFM model is based on the assumption of com-
pressible linear elastic behavior of glacier ice, which does not
represent the deformational flow over long timescales as ob-
served from field studies and satellite imaging [64]. In fact, glacier
ice is generally considered as visco-elastic/plastic material, so fur-
ther developments of the poro-damage PFM are necessary to ac-
count for rate-dependent mechanical and fracture responses [65].
Our future work will focus on both extending the current poro-
damage PFM for viscoelastic ice, and applying it to real glaciers
to better understand the fracture behavior of glaciers in response
to atmospheric warming and surface meltwater production.
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Appendix A. Derivation of the far-field longitudinal (horizon-
tal) normal stress εxx

We consider a freely floating ice shelf (i.e., no tangential trac-
tion at the base) under plane strain assumptions, as depicted
in Fig. A.1(a). A body force with magnitude of ↗(ig in the z-
direction is applied as the gravity loading. And a hydrostatic load
with hydraulic head hw is applied to the right terminus of the
ice shelf as a depth-varying (triangularly) distributed load. Under
such circumstance, we have the far-field equilibrium equations in
three dimensions as given by
{
}⟨

}⟩

ϱσxx
ϱx

+

ϱσxy
ϱy

+
ϱσxz
ϱz

= 0,
ϱσxy
ϱx

+

ϱσyy
ϱy

+

ϱσyz
ϱz

= 0,
ϱσzx
ϱx

+

ϱσzy
ϱy

+
ϱσzz
ϱz

+ (ig = 0.
(A.1)

We assume that far-field stresses are invariant with x-coordinate
and out-of-plane stresses are zero. We can now simplify Eq. (A.1)

as{
}}}⟨

}}}⟩

ϱσxy
ϱy

= 0,
ϱσyy
ϱy

= 0,
ϱσzz
ϱz

+ (ig = 0.

(A.2)

At z-direction, we can solve the stress component σzz based on
the feature of gravitational loading. The corresponding boundary
conditions for Eq. (A.2c) can be expressed as
\
σzz = ↗(igH at z = 0,
σzz = 0 at z = H.

(A.3)

Therefore, the vertical normal stress σzz can be expressed as

σzz(z) = ↗(ig (H ↗ z) . (A.4)

Based on the theory of compressible linear elasticity, we have the
constitutive relations as given by
{
}}}⟨

}}}⟩

↪xx =
1
E

/
σxx ↗ ↼

⎛
σyy + σzz

⎞\
,

↪yy =
1
E

/
σyy ↗ ↼ (σxx + σzz)

\
,

↪zz =
1
E

/
σzz ↗ ↼

⎛
σxx + σyy

⎞\
.

(A.5)

Based on the plane strain assumption (i.e., ↪yy = 0), we can
further simplify Eq. (A.5b) as

σyy = ↼ (σxx + σzz) . (A.6)

Upon substituting Eq. (A.6) into Eq. (A.5a), we have

↪xx =

1
E

/⎛
1 ↗ ↼2⎞ σxx ↗ ↼ (1 + ↼) σzz

\
. (A.7)

Furthermore, the length of typical ice shelves is at the level
of kilometers, whereas its thickness is at the level of hundred
meters. Therefore, we here adopt the membrance stress assump-
tion based on the geometric feature of glaciers. The horizontal
displacement is then assumed to be vertically invariant, which
can be expressed as
ϱu

ϱz
=

ϱv

ϱz
= 0 ↖↙

ϱ

ϱx

⌈
ϱu

ϱz

⌉
= 0. (A.8)

The above partial derivative is interchangeable, we thus have
ϱ

ϱz

⌈
ϱu

ϱx

⌉
= 0 ↖↙

ϱ↪xx

ϱz
= 0, (A.9)

which means the horizontal strain component is depth invariant.
Upon taking derivative on both sides of Eq. (A.7) with z and
simplifying it based on Eq. (A.9), we have
ϱσxx

ϱz
=

↼

1 ↗ ↼

ϱσzz

ϱz
. (A.10)

Combining Eqs. (A.10) and (A.2c), we have
ϱσxx

ϱz
= ↗

↼

1 ↗ ↼
(ig. (A.11)

We know that far-field stresses are invariant with x-coordinate
and for the plane strain problem
ϱσxx

ϱy
= 0. (A.12)

Therefore, the stress component σxx is only dependent on z-
coordinate. Eq. (A.11) can be integrated with respect to z as

σxx = ↗

↼

1 ↗ ↼
(igz + C, (A.13)

where C is an unknown constant. We next consider the force
balance in x-direction based on the free body diagram of a far-
field section of the floating ice shelf cut at the red dashed line, as

10



X. Sun, R. Duddu and Hirshikesh Extreme Mechanics Letters 45 (2021) 101277

Fig. B.1. Geometry and boundary conditions of a square single edge notched
specimen subjected to tensile loading.

shown in Fig. A.1(b). The equilibrium equation in x-direction can
be written as
⎡

Fx =

⌋
H

0
σxxdz + Fw = 0, (A.14)

where Fw =
1
2(sgh

2
w is the resultant force caused by the hydro-

static load. Substituting Eq. (A.13) into Eq. (A.14), we have

C =

↼

2(1 ↗ ↼)
(igH ↗

1
2
(sg

h
2
w

H
. (A.15)

Combining Eqs. (A.13) and (A.15), we have the expression of
far-field longitudinal normal stress through ice thickness as

σxx =

↼

1 ↗ ↼

⎤
1
2
(igH ↗ (ig (H ↗ z)

⎣
↗

1
2
(sg

h
2
w

H
. (A.16)

Appendix B. Numerical verification study: Single edge notched
tension test

To verify our staggered implementation of the hybrid phase
field model introduced in Section 2.1, we conduct a standard
benchmark study of the single edge notched specimen subjected
to tensile loading. As shown in Fig. B.1, we consider a square
plate containing a horizontal notch with a length of 0.5 mm lo-
cated at mid-height of the left boundary. The specimen is pinned
at the bottom and tensile loading is realized by a monotonic
displacement u applied on the top boundary.

