1	BACK TO THE BASICS OF MATE CHOICE:
2	THE EVOLUTIONARY IMPORTANCE OF DARWIN'S SENSE OF BEAUTY
3	
5	RAFAEL LUCAS RODRÍGUEZ
6	Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of
7	Wisconsin-Milwaukee
8	E-MAIL: RAFA@UWM.EDU
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24	ABSTRACT
/4	ABSTRAUL

26There is a simple and general explanation for the evolution of mate choice that does not rely on 27benefits to be gained from favoring some potential mates over others, nor on ornament-28preference genetic correlations (but that can help establish such benefits and correlations). 29Mate choice necessarily arises from competition to engage the powerful but discriminating 30reward mechanisms that regulate sexual interactions. Progress in understanding the evolution of 31mate choice will come from analyzing the subjective nature of the cognitive-emotional 32mechanisms that regulate its expression. A key mechanism may be the sense of beauty —the 33feeling whose function it is to reward attention to, and engagement with, attractive objects. Any 34animal whose behavior and decision making are regulated by mechanisms of emotion and 35feeling may possess the sense of beauty. Competition to be perceived as beautiful engages brain-36generated, top-down influences on perception and subjective experience, adding manifold ways 37to improve ornament attractiveness. I discuss the evolutionary consequences of mate choice 38involving the sense of beauty, and how to test for it.

40	KEY WORDS
+0	KEY WURI

41 cognitive phenotype, runaway, sense for the beautiful

48

49As a natural phenomenon, mate choice has the distinction of being the solution to a big problem, 50yet being itself a problem in need of a solution. Mate choice explains why extravagant sexual 51ornaments evolve. But mate choice itself is extravagant and needs explanation. In outlining mate 52choice as one of the two causes of sexual selection, Darwin (1871) amassed evidence that mate 53choice is widespread in nature, and discussed some cognitive-emotional mechanisms involved in 54its expression. But he did not explain why it evolves — or did not seem to, which is perhaps one 55reason why his proposals of natural selection and of sexual selection due to male-male 56antagonism were accepted much earlier than his proposal of sexual selection due to mate choice. 57But ever since mate choice was understood to be widespread in nature, the need to explain its 58occurrence has been a main motivation of research on evolution and behavior (Andersson 1994; 59Andersson and Simmons 2006; Rosenthal 2017).

Seeking to explain the evolution of mate choice, biologists have discovered many 61possible reasons why animals might favor some potential mates over others, rather than mate 62randomly or with the first option encountered. These possibilities constitute a byzantine edifice 63of benefis and costs of male-female interactions; trait developmental and genetic architectures; 64co-option of perceptual mechanisms; and modes of male-female coevolution — it is difficult to 65gather all this under a single conceptual framework (Cronin 1991; Andersson 1994; Kokko et al. 662006; Kuijper et al. 2012; Rosenthal 2017; Alonzo and Servedio 2019). There is theoretical and 67empirical support at varying levels for all of these proposals, but decades of research and debate 68have not advanced the field towards a consensus explanation (Kuijper et al. 2012; Prum 2017; 69Rosenthal 2017; Ryan 2018; Patricelli et al. 2019; Achorn and Rosenthal 2020).

But what if Darwin's framework encapsulated the necessary components to explain the 71evolution of mate choice? For this to be the case, the framework would have to reconcile and 72unify the variety of avenues of thought that have addressed mate choice — benefits and costs, 73male-female conflict, whether and how ornaments and preferences coevolve, and the role of 74aesthetic evaluation in it all. Darwin's framework would have to provide:

75(i) a reason why mate choice evolves that does not rely on (but sets up) benefits of choosing;
76(ii) a reason why sexual ornaments and mate preferences coevolve that does not rely on (but sets
v) ornament-preference correlations; and

78(iii) a reason why the cognitive-emotional mechanisms of mate choice, including the potential

79 for aesthetic evaluation by animals, influence the evolutionary dynamics that they generate.

Here I argue that Darwin's framework, with its mechanistic focus, does provide the above 81 elements, when integrated with current knowledge of male-female evolutionarily stable 82 strategies; the causes of variation in ornaments and preferences; and the cognitive-emotional 83 nature of the regulation of behavior in animals.

84

MATE CHOICE EVOLVES EVEN WITHOUT BENEFITS OF CHOOSING

86

85

87To understand any adaptation, the benefits it may bring are the wrong starting point. Benefits 88may be incidental, and can mislead analyses of how adaptations evolve (Williams 1966; West-89Eberhard 1992). (Further, the nature of sexual selection makes it likely that incidental benefits of 90mate choice will arise; see below.) To understand adaptations it is necessary to analyze whether 91and how they have been designed (modified by selection) to perform specific functions 92(Williams 1966; West-Eberhard 1992).

- In terms of functional design, the most basic fact about the mechanisms that regulate 94sexual engagement is that they must be sexually dimorphic. This is because of the sex difference 95in the relationship between reproductive success and mating success with males 96predominantly having a steeper (or less plateauing) reproductive success~mating success 97function than females. This sex difference is widespread in animals and plants and ultimately 98arises from anisogamy (Trivers 1972; Kokko et al. 2006; Janicke et al. 2016; Tonnabel et al. 992019).
- From this sex difference, there follows a corresponding dimorphism in the mechanisms 101that regulate sexual engagement (Figure 1A): These mechanisms must provide strong motivation 102to mate (according to the absolute fitness consequences of failing to do so). However, while both 103sexes must be strongly motivated to mate, the sex with the shallower or plateauing function 104(predominantly females) is strongly motivated to mate *but with only a subset of potential mates*, 105beyond which they do not benefit from additional matings. The mechanisms must be powerful in 106both sexes, but necessarily more discriminating in one sex.
- Sexual dimorphism in the mechanisms that generate and sustain sexual engagement has a 108 further consequence: There must necessarily be competition within one sex (predominantly 109 males) to engage the reward mechanisms of the more selective sex (predominantly females) 110 (Figure 1B). Variation in the ability to engage these mechanisms (e.g., variation in males' ability 111 to induce females to tolerate being approached) necessarily results in mate choice (Figure 1C).
- A further key feature in these reproductive dynamics is that the discriminating sex is 113selected to remain discriminating *regardless of the overall attractiveness of the suitors*, in order 114to keep its number of matings near optimum. Mate choice is therefore sustained indefinitely, as

115long as (and, crucially, as soon as) there is variation in the competing sex in the ability to engage 116the reward mechanisms of the selective sex (Figure 1C).

Thus, the origin and maintenance of mate choice are adaptive, involving adaptations that 118 regulate sexual interactions and optimize the number of matings for each sex. However, the 119 origin and maintenance of mate choice do not require benefits from favoring some potential 120 mates over others *per se*. This argument is implicit in the expositions by Darwin (1871) and 121 West-Eberhard (1983, 2014). Here I simply make it explicit, and back it with the now well-122 established sex difference in reproductive success~mating success functions (Janicke et al. 2016; 123 Tonnabel et al. 2019). Note that the argument is a "light" version of the hypothesis of sexually 124 antagonistic coevolution (Holland and Rice 1998; Arnqvist and Rowe 2005) — except that it 125 emphasizes selective cooperation with preferred males rather than general antagonism (Cordero 126 and Eberhard 2003). This rationale also applies under sex-role reversal and mutual mate choice 127 (Rodríguez 2015), as long as there is a sex difference in the function relating reproductive 128 success to mating success.

Against the above rationale for the origin and maintenance of mate choice, it might be 130 argued that the female mechanism for regulating the number of matings could simply consist of 131 high motivation to mate with the first option encountered (or with the first *n* options), then 132 shutting down all sexual engagement. A mechanism like that would regulate the number of 133 matings but result in no mate choice. Such scenarios can occur when females rarely or never 134 encounter more than one male at a time; e.g., in range-guarding mating systems, where males 135 defend a territory that overlaps with those of one or several females, as in some mammals 136 (Clutton-Brock 2016); in species where females mate with a brother immediately upon 137 maturation, as in some parasitoid wasps (Thornhill and Alcock 1983); or in low-density or

138endangered species. But those are cases in which there is no mate choice — the regulation of 139sexual engagement by females is a function of the mating system, not of female mating 140decisions. Very often, however, at least a few males are present (Thornhill and Alcock 1983; 141Andersson 1994; Roff and Fairbairn 2014; Clutton-Brock 2016). Thus, when the regulation of 142sexual engagement in females involves mating decisions, it predominantly requires selectivity 143among several options. Under such conditions, any rule females might use to mate with the first 144option (e.g., mate with nearest suitor) would nevertheless generate competition among males and 145mate choice (e.g., competition to be perceived as the nearest, selecting for higher-amplitude 146courtship signals or larger ornament or body sizes).

147

148

MATE CHOICE SETS UP THE BASIS FOR BENEFITS OF CHOOSING

149

150Sexual selection is stronger and steadier than natural selection (West-Eberhard 1983, 2014; 151Hoekstra et al. 2001; Kingsolver et al. 2001; Hereford et al. 2004; Svensson et al. 2006; 152Siepielski et al. 2011). Consequently, ornaments and displays often become elaborate in costly 153ways, coming to reflect more and more aspects of the bearer's genotype and condition. This is 154the crucial insight of the genic capture model (Rowe and Houle 1996), and is expected under a 155broad range of mate choice scenarios (Lorch et al. 2003; Chandler et al. 2013). Correlations 156between ornament features and the bearer's condition or viability can therefore arise *even if* 157there is no selection for mate choice to favor individuals with high viability or condition — they 158arise incidentally from the nature of sexual competition under mate choice (Figure 1D). Even 159absent such correlations, favoring more elaborate or simply more detectable displays may have

160incidental beneficial consequences, such as shortening mate searching times (Ryan and 161Cummings 2013).

Once present, ornament-quality relationships may contribute to subsequent selection on 163mate choice (Figure 1E), as they may now influence the number, viability, or attractiveness of 164females' offspring (i.e., as per the traditional view of mate choice benefits; Andersson 1994). 165Further, females are selected to minimize the cost of sexual interactions and to favor males that 166afford them greater freedom of action and choice (West-Eberhard 2014; Prum 2017; Snow et al. 1672019), sometimes even evolving to provide feedback on how to be courted (Patricelli et al. 2002; 168Peretti et al. 2006; Rodríguez 2015), thereby increasing the likely import of benefits relative to 169costs.

