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We consider the inequality f � f � f for real functions in L1(Rd) where f � f denotes the

convolution of f with itself. We show that all such functions f are nonnegative, which

is not the case for the same inequality in Lp for any 1 < p � 2, for which the convolution

is defined. We also show that all solutions in L1(Rd) satisfy
∫
Rd f (x) dx � 1

2 . Moreover,

if
∫
Rd f (x) dx = 1

2 , then f must decay fairly slowly:
∫
Rd |x|f (x) dx = ∞, and this is sharp

since for all r < 1, there are solutions with
∫
Rd f (x) dx = 1

2 and
∫
Rd |x|rf (x) dx < ∞.

However, if
∫
Rd f (x) dx =: a < 1

2 , the decay at infinity can be much more rapid: we show

that for all a < 1
2 , there are solutions such that for some ε > 0,

∫
Rd eε|x|f (x) dx < ∞.

1 Introduction

Our subject is the set of real, integrable solutions of the inequality

f (x) � f � f (x), ∀x ∈ R
d, (1)

where f �f (x) denotes the convolution f �f (x) = ∫
Rd f (x−y)f (y) dy. By Young’s inequality

[6, Theorem 4.2], for all 1 � p � 2 and all f ∈ Lp(Rd), f � f is well defined as an element
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2 E. A. Carlen et al.

of Lp/(2−p)(Rd). Thus, one may consider the inequality (1) in Lp(Rd) for all 1 � p � 2, but

the case p = 1 is special: the solution set of (1) is restricted in a number of surprising

ways. Integrating both sides of (1), one sees immediately that
∫
Rd f (x) dx � 1. We prove

that, in fact, all integrable solutions satisfy
∫
Rd f (x) dx � 1

2 , and this upper bound is

sharp.

Perhaps even more surprising, we prove that all integrable solutions of (1) are

nonnegative. This is not true for the solutions in Lp(Rd), 1 < p � 2. For f ∈ Lp(Rd),

1 � p � 2, the Fourier transform f̂ (k) = ∫
Rd e−i2πk·xf (x) dx is well defined as an element

of Lp/(p−1)(Rd). If f solves the equation f = f � f , then f̂ = f̂ 2, and hence f̂ is the indicator

function of a measurable set. By the Riemann–Lebesgue theorem, if f ∈ L1(Rd), then f̂ is

continuous and vanishes at infinity and the only such indicator function is the indicator

function of the empty set. Hence, the only integrable solution of f = f � f is the trivial

solution f = 0. However, for 1 < p � 2, solutions abound: take d = 1, and define g to be

the indicator function of the interval [−a, a]. Define

f (x) =
∫
R

e−i2πkxg(k) dk = sin 2πxa

πx
(2)

which is not integrable but belongs to Lp(R) for all p > 1. By the Fourier inversion

theorem f̂ = g. Taking products, one gets examples in any dimension.

To construct a family of solutions to (1), fix a, t > 0, and define ga,t(k) = ae−2π |k|t.
By [9, Theorem 1.14],

fa,t(x) =
∫
Rd

e−i2πkxga,t(k) dk = a�((d + 1)/2)π−(d+1)/2 t

(t2 + x2)(d+1)/2
.

Since g2
a,t(k) = ga2,2t, fa,t � fa,t = fa2,2t, Thus, fa,t � fa,t � fa,t reduces to

t

(t2 + x2)(d+1)/2
� 2at

(4t2 + x2)(d+1)/2
,

which is satisfied for all a � 1/2. Since
∫
Rd fa,t(x) dx = a, this provides a class of

solutions of (1) that are nonnegative and satisfy

∫
Rd

f (x) dx � 1

2
(3)

all of which have fairly slow decay at infinity, so that in every case,

∫
Rd

|x|f (x) dx = ∞. (4)
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On the Convolution Inequality f � f � f 3

Our results show that this class of examples of integrable solutions of (1) is

surprisingly typical of all integrable solutions: every real integrable solution f of (1) is

positive and satisfies (3), and if there is equality in (3), f also satisfies (4). The positivity

of all real solutions of (1) in L1(Rd) may be considered surprising since it is false in

Lp(Rd) for all p > 1, as example (2) shows. We also show that when strict inequality

holds in (3) for a solution f of (1), it is possible for f to have a rather fast decay; we

construct examples such that
∫
Rd eε|x|f (x) dx < ∞ for some ε > 0. The conjecture that

integrable solutions of (1) are necessarily positive was motivated by recent works [3, 4]

on a partial differential equation involving a quadratic nonlinearity of f �f type, and the

result proved here is the key to the proof of positivity for the solutions of this partial

differential equation; see [3]. Autoconvolutions f � f have been studied extensively; see

[7] and the work quoted there. However, the questions investigated by these authors are

quite different from those considered here.

