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We consider the inequality f > f « f for real functions in L! (R%) where f « f denotes the
convolution of f with itself. We show that all such functions f are nonnegative, which
is not the case for the same inequality in LP for any 1 < p < 2, for which the convolution
is defined. We also show that all solutions in L' (R%) satisfy Jrafx) dx < % Moreover,
if [paf(x) dx = %, then f must decay fairly slowly: [pa [x|f(x) dx = oo, and this is sharp
since for all r < 1, there are solutions with fRdf(X) dx = % and fRd |x|"f(x) dx < oo.
However, if [pqf(x) dx =1 a < %, the decay at infinity can be much more rapid: we show

that for all a < % there are solutions such that for some ¢ > 0, [pa €¥/f(x) dx < cc.

1 Introduction

Our subject is the set of real, integrable solutions of the inequality
fx) = f*fx), vxeR?, (1)

where fxf(x) denotes the convolution fxf(x) = [pa f(x—y)f(y) dy. By Young's inequality
[6, Theorem 4.2], forall1 < p<2andall f e LP(R%), f *f is well defined as an element
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2 E.A. Carlen et al.

of LP/2=P)(R%), Thus, one may consider the inequality (1) in IP(R%) forall 1 < p < 2, but
the case p = 1 is special: the solution set of (1) is restricted in a number of surprising
ways. Integrating both sides of (1), one sees immediately that [pq f(x) dx < 1. We prove
that, in fact, all integrable solutions satisfy fRd fx) dx < % and this upper bound is
sharp.

Perhaps even more surprising, we prove that all integrable solutions of (1) are
nonnegative. This is not true for the solutions in IP(R%), 1 < p < 2. For f € LP(R%),
1 < p < 2, the Fourier transform f(k) = fRd e‘iz”k'xf (x) dx is well defined as an element
of LP/®=D(R4). If f solves the equation f = f«f, then f = f2, and hence f is the indicator
function of a measurable set. By the Riemann-Lebesgue theorem, if f € L! (R%), thenfis
continuous and vanishes at infinity and the only such indicator function is the indicator
function of the empty set. Hence, the only integrable solution of f = f x f is the trivial
solution f = 0. However, for 1 < p < 2, solutions abound: take d = 1, and define g to be

the indicator function of the interval [—a, al. Define

sin 27 xa

fo0 = [ etngl de = S22 b
R X
which is not integrable but belongs to LP(R) for all p > 1. By the Fourier inversion
theoremf = g. Taking products, one gets examples in any dimension.
To construct a family of solutions to (1), fix a,t > 0, and define g, ,(k) = ae 27kt

By [9, Theorem 1.14],

t

_ —i27k _ —(d+1)/2
Ja () = /]Rd e g, (k) dk = al'((d +1)/2)n +h/ (@ 1 x2)@rz’

Since g2 (k) = gu2 261 fa i * fat = Faz 260 ThUS, [ 1 = [ o * [ ; Teduces to

t < 2at
(t2 +X2)(d+1)/2 = (4t +X2)(d+1)/2’

which is satisfied for all a < 1/2. Since fRdfalt(X) dx = a, this provides a class of

solutions of (1) that are nonnegative and satisfy

1
/ fx)dx < = (3)
Rd 2
all of which have fairly slow decay at infinity, so that in every case,
/ |x|f (%) dx = oo. (4)
Rd
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On the Convolution Inequality f > fxf 3

Our results show that this class of examples of integrable solutions of (1) is
surprisingly typical of all integrable solutions: every real integrable solution f of (1) is
positive and satisfies (3), and if there is equality in (3), f also satisfies (4). The positivity
of all real solutions of (1) in L!(R%) may be considered surprising since it is false in
LP(R%) for all p > 1, as example (2) shows. We also show that when strict inequality
holds in (3) for a solution f of (1), it is possible for f to have a rather fast decay; we
construct examples such that [pq e’XIf(x) dx < oo for some ¢ > 0. The conjecture that
integrable solutions of (1) are necessarily positive was motivated by recent works [3, 4]
on a partial differential equation involving a quadratic nonlinearity of fxf type, and the
result proved here is the key to the proof of positivity for the solutions of this partial
differential equation; see [3]. Autoconvolutions f x f have been studied extensively; see
[7] and the work quoted there. However, the questions investigated by these authors are

quite different from those considered here.