The key point in this argument, however, is that the origin and maintenance of mate 171choice do not require ornament-quality or ornament-benefit relationships, or benefits of mate 172choice *per se* (Figure 1C). From this vantage point, the state of the art in the "good genes" 173literature — ornament-quality relationships that involve multifarious traits and dimensions of 174quality across species, and that are weak on average (Møller and Alatalo 1999; Prokop et al. 1752012; Rosenthal 2017; Achorn and Rosenthal 2020) — looks like support for the hypothesis that 176mate choice benefits arise incidentally from the process of ornament elaboration, with potential 177subsequent consequences for selection on mate choice. If ornaments are not selected as quality 178indicators, but evolve some relationship with quality due the dynamics of sexual selection, they 179would not necessarily be especially good indicators of quality. (From another perspective, the 180"good genes" literature provides a trove of information on the genetic, developmental, 181physiological, and metabolic architecture of sexual ornaments and displays — on the variety of 182forms by which ornaments and diplays are constructed.)

Doubtless there are cases where mate choice is in fact selected to obtain benefits that 184increase the chooser's fecundity (e.g., choice favoring high quality nests or nuptial gifts) 185(Andersson 1994; Wagner 2011). In such cases, mate choice does indeed evolve to attend to 186benefit indicators (e.g., nest features). But in such cases mate choice is explained by natural 187selection, as it hinges on female fecundity (West-Eberhard 1983, 2014), and is not extravagant or 188puzzling. For example, a species where females choose purely on the basis of the quality of the 189nest built by males and no other feature or decoration of the nest or of the male would not 190present a problem in need of a special explanation. By contrast, the above argument (that the 191evolution of mate choice does not require, but sets up, benefits of choice) addresses the large 192proportion of cases where mate choice does pose such a problem because of the extravagant 193nature of the ornament and the mate choice behavior; e.g., at leks (Andersson 1994; Höglund and 194Alatalo 1995).

195

196 MATE CHOICE SETS UP THE BASIS FOR ORNAMENT-PREFERENCE RUNAWAYS

197

198As discussed above, females are continually selected to accept only a subset of mates (beyond 199which they no longer benefit from additional matings). Therefore, as males in the population 200improve in their ability to be accepted, females are selected to become more discriminating, 201simply to retain their ability to accept only the number of mates or matings from which they 202benefit. This, by itself, generates ornament-preference coevolution, regardless of whether any 203other evolutionary mechanisms (such as Fisherian runaways involving linkage disequilibrim; see 204below) are at play (Figure 1C). Further, when males evolve different ways to improve their 205attractiveness, females are selected to become more discriminating *of those features that have*

206evolved to improve ornament attractiveness. This, by itself, generates ornament-preference co-207divergence. This too is a "light" version of the chase-away model under sexual conflict (Holland 208and Rice 1998), except that, as noted above, it emphasizes selective cooperation rather than 209antagonism with all males (Cordero and Eberhard 2003).

Thus, ornament-preference coevolution can occur regardless of whether ornament-211preference genetic correlations exist. Nevertheless, the assortative mating resulting from the 212basic operation of mate choice sets the foundation for such correlations to arise, given genetic 213variation in the ornament and the preference (Fisher 1958; Mead and Arnold 2004; Henshaw and 214Jones 2020) (Figure 1D).

215

216 THE NATURE OF THE COGNITIVE-EMOTIONAL MECHANISMS OF MATE CHOICE

217

218Darwin (1871) cast his explanation of mate choice in terms of a "sense of beauty". He used this 219term in two ways: In some passages he simply meant that animals may be more attracted by 220some potential mates than others. For example, he asks the reader:

221"Does the male parade his charms with so much pomp and rivalry for no purpose? Are we not justified in 222believing that the female exerts a choice, and that she receives the addresses of the male who pleases her 223most? It is not probable that she consciously deliberates; but she is most excited or attracted by the most 224beautiful, or melodious, or gallant males." (p 123)

225This meaning is present throughout the book. In a later section, he reasons:

226"If it be admitted that the females prefer, or are unconsciously excited by the more beautiful males, then 227the males would slowly but surely be rendered more and more attractive through sexual selection." (p 228234)

- In other passages, Darwin posits emotional and cognitive evaluation of potential mates.

 230He relates the emotions experienced by humans to those experienced by animals when

 231evaluating potential mates, and the neural and cognitive mechanisms involved in those

 232experiences:
- 233"These powerful and mingled feelings may well give rise to the sense of sublimity. We can concentrate 234[...] greater intensity of feeling in a single musical note than in pages of writing. Nearly the same 235emotions, but much weaker and less complex, are probably felt by birds when the male pours forth his 236full volume of song, in rivalry with other males, for the sake of captivating the female." (p 335-336) 237This meaning is also present throughout the book. Towards the end, Darwin argues: 238"Everyone who admits the principle of evolution, and yet feels great difficulty in admitting that female 239mammals, birds, reptiles, and fish, could have acquired the high standard of taste which is implied by the 240beauty of the males, and which generally coincides with our own standard, should reflect that in each 241member of the vertebrate series the nerve-cells of the brain are the direct offshoots of those possessed by 242the common progenitor of the whole group. It thus becomes intelligible that the brain and mental 243faculties should be capable under similar conditions of nearly the same course of development, and 244consequently performing nearly the same functions." (p 401)
- Thus, Darwin's framing of mate choice included a range of possibilities for the cognitive 246mechanisms involved. At one end, there is "unconscious excitation". Here, mate choice may be 247regulated by simple mechanisms. There is evidence of such cases; e.g., as few as five neurons 248suffice to make a band-pass filter for signal pulse pattern (Schöneich et al. 2015), and the firing 249behavior of single neurons may match an animal's preference behavior (Kostarakos and Hedwig 2502012).
- At the other end, however, there is subjective aesthetic evaluation. This is perhaps 252another reason why Darwin's proposal of mate choice as a cause of selection was harder to

253contemplate than his proposal of male-male antagonism — it seemed too much to ask of animals. 254Nevertheless, there is now evidence of sophisticated neuro-cognitive mechanisms involved in 255mate choice (Gerhardt and Huber 2002; Greenfield 2002; Ryan and Cummings 2013; Jordan and 256Ryan 2015; Rosenthal 2017; Ryan 2018; Ryan et al. 2019; Lynch and Ryan 2020). Recent 257treatments directly address hedonic (Rosenthal 2017, 2018) and aesthetic evaluation (Prum 2012, 2582017). However, the subjectively-experienced nature of evaluation (the subjective nature of 259hedonic experience) has important evolutionary consequences that remain to be analyzed. It is 260not simply the case that "beauty happens" (Prum 2017). The expression of the sense of beauty in 261animal brains must be tested for and analyzed in order to understand its evolutionary 262consequences. This endeavour is now possible because advances in neuro-aesthetics offer an 263objective definition of the sense of beauty. And advances in the study of mental processes as 264cognitive phenotypes (Mendelson et al. 2016; Kilmer et al. 2017) offer objective approaches for 265the study of subjective phenomena such as the cognitive processes expressed in animal brains 266and minds.

267

268

THE SENSE OF BEAUTY

269

270The sense of beauty is a feeling (Dutton 2009; Starr 2015). Feelings are the subjective experience 271of emotions, and help regulate behavior and decision-making through the subjective experiences 272that they generate for animals — hunger, thirst, pain, disgust, and so on (Darwin 1872; Panksepp 2731998, 2011; Miller 2000; Denton 2006; Barrett et al. 2007; Mendl et al. 2010; Damasio and 274Carvalho 2013; Feinberg and Mallatt 2016). In other words, feelings are adaptations that 275function by being experienced subjectively — by being felt.

The sense of beauty is the feeling that functions to reward *attention to, and engagement* 277*with,* attractive objects (Thornhill 1998; Dutton 2009; Chatterjee 2014; Starr 2015). The 278attractive-beautiful distinction corresponds to Darwin's distiction between mate choice with 279mechanisms involving "unconscious excitation" and "emotions felt".

280 To posit a sense of beauty in animals is not to suggest that they have equivalent aesthetic 281 experiences to humans — instead, it is to suggest that animals have subjective experiences as 282they evaluate potential mates. It is also not to say that we can fully know what those experiences 283 are like, but that we can know something about them as parts of the decision-making process, 284and that we can assess their consequences. Any animal whose behavior and decision-making are 285regulated by mechanisms involving subjectively experienced feelings may in principle possess 286the sense of beauty — it may subjectively experience rewarding, attention-holding feelings as it 287regards attractive objects. The taxonomic range of such animals may be quite broad (Panksepp 2881998, 2011; Miller 2000; Denton 2006; Damasio and Carvalho 2013; Feinberg and Mallatt 2892016), including perhaps some invertebrates (Barron et al. 2010; Perry and Baciadonna 2017). 290 The sense of beauty may reward attention to many different kinds of objects. Many 291things besides potential mates can be perceived as beautiful — anything from landscapes to 292mathematical proofs (Dutton 2009; Lockhart 2009; Chatterjee 2014). There are, however, two 293important ways in which the sense of beauty has unique consequences in mate choice: 294(i) In mate choice, the objects of regard compete with each other, and evolve, to be perceived as 295 beautiful. This is not at all the case in most other contexts, where the objects of regard either 296 do not evolve, or evolve in antagonism to their evaluation. Animals may evolve to find a cool 297 draught of water and a plump prey beautiful, but the water and the prey are not selected to 298 appear beautiful to the animal — quite the contrary in the case of prey, which are selected to

299	avoid detection or to appear dangerous or distasteful. Note, however, that some objects of
300	regard likely do evolve to be perceived as beautiful in contexts other than sexual competition
301	e.g., in social competition (such as with siblings competing to be perceived as beautiful by
302	their parents), with comparable evolutionary consequences (West-Eberhard 1983, 2014;
303	Lyon and Montgomerie 2012). Here I focus on sexual competition.
304 (ii) As in humans, what many animals perceive is a "virtual reality interface", a brain-generated
305	model of their surroundings and their body in relation to their surroundings, with
306	considerable "top-down" input from the brain (Hawkins and Blakeslee 2004; Webb and
307	Graziano 2015; Barron and Klein 2016; Feinberg and Mallatt 2016). Such brain-generated
308	constructs are not fully up-to-date and accurate representations of reality. Instead, much of
309	the content of mental models at any one time is "filled in" from memory and processing
310	heuristics — recall for example the familiar class demonstration of the optic blind spot and
311	how most of the time we do not perceive it (e.g., Harris 2014 p 136). The range of animals
312	that are likely to navigate the world with such mental models is a matter of current debate.
313	But there is evidence that this is likely to be widespread at least among vertebrates, and
314	perhaps other groups as well (Darwin 1871, 1872; Baars 1997; Hawkins and Blakeslee 2004;
315	Barron and Klein 2016; Feinberg and Mallatt 2016).
316	
317	WHY THE SENSE OF BEAUTY MATTERS FOR THE EVOLUTIONARY
318	CONSEQUENCES OF MATE CHOICE
319	

