
206	 www.gsapubs.org  |  Volume 49  |  Number 2  |  GEOLOGY  |  Geological Society of America

Manuscript received 5 May 2020 
Revised manuscript received 21 July 2020 

Manuscript accepted 28 August 2020

https://doi.org/10.1130/G47850.1

© 2020 Geological Society of America. For permission to copy, contact editing@geosociety.org.

CITATION: Jiang, Q., et al., 2021, Longest continuously erupting large igneous province driven by plume-ridge interaction: Geology, v. 49, p. 206–210, https://
doi.org/10.1130/G47850.1

Longest continuously erupting large igneous province driven 
by plume-ridge interaction
Qiang Jiang1, Fred Jourdan1, Hugo K.H. Olierook1,2, Renaud E. Merle3,4 and Joanne M. Whittaker5

1�Western Australian Argon Isotope Facility, John de Laeter Centre and School of Earth and Planetary Sciences, Curtin University, 
Perth, Western Australia 6845, Australia

2�Timescales of Mineral Systems, Centre for Exploration Targeting–Curtin Node, School of Earth and Planetary Sciences, 
Curtin University, Perth, Western Australia 6845, Australia

3�Swedish Museum of Natural History, S-104 05 Stockholm, Sweden
4�Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
5�Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia

ABSTRACT
Large igneous provinces (LIPs) typically form in one short pulse of ∼1–5 Ma or several 

punctuated ∼1–5 Ma pulses. Here, our 25 new 40Ar/39Ar plateau ages for the main construct 
of the Kerguelen LIP—the Cretaceous Southern and Central Kerguelen Plateau, Elan Bank, 
and Broken Ridge—show continuous volcanic activity from ca. 122 to 90 Ma, a long lifespan 
of >32 Ma. This suggests that the Kerguelen LIP records the longest, continuous high-magma-
flux emplacement interval of any LIP. Distinct from both short-lived and multiple-pulsed 
LIPs, we propose that Kerguelen is a different type of LIP that formed through long-term 
interactions between a mantle plume and mid-ocean ridge, which is enabled by multiple 
ridge jumps, slow spreading, and migration of the ridge. Such processes allow the trans-
port of magma products away from the eruption center and result in long-lived, continuous 
magmatic activity.

INTRODUCTION
Large igneous provinces (LIPs) are the result 

of gigantic intraplate magmatic events with 
dominantly mafic igneous volumes >106 km3 
(Richards et al., 1989). In contrast to igneous 
generation processes at plate boundaries, such as 
mid-ocean ridges, continental rifts, and subduc-
tion zones—which might also produce magma 
volumes of LIP scale given sufficient time and 
space—LIPs are typically emplaced in rela-
tively short durations with significantly higher 
magma production rates (Coffin and Eldholm, 
1993; Sheth, 2007). Typically, the bulk volumes 
of LIPs with the best age controls—continental 
flood basalts such as the Central Atlantic mag-
matic province, the Karoo LIP (southern Africa), 
and the Deccan Traps (India)—are emplaced in 
a single main pulse of ∼1–5 Ma (Marzoli et al., 
2018; Jourdan et al., 2007; Sprain et al., 2019). 
However, some LIPs (e.g., the Kerguelen LIP, 
the Caribbean LIP, and the High Arctic LIP) 
diverge from this scenario, and their main por-
tion of magmatism lasted for relatively long 
intervals of >20 Ma (Coffin et al., 2002; Dock-

man et al., 2018). It is suggested that these long-
lived LIPs were emplaced in several magmatic 
pulses of 1–5 Ma (e.g., Bryan and Ernst, 2008). 
For example, it has been proposed that the High 
Arctic LIP was emplaced from ca. 128 to 77 Ma, 
with three short-duration pulses at ca. 122 Ma, 
95 Ma, and 81 Ma (Dockman et al., 2018); the 
Caribbean LIP appears to have mainly formed in 
two pulses at ca. 89 Ma and ca. 76 Ma (Dürke-
fälden et al., 2019).