The parameters of material properties and phase field model
are chosen to be the same as those used in [33], as listed in Ta-
ble B.1. We consider three different strain energy decomposition
schemes proposed by Miehe et al. [33], Zhang et al. [39], and Lo
et al. [38], respectively. Note that for Zhang’s scheme, the critical
strain energy release rate for mode I fracture GIc is taken as the
same value of Gc listed in Table B.1. The displacement control is
applied with a constant increment ∆u = 10↗5 mm in the first 500
time steps. After that, the displacement increment is adjusted to
10↗6 mm owing to the rapid propagation of the crack.

Fig. B.2 shows three load–displacement curves obtained from
phase field modeling based on corresponding strain energy de-
composition schemes. The benchmark solution is plotted as black
circular markers, which is digitized from Figure 9 of [34]. The re-
sults computed from our models using Miehe’s and Lo’s schemes
are in good agreement with the benchmark solution; whereas,
the discrepancy between the benchmark solution and the result
obtained using Zhang’s scheme is caused by the choice of critical
strain energy release rate for mode II fracture GIIc = 10GIc.

Table B.1
Parameters of material properties and phase field modeling of single edged notch
tension test.
Parameter Value Unit

ϕ 121.5 kN/mm2

µ 80.7 kN/mm2

Gc 2.7 ∝ 10↗3 kN/mm
↽c 0.015 mm
⇀ 10↗6 kN s/m2

Fig. B.2. Load–displacement curves for single edge notched tension test. The
solid and dashed lines depict the numerical results obtained from phase field
model based on the corresponding strain energy decomposition schemes. The
black circular maker represents the benchmark solution digitized from Figure 9
of [34].

Fig. C.1. Double edge cracks through finite slabs with H in width and d in
crack length. The yellow arrows indicate applied loading on the crack surface
that leads to crack opening. The dashed line of symmetry represents the free
slip surface at the base of the glacier.

Appendix C. LEFM model applied to predict the maximum
penetration depths of crevasses

The LEFM models proposed in previous studies [4,15–17] are
ideally suited for a rectangular plate-like glacier made of lin-
ear elastic ice with a single edge crack subjected to the far-
field longitudinal normal stress given by Eq. (A.16). In this pa-
per, we consider the scenario of surface crevasse propagation
in grounded glaciers. The double edge cracks can approximate a
surface crevasse in a grounded glacier with free tangential slip,
as shown in Fig. C.1(a).

In LEFM models, the crack propagation is governed by the
stress intensity factor (SIF) at the crack tip, which depends on the
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applied far-field stress and the initial crack length. The maximum
penetration depth of crevasses can be determined by equating
the mode I net SIF K

net
I at the crevasse tip to the experimentally

measured critical SIF of ice KIc = 0.1 MPa m
1
2 . The mode I net SIF

can be evaluated as

K
net
I =

⌋
d

0
M(ζ ,H, d)σnet(ζ )dζ , (C.1)

where M(ζ ,H, d) is an appropriate weight function for specific
geometry and boundary conditions, and σnet is the net longitudi-
nal stress that leads to crevasse opening, which can be expressed
as [66–68]

σnet(z) = σxx(z) + pw(z), (C.2)

where the hydraulic pressure pw is given by Eq. (16). The weight
function for the double edge cracks LEFM model has been given
in [69] as

MD(ζ ,H, d) =

2
↑

2H

⎤
1 + f1

⌈
ζ

d

⌉
f2

⌈
d

H

⌉⎣
φ

⌈
d

H
,

ζ

H

⌉
, (C.3)

where d = ds and ζ = H ↗ z for surface crevasses, and the
function f1 is given as

f1

⌈
ζ

d

⌉
= 0.3

⎦
1 ↗

⌈
ζ

d

⌉5/4
⎢

, (C.4)

and the function f2 is given as

f2

⌈
d

H

⌉
=

1
2

⎤
1 ↗ sin

⌈
πd

2H

⌉⎣⎤
2 + sin

⌈
πd

2H

⌉⎣
, (C.5)

and the function φ is given as

φ

⌈
d

H
,

ζ

H

⌉
=

⎥
tan

⎛
πd

2H

⎞

⎥
1 ↗

/
cos

⎛
πd

2H

⎞
/cos

⎛
πζ
2H

⎞\2 . (C.6)

To obtain the LEFM predicted final depths of crevasses as plotted
in Fig. 6, we next equate the mode I net SIF evaluated using
Eq. (C.1) to the experimentally determined critical SIF. These
nonlinear equations with the unknowns of maximum penetration
depths are solved using an iterative algorithm based on the
bisection method.

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml.2021.101277.
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