2 Theorems and proofs

Theorem 1. Let f be a real-valued function in L1(Rd) such that

f (x) − f � f (x) =: u(x) � 0 (5)

for all x. Then,
∫
Rd f (x) dx � 1

2 , and f is given by the series

f (x) = 1

2

∞∑
n=1

cn4n(�nu)(x), (6)

which converges in L1(Rd) and where the cn � 0 are the Taylor coefficients in the

expansion of
√

1 − x

√
1 − x = 1 −

∞∑
n=1

cnxn, cn = (2n − 3)! !

2nn!
∼ n−3/2. (7)

In particular, f is positive. Moreover, if u � 0 is any integrable function with∫
Rd u(x) dx � 1

4 , then the sum on the right in (6) defines an integrable function f that

satisfies (5), and
∫
Rd f (x) dx = 1

2 if and only if
∫
Rd u(x) dx = 1

4 .
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Proof. Note that u is integrable. Let a := ∫
Rd f (x) dx and b := ∫

Rd u(x) dx � 0. Fourier

transforming, (5) becomes

f̂ (k) = f̂ (k)2 + û(k). (8)

At k = 0, a2 − a = −b, so that
(
a − 1

2

)2 = 1
4 − b. Thus, 0 � b � 1

4 . Furthermore, since

u � 0,

|û(k)| � û(0) � 1
4 , (9)

and the 1st inequality is strict for k �= 0. Hence, for k �= 0,
√

1 − 4û(k) �= 0. By the

Riemann–Lebesgue theorem, f̂ (k) and û(k) are both continuous and vanish at infinity,

and hence, we must have that

f̂ (k) = 1
2 − 1

2

√
1 − 4û(k) (10)

for all sufficiently large k, and in any case f̂ (k) = 1
2 ± 1

2

√
1 − 4û(k). But by continuity

and the fact that
√

1 − 4û(k) �= 0 for any k �= 0, the sign cannot switch. Hence, (10)

is valid for all k, including k = 0, again by continuity. At k = 0, a = 1
2 − √

1 − 4b,

which proves (3). The fact that cn as specified in (7) satisfies cn ∼ n−3/2 is a simple

application of Stirling’s formula, and it shows that the power series for
√

1 − z converges

absolutely and uniformly everywhere on the closed unit disc. Since |4û(k)| � 1,√
1 − 4û(k) = 1 − ∑∞

n=1 cn(4û(k))n. Inverting the Fourier transform yields (6), and since∫
Rd 4n �n u(x) dx � 1, the convergence of the sum in L1(Rd) follows from the convergence

of
∑∞

n=1 cn. The final statement follows from the fact that if f is defined in terms of u

in this manner, then (10) is valid, and then (8) and (5) are satisfied. �

Theorem 2. Let f ∈ L1(Rd) satisfy (1) and
∫
Rd f (x) dx = 1

2 . Then,
∫
Rd |x|f (x) dx = ∞.

Proof. If
∫
Rd f (x) dx = 1

2 ,
∫
Rd 4u(x) dx = 1, then w(x) = 4u(x) is a probability density,

and we can write f (x) = 1
2

∑∞
n=1 cn �n w. Aiming for a contradiction, suppose that |x|f (x)

is integrable. Then, |x|w(x) is integrable. Let m := ∫
Rd xw(x) dx. Since the 1st moments

add under convolution, the trivial inequality |m||x| � m · x yields

|m|
∫
Rd

|x| �n w(x) dx �
∫
Rd

m · x �n w(x) dx = n|m|2.

It follows that
∫
Rd |x|f (x) dx � |m|

2

∑∞
n=1 ncn = ∞. Hence, m = 0.
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Suppose temporarily that in addition, |x|2w(x) is integrable. Let σ 2 be the

variance of w that is, σ 2 = ∫
Rd |x|2w(x)dx. Define the function ϕ(x) = min{1, |x|}. Then,

∫
Rd

|x| �n w(x) dx =
∫
Rd

|n1/2x| �n w(n1/2x)nd/2 dx � n1/2
∫
Rd

ϕ(x) �n w(n1/2x)nd/2 dx.