However, knowledge about the durations 
and eruption episodicities of long-lived LIPs is 
meagre due to a paucity of reliable, high-pre-
cision geochronology data. This is especially 
the case for the main, Cretaceous portion of the 
Kerguelen LIP. Based on a few age data, the 
Kerguelen LIP was believed to have formed by 
punctuated magmatic events (Neal et al., 2019) 
over an interval of ∼25 Ma (Coffin et al., 2002; 
Duncan, 2002).

AGES OF THE KERGUELEN LIP
The Kerguelen LIP is the second most-volu-

minous LIP known of the Phanerozoic and con-

sists of the Southern Kerguelen Plateau (SKP), 
Central Kerguelen Plateau (CKP), Elan Bank, 
and Broken Ridge. These features, Ninetyeast 
Ridge, the Northern Kerguelen Plateau, and 
some smaller magmatic provinces on circum–
eastern Gondwana continents are all believed 
to be related to the Kerguelen plume (Coffin 
et al., 2002; Olierook et al., 2017) and belong 
to the Greater Kerguelen LIP (Olierook et al., 
2017). The Cretaceous portion of the Kerguelen 
LIP characterized by high magma flux, which 
includes igneous rocks of the SKP, CKP, Elan 
Bank, and once-contiguous Broken Ridge, cov-
ers an area of ∼1.5 × 106 km2, with estimated 
igneous volumes of ∼17.4 × 106 km3 (Fig. 1; 
Coffin et al., 2002).

40Ar/39Ar geochronology studies have pre-
viously been conducted on basalts from eight 
Ocean Drilling Program (ODP) sites on the main 
portion of the Kerguelen LIP (Coffin et al., 2002; 
Duncan, 2002). However, most published age 
data do not meet established criteria for sta-
tistical robustness (i.e., the calculated “ages” 
are based on discordant results). We rigorously 
filtered available age data based on statistical 
concordance and stringent criteria to ensure that 
only robust and true plateau ages that include 
>70% of the total 39Ar released are included. Our 
filtering yields only four statistically reliable pla-
gioclase 40Ar/39Ar plateau ages from three sites 
for the entire Cretaceous Kerguelen LIP, includ-
ing 121.0 ± 2.1 Ma and 120.8 ± 2.1 Ma (ODP 
Site 1136), 113.45 ± 0.83 Ma (ODP Site 750), 
and 108.9 ± 1.3 Ma (ODP Site 1137), recalcu-
lated here using the decay constants recom-
mended by Renne et al. (2011). All uncertainties 
herein are quoted at 2σ and include all sources of 
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uncertainty (Renne et al., 2010; Tables S1–S2 in 
the Supplemental Material1). Note that 40Ar/39Ar 
plateau ages from groundmass samples (Table 
S1) are excluded from such a database because 
they do not necessarily provide reliable crys-
tallization ages, as demonstrated by a grow-
ing body of literature (Hofmann et al., 2000; 
Jourdan et al., 2007; Renne et al., 2015; Merle 
et al., 2019). We therefore use groundmass pla-
teau (with >70% 39Ar) and mineral mini-plateau 
(with 50%–70% 39Ar) ages only if they are cor-
roborated by a mineral-separate plateau age 
from the same sample or formation.

We report 47 new 40Ar/39Ar analytical results 
of fresh handpicked plagioclase, sanidine (cf. 
Fig. S2), glass, pyroxene, and groundmass sepa-
rates from basaltic samples from eight ODP sites 
and four dredge sites on the main Kerguelen 
LIP, from which we obtained 25 plateau ages. 
The analytical methods and results are given in 
the Supplemental Material. Our new robust geo-
chronology data, together with published data 
for ODP Sites 750, 1136, and 1137, cover all 
nine ODP sites that penetrated volcanic base-
ment and three dredge sites on the SKP, CKP, 

Elan Bank, and Broken Ridge (Figs. 1 and 2), 
and thus provide more spatial and temporal con-
trol for the progression of volcanism that created 
the majority of the Kerguelen LIP.

