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ABSTRACT

Large igneous provinces (LIPs) typically form in one short pulse of ~1-5 Ma or several
punctuated ~1-5 Ma pulses. Here, our 25 new “Ar/*Ar plateau ages for the main construct
of the Kerguelen LIP—the Cretaceous Southern and Central Kerguelen Plateau, Elan Bank,
and Broken Ridge—show continuous volcanic activity from ca. 122 to 90 Ma, a long lifespan
of >32 Ma. This suggests that the Kerguelen LIP records the longest, continuous high-magma-
flux emplacement interval of any LIP. Distinct from both short-lived and multiple-pulsed
LIPs, we propose that Kerguelen is a different type of LIP that formed through long-term
interactions between a mantle plume and mid-ocean ridge, which is enabled by multiple
ridge jumps, slow spreading, and migration of the ridge. Such processes allow the trans-
port of magma products away from the eruption center and result in long-lived, continuous

magmatic activity.

INTRODUCTION

Large igneous provinces (LIPs) are the result
of gigantic intraplate magmatic events with
dominantly mafic igneous volumes >10° km?
(Richards et al., 1989). In contrast to igneous
generation processes at plate boundaries, such as
mid-ocean ridges, continental rifts, and subduc-
tion zones—which might also produce magma
volumes of LIP scale given sufficient time and
space—LIPs are typically emplaced in rela-
tively short durations with significantly higher
magma production rates (Coffin and Eldholm,
1993; Sheth, 2007). Typically, the bulk volumes
of LIPs with the best age controls—continental
flood basalts such as the Central Atlantic mag-
matic province, the Karoo LIP (southern Africa),
and the Deccan Traps (India)—are emplaced in
a single main pulse of ~1-5 Ma (Marzoli et al.,
2018; Jourdan et al., 2007; Sprain et al., 2019).
However, some LIPs (e.g., the Kerguelen LIP,
the Caribbean LIP, and the High Arctic LIP)
diverge from this scenario, and their main por-
tion of magmatism lasted for relatively long
intervals of >20 Ma (Coffin et al., 2002; Dock-

man et al., 2018). It is suggested that these long-
lived LIPs were emplaced in several magmatic
pulses of 1-5 Ma (e.g., Bryan and Ernst, 2008).
For example, it has been proposed that the High
Arctic LIP was emplaced from ca. 128 to 77 Ma,
with three short-duration pulses at ca. 122 Ma,
95 Ma, and 81 Ma (Dockman et al., 2018); the
Caribbean LIP appears to have mainly formed in
two pulses at ca. 89 Ma and ca. 76 Ma (Diirke-
filden et al., 2019).

However, knowledge about the durations
and eruption episodicities of long-lived LIPs is
meagre due to a paucity of reliable, high-pre-
cision geochronology data. This is especially
the case for the main, Cretaceous portion of the
Kerguelen LIP. Based on a few age data, the
Kerguelen LIP was believed to have formed by
punctuated magmatic events (Neal et al., 2019)
over an interval of ~25 Ma (Coffin et al., 2002;
Duncan, 2002).

AGES OF THE KERGUELEN LIP
The Kerguelen LIP is the second most-volu-
minous LIP known of the Phanerozoic and con-

sists of the Southern Kerguelen Plateau (SKP),
Central Kerguelen Plateau (CKP), Elan Bank,
and Broken Ridge. These features, Ninetyeast
Ridge, the Northern Kerguelen Plateau, and
some smaller magmatic provinces on circum-—
eastern Gondwana continents are all believed
to be related to the Kerguelen plume (Coffin
et al., 2002; Olierook et al., 2017) and belong
to the Greater Kerguelen LIP (Olierook et al.,
2017). The Cretaceous portion of the Kerguelen
LIP characterized by high magma flux, which
includes igneous rocks of the SKP, CKP, Elan
Bank, and once-contiguous Broken Ridge, cov-
ers an area of ~1.5 x 10° km?, with estimated
igneous volumes of ~17.4 x 10° km? (Fig. 1;
Coffin et al., 2002).