320The features that distinguish sexual selection from natural selection, making it more dynamic and 321on-going, have long been recognized (Table 1A) (Darwin 1871; West-Eberhard 1983, 2014;

322Prum 2012, 2013, 2017; Ryan 2018). The question is the degree to which the points discussed 323above (competition to be perceived as beautiful involving perception of brain-generated mental 324models) contribute to the distinctive features of sexual selection when mate choice is its cause 325(Table 1B). Suggestions that the contribution of the sense of beauty is important arise from 326insights noting that:

327"Being attractive to a population of conspecific 'minds' is a much less constrained problem, with a 328broader, potentially infinite set of possible, frequency-dependent solutions." (Prum 2012 p 2259) 329Similarly, in the case of humans, it has been noted that evaluation aesthetic refers: 330"not primarily to something inherent in objects but to a feature of our experience of objects, perceptions, 331and ideas." (Starr 2015 p 14)

332These insights are correct because of the consequences of the subjective, inner-experience nature 333of the emotional-cognitive mechanisms that regulate mate choice. Competition to be perceived 334as beautiful engages brain-generated, top-down influences on perception and subjective 335experience. Consequently, ornaments are not mainly selected according to physical or ecological 336conditions—although these certainly influence and channel how ornaments evolve (Endler 3371992; Maan and Seehausen 2011; Safran et al. 2013). Instead, ornaments evolve under selection 338stemming primarily from an emotional-perceptual-cognitive landscape consisting of the 339perceptions and evaluations of the individuals that observe them. This constitutes a fitness 340landscape that offers many more opportunities to enhance attraction than would one primarily 341determined by the ecological environment or by "unconscious" (i.e., non-subjectively 342experienced) mechanisms.

But why would the problem of being attractive to conspecific minds be "much less 344constrained" than a problem not involving those minds? (Prum 2012). There are several features

345of the sense of beauty that increase the variety of ways in which suitors can evolve to solve the 346problem of competing to be perceived as beautiful, as follows:.

347

348

The sense of beauty may compensate for deficient ornament features

349

350As noted above, what many animals perceive is a brain-generated model with much of the detail 351filled-in from memory and processing heuristics. Consider, for instance, the phenomenon of 352perceptual rescue, whereby incompletely presented objects are perceived as whole. Thus, a dog 353seen through a picket fence is seen as a whole animal, not a series of slices; similarly, a sound 354with all of the components of an overtone series except the fundamental frequency is 355nevertheless perceived as having the fundamental (Levitin 2007; Klump 2016). Perceptual rescue 356is multimodal. For example, Túngara frog males produce a "whine-chuck" mating call that loses 357attractiveness to females when the whine and chuck elements are separated by a silent interval; 358however, attractiveness can be recovered by inserting a visual stimulus of a calling male into the 359silent interval: females perceive that out-of-phase acoustic-visual sequence as an attractive whole 360Taylor and Ryan 2013). An extreme example of multimodal filling-in: humans tend to deem 361beautiful people as more likely to show goodness, competence, innocence, etc. (Chatterjee 2014) 362—on the basis of one virtue, we fill-in additional virtues.

Due to perceptual phenomena like filling-in and perceptual rescue, once an individual's 364ornament activates the sense of beauty in an observer, it may be "forgiven" some less than 365perfectly attractive features — the observer may fill them in. Further, the related notion from 366Gestalt theory that perception in ambiguous circumstances converges on the most regular and 367symmetric percepts that are consistent with the available sensory inputs (Rock and Palmer 1990)

368means that processing heuristics may, by themselves, tend to improve the beauty of the objects 369perceived. Such phenomena are likely to be common: there is strong evidence that perception in 370a wide variety of animals follows Gestalt principles (Dent and Bee 2018).

371

The sense of beauty draws from memory and anticipated rewards

373

374In humans, aesthetic experience involves imagination, memory, and anticipation (Thornhill 3751998; Chatterjee 2014; Starr 2015). An object perceived as beautiful evokes not only a desire to 376continue to observe it, but also to engage with it, and to anticipate what it would be like to 377engage with it. This is probably the case at least to some extent in many animals.

There is abundant evidence of learning and experience-mediated plasticity as causes of 379variation in courtship behavior and mate preferences and mate choice decisions (Guilford and 380Dawkins 1991; Hebets and Sullivan-Beckers 2010; Verzijden et al. 2012; Rodríguez et al. 3812013b). It therefore seems likely that prior experience may influence the mechanisms of 382subjective experience involved in mate choice. Prior rewarding encounters with some mate types 383may tinge memory with positive feelings (with the anticipation of another rewarding 384experience), so that what was once merely attractive may subsequently become beautiful, or 385more beautiful. Conversely, negative encounters may tinge with ugliness something that was 386initially attractive. Because individuals will vary in which encounters with which mate types 387were positive or negative, individual life trajectory may influence subsequent perceptions and 388evaluations.

Note that learning and experience are not only likely to influence the evaluation of 390courtship but also its production (except for ornaments that are purely outgrowths of the body

391and require no behavior to be exhibitted). Thus, the potential for novel variants in ornaments and 392displays may often be as great as the potential for novel evaluations (Table 1).

393

395

With the sense of beauty, competition for attention is inherently multivariate and multimodal

396To compete to be perceived as beautiful is to compete to attract and hold the subjective attention 397of observers. Novel ways of drawing and holding attention may be effective without change in 398the "main" features of the ornament. Imagine a species in which the males have a red ornament 399that they display over their head, and the females prefer brighter ornaments. To make himself 400more attractive in terms of an "unconscious" (in Darwin's sense) mate preference, a male would 401have to increase the brightness of his ornament. But a male could make himself more beautiful 402without changing his brightness by, say, slightly waving his ornament (or by growing a curl at 403the top the ornament or a constrasting spot in the middle). A miriad little changes in how an 404ornament is displayed or moved may thus engage the sense of beauty. Such changes might 405increase attractiveness by simply improving detectability or reducing habituation, with no 406involvement of a sense of beauty. However, the sense of beauty in a brain attentive in different 407modalities and with systems rewarding subjective attention would be more likely to respond to a 408wider variety of changes.

If adding a quirk of movement, shape, or color to an ornament improves its attention410getting power, and hence its beauty, ornaments that start out simple may quickly evolve to be
411more complex, with additional modalities of signaling being recruited to be part of the ornament.
412Thus, the sense of beauty allows for ways to improve on beauty that do not require change in the
413underlying "unconscious" preference that defines "baseline" attractiveness.

414

The sense of beauty facilitates recruitment of perceptual biases into mate choice

416

417One of the more remarkable discoveries to arise from research on animal communication is the 418widespread evolution of novel ornament features that co-opt receiver responses and sensibilities 419that originally evolved in non-sexual contexts (West-Eberhard 1984; Christy 1995; Ryan 1998; 420Rodríguez and Snedden 2004; Ryan and Cummings 2013; Ryan 2018). This co-option has 421contributed to the great diversity of sexual ornaments seen in nature by recruiting species 422differences in ecology and sensory processing into the dynamics of sexual selection (West-423Eberhard 1984; Rodríguez 2009; Ryan 2018). Ornament features that co-opt perceptual biases 424range from food-mimicking to predator-mimicking devices, and include most if not all sensory 425modalities. Extreme cases involve lineages that do not naturally express mate choice at all, where 426novel ornaments can induce mate choice *de novo* (Gould et al. 1999).

How is it possible that novel ornament features so often co-opt receiver responses that 428evolved (and, until co-option, were only ever expressed) in non-sexual contexts? The answer 429may often involve the sense of beauty. Animals that navigate the world through a multi-modal 430model of their surroundings, filling-in details from top-down inputs influenced by memory and 431anticipation may be more likely to incorporate non-sexual aspects of their model into their 432evaluation of sexual ornaments than animals lacking such processing. This may help explain how 433novel ornament features cross contexts, from the ecological to the sexual.

434

435 Limits

436

437There are two main sources of limits to the contributions of the sense of beauty to sexual 438selection. First, there is the long-recognized risk of performing excessively showy displays or 439spending too much time in evaluation (Andersson 1994). Second, there are limits that arise from 440how brains process complex signals. There may be displays that are too elaborate or too chaotic 441for an observer's processing capabilities. Beauty may therefore entail a balance between 442monotony and complexity (Hartshorne 1992). Indeed, there is evidence from the field of 443neuroaesthetics that the attractiveness of a stimulus is in part a function of how easily or 444efficiently it can be processed — of the stimulus being "easy on the eyes" (Reber et al. 2004; 445Chenier and Winkielman 2009; Renoult and Mendelson 2019). Stimuli that are familiar, 446prototypical (i.e., representative of a category), or that correspond to features that processing 447systems are adapted to process (e.g., natural terrestrial scenes) have greater ease of processing 448and are, by virtue of such ease, "pleasant" or rewarding to process (Reber et al. 2004; Chenier 449and Winkielman 2009; Renoult and Mendelson 2019).

Consequently, competition to be perceived as more beautiful is not merely a function of 451 adding more and more attention-getting twists and curls. Instead, incorporating new elements 452 may require coordination with the existing features of a display (Hartshorne 1992).

453

454

TESTING FOR A SENSE OF BEAUTY IN ANIMALS

455

456Each of the consequences listed above may be turned into a prediction of the hypothesis; e.g., it 457should be possible to improve beauty with modifications external to the ornament; filling-in 458should rescue the beauty of ornaments categorized as beautiful; and so on. However, the main 459point of the sense of beauty hypothesis hinges on the evolutionary consequences of the

460subjectively-experienced nature of the cognitive-emotional mechanisms involved. Consequently, 461testing the hypothesis requires an emphasis on testing for subjective experience as a part of the 462mechanisms of mate choice in animals; as well as an emphasis on testing for the proposed 463evolutionary consequences.

464

465 Predictions regarding the involvement of subjectively-experienced mechanisms in mate choice

466

Evaluating potential mates (especially attractive ones) should be enjoyable

468

469If evaluation of ornaments is subjectively rewarding, there should be evidence that animals enjoy 470it. It might seem trivial to say that reward mechanisms should be involved in the regulation of 471behavior — how could reward mechanisms *not* be involved in the regulation of animal behavior? 472But the point is to test for subjective experience of those rewards, because of the important 473consequences that follow from it.