Mineral-separate 40Ar/39Ar plateau ages of 
basalts from the main Kerguelen LIP range 
from 122.2 ± 2.0 Ma to 89.93 ± 0.97 Ma 
(Figs. 1 and 2; Fig. S4, Table S3), and specifi-
cally from 122.2 ± 2.0 Ma to 89.93 ± 0.97 Ma 
for the SKP, from 111.3 ± 1.1 Ma to 
106.09 ± 0.97 Ma for Elan Bank, from 
108.6 ± 2.2 Ma to 92.8 ± 1.5 Ma for the CKP, 
and from 99.13 ± 0.45 Ma to 97.7 ± 1.8 Ma for 
Broken Ridge. The ages show that volcanism 
progressed from building a large portion of the 
SKP first, and then to Elan Bank, the CKP, and 
Broken Ridge (Fig. 1). Three additional sam-
ples from dredge sites close to the Kerguelen 
Archipelago and Heard Island yielded Cenozoic 
ages ranging from ca. 27 to 0.34 Ma (Fig. 1; 
Fig. S4; Table S3), which are unrelated to the 
main construct of the Kerguelen LIP and are 
not further discussed.

DURATION AND EPISODICITY OF THE 
KERGUELEN LIP

Our data reveal a ∼32 Ma span for the forma-
tion of the main construct of the Kerguelen LIP 
(Fig. 3), longer than published previously (Cof-
fin et al., 2002). We note that samples currently 
available for the Kerguelen volcanic rocks are 
from the topmost tens of meters of the basaltic 

basement (Fig. S1), while wide-angle seismic 
data revealed an average thickness of ∼5.3 km 
for the basaltic layer (Operto and Charvis, 
1996). This raises the possibility that the dura-
tion of Kerguelen Plateau construction may have 
been even longer than the ∼32 Ma inferred by 
our data. Such a long duration of emplacement 
is atypical for LIPs.

Other Phanerozoic LIPs (e.g., Caribbean LIP, 
High Arctic LIP) were emplaced over relatively 
long durations of >5 Ma, but these appear to 
have been emplaced in multiple 1–5 Ma pulses, 
according to the data currently available (Bryan 
and Ernst, 2008; Dockman et al., 2018). Our 
new mineral-separate 40Ar/39Ar ages reveal that 
the volcanic activity constructing the main por-
tion of the Kerguelen LIP (Fig. 1) was rather 
continuous from before ca. 122 Ma to 90 Ma 
(Fig. 3). Therefore, the Kerguelen LIP is a poten-
tially unique case of a LIP characterized by con-
tinuous, high-volume magmatic flux over 30 Ma 
and a total volcanic activity lasting >120 Ma.

FORMATION OF THE LONG-LIVED 
KERGUELEN LIP

Short-lived, single-pulsed LIPs are typi-
cally attributed to plume-head eruptions (Rich-
ards et al., 1989). Long-lived, multiple-pulsed 
LIPs require alternatives to the classic, single 
plume-head model, e.g., involvement of multiple 
mantle plumes, a single plume dismembered by 
strong mantle shear flow (Coffin et al., 2002), or 
secondary instabilities induced by the entrain-
ment of a dense eclogite-derived material at the 
base of the mantle by thermal plumes (Lin and 
van Keken, 2005). Our new age data suggest 
that the prolonged and continuous high magma 
flux associated with the construction of the Ker-
guelen LIP may be unique for Phanerozoic LIPs 
(Figs. 2 and 3) and thus requires a unique model 
for its behavior over time.

Plate reconstructions model the Kerguelen 
plume beneath the eastern Indian plate before the 
breakup of India and Antarctica (Gibbons et al., 
2013; Whittaker et al., 2013; Fig. 4A), producing 
small volumes of igneous rocks in the Tethyan 
Himalaya (Figs. 4E and 4I). More distal from the 
plume, the volumetrically minor Bunbury Basalt 
in southwestern Australia is believed to have been 
generated by melting of the asthenospheric and 
enriched lithospheric mantle, perhaps aided by 
an elevated geotherm from the Kerguelen plume 
starting at ca. 137 Ma (Olierook et al., 2019a, 
2017; Fig. 4E). Following rifting and breakup, 
seafloor spreading initiated between India and 
Antarctica, while ultraslow motion continued 
between the Australian and Antarctic plates. 
With continued opening of the Indian Ocean, the 
spreading ridges slowly migrated northward rela-
tive to Antarctica and approached the Kerguelen 
plume (Fig. 4B; Whittaker et al., 2015).