2 Theorems and proofs

Theorem 1. Let f be a real-valued function in L! (R%) such that
f&) —fxfx)="ux) >0 (5)

for all x. Then, [paf(x) dx < %, and f is given by the series

fx) = % > AN w(x), (6)

n=1

which converges in L!(R%) and where the ¢, > 0 are the Taylor coefficients in the

expansion of /1 —x

- (2n —3)!! 3/2
«/1—X=1—ZCan, C,=—— ~n32 (7)
n=1

2"n!

In particular, f is positive. Moreover, if u > 0 is any integrable function with
fRd u(x)dx < }L, then the sum on the right in (6) defines an integrable function f that
satisfies (5), and [pa f(x) dx =  if and only if [pq u(x) dx = 1.
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4 E.A. Carlen et al.

Proof. Note that u is integrable. Let @ := [pq f(x) dx and b := [pq u(x) dx > 0. Fourier

transforming, (5) becomes

Fo) =F k2 + k). 8)

Atk =0, a® —a = —b, so that (a — %)2 = i —b. Thus, 0 < b < }L. Furthermore, since
u=0,

[uk)| <) < 1, 9)

and the 1st inequality is strict for k # 0. Hence, for k # 0, /1 —4u(k) # 0. By the
Riemann-Lebesgue theorem, f(k) and u(k) are both continuous and vanish at infinity,

and hence, we must have that

Fio =1 -1/1-4uk (10)

for all sufficiently large k, and in any case f(k) = % + %«/1 — 4u(k). But by continuity
and the fact that /1 —4u(k) # O for any k # O, the sign cannot switch. Hence, (10)
— /1 —4b,

is a simple

1
2
~3/2

is valid for all k, including k = 0, again by continuity. At k = 0, a =
which proves (3). The fact that c,, as specified in (7) satisfies ¢, ~ n
application of Stirling’s formula, and it shows that the power series for /1 — z converges
absolutely and uniformly everywhere on the closed unit disc. Since |4u(k)| < 1,
V1—4uk)=1->7",c,(4u(k))". Inverting the Fourier transform yields (6), and since
fRd 4" y(x) dx < 1, the convergence of the sum in L! (R%) follows from the convergence
of >°7° | ¢,. The final statement follows from the fact that if f is defined in terms of u

in this manner, then (10) is valid, and then (8) and (5) are satisfied. [ |
Theorem 2. Let f € L' (R?) satisfy (1) and Jraf(x) dx = % Then, [pa [X|f(x) dx = co.

Proof. If [paf(x)dx = % Jra4u(x) dx = 1, then w(x) = 4u(x) is a probability density,
and we can write f(x) = % > o1 €, ¥ w. Aiming for a contradiction, suppose that |x|f(x)

is integrable. Then, |x|w(x) is integrable. Let m := fRd xw(x) dx. Since the 1st moments

add under convolution, the trivial inequality |m||x| > m - x yields

|m|/ |X|*”W(X)dx>/ m - x+" w(x) dx = njm/?.
Rd Rd

It follows that [pa |x[f(x) dx > @ > ooy nc, = oo. Hence, m = 0.
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On the Convolution Inequality f > fxf 5