- There are various ways to test this prediction. One is through study of hormonal/neural 475anticipatory/reward networks. For example, dopamine levels should increase in anticipation of, 476and during, evaluation of courtship. There is evidence suggestive of a role for dopamine in signal 477evaluation by female frogs (Endepols et al. 2004; Hoke et al. 2007; Lynch and Ryan 2020), as 478well as in the regulation of sexual receptivity in female fruit flies (Neckameyer 1998; Ishimoto 479and Kamikouchi 2020). (Further, dopamine and related hormones have been shown to help 480regulate foraging decisions in insects; Perry et al. 2016; Peng et al. 2020).
- Another way to test this prediction: if evaluation of potential mates is enjoyable, it should 482reach excessive or extravagant levels. By excessive I mean well beyond the requirements of

483sampling, making distinctions between individuals, and receiving any amount of stimulation 484necessary to trigger physiological processes such as ovulation — evaluation performed purely 485because it is enjoyable.

"Excessive" evaluation may seem too fuzzy a criterion to be useful. However, tests could 486 487 first determine the amount of assessment that animals require in order to make mate choice 488decisions, and then compare that to the amount of assessment that the animals actually perform. 489For example, acoustic playback experiments with frogs have provided a wealth of information on 490mate choice decisions and mate preferences (Gerhardt and Huber 2002; Ryan 2018). Such 491experiments typically present females with one, two, or several stimuli, and determine which 492stimulus is approached by the females, and how quick the approach is. In such trials, females 493typically very quickly localize, decide between options, and approach a stimulus — in a few 494seconds or minutes. By contrast, studies of natural pair formation in the field show a different 495picture. For example, wrinkled toadlet females dedicate several nights to moving among 496signaling males, listening for up to three hours to each one, before finally approaching one to 497solicit a mating (Robertson 1986). Barking treefrog females make their decision in a single night, 498but their approach to a male chorus takes several minutes along which they repeatedly pause, 499moving quickly only in the final approach to their chosen male (Murphy and Gerhardt 2002). 500Similar pause-and-listen intervals have been documented for other frogs as well (Ryan 1985 p 50141-44; Arak 1988; Schwartz et al. 2004). Finding and assessing potential mates is doubtless more 502challenging in nature than in a bioacoustics lab (e.g., Lee et al. 2017). "Real world" difficulties 503could explain slower approach times in nature, but I suggest that they do not explain behaviors 504such as "deliberate" repeated pauses dedicated to listening, nor multiple rounds over several 505days. If it could be ruled out, for instance, that wrinkled toadlet females require several nights of

506stimulation by a chorus to initiate/complete egg development, then those repeated rounds of 507evaluation might begin to fit the criterion of "excessive". Or if it could be ruled out that barking 508treefrogs do not simply pause during intervals of, say, higher noise in the chorus — and there is 509evidence that noise oscillations do not affect phonotaxis in another treefrog (Vélez et al. 2012) 510— then those pauses might also begin to fit the criterion of "excessive". In extreme cases, 511females delay the process having already made a choice: female túngara frogs bump calling 512males they have already approached to elicit more of their preferred "chuck" call element (Akre 513and Ryan 2011; Ryan 2018).

- Another potential example: In satin bowerbirds, females evaluate male behavioral 515displays and their bower decorations over three rounds, each lasting several days: in the first 516round females assess bower decorations absent the male, and in the second and third rounds they 517assess the males' displays (Uy et al. 2001; Coleman et al. 2004). Younger females mainly attend 518to bower decorations, while older females mainly attend to the displays; male displays are 519similar to those they use in aggressive male-male encounters, and sometimes startle the females, 520but males modulate the intensity of their displays according to feedback from the females' 521posture about their perceived level of threat (Patricelli et al. 2002, 2004; Coleman et al. 2004). 522These rounds of evaluation and back-and-forth adjustment of display intensity seem to be well 523beyond any practical requirement for making distinctions or receiving stimulation. It might be 524argued that this process is like a job interview, where sequential assessment of various features 525of the candidates is required. But note the key role of female subjective reactions (e.g., whether 526they feel threatened or not) to male decorations and displays.
- The "excessive evaluation" prediction also states that it should be the most attractive 528individuals that are evaluated for the longest. Specifically, this prediction does no refer to the

529difficulty of deciding between similar, attractive options (e.g., Bosch et al. 2000; Bosch and 530Márquez 2005; Höbel 2016; Hemingway et al. 2019; Stratman and Höbel 2019). Instead, clear 531"winners" should be inspected (should be enjoyed) the longest.

Another way to test the prediction may be to ask whether animals pay attention to 533ornaments or displays outside the immediate context of mate searching. Due to the naturally-534selected costs of extravagant signaling and mate assessment, it seems likely that the sense of 535beauty should be down-regulated in the off-season. However, it may not be entirely switched off. 536Thus, this prediction is asymmetric: support would be informative, but lack of support could be 537due to down-regulation of the sense of beauty. Nevertheless, there are suggestive field 538observations: female lance-tailed manaquins sometimes observe male displays off the mating 539season (DuVal 2007).

The prediction could also be tested in learning or training experiments. If evaluating 541displays is rewarding, exposure to displays should serve as a reward in such experiments. In 542other words, exposure to displays could take the place of food rewards to train animals to 543perform arbitrary tasks by associating the target behavior with a reward consisting of exposure to 544an attractive ornament or display.

545

546

Performing courtship displays should be enjoyable

547

548The rationale that evaluating potential mates should be enjoyable also applies to the expression 549of courtship behavior, such as bird song and dance. With the sense of beauty, animals should 550enjoy their performances (Hartshorne 1992; Miller 2000; Prum 2017). Tests of this prediction are 551analogous to the above. Enjoyment should be revealed, for instance, in the activation of

552hormonal/neural networks; in "excessive" performances, especially by the better performers; in 553out of season performances; and so on. There is support for a range of these predictions: 554Dopamine is released before and during courtship/sexual behavior in birds and rats (Hull and 555Dominguez 2006; O'Connell and Hofmann 2011). Singing in birds is rewarding by itself (Riters 556et al. 2014, 2019; Hahn et al. 2017), and is performed outside the breeding season (Riters et al. 5572014, 2019). Note, however, that this prediction refers to performance of an animal's own 558courtship displays. The displays of competitors, however, may be unpleasant (Earp and Maney 5592012).

560

561

The expression of the sense of beauty should be regulated by the same areas of the brain

562 regardless of the sensory modality of courtship

563

564A top-down mechanism that rewards attention to beautiful objects requires a specific brain area 565or network of areas to generate the feeling or emotion of contemplating beauty. This area or set 566of areas should be activated whenever an animal observes an object that it finds beautiful, 567regardless of the sensory modality involved (of course other parts of the brain involved in 568perceiving the respective modalities will also be activated). Nevertheless, there should be a 569common "core" activated across modalities. (But see Chatterjee [2014] for a different 570expectation.)

This prediction can be tested in two ways. First, for any given species, perception of 572beautiful objects through different modalities should be seen to activate a common core of brain 573areas. There is evidence in support of this prediction in humans. Perception of visual, auditory, 574taste, and scent stimuli as beautiful all involve activation of the medial orbitofrontal cortex (Rolls

575et al. 2003; Kringelback 2005; Kim et al. 2007; Brown and Dissanayake 2009; Veldhuizen et al. 5762009; Ishizu and Zeki 2011; Chatterjee 2012; Kirk 2012). Interestingly, the medial orbitofrontal 577cortex is also involved in enjoyment and anticipation of rewards (Kringelback 2005; Chatterjee 5782014, p 77-78), a key aspect of the sense of beauty (see above discussion). Similarly, erotic 579visual stimulation induced activation in the same regions according to the sexual orientation, but 580not the sex, of the subject (Mitricheva et al. 2019).

Second, closely related species with ornaments in different modalities (say, sp. V has an 582exclusively visual display whilst sp. A has an exclusively auditory display) should conduct 583aesthetic evaluation with the same brain areas. There is evidence that such commonalities extend 584beyond closely related species. For instance, when female white-throated sparrows with 585breeding-typical hormone levels were presented with male song, they showed neural responses 586in the mesolimbic reward pathway that correspond to those of humans listening to agreeable 587music (Earp and Maney 2012). Indeed, the neural and gene expression networks that regulate 588social decision making are highly conserved across vertebrates (O'Connell and Hofmann 2012), 589suggesting a potentially widespread role for subjectively experienced rewards.

590

591

Prediction regarding the evolutionary consequences of the sense of beauty

592

593 Mate choice without the sense of beauty should produce less extravagance and slower evolution

594

595Darwin (1871) contrasted sexual selection in animals with and without the cognitive powers to 596generate a sense of beauty:

597"In the lower divisions of the animal kingdom, sexual selection seems to have done nothing: such animals 598are often affixed for life to the same spot, or have the two sexes combined in the same individual, or what

599is still more important, their perceptive and intellectual faculties are not sufficiently advanced to allow of 600the feelings of love and jealousy, or of the exertion of choice." (p 396)

601It is now clear that Darwin underestimated how widespread the action of sexual selection would 602turn out to be (Eberhard 1985, 1990, 1996, 2009). And he probably also underestimated how 603widespread the cognitive machinery that can give rise to subjective experience and the sense of 604beauty may be (Panksepp 1998, 2011; Miller 2000; Hawkins and Blakeslee 2004; Denton 2006; 605Damasio and Carvalho 2013; Barron and Klein 2016; Feinberg and Mallatt 2016). Nevertheless, 606in spite of these underestimates of Darwin's, a counter to the sense of beauty hypothesis is that 607there seems to be no difference in the extravagance and speed of divergence between cases 608where the sense of beauty *might* be involved in sexual selection (e.g., bird song) and cases where 609it seems it *might not* be involved (e.g., insect and spider genitalia). Indeed, the role of cryptic 610mate choice in generating the astonishing patterns of divergence and extravagance in genitalia is 611one of the most remarkable recent advances in the study of evolution and sexual selection 612(Eberhard 1985, 1990, 1996, 2009; Arnqvist 1998; Peretti and Aisenberg 2015; Eberhard and 613Lehmann 2019).