By the central limit theorem, since ϕ is bounded and continuous,

lim
n→∞

∫
Rd

ϕ(x) �n w(n1/2x)nd/2 dx =
∫
Rd

ϕ(x)γ (x) dx =: C > 0, (11)

where γ (x) is a centered Gaussian probability density with variance σ 2.

This shows that there is a δ > 0 such that for all sufficiently large n,
∫
Rd |x| �n

w(x) dx �
√

nδ, and then since cn ∼ n−3/2,
∑∞

n=1 cn

∫
Rd |x| �n w(x) dx = ∞.

To remove the hypothesis that w has finite variance, note that if w is a

probability density with zero mean and infinite variance, �nw(n1/2x)nd/2 is “trying”

to converge to a “Gaussian of infinite variance”. In particular, one would expect that for

all R > 0,

lim
n→∞

∫
|x|�R

�nw(n1/2x)nd/2 dx = 0 (12)

so that the limit in (11) has the value 1. The proof then proceeds as above. The fact that

(12) is valid is a consequence of Lemma 6 below, which is closely based on the proof of

[2, Corollary 1]. �

Theorem 3. Let f ∈ L1(Rd) satisfy (5),
∫
Rd xu(x) dx = 0 and

∫
Rd |x|2u(x) dx < ∞. Then,

for all 0 � p < 1,

∫
Rd

|x|pf (x) dx < ∞. (13)

Proof. We may suppose that f is not identically 0. Let t := 4
∫
Rd u(x) dx � 1. Then,

t > 0. Define w := t−14u; w is a probability density and

f (x) = 1
2

∞∑
n=1

cntn �n w(x). (14)
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6 E. A. Carlen et al.

By hypothesis, w has a zero mean and variance σ 2 = ∫
Rd |x|2w(x) dx < ∞. Since variance

is additive under convolution,

∫
Rd

|x|2 �n w(x) dx = nσ 2.

By Hölder’s inequality, for all 0 < p < 2,
∫
Rd |x|p �n w(x) dx � (nσ 2)p/2. It follows that

for 0 < p < 1,

∫
Rd

|x|pf (x) dx � 1

2
(σ 2)p/2

∞∑
n=1

np/2cn < ∞,

again using the fact that cn ∼ n−3/2. �

Remark 4. In the subcritical case
∫
Rd f (x) dx < 1

2 , the hypothesis that
∫
Rd xu(x) dx = 0

is superfluous, and one can conclude more. In this case, the quantity t in (14) satisfies

0 < t < 1, and if we let m denote the mean of w,
∫
Rd |x|2 �n w(x) dx = n2|m|2 + nσ 2. For

0 < t < 1,
∑∞

n=1 n2cntn < ∞ and we conclude that
∫
Rd |x|2f (x) dx < ∞. Finally, the final

statement of Theorem 1 shows that critical case functions f satisfying the hypotheses

of Theorem 2 are readily constructed.

Theorem 2 implies that when
∫

f = 1
2 , f cannot decay faster than |x|−(d+1).

However, integrable solutions f of (1) such that
∫
Rd f (x) dx < 1

2 can decay more rapidly,

as indicated in the previous remark. In fact, they may even have finite exponential

moments, as we now show.

Consider a nonnegative, integrable function u, which integrates to r < 1
4 and

satisfies

∫
Rd

u(x)eλ|x| dx < ∞ (15)

for some λ > 0. The Laplace transform of u is ũ(p) := ∫
e−pxu(x) dx, which is analytic

for |p| < λ, and ũ(0) < 1
4 . Therefore, there exists 0 < λ0 � λ such that, for all |p| � λ0,

ũ(p) < 1
4 . By Theorem 1, f (x) := 1

2

∑∞
n=1 4ncn(�nu)(x) is an integrable solution of (1). For

|p| � λ0, it has a well-defined Laplace transform f̃ (p) given by

f̃ (p) =
∫

e−pxf (x) dx = 1

2
(1 − √

1 − 4ũ(p)), (16)
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On the Convolution Inequality f � f � f 7

which is analytic for |p|�λ0. Note that es|x|�
∏d

j=1e|sxj|� 1
d

∑d
j=1ed|sxj|� 2

d

∑d
j=1cosh(dsxj).

Thus, for |s| < δ := λ0/d,
∫
Rd cosh( dsxj)f (x) dx < ∞ for each j, and hence |s| < δ,∫

Rd es|x|f (x) dx < ∞.