Suppose temporarily that in addition, |x|?w(x) is integrable. Let o2 be the

variance of w that is, 02 = [pq |x|*w(x)dx. Define the function ¢(x) = min{1, |x|}. Then,
/ x| ™ w(x) dx :/ [n'2x| «" w(n'?x)n#? dx > nl/z/ o(x) *" w(n'?x)n?/? dx.
Rd Rd Rd
By the central limit theorem, since ¢ is bounded and continuous,

lim ; o (x) *" wn'2x)n#? dx = /d px)y(x)dx =:C > 0, (11)
R

n—oo R
where y (x) is a centered Gaussian probability density with variance o2.
This shows that there is a § > 0 such that for all sufficiently large n, fRd |x| ™
w(x) dx > /nd, and then since ¢, ~ n7%2, 3% | ¢, [pa [x] *" w(x) dx = oo.
To remove the hypothesis that w has finite variance, note that if w is a

probability density with zero mean and infinite variance, **w(n'/2x)n%/? is “trying”
to converge to a “Gaussian of infinite variance”. In particular, one would expect that for

allR > 0,

lim Swn2xnY? dx =0 (12)

so that the limit in (11) has the value 1. The proof then proceeds as above. The fact that
(12) is valid is a consequence of Lemma 6 below, which is closely based on the proof of
[2, Corollary 1]. | |

Theorem 3. Let f € L'(R%) satisfy (5), [pa xu(x) dx = 0 and [pa Ix|?u(x) dx < co. Then,
forall0<p <1,

/ XPf(x) dx < oo. (13)
Rd

Proof. We may suppose that f is not identically 0. Let ¢t := 4 [pq u(x) dx < 1. Then,

t > 0. Define w := t~'4u; w is a probability density and

F&x) =3 cyt" " wix). (14)

n=1
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6 E.A. Carlen et al.

By hypothesis, w has a zero mean and variance 0% = fRd |x|2w(x) dx < oco. Since variance

is additive under convolution,
/ |x|? *"* w(x) dx = no?.
Rd

By Hélder's inequality, for all 0 < p < 2, [pa [xIP *" w(x) dx < (no?)P/2. It follows that
forO<p<1,

1 o0
/ xPf () dx < S(@P/2 3 nPle, < oo,
Rd
n=1

again using the fact that c,, ~ n=%/2. [ |

Remark 4. In the subcritical case fRd f(x)dx < %, the hypothesis that fRd xu(x)dx =0
is superfluous, and one can conclude more. In this case, the quantity ¢ in (14) satisfies
0 <t < 1, and if we let m denote the mean of w, [zq [x|? +" w(x) dx = n?/m|? + no?. For
0<t<1, >3, n%c,t" < oo and we conclude that [yq [x|2f(x) dx < co. Finally, the final
statement of Theorem 1 shows that critical case functions f satisfying the hypotheses

of Theorem 2 are readily constructed.

Theorem 2 implies that when [f = 3, f cannot decay faster than |x|~(@+D,
However, integrable solutions f of (1) such that [pq f(x) dx < % can decay more rapidly,
as indicated in the previous remark. In fact, they may even have finite exponential
moments, as we now show.

Consider a nonnegative, integrable function u, which integrates to r < }1 and

satisfies
/ ux)e*® dx < oo (15)
Rd

for some A > 0. The Laplace transform of u is u(p) := [ e P*u(x) dx, which is analytic
for |p| < A, and ©(0) < }L. Therefore, there exists 0 < Ay < A such that, for all |p| < A,
u(p) < }L. By Theorem 1, f(x) := % > ey 4"c,(*"u)(x) is an integrable solution of (1). For

Ip| < Aq, it has a well-defined Laplace transform f(p) given by

J?(p)=/€*pr(X)dX=%(l—vl—‘lﬁ(p)), (16)
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On the Convolution Inequality f > fxf 7

which is analytic for |p| < A,. Note that eS¥! < ]_[Jd:le‘sxf‘ <3 Z;lzled‘sxf‘ <3 Zlecosh(dsxj).
Thus, for [s|] < § = Ay/d, fRd cosh( dSXj)f(X) dx < oo for each j, and hence |s|] < §,
Jpa e¥f(x) dx < oco.