“Ar/*Ar geochronology studies have pre-
viously been conducted on basalts from eight
Ocean Drilling Program (ODP) sites on the main
portion of the Kerguelen LIP (Coffin et al., 2002;
Duncan, 2002). However, most published age
data do not meet established criteria for sta-
tistical robustness (i.e., the calculated “ages”
are based on discordant results). We rigorously
filtered available age data based on statistical
concordance and stringent criteria to ensure that
only robust and true plateau ages that include
>70% of the total *Ar released are included. Our
filtering yields only four statistically reliable pla-
gioclase “°Ar/*Ar plateau ages from three sites
for the entire Cretaceous Kerguelen LIP, includ-
ing 121.0 £ 2.1 Ma and 120.8 + 2.1 Ma (ODP
Site 1136), 113.45 £ 0.83 Ma (ODP Site 750),
and 108.9 £ 1.3 Ma (ODP Site 1137), recalcu-
lated here using the decay constants recom-
mended by Renne et al. (2011). All uncertainties
herein are quoted at 26 and include all sources of
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uncertainty (Renne et al., 2010; Tables S1-S2 in
the Supplemental Material'). Note that “°Ar/*°Ar
plateau ages from groundmass samples (Table
S1) are excluded from such a database because
they do not necessarily provide reliable crys-
tallization ages, as demonstrated by a grow-
ing body of literature (Hofmann et al., 2000;
Jourdan et al., 2007; Renne et al., 2015; Merle
etal., 2019). We therefore use groundmass pla-
teau (with >70% *Ar) and mineral mini-plateau
(with 50%—70% *Ar) ages only if they are cor-
roborated by a mineral-separate plateau age
from the same sample or formation.

We report 47 new “Ar/*Ar analytical results
of fresh handpicked plagioclase, sanidine (cf.
Fig. S2), glass, pyroxene, and groundmass sepa-
rates from basaltic samples from eight ODP sites
and four dredge sites on the main Kerguelen
LIP, from which we obtained 25 plateau ages.
The analytical methods and results are given in
the Supplemental Material. Our new robust geo-
chronology data, together with published data
for ODP Sites 750, 1136, and 1137, cover all
nine ODP sites that penetrated volcanic base-
ment and three dredge sites on the SKP, CKP,

!Supplemental Material. Methods, supplemental
data, Figures S1-S8, and Tables S1-S5. Please visit
https://doi.org/10.1130/GEOL.S.12964847 to access
the supplemental material, and contact editing@
geosociety.org with any questions.
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Figure 1. Bathymetric
map showing location
of the Kerguelen large
igneous province. White
circles and squares
indicate Ocean Drilling
Program drill sites and
dredge sites, respec-
tively. Age data are
from this study (green),
Duncan (2002) (red),
and Coffin et al. (2002)
(blue). CKP—Central Ker-
guelen Plateau; EB—Elan
Bank; HI—Heard Island;
KA—Kerguelen Archi-
pelago; NKP—Northern
Kerguelen Plateau; SKP—
Southern Kerguelen

-2.6 Plateau.
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Elan Bank, and Broken Ridge (Figs. 1 and 2),
and thus provide more spatial and temporal con-
trol for the progression of volcanism that created
the majority of the Kerguelen LIP.

Mineral-separate “°Ar/*Ar plateau ages of
basalts from the main Kerguelen LIP range
from 122.2+2.0 Ma to 89.93 £0.97 Ma
(Figs. 1 and 2; Fig. S4, Table S3), and specifi-
cally from 122.2 +2.0 Ma to 89.93 £ 0.97 Ma
for the SKP, from 111.3+ 1.1 Ma to
106.09 £ 0.97 Ma for Elan Bank, from
108.6 £2.2 Ma to 92.8 = 1.5 Ma for the CKP,
and from 99.13 + 0.45 Mato 97.7 £ 1.8 Ma for
Broken Ridge. The ages show that volcanism
progressed from building a large portion of the
SKP first, and then to Elan Bank, the CKP, and
Broken Ridge (Fig. 1). Three additional sam-
ples from dredge sites close to the Kerguelen
Archipelago and Heard Island yielded Cenozoic
ages ranging from ca. 27 to 0.34 Ma (Fig. 1;
Fig. S4; Table S3), which are unrelated to the
main construct of the Kerguelen LIP and are
not further discussed.

DURATION AND EPISODICITY OF THE
KERGUELEN LIP

Our data reveal a ~32 Ma span for the forma-
tion of the main construct of the Kerguelen LIP
(Fig. 3), longer than published previously (Cof-
fin et al., 2002). We note that samples currently
available for the Kerguelen volcanic rocks are
from the topmost tens of meters of the basaltic
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basement (Fig. S1), while wide-angle seismic
data revealed an average thickness of ~5.3 km
for the basaltic layer (Operto and Charvis,
1996). This raises the possibility that the dura-
tion of Kerguelen Plateau construction may have
been even longer than the ~32 Ma inferred by
our data. Such a long duration of emplacement
is atypical for LIPs.

Other Phanerozoic LIPs (e.g., Caribbean LIP,
High Arctic LIP) were emplaced over relatively
long durations of >5 Ma, but these appear to
have been emplaced in multiple 1-5 Ma pulses,
according to the data currently available (Bryan
and Ernst, 2008; Dockman et al., 2018). Our
new mineral-separate “*Ar/*Ar ages reveal that
the volcanic activity constructing the main por-
tion of the Kerguelen LIP (Fig. 1) was rather
continuous from before ca. 122 Ma to 90 Ma
(Fig. 3). Therefore, the Kerguelen LIP is a poten-
tially unique case of a LIP characterized by con-
tinuous, high-volume magmatic flux over 30 Ma
and a total volcanic activity lasting >120 Ma.