However, there are no integrable solutions of (1) that have compact support:

we have seen that all solutions of (1) are nonnegative, and if A is the support of a

nonnegative integrable function, the Minkowski sum A + A is the support of f � f .

Remark 5. One might also consider the inequality f � f � f in L1(Rd), but it is simple

to construct solutions that have both signs. Consider any radial Gaussian probability

density g. Then, g � g(x) � g(x) for all sufficiently large |x|, and taking f := ag for a

sufficiently large, we obtain f < f � f everywhere. Now, on a small neighborhood of the

origin, replace the value of f by −1. If the region is taken small enough, the new function

f will still satisfy f < f � f everywhere.

We close with a lemma validating (12) that is closely based on a construction

in [2].

Lemma 6. Let w be a mean zero, infinite variance probability density on R
d. Then, for

all R > 0, (12) is valid.

Proof. Let X1, . . . , Xn be n independent samples from the density w, and let BR denote

the centered ball of radius R. The quantity in (12) is pn,R := P(n−1/2 ∑n
j=1 Xj ∈ BR). Let

X̃1, . . . , X̃n be another n independent samples from the density w, independent of the

1st n. Then, also pn,R := P(−n−1/2 ∑n
j=1 X̃j ∈ BR). By the independence and the triangle

inequality,

p2
n,R ≤ P(n−1/2

n∑
j=1

(Xj − X̃j) ∈ B2R).

The random variable X1 − X̃1 has a zero mean, an infinite variance, and an even density.

Therefore, without loss of generality, we may assume that w(x) = w(−x) for all x.

Pick ε > 0, and choose a large value σ0 such that (2πσ 2
0 )−d/2Rd|B| < ε/3, where

|B| denotes the volume of the unit ball B. The point of this is that if G is a centered

Gaussian random variable with variance at least σ 2
0 , the probability that G lies in any

particular translate BR + y of the ball of radius R is no more than ε/3. Let A ⊂ R
d be a

centered cube such that∫
A

|x|2w(x) dx =: σ 2 � 2σ 2
0 and

∫
A

w(x) dx > 3
4

and note that since A and w are even,
∫

A xw(x) dx = 0.
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8 E. A. Carlen et al.

It is then easy to find mutually independent random variables X, Y, and α

such that X takes values in A, has zero mean and variance σ 2 and α is a Bernoulli

variable with success probability
∫

A w(x) dx, and finally, such that αX + (1 − α)Y

has the probability density w. Taking independent identically distributed (i.i.d.)

sequences of such random variables, w(n1/2x)nd/2 is the probability density of

Wn := n−1/2 ∑n
j=1 αjXj + n−1/2 ∑n

j=1(1 − αj)Yj, and we seek to estimate the expectation

of 1BR
(Wn). We first take the conditional expectation, given the values of the αs and

the Ys, and we define n̂ = ∑n
j=1 αj. These conditional expectations have the form

E

[
1BR+y

(∑n
j=1 n−1/2αjXj

)]
for some translate BR + y of BR, the ball of radius R. The

sum n−1/2 ∑n
j=1 αjXj is actually the sum of n̂ i.i.d. random variables with zero mean

and variance σ 2/n. The probability that n̂ is significantly less than 3
4n is negligible

for large n; by classical estimates associated with the law of large numbers, for all n

large enough, the probability that n̂ < n/2 is no more than ε/3. Now, let Z be a Gaussian

random variable with mean zero and variance σ 2n̂/n, which is at least σ 2
0 when n̂ � n/2.

Then, by the multivariate version [8] of the Berry–Esseen theorem [1, 5], a version of the

central limit theorem with rate information, there is a constant Kd depending only on d

such that

∣∣∣E [
1BR+y

(∑n
j=1 n−1/2αjXj

)]
− P{Z ∈ BR + y}

∣∣∣ � Kdn̂E|X1|3
n3/2 � Kd

E|X1|3
n1/2 .

Since A is bounded, E|X1|3 < ∞, and hence for all sufficiently large n, when n̂ � n/2,

E

⎡
⎣1BR+y

⎛
⎝ n∑

j=1

n−1/2αjXj

⎞
⎠

⎤
⎦ � 2

3
ε.

Since this is uniform in y, we finally obtain P(Wn ∈ BR) ≤ ε for all sufficiently large n.

Since ε > 0 is arbitrary, (12) is proved. �
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