But Darwin's prediction might nevertheless be applicable with careful distinctions
615between cases where the sense of beauty may or may not be involved. To the extent that animals'
616mental models of their bodies in relation to their environments include their genitalia, and to the
617extent that sensory structures in animal genitalia generate rewarding feelings (e.g., as in humans;
618Fleischman 2016), animal genitalia may evolve to engage the reward mechanisms of sexual
619engagement; e.g., male genitalia may evolve shapes, textures and movements that increase
620pleasure in females, and female genitalia may evolve to become increasingly discriminating in
621the rewarding feelings they generate. If so, the sense of beauty may be involved in the evolution
622of at least some dramatic cases of high elaboration and rapid divergence in genitalia.

The best current chance for comparisons between sense of beauty vs. no-sense of beauty 624cases may involve contrasts not between different animal species, but between different 625mechanisms that function at organismal versus suborganismal levels — the latter with no 626possibility of brains and subjective experience. Useful case studies could deal with sperm-egg or 627pollen-stigma/ovum interactions in animals and plants, respectively, or gamete-gamete and 628gamete-hyphae interactions in fungi. These cases should still bear the hallmarks of sexual 629selection (species-specificity and rapid divergence) (Eberhard 1996; Skogsmyr and Lankinen 6302002; Nieuwenhuis and Aanen 2012), but nevertheless lack the effects arising from the sense of 631beauty. Consequently, they should exhibit *relatively lower* levels of extravagance and 632elaboration.

Making such comparisons will be challenging, to say the least. One important 634requirement will be a metric that can compare amounts of divergence and elaboration across very 635disparate kinds of traits. For this purpose, standardizing species differences by dividing by the 636standard deviation will occlude the predicted differences in amounts of divergence. 637Consequently, standardizing by the grand mean for each group or clade may be more indicated 638(e.g., Arnqvist 1998; Rodríguez et al. 2013a). (See also Safran et al. 2012 for an alternative 639approach.)

Note that sexual selection without the sense of beauty could *still* be capable of producing 641more extravagance and rapid divergence than natural selection (Table 1A) (West-Eberhard 1983, 6422014. The question is whether and what the sense of beauty adds to the recognized powers of 643sexual selection (Table 1B).

644

645 DISCUSSION

646

647A Darwinian analysis of the cognitive-emotional mechanisms of mate choice offers a broad
648framework that can unify the variety of avenues of research that biologists have pursued to
649explain the evolution of mate choice. This analysis offers a reason why mate choice is a default
650condition of sexual reproduction that does not need benefits of mate choice to be present, but sets
651up the conditions for such benefits to arise (Figure 1). It also offers a reason why ornament652preference co-divergence does not require any particular form of ornament-preference
653correlation, but sets up the conditions for such correlations to arise (Figure 1). Finally, it suggests
654that the nature of the cognitive-emotional mechanisms of mate choice influences in important
655ways the evolutionary consequences of mate choice (Table 1), putting a premium on testing for a
656sense of beauty in animals.

657

658

Runaways and the sense of beauty

659

660The most direct treatment of the sense of beauty to date prioritized Fisherian runaway selection 661as the mechanism of ornament-preference coevolution (Prum 2010, 2017). This seems to weaken 662the hypothesis (Borgia and Ball 2018; Futuyma 2018), because ornament-preference genetic 663correlations have overall been found to be weak (Greenfield et al. 2014).

There are several important points to make regarding runaways. First, as discussed above, 665ornament-preference coevolution arises from selection on females to remain both motivated to 666mate and discriminating, while males are selected to improve in their ability to be accepted. This 667results in ornament-preference coevolution regardless of whether genetic correlations are present 668(as long as ornaments and traits have the capacity to respond to selection). But it sets up the

669origin of such correlations, given genetic variation in ornaments and preferences (Fisher 1958; 670Mead and Arnold 2004; Henshaw and Jones 2020) (Figure 1D).

Second, surprisingly, ornament-preference genetic correlations have seldom been well 672estimated, in spite of decades of attention. This is because most studies have been severely 673under-powered (Sharma et al. 2016). Some studies even lacked sufficient underlying genetic 674variation in ornaments or preferences to allow for the possibility of detecting genetic correlations 675between them (Fowler-Finn and Rodríguez 2016). Further, the rearing procedures involved in 676quantitative genetics may often disrupt the correlations they aim to detect (Fowler-Finn and 677Rodríguez 2016; Hosken and Wilson 2019). Nevertheless, several high-quality studies have 678reported strong support for Fisherian male-female genetic correlations (Bakker 1993; Gray and 679Cade 2000; Tallamy et al. 2003; Simmons and Kotiaho 2007; Lüpold et al. 2016). And genetic 680correlations were more likely to be detected when the required underlying genetic variation was 681higher (Fowler-Finn and Rodríguez 2016). Thus, it seems premature to reject a potential role for 682Fisherian selection in evolutionary dynamics with mate choice.

Third, there is a broader framework for ornament-preference coevolution that subsumes 684Fisherian selection. This is the framework of Interacting Phenotypes and Indirect Genetic Effects 685(Moore et al. 1997; Wolf et al. 1998; Greenfield et al. 2014; Bailey et al. 2018; Rodríguez et al. 6862018). This framework contemplates how social interactions influence phenotypic variation and 687covariance. The framework brings the key insight that individual phenotypes (say, an ornament 688or a preference) have components of variation that arise from the bearer's genotype and 689environment (the direct components), and they also have components of variation that arise from 690the genotype and environment of other individuals with whom the bearer interacts (the indirect 691components). The evolutionary consequences of this trait architecture depend on the strength and

692sign of the inputs into trait variation. Importantly, the consequences include sustaining evolution 693with no direct genetic variation in traits (because the response to selection may be fueled by the 694indirect genetic components). They also add strength to a key feature of sexual selection: the 695cause of selection (the social environment composed of competing and choosing individuals) 696coevolves with the target of selection. These dynamics may give rise to ornament-preference 697runaways due to the indirect components of genetic variation, which may in turn give rise to 698runaways due to the direct components of variation (Bailey and Moore 2012; Rebar and 699Rodríguez 2015; Bailey and Kölliker 2019).

With a role for subjective experience in mate choice, the dynamics that arise from 701between-individual interations, with their direct and indirect inputs into trait variation, may be all 702the more likely and powerful. Further, ornament or preference variants arising from learning and 703experience may engage the evolution-promoting effects of plasticity, whereby novel phenotypes 704expose genetic variation in the mechanisms that regulate their expression to selection (West-705Eberhard 2003, 2005; Suzuki and Nijhout 2006; Renn and Schumer 2013).

706

707 CONCLUSION

708

709Mate choice is so widespread in nature and takes such a broad variety of forms that the
710explanation for its evolution must be very simple or hopelessly complex. The view of mate
711choice as a default condition of sexual reproduction highlights the role of competition to engage
712the discriminating mechanisms that regulate engagement with potential mates. These
713mechanisms may often involve subjectively-experienced aesthetic evaluation. The project of
714testing for a sense of beauty in animals will reveal new information on how mate choice is

715actually expressed in nature, and it will help understand the special features of sexual selection 716due to mate choice — its power to generate ornament variety and exaggeration, and rapid 717evolution.

718

719 ACKNOWLEDGMENTS

720

721I thank Evan Bowen-Jones, Rex Cocroft, Camille Desjonquères, and Gerlinde Höbel for 722productive discussions. I also thank Camille Desjonquères, Bill Eberhard, Gerlinde Höbel, Clint 723Sergi, Mary Jane West-Eberhard, and Linda Whittingham for thoughtful comments to prior 724versions of the manuscript. Two anonymous reviewers were extremely helpful in making the text 725more streamlined and staightforward. During the writing of this paper I was supported in part by 726NSF grant IOS-1855962.

727

728 REFERENCES

729

730Achorn A. M., Rosenthal G. G. 2020. It's not about him: mismeasuring 'good genes' in sexual selection. *Trends in Ecology & Evolution* 35:206-219.

732Akre K. L., Ryan M. J. 2011. Female túngara frogs elicit more complex mating signals from males. *Behavioral Ecology* 22:846-853.

734Alonzo S. H., Servedio M. R. 2019. Grey zones of sexual selection: why is finding a modern definition so hard? *Proceedings of the Royal Society B* 286:20191325.

736Andersson M. 1994. Sexual selection. Princeton (NJ, USA): Princeton University Press.

- 737Andersson M., Simmons L. W. 2006. Sexual selection and mate choice. Trends in Ecology &
- 738 Evolution 21:296-302.
- 739Arak A. 1988. Female mate selection in the natterjack toad: active choice or passive attraction?
- 740 Behavioral Ecology and Sociobiology 22:317-327.
- 741Arnqvist G. 1998. Comparative evidence for the evolution of genitalia by sexual selection.
- 742 *Nature* 393:784-786.
- 743Arnqvist G., Rowe L. 2005. Sexual conflict. Princeton (NJ, USA): Princeton University Press.
- 744Bailey N. W., Marie-Orleach L., Moore A. J. 2018. Indirect genetic effects in behavioral
- ecology: does behavior play a special role in evolution? *Behavioral Ecology* 29:1-11.
- 746Baars B. J. 1997. In the theater of consciousness. The workspace of the mind. New York (NY,
- 747 USA): Oxford University Press.
- 748Bakker T. C. M 1993. Positive genetic correlation between female preference and preferred male
- ornament in sticklebacks. *Nature* 363:255-257.
- 750Bailey N. W., Kölliker M. 2019. Social runaway: Fisherian elaboration (or reduction) of socially
- selected traits via indirect genetic effects. *Evolution* 73:1549-1563.
- 752Bailey N. W., Moore A. J. 2012. Runaway sexual selection without genetic correlations: social
- environments and flexible mate choice initiate and enhance the Fisher process. *Evolution*
- 754 66:2674-2684.
- 755Barrett L. F., Mequita B., Ochsner K. N., Gross J. J. 2007. The experience of emotion. Annual
- 756 *Review of Psychology* 58:373-403.
- 757Barron A. B., Søvik E., Cornish J. L. 2010. The roles of dopamine and related compounds in
- reward-seeking behavior across animal phyla. Frontiers in Behavioral Neuroscience 4:1-
- 759 9.