However, there are no integrable solutions of (1) that have compact support:
we have seen that all solutions of (1) are nonnegative, and if A is the support of a

nonnegative integrable function, the Minkowski sum A + A is the support of f « f.

Remark 5. One might also consider the inequality f < f  f in L' (R%), but it is simple
to construct solutions that have both signs. Consider any radial Gaussian probability
density g. Then, g x g(x) > g(x) for all sufficiently large |x|, and taking f := ag for a
sufficiently large, we obtain f < f x f everywhere. Now, on a small neighborhood of the
origin, replace the value of f by —1. If the region is taken small enough, the new function

f will still satisfy f < f « f everywhere.

We close with a lemma validating (12) that is closely based on a construction
in [2].

Lemma 6. Let w be a mean zero, infinite variance probability density on R%. Then, for
all R > 0, (12) is valid.

Proof. LetX;,...,X, ben independent samples from the density w, and let By denote
the centered ball of radius R. The quantity in (12) is p,, g := P(n""/* 3, X; € Bg). Let
X;,...,X, be another n independent samples from the density w, independent of the
st n. Then, also p,, g = P(—n"1/? Z;l:l}?j € Bg). By the independence and the triangle
inequality,
n
Pir <PM7V2D (X, - X)) € Byp).

j=1
The random variable X; _}?1 has a zero mean, an infinite variance, and an even density.
Therefore, without loss of generality, we may assume that w(x) = w(—x) for all x.

Pick ¢ > 0, and choose a large value o, such that (2r02)~%2R%|B| < ¢/3, where
|B| denotes the volume of the unit ball B. The point of this is that if G is a centered
Gaussian random variable with variance at least 002, the probability that G lies in any
particular translate By + y of the ball of radius R is no more than ¢/3. Let A C R% be a

centered cube such that
/ Ix°w(x) dx =: 0% > 203 and / w(x) dx > %
A A

and note that since A and w are even, fA xw(x)dx = 0.
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8 E.A. Carlen et al.

It is then easy to find mutually independent random variables X, Y, and «
such that X takes values in A, has zero mean and variance o2 and « is a Bernoulli
variable with success probability [, w(x) dx, and finally, such that aX + (1 — 0)¥
has the probability density w. Taking independent identically distributed (i.i.d.)

sequences of such random variables, w(n!/2x)n?/2

x)n is the probability density of
W, :=n"1230 X, +n 230 (1 —«)Y;, and we seek to estimate the expectation
of 1p (W,). We first take the conditional expectation, given the values of the os and
the Ys, and we define n = Z}‘Zl o). These conditional expectations have the form
E [lBR+y (ZJ’-LI nfl/zanj)] for some translate By + y of Bg, the ball of radius R. The
sum n~1/2 Z}‘Zl o;X; is actually the sum of 7 i.i.d. random variables with zero mean
and variance o2/n. The probability that 7 is significantly less than %n is negligible
for large n; by classical estimates associated with the law of large numbers, for all n
large enough, the probability that 7 < n/2 is no more than ¢/3. Now, let Z be a Gaussian
random variable with mean zero and variance o7 /n, which is at least ag when n > n/2.
Then, by the multivariate version [8] of the Berry-Esseen theorem [1, 5], a version of the
central limit theorem with rate information, there is a constant K; depending only on d

such that

- A EIX 3 ElX; 3
B[ 15,0y (Zan20,%;) | — P(Z € Br + 7)) < Kgn 25 < K, B0F.

Since A is bounded, E|X; |® < oo, and hence for all sufficiently large n, when 7 > n/2,

n

2

—1/2 -

E 1BR+Y Zn O[]'XJ' <38'
j=1

Since this is uniform in y, we finally obtain P(W,, € Bg) < ¢ for all sufficiently large n.

Since ¢ > 0 is arbitrary, (12) is proved. |
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