FORMATION OF THE LONG-LIVED
KERGUELEN LIP

Short-lived, single-pulsed LIPs are typi-
cally attributed to plume-head eruptions (Rich-
ards et al., 1989). Long-lived, multiple-pulsed
LIPs require alternatives to the classic, single
plume-head model, e.g., involvement of multiple
mantle plumes, a single plume dismembered by
strong mantle shear flow (Coffin et al., 2002), or
secondary instabilities induced by the entrain-
ment of a dense eclogite-derived material at the
base of the mantle by thermal plumes (Lin and
van Keken, 2005). Our new age data suggest
that the prolonged and continuous high magma
flux associated with the construction of the Ker-
guelen LIP may be unique for Phanerozoic LIPs
(Figs. 2 and 3) and thus requires a unique model
for its behavior over time.

Plate reconstructions model the Kerguelen
plume beneath the eastern Indian plate before the
breakup of India and Antarctica (Gibbons et al.,
2013; Whittaker et al., 2013; Fig. 4A), producing
small volumes of igneous rocks in the Tethyan
Himalaya (Figs. 4E and 41). More distal from the
plume, the volumetrically minor Bunbury Basalt
in southwestern Australia is believed to have been
generated by melting of the asthenospheric and
enriched lithospheric mantle, perhaps aided by
an elevated geotherm from the Kerguelen plume
starting at ca. 137 Ma (Olierook et al., 2019a,
2017; Fig. 4E). Following rifting and breakup,
seafloor spreading initiated between India and
Antarctica, while ultraslow motion continued
between the Australian and Antarctic plates.
With continued opening of the Indian Ocean, the
spreading ridges slowly migrated northward rela-
tive to Antarctica and approached the Kerguelen
plume (Fig. 4B; Whittaker et al., 2015).

The onset of massive volcanism at the SKP
commencing before ca. 122 Ma was triggered
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Figure 2. Selected “°Ar/**Ar plateaus and mini-plateaus. Steps included in plateau (with >70%
3%Ar) and mini-plateau (with 50%-70% 3°Ar) are shaded green and turquoise, respectively.
Pl—plagioclase; Sa—sanidine; MSWD—mean squared weighted deviation. Plateau ages are
indicated in red and bold text. Additional “°Ar/*°*Ar spectra are provided in Figures S4-S6 (see
footnote 1). Age uncertainties (20) include all sources of uncertainty.
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Figure 3. (A) Histogram
of ages. (B) Comparison
of “°Ar/**Ar ages from the
main Kerguelen large
igneous province. Boxes
with outlines are ages
from this study. Boxes
without outlines are data
from Coffin et al. (2002)
and Duncan (2002). Boxes
with dashed white lines
indicate “°Ar/**Ar mini-pla-
teau ages (with 50%-70%
33Ar). Width of boxes indi-
cates 20 uncertainties.
For locations of Ocean
Drilling Program (ODP)
drill sites and dredge sites
refer to Figure 1. KP—Ker-
guelen Plateau.

by the elevated temperature of the Kerguelen
plume, which enhanced mantle upwelling at the
spreading ridge and led to melting of the asthe-
nosphere and continental lithospheric mantle
(dispersed within the Indian Ocean mantle as
the breakup of eastern Gondwana; Frey et al.,
2002; Fig. 4F). This is supported by the chemi-
cal characteristics of the samples from the SKP,
Elan Bank, and Broken Ridge, in particular the
isotopic compositions, which indicate a mixture
of asthenospheric and lithospheric mantle com-
ponents. The composition of the CKP basalts is
dominated by the asthenospheric component,
while the Kerguelen plume component is absent
(Figs. 41-4L; Olierook et al., 2017). We note
that alternative models have suggested that the
Kerguelen plume-head composition could be
distinct from that of the plume tail, which can
be represented by the composition of the Ceno-
zoic Kerguelen Archipelago and Heard Island
basalts and the composition of CKP (ODP Site
1138) basalts, respectively. Therefore, the plume
tail could have been a major component in the
mantle source of the Cretaceous Kerguelen LIP
(Ingle et al., 2003). However, we argue that only
asthenospheric and lithospheric components
can equally explain the isotopic data (Fig. S7;
Olierook et al., 2017).