- 760Borgia G., Ball G. F. 2018. Book review. The evolution of beauty. Animal Behavior 137:187-
- 761 188.
- 762Bosch J., Márquez R. 2005. Female preference intensities on different call characteristics and
- symmetry of preference above and below the mean in the Iberian Midwife Toad *Alytes*
- 764 *cisternasii. Ethology* 111:323-333.
- 765Bosch J., Rand A. S., Ryan M. J. 2000. Signal variation and call preferences for whine frequency
- in the túngara frog, *Physalaemus pustulosus*. Behavioral Ecology and Sociobiology
- 767 49:62-66.
- 768Brown S., Dissanayake E. 2009. The arts are more than aesthetics: neuroaesthetics as narrow
- aesthetics. Pages 43-57 in *Neuroaesthetics*, edited by M. Skov, and O. Vartanian. New
- 770 York (NY, USA): Routledge.
- 771Chandler C. H., Ofria C., Dworkin I. 2013. Runaway sexual selection leads to good genes.
- 772 Evolution 67:110-119.
- 773Chatterjee A. 2012. Neuroaesthetics: growing pains of a new discipline. Pages 299-317 in
- Aesthetic Science, edited by A. P. Shimamura, and S. E. Palmer. New York (NY, USA):
- Oxford University Press.
- 776Chatterjee A. 2014. The aesthetic brain. New York (NY, USA): Oxford University Press.
- 777Chenier T., Winkielman P. 2009. The origins of aesthetic pleasure: processing fluency and affect
- in judgment, body, and the brain. Pages 275-289 in *Neuroaesthetics*, edited by M. Skov,
- and O. Vartanian. New York (NY, USA): Routledge.
- 780Christy J. H. 1995. Mimicry, mate choice, and the sensory trap hypothesis. *American Naturalist*
- 781 146:171-181.
- 782Clutton-Brock T. 2016. Mammal societies. Oxford (UK): John Wiley & Sons.

783Coleman S. W., Patricelli G. L., Borgia G. 2004. Variable female preferencs drive complex male displays. *Nature* 428:742-745.

785Cordero C., Eberhard W. G. 2003. Female choice of sexually antagonistic male adaptations: a critical review of some current research. *Journal of Evolutionary Biology* 16:1-6.

787Cronin H. 1991. *The ant and the peacock*. Cambridge (UK): Cambridge University Press.

788Damasio A., Carvalho G. B. 2013. The nature of feelings: evolutionary and neurobiological origins. *Nature Reviews Neuroscience* 14:143-152.

790Darwin C. 1871. *The descent of man and selection in relation to sex*. Photoreproduction of the
1871 edition by J. M. Murray, London, reprinted by Princeton (NJ): Princeton University
792 Press.

793Darwin C. 1872. *The expression of the emotions in man and other animals*. Reprinted by New York (NY, USA): Oxford University Press.

795Dent M. L., Bee M. A. 2018. Principles of auditory object formation by nonhuman animals.

Pages 47-83 in Effects of anthropogenic noise on animals, edited by H. Slabbekoorn, R.

J. Dooling, A. N. Popper and R. R. Fay. New York (NY, USA): Springer.

798Denton D. 2006. The primordial emotions. Oxford (UK): Oxford University Press.

799Dutton D. 2009. The art instinct. New York (NY, USA): Bloomsbury Press.

800DuVal E. H. 2007. Cooperative display and lekking behavior of the lance-tailed manakin (*Chiroxiphia lanceolata*). *The Auk* 124:1168-1185.

802Earp S. E., Maney D. L. 2012. Bird song: is it music to their ears? Front. Evol. Neurosci. 4:1-10.

803Eberhard W. G. 1985. Sexual selection and animal genitalia. Cambridge (MA, USA): Harvard

804 University Press.

805Eberhard W. E. 1990. Animal genitalia and female choice. *American Scientist* 78:134-141.

- 806Eberhard W. G. 1996. Female control: sexual selection by cryptic female choice. Princeton (NJ,
- 807 USA): Princeton University Press.
- 808Eberhard W. G. 2009. Postcopulatory sexual selection: Darwin's omission and its consequences.
- *Proceedings of the National Academy of Sciences USA* 106:10025-10032.
- 810Eberhard W. G., Lehmann G. U. C. 2019. Demonstrating sexual selection by cryptic female
- choice on male genitalia: what is enough? *Evolution* 73, 2415-2435.
- 812Endepols H., Schul J., Gerhardt H. C., Walkowiak W. 2004. 6-hydroxydopamine lesions in
- anuran amphibians: a new model system for Parkinson's Disease? *Journal of*
- 814 *Neurobiology* 60:395-410.
- 815Endler J. A. 1992. Signals, signal conditions, and the direction of evolution. American Naturalist
- 816 139:S125-S153.
- 817Feinberg T. E., Mallatt J. M. 2016. The ancient origins of consciousness. Cambridge (MA,
- 818 USA): The MIT Press.
- 819Fisher R. A. 1958. The genetical theory of natural selection. A complete variorum edition.
- 820 Oxford (UK): Oxford University Press.
- 821Fleischman D. S. 2016. An evolutionary behaviorist perspective on orgasm. Socioaffective
- Neuroscience & Psychology 6:32130.
- 823Fowler-Finn K. D., Rodríguez R. L. 2016. The causes of variation in the presence of genetic
- covariance between sexual traits and preferences. *Biological Reviews* 91:498-510.
- 825Futuyma D. J. 2018. New biological books. Evolution. The evolution of beauty. *Quarterly*
- 826 Review of Biology 93:150-151.
- 827Gerhardt H. C., Huber F. 2002. Acoustic communication in insects and anurans. Chicago (IL,
- 828 USA): University of Chicago Press.

- 829Gould J. L., Elliot S. L., Masters C. M., Mukerji J. 1999. Female preferences in a fish genus
- without female mate choice. *Current Biology* 9:497-500.
- 831Gray D. A., Cade W. H. 2000. Sexual selection and speciation in field crickets. Proceedings of
- the National Academy of Sciences USA 97:14449-14454.
- 833Greenfield M. D. 2002. Signalers and receviers. New York (NY, USA): Oxford University
- Press.
- 835Greenfield M. D., Alem S., Limousin D., Bailey N. W. 2014. The dilemma of Fisherian sexual
- selection: mate choice for indirect benefits despite rarity and overall weakness of trait-
- preference genetic correlation. *Evolution* 68:3524-3536.
- 838Guilford T., Dawkins M. S. 1991. Receiver psychology and the evolution of animal signals.
- 839 *Animal Behavior* 42:1-14.
- 840Hahn A. H., Merullo D. P., Spool J. A., Angyal C. S., Stevenson S. A., Riters L. V. 2017. Song-
- associated reward correlated with endocannabinoid-related gene expression in male
- european starlings (*Sturnus vulgaris*). Neuroscience 346:225-266
- 843Harris S. 2014. Waking up. New York (NY, USA): Simon & Schuster.
- 844Hartshorne C. 1992. Born to sing. 2nd ed. Bloomington (IN, USA): Indiana University Press.
- 845Hawkins J., Blakeslee S. 2004. On intelligence. New York (NY, USA): St. Martin's Press.
- 846Hebets E. A., Sullivan-Beckers L. 2010. Mate choice and learning. *Encyclopedia of Animal*
- 847 *Behavior* 2:389-393.
- 848Hemingway C. T., Lea A. M., Page R., Ryan M. J. 2019. Effects of information load on response
- times in frogs and bats: mate choice vs. prey choice. Behavioral Ecology and
- 850 *Sociobiology* 73:111.
- 851Henshaw J. M., Jones A. G. 2020. Fisher's lost model of runaway sexual selection. Evolution
- 852 74:487-494.

- 853Hereford J., Hansen T. F., Houle D. 2004. Comparing strengths of directional selection: how
- strong is strong? *Evolution* 58:2133-2143.
- 855Höbel G. 2016. Female discrimination thresholds frequently exceed local male display variation:
- implications for mate choice dynamics and sexual selection. *Journal of Evolutionary*
- 857 *Biology* 29:572-582.
- 858Hoekstra H. E., Hoekstra J. M., Berrigan D., Vignieri S. N., Hoang A., Hill C. E., Beerli P.,
- Kingsolver J. G. 2001. Strength and tempo or directional selection in the wild.
- *Proceedings of the National Academy of Sciences USA* 98:9157-9160.
- 861Höglund J., Alatalo R. V. 1995. Leks. Princeton (NJ, USA): Princeton University Press.
- 862Holland B., Rice W. R. 1998. Chase-away sexual selection: antagonistic seduction versus
- resistance. *Evolution* 52:1-7.
- 864Hoke K. L., Ryan M. J., Wilczynski W. 2007. Functional coupling between Substantia Nigra and
- Basal Ganglia homologues in amphibians. *Behavioral Neuroscience* 121:1393-1399.
- 866Hosken D. J., Wilson A. J. 2019. The problem of measuring trait-preference correlations without
- disrupting them. *Behavioral Ecology* 30:1518-1521.
- 868Hull E. M., Dominguez J. M. 2006. Getting his act together: roles of glutamate, nitric oxide, and
- dopamine in the medial preoptic area. *Brain Research* 1126:66-75.
- 870Ishimoto H., Kamikouchi A. 2020. A feedforward circuit regulates action selection of pre-mating
- coursthip behavior in female *Drosophila*. *Current Biology* 30:396-407.
- 872Ishizu T., Zeki S. 2011. Toward a brain-based theory of beauty. PLoS ONE 6(7):e21852.
- 873 Janicke T., Häderer I. K., Lajeunesse M. J., Anthes N. 2016. Darwinian sex roles confirmed
- across the animal kingdom. *Science Advances* 2:e1500983.
- 875Jordan L. A., Ryan M. J. 2015. The sensory ecology of adaptive landscapes. *Biology Letters*
- 876 11:20141054.