The required mantle temperatures to
yield anomalously thick oceanic crust at the
Kerguelen Plateau indicate that the plume
must have been proximal. Although moving
hotspot reference frames were considered
(Doubrovine et al., 2012; O’Neill et al., 2005;
Figs. 4A-4D), a fixed hotspot reference frame
(Miiller et al., 1993; used in cross-section
illustrations in Figs. 4E—4H) places the plume
closer to the spreading ridges and continental
lithosphere fragments of the Kerguelen Plateau
(Figs. 4B—4D) and thus better explains enhanced
upwelling at the spreading ridge and melting
of the continental lithosphere (Figs. 41-4L).
The jumps of the Indian-Antarctic Ridge at ca.
115 Ma (Fig. 4B; Gibbons et al., 2013; Whittaker
etal., 2013) and of the Indian-Australian Ridge
and Australian-Antarctic Ridge at ca. 108 Ma
(Fig. 4D; Whittaker et al., 2013) enabled long-
term plume-ridge interaction and form a critical
component in sustaining magmatic production
of the Kerguelen LIP.

After the formation of the main Cretaceous
Kerguelen LIP, the Kerguelen plume produced
the less-voluminous Ninetyeast Ridge hotspot
track between ca. 83 Ma and ca. 37 Ma and,
starting at ca. 34 Ma, produced the Northern
Kerguelen Plateau (Fig. S8; Duncan, 2002).

IMPLICATIONS FOR OCEANIC AND
CONTINENTAL LIPS

Oceanic plateaus commonly form close to
spreading ridges, e.g., the Shatsky Rise (north-
western Pacific; Sager et al., 2019), Ontong Java
Plateau (southwestern Pacific), and Caribbean
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Figure 4. (A-D) Plate reconstructions at 128 Ma, 115 Ma, 109 Ma, and 90 Ma (in fixed Antarctica
reference frame); after Gibbons et al. (2013) and Whittaker et al. (2013). Plume locations are:
DO—Doubrovine et al. (2012); F—a fixed plume reference frame (Miiller et al., 1993); ON—O’Neill
et al. (2005). (E-H) Schematic illustrations showing formation of the Kerguelen large igneous
province (LIP). Fixed plume location (Miiller et al., 1993) was used. (I-L) Isotope data of basalts.
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LIP (cf. plate reconstructions of Whittaker et al.
[2015]). Studies of the Shatsky Rise (Sager
et al., 2019) suggest it formed through plume-
ridge interaction at a triple junction that caused
thicker-than-normal oceanic crust, rather than
via massive LIP volcanism emplaced onto the
ocean floor after the formation of oceanic crust.
We argue that the Kerguelen Plateau was formed
by a similar process of plume-induced excess

volcanism at spreading ridges. This is supported
by the isotopic data, which revealed dominant
asthenospheric and continental lithospheric
mantle components, instead of obvious plume
components in the mantle source of the Creta-
ceous Kerguelen Plateau basalts (Figs. 41-4L).
However, in contrast to the Shatsky Rise, the
major portion of which formed over a short
interval of ~3 Ma (Sager et al., 2019), the Cre-

Geological Society of America | GEOLOGY | Volume 49 | Number 2 | www.gsapubs.org

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/49/2/206/5215600/206.pdf
bv Ohio State |Iniversitv user

taceous Kerguelen Plateau continuously erupted
for 232 Ma This is due to the jumps of the
spreading ridges toward the plume (Figs. 4B—
4D) and the slow migration and spreading rates
of the Indian-Antarctic and Australian-Antarc-
tic Ridges (Miiller et al., 1998; Olierook et al.,
2020; Whittaker et al., 2013), which enabled
long-term plume-ridge interaction.

Some oceanic plateaus emplaced since ca.
140 Ma may share the plume-ridge interaction
model with the Kerguelen LIP (Whittaker et al.,
2015). Although continuous long-term mag-
matic activity has so far not been observed for
other oceanic LIPs demonstrating plume-ridge
interaction, controls on the timing of magmatism
for most oceanic plateaus are extremely sparse
(cf. review of Ontong Java LIP geochronology;
Olierook et al., 2019b). Most lack robust and
precise data that would allow a comprehensive
evaluation of their emplacement episodicities.
The longevity of oceanic plateaus formed via
plume-ridge interaction is probably a contin-
uum, modulated by the presence of ridge jumps
and the rate at which spreading ridges migrate
away from the plume. To test a continuum the-
ory, more geochronology data for other oceanic
plateaus are needed.

Oceanic plateaus such as the Kerguelen Pla-
teau and the Shatsky Rise (Sager et al., 2019)
suggest that caution should be exercised for a
direct analogy between oceanic and continental
LIPs. In the case of a continental flood-basalt
province, magma must go through thick and
complex continental crust. As massive volumes
of basalts accumulate in and above the crust,
large volumes of cooled magma gradually clog
the magmatic conduits, making further magma
output difficult. This might be an important fac-
tor leading to the one or several ~1-5 Ma punc-
tuated pulse(s) of continental LIPs. For the Ker-
guelen LIP, however, ridge jumps and spreading
of the mid-ocean ridges created sufficient space
for long-term continuous eruption and basalt
accumulation at the spreading center.
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