- 877Kilmer J. T., Fowler-Finn K. D., Gray D. A., Höbel G., Rebar D., Reichert M. S., Rodríguez R.
- L. 2017. Describing mate preference functions and other function-valued traits. *Journal*
- 879 of Evolutionary Biology 30:1658-1673
- 880Kim H., Adolphs R., O'Doherty J. P., Shimojo S. 2007. Temporal isolation of neural processes
- underlying face preference decisions. *Proceedings of the National Academy of Sciences*
- 882 *USA* 104:18253-18258.
- 883Kingsolver, J. G., Hoekstra H. E., Hoekstra J. M., Berrigan D., Vignieri S. N., Hill C. E., Hoang
- A., Gilbert P., Beerli P. 2001. The strength of phenotypic selection in natural
- populations. *American Naturalist* 157:245-261.
- 886Kirk U. 2010. The modularity of aesthetic processing and perception in the human brain. Pages
- 318-336 in *Aesthetic Science*, edited by A. P. Shimamura and S. E. Palmer. New York
- 888 (NY, USA): Oxford University Press.
- 889Klump G. M. 2016. Perceptual and neural mechanisms of auditory scene analysis in the
- 890 European Starling. Pages 57-88 in *Psychological mechanisms in animal communication*.
- Animal signals and communication 5, edited by M. A. Bee, C. T. Miller. Cham
- 892 (Switzerland): Springer International Publishing AG.
- 893Kokko H., Jennions M. D., Brooks R. 2006. Unifying and testing models of sexual selection.
- *Annual Review of Ecology, Evolution, and Systematics* 37:43-66.
- 895Kostarakos K., Hedwig B. 2012. Calling song recognition in female crickets: temporal tuning of
- identified brain neurons matches behavior. *Journal of Neuroscience* 32:9601-9612.
- 897Kringelbach M. L. 2005. The human orbitofrontal cortex: linking reward to hedonic experience.
- *Nature Reviews Neuroscience* 6:691-702.

- 899Kuijper B., I. Pen, Weissing F. J. 2012. A guide to sexual selection theory. Annual Review of
- 900 Ecology, Evolution, and Systematics 43:287-311.
- 901Lee N., Ward J. L., Vélez A., Micheyl C., Bee M. A. 2017. Frogs exploit statistical regularities
- in noisy acoustic scenes to solve cocktail-party-like problems. Current Biology 27:743-
- 903 750.
- 904Levitin D. J. 2007. This is your brain on music. New York (NY, USA): Plume.
- 905Lynch K. S., Ryan M. J. 2020. Understanding the role of incentive salience in sexual decision-
- making. *Integrative and Comparative Biology* (in press).
- 907Lyon B. E., Montgomerie R. 2012. Sexual selection is a form of social selection. *Philosophical*
- 908 Transactions of the Royal Society B 367:2266-2273.
- 909Lockhart P. 2009. A mathematician's lament. New York (NY, USA): Bellevue Literary Press.
- 910Lorch P. D., Proulx S., Locke R., Day T. 2003. Condition-dependent sexual selection can
- accelerate adaptation. *Evolutionary Ecology Research* 5:867-881.
- 912Lüpold S., Manier M. K., Puniamoorthy N., Schoff C., Starmer W. T., Buckley Luepold S. H.,
- Belote J. M., Pitnick S. 2016. How sexual selection can drive the evolution of costly
- 914 sperm ornamentation. *Nature* 533:535-538.
- 915Maan M. E., Seehausen O. 2011. Ecology, sexual selection and speciation. *Ecology Letters*
- 916 14:591-602.
- 917Mead L. S., Arnold S. J. 2004. Quantitative genetic models of sexual selection. Trends in
- 918 *Ecology & Evolution* 19:264-271.
- 919Mendelson, T. C., Fitzpatrick C. L., Hauber M. E., Pence C. H., Rodríguez R. L., Safran R. J.,
- Stern C. A., Stevens J. R. 2016. Cognitive phenotypes and the evolution of animal
- decisions. *Trends in Ecology & Evolution* 31:850-859.

- 922Mendl, M., Burman O. H. P., Paul E. S. 2010. An integrative and functional framework for the
- study of animal emotion and mood. *Proceedings of the Royal Society B* 277:2895-2904.
- 924Miller G. 2000. The mating mind. New York (NY, USA): Anchor Books.
- 925Mitricheva, E., Kimura R., Logothetis N. K., Noori H. R. 2019. Neural substrates of sexual
- arousal are not sex dependent. Proceedings of the National Academy of Sciences USA
- 927 116:15671-15676.
- 928Møller A. P., Alatalo R. V. 1999. Good-genes effects in sexual selection. Proceedings of the
- 929 *Royal Society B* 266:85-91
- 930Moore A. J., Brodie E. D. III, Wolf J. B. 1997. Interacting phenotypes and the evolutionary
- process: I. Direct and indirect genetic effects of social interactions. *Evolution* 51:1352-
- 932 1362
- 933Murphy C. G., Gerhardt H. C. 2002. Mate sampling by female barking treefrogs (*Hyla gratiosa*).
- 934 *Behavioral Ecology* 13:472-480.
- 935Neckameyer W. S. 1998. Dopamine modulates sexual receptivity in *Drosophila melanogaster*.
- *Journal of Neurogenetics* 12:101-114.
- 937Nieuwenhuis B. P. S., Aanen D. K. Sexual selection in fungi. Journal of Evolutionary Biology
- 938 25:2397-2411.
- 939O'Connell L. A., Hofmann H. A. 2011. The vertebrate mesolimbic reward system and social
- behavior network: a comparative synthesis. *Journal of Comparative Neurology*
- 941 519:3599-3639.
- 942O'Connell L. A., Hofmann H. A. 2012. Evolution of a vertebrate social decision-making
- 943 network. *Science* 336:1154-1157.
- 944Panksepp J. 1998. Affective neuroscience. New York (NY, USA): Oxford Univ. Press.

- 945Panksepp J. 2011. The basic emotional circuits of mammalian brains: do animals have affective
- 946 lives? *Neuroscience and Biobehavioral Reviews* 35:1791-1804.
- 947Patricelli G. L., Hebets E. A., Mendelson T. C. 2019. Book review of Prum, R. O. 2018. The
- evolution of beauty: How Darwin's forgotten theory of mate choice shapes the animal
- 949 world and us (2017), Doubleday, 428 pages, ISBN: 9780385537216. Evolution
- 950 73:115-124.
- 951Patricelli G. L., Uy J. A. C., Borgia G. 2004. Female signals enhance the efficiency of mate
- assessment in satin bowerbirds (*Ptilonorhynchus violaceus*). Behavioral Ecology 15:297-
- 953 304.
- 954Patricelli G. L., Uy, J. A. C., Walsh G., Borgia G. 2002. Male displays adjusted to female's
- 955 response. *Nature* 415:279-280.
- 956Peng T., Schroeder M., Grüter C. 2020. Octopamine increases individual and collective foraging
- in a neotropical stingless bee. *Biology Letters* 16:20200238.
- 958Peretti A., Aisenberg A. 2015 Cryptic female choice in arthropods patterns, mechanisms and
- 959 prospects. New York (NY, USA): Springer.
- 960Peretti A., Eberhard W. G., Briceño R. D. 2006. Copulatory dialogue: female spiders sing during
- opulation to influence male genitalic movements. *Animal Behaviour* 72:413-421.
- 962Perry C. J., Baciadonna L. 2017. Studying emotion in invertebrates: what has been done, what
- can be measured and what they can provide. *Journal of Experimental Biology* 220:3856-
- 964 3868.
- 965Perry C. J., Baciadonna L., Chittka L. 2016. Unexpected rewards induce dopamine-dependent
- positive emotion-like state changes in bumblebess. *Science* 353:1529-1531.

- 967Prokop Z. M., Michalczyk Ł., Drobniak S. M., Herdegen M., Radwan J. 2012. Meta-analysis
- suggests choosy females get sexy sons more than "good genes". *Evolution* 66:2665-2673.
- 969Prum R. O. 2010. The Lande-Kirkpatrick mechanism is the null model of evolution by
- intersexual selection: implications for meaning, honesty, and design in intersexual
- 971 signals. Evolution 64:3085-3100.
- 972Prum R. O. 2012. Aesthetic evolution by mate choice: Darwin's really dangerous idea.
- *Philosophical Transactions of the Royal Society* 367:2253-2265.
- 974Prum R. O. 2013. Coevolutionary aesthetics in human and biotic artworlds. *Biology &*
- 975 *Philosophy* 28:811-832.
- 976Prum R. O. 2017. The evolution of beauty. New York (NY, USA): Doubleday.
- 977Rebar D., Rodríguez R. L. 2015. Insect mating signals and mate preference phenotypes covary
- among host plant genotypes. *Evolution* 69:602-610.
- 979Reber R., Schwarz N., Winkielman P. 2004. Processing fluency and aesthetic pleasure: is beauty
- in the perceiver's processing experience? Personality and Social Psychology Review
- 981 8:364-382.
- 982Renn S. C. P., Schumer M. E. 2013. Genetic accomodation and behavioural evolution: insights
- from genomic studies. *Animal Behavior* 85:1012-1022.
- 984Renoutl J. P., Mendelson T. C. 2019. Processing bias: extending sensory drive to include
- 985 efficacy and efficiency in information processing. *Proceedings of the Royal Society B*
- 986 286:20190165.
- 987Riters L. V., Spool J. A., Merullo D. P., Hahn A. H. 2019. Song practice as a rewarding form of
- 988 play in songbirds. *Behavioural Processes* 163:91-98.

- 989Riters L. V., Stevenson S. A., DeVries M. S., Cordes M. A. 2014. Reward associated with
- singing behavior correlates with opiod-related gene expression in the medial preoptic
- nucleus in male European Starlings. *PLoS ONE* 9(12):e115285.
- 992Robertson J. G. M. 1986. Female choice, male strategies and the role of vocalizations in the
- 993 Australian frog *Uperoleia rugosa*. *Animal Behavior* 34:773-784.
- 994Rock I., Palmer S. 1990. The legacy of Gestalt psychology. *Scientific American* 263:84-90.
- 995Roff D. A., Fairbairn D. J. 2014. The evolution of phenotypes and genetic parameters under
- preferential mating. *Ecology and Evolution* 4:2759-2776.
- 997Rodríguez R. L. 2009. Trait duplication by means of sensory bias. Behavioral Ecology 20:1376-
- 998 1381.
- 999Rodríguez R. L. 2015. Mating is a give-and-take of influence and communication between the
- sexes. Pages 479-496 in *Cryptic female choice in arthropods*—patterns, mechanisms
- and prospects, edited by A. Peretti, A. Aisenberg. New York (NY, USA): Springer.
- 1002Rodríguez R. L., Boughman J. W., Gray D. A., Hebets E. A., Höbel G., Symes L. B. 2013a.
- Diversification under sexual selection: the relative roles of mate preference strength and
- the degree of divergence in mate preferences. *Ecology Letters* 16:964-974.
- 1005Rodríguez R. L., Rebar D., Bailey N. W. 2019. Indirect Genetic Effects. Pages 49-55 in
- 1006 Encyclopedia of Animal Behavior (2nd ed.), edited by J. Choe. Elsevier.
- 1007Rodríguez R. L., Rebar D., Fowler-Finn K. D. 2013b. The evolution of social plasticity in mate
- preferences. Animal Behavior 85:1041-1047.
- 1009Rodríguez R. L., Snedden W. A. 2004. On the functional design of mate preferences and receiver
- 1010 biases. *Animal Behavior* 68:427-432.

- 1011Rolls E. T., Kringelbach M. L., de Araujo I. E. T. 2003. Different representations of pleasant and
- unpleasant odours in the human brain. European Journal of Neuroscience 18:695-703.
- 1013Rosenthal G. G. 2017. Mate choice. Princeton (NJ, USA): Princeton University Press.
- 1014Rosenthal G. G. 2018. Evaluation and hedonic value in mate choice. Current Zoology 64:485-
- 1015 492.
- 1016Rowe L., Houle D. 1996. The lek paradox and the capture of genetic variance by condition
- dependent traits. *Proceedings of the Royal Society B* 263:1415-1421.
- 1018Ryan M. L. 1985. The túngara frog. A study in sexual selection and communication. Chicago
- 1019 (IL, USA): University of Chicago Press.
- 1020Ryan M. J. 1998. Sexual selection, receiver biases, and the evolution of sex differences. Science
- 1021 281:1999-2003.
- 1022Ryan M. J. 2018. A taste for the beautiful. Princeton (NJ, USA): Princeton University Press.
- 1023Ryan M. J., Page R. P., Hunter K. L., Taylor R. C. 2019. 'Crazy love': nonlinearity and
- irrationality in mate choice. *Animal Behaviour* 147:189-198.
- 1025Ryan M. J., Cummings M. E. 2013. Perceptual biases and mate choice. *Annual Review of*
- 1026 Ecology, Evolution, and Systematics 44:437-459.
- 1027Safran R. J., Flaxman S., Kopp M., Irwin D. E., Briggs D., Evans M. R., Funk W. C., Gray D.
- A., Hebets E. A., Seddon N., Scordato E., Symes L. B., Tobias J. A., Toews D. P. L., Uy
- J. A. C. 2012. A robust new metric of phenotypic distance to estimate and compare
- multiple trait differences among populations. *Current Zoology* 58:426-439.
- 1031Safran R. J., Scordato E. S. C., Symes L. B., Rodríguez R. L., Mendelson T. C. 2013.
- 1032 Contributions of natural and sexual selection to the evolution of premating reproductive
- isolation: a research agenda. *Trends in Ecology & Evolution* 28:643-650.

- 1034Schöneich S., Kostarakos K., Hedwig B. 2015. An auditory feature detection circuit for sound pattern recognition. *Science Advances* 1:e1500325.
- 1036Schwartz J. J., Huth K., Hutchin T. 2004. How long to females really listen? Assessment time for
- female mate choice in the grey treefrog. *Animal Behavior* 68:533-540.
- 1038Sharma M. D., Wilson A. J., and Hosken D. J. 2016. Fisher's sons' effect in sexual selection:
- absent, intermittent or just low experimental power? *Journal of Evolutionary Biology*
- 1040 29:2464-2470.
- 1041Siepielski A. M., DiBattista J. D., Evans J. A., Carlson S. M. 2011. Differences in the temporal
- dynamics of phenotypic selection among fitness components in the wild. *Proceedings of*
- *the Royal Society B* 278:1572-1580.
- 1044Simmons L. W., Kotiaho J. S. 2007. Quantitative genetic correlation between trait and
- preference supports a sexually selected sperm process. *Proceedings of the National*
- 1046 Academy of Sciences USA 104:16604-16608.
- 1047Skogsmyr I., Lankinen Å. 2002. Sexual selection: an evolutionary force in plants? Biological
- 1048 Reviews 77:537-562.
- 1049Snow S. S., Alonzo S. H., Servedio M. R., Prum R. O. 2019. Female resistance to sexual
- coercion can evolve to preserve the indirect benefits of mate choice. *Journal of*
- 1051 *Evolutionary Biology* 32:545-558.
- 1052Starr G. G. 2015. Feeling beauty. Cambridge (MA, USA): MIT Press.
- 1053Stratman K. D., Höbel G. 2019. Opportunity for female choice in the wild is frequenty curtailed
- by low male trait variation in *Hyla versicolor*. Behavioral Ecology and Sociobiology
- 1055 73:59.
- 1056Suzuki Y., Nijhout H. F. 2006. Evolution of a polyphenism by genetic accommodation. Science

- 1057 311:650-652.
- 1058Tallamy D. W., Darlington M. B., Pesek J. D., Powell B. E. 2003. Copulatory courtship signals
- male genetic quality in cucumber beetles. *Proceedings of the Royal Society B* 270:77-82.
- 1060Trivers R. L. 1972. Parental investment and sexual selection. Pages 136-179 in Sexual selection
- and the descent of man 1871-1971, edited by B. G. Campbell. Chicago (IL, USA): Aldine
- 1062 Publishing Company.
- 1063Svensson E.I., Eroukhmanoff F., Friberg M. 2006. Effects of natural and sexual selection on
- adaptive population divergence and premating isolation in a damselfly. *Evolution*
- 1065 60:1242-1253.
- 1066Taylor R. C., Ryan M. J. 2013. Interactions of multisensory components perceptually rescue
- túngara frog mating signals. *Science* 341:273-275.
- 1068Thornhill R. 1998. Darwinian aesthetics. Pages 543-572 in *Handbook of evolutionary*
- 1069 psychology, edited by C. Crawford and D. L. Krebs. Mahwah (NJ, USA): Lawrence
- 1070 Erlbaum Associates.
- 1071Thornhill R., Alcock J. 1983. The evolution of insect mating systems. Cambridge (MA, USA):
- Harvard University Press.
- 1073Tonnabel J., David P., Pannell J. R. 2019. Do metrics of sexual selection conform to Bateman's
- principles in a wind-pollinated plant? *Proceedings of the Royal Society B* 286:20190532.
- 1075Uy J. A. C., Patricelli G. L., Borgia G. 2001. Complex mate searching in the Satin Bowerbird.
- 1076 *American Naturalist* 158:530-542.
- 1077Veldhuizen M. G., Rudenga K. J., Small D. M. 2009. The pleasure of taste, flavor, and food.
- Pages 146-166 in *Pleasures of the brain*, edited by M. Kringlebach and K. C. Berridge.
- New York (NY, USA): Oxford Univ. Press.

1080Vélez A., Höbel G., Gordon N. M., Bee M. A. 2012. Dip listening or modulation masking? Call

recognition by green treefrogs (*Hyla cinerea*) in temporally fluctuating noise. *Journal of*

1082 *Comparative Physiology A* 198:891-904.

1083 Verzijden M. N., ten Cate C., Servedio M. R., Kozak G. M., Boughman J. W., Svensson E. I.

1084 2012. The impact of learning on sexual selection and speciation. *Trends in Ecology &*

1085 Evolution 27:511-519.

1086Wagner W. E. 2011. Direct benefits and the evolution of female mating preferences: conceptual

problems, potential solutions, and a field cricket. Advances in the Study of Behavior

1088 43:273-319.

1089Webb T. W., Graziano M. S. A. 2015. The attention schema theory: a mechanistic account of

subjective awareness. Frontiers in Psychology 6:500.

1091West-Eberhard M. J. 1983. Sexual selection, social competition, and speciation. *Quarterly*

1092 Review of Biology 58:155-183.

1093West-Eberhard M. J. 1984. Sexual selection, competitive communication, and species-specific

signals in insects. Pages 283-324 in *Insect Communication*, edited by T. Lewis. London

1095 (UK): Academic Press.

1096West-Eberhard M. J. 1992. Adaptation: current usages. Pages 13-18 in Keywords in

1097 Evolutionary Biology, edited by E. F. Keller and E.A. Lloyd. Cambridge (MA, USA):

Harvard University Press.

1099West-Eberhard M. J. 2003. Developmental plasticity and evolution. New York (NY, USA):

Oxford University Press.

1101West-Eberhard M. J. 2005. Developmental plasticity and the origin of species differences.

1102 Proceedings of the National Academy of Sciences USA 102:6543-6549.

1103West-Eberhard M. J. 2014. Darwin's forgotten idea: The social essence of sexual selection.		
1104	Neuroscience and Biobehavioral Reviews 46:501-508.	
1105Williams G. C. 1966. Adaptation and natural selection. Princeton (NJ, USA): Princeton		
1106	University Press.	
1107Wolf J. B., Brodie E. D. III, Cheverud J. M., Moore A. J., Wade M. J. 1998. Evolutionary		
1108	consequences of indirect genetic effects. Trends in Ecology & Evolution 13:64-69.	
1109		
1110		
1111		
1112		
1113		
1114		
1115		
1116		
1117		
1118		
1119		
1120		
1121		
1122		
1123		
1124		
1125		

TABLE 1

1127 Features of sexual selection that distinguish it from natural selection as a cause of evolution

1128 (from West-Eberhard [1983, 2014]), and the contributions that the sense of beauty may make

1129 towards them.

1130

A: special features of sexual selection	B: contribution of sense of beauty when mate choice is the cause of sexual selection
no optimum, unending change	increases ways to improve on attractiveness; helps fuel response to selection
selective environment evolves with target of selection	
constancy of selection	
advantage of novelty per se	helps explain why novelty is advantageous; increases number of ways to create novelty
strength of selection	increases distance between peak beauty and rock-bottom distastefulness
potential for runaway change	increases the number of inputs that can initiate and sustain runaway change

1140Figure legend

1141

1142FIGURE 1. HEURISTIC MODEL FOR HOW MATE CHOICE ARISES AS A LOGICAL 1143CONSEQUENCE OF SEXUAL REPRODUCTION.

Most sexually reproducing species require powerful mechanisms to generate and sustain 1145intimate sexual interactions (especially but not exclusively internally-fertilizing species). 1146Because of the widespread sexual dimorphism in the function that relates reproductive success to 1147mating success, those mechanisms must be sexually dimorphic: Both sexes must be strongly 1148motivated to engage with mates, but the sex with the shallower function must be more 1149discriminating to keep its number of matings near optimum (A). The sex with the shallower 1150function is always selected to remain descriminating, regardless of how much increase there is in 1151the overall attractiveness of the suitors. This necessarily generates competition between one sex 1152(predominantly males) to activate the reward mechanisms in the more selective sex 1153(predominantly females) (B). Variation in the ability to activate these mechanisms necessarily 1154results in mate choice (C). Ongoing mate choice favoring exaggerated ornaments may help 1155establish ornament-quality, as well as ornament-preference correlations (D).