The onset of massive volcanism at the SKP 
commencing before ca. 122 Ma was triggered 

1Supplemental Material. Methods, supplemental 
data, Figures S1–S8, and Tables S1–S5. Please visit 
https://doi​.org/10.1130/GEOL.S.12964847 to access 
the supplemental material, and contact editing@
geosociety.org with any questions.

Figure 1.  Bathymetric 
map showing location 
of the Kerguelen large 
igneous province. White 
circles and squares 
indicate Ocean Drilling 
Program drill sites and 
dredge sites, respec-
tively. Age data are 
from this study (green), 
Duncan (2002) (red), 
and Coffin et  al. (2002) 
(blue). CKP—Central Ker-
guelen Plateau; EB—Elan 
Bank; HI—Heard Island; 
KA—Kerguelen Archi-
pelago; NKP—Northern 
Kerguelen Plateau; SKP—
Southern Kerguelen 
Plateau.
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by the elevated temperature of the Kerguelen 
plume, which enhanced mantle upwelling at the 
spreading ridge and led to melting of the asthe-
nosphere and continental lithospheric mantle 
(dispersed within the Indian Ocean mantle as 
the breakup of eastern Gondwana; Frey et al., 
2002; Fig. 4F). This is supported by the chemi-
cal characteristics of the samples from the SKP, 
Elan Bank, and Broken Ridge, in particular the 
isotopic compositions, which indicate a mixture 
of asthenospheric and lithospheric mantle com-
ponents. The composition of the CKP basalts is 
dominated by the asthenospheric component, 
while the Kerguelen plume component is absent 
(Figs. 4I–4L; Olierook et al., 2017). We note 
that alternative models have suggested that the 
Kerguelen plume-head composition could be 
distinct from that of the plume tail, which can 
be represented by the composition of the Ceno-
zoic Kerguelen Archipelago and Heard Island 
basalts and the composition of CKP (ODP Site 
1138) basalts, respectively. Therefore, the plume 
tail could have been a major component in the 
mantle source of the Cretaceous Kerguelen LIP 
(Ingle et al., 2003). However, we argue that only 
asthenospheric and lithospheric components 
can equally explain the isotopic data (Fig. S7; 
Olierook et al., 2017).

The required mantle temperatures to 
yield anomalously thick oceanic crust at the 
Kerguelen Plateau indicate that the plume 
must have been proximal. Although moving 
hotspot reference frames were considered 
(Doubrovine et al., 2012; O’Neill et al., 2005; 
Figs. 4A–4D), a fixed hotspot reference frame 
(Müller et  al., 1993; used in cross-section 
illustrations in Figs. 4E–4H) places the plume 
closer to the spreading ridges and continental 
lithosphere fragments of the Kerguelen Plateau 
(Figs. 4B–4D) and thus better explains enhanced 
upwelling at the spreading ridge and melting 
of the continental lithosphere (Figs. 4I–4L). 
The jumps of the Indian-Antarctic Ridge at ca. 
115 Ma (Fig. 4B; Gibbons et al., 2013; Whittaker 
et al., 2013) and of the Indian-Australian Ridge 
and Australian-Antarctic Ridge at ca. 108 Ma 
(Fig. 4D; Whittaker et al., 2013) enabled long-
term plume-ridge interaction and form a critical 
component in sustaining magmatic production 
of the Kerguelen LIP.

After the formation of the main Cretaceous 
Kerguelen LIP, the Kerguelen plume produced 
the less-voluminous Ninetyeast Ridge hotspot 
track between ca. 83 Ma and ca. 37 Ma and, 
starting at ca. 34 Ma, produced the Northern 
Kerguelen Plateau (Fig. S8; Duncan, 2002).

IMPLICATIONS FOR OCEANIC AND 
CONTINENTAL LIPS

Oceanic plateaus commonly form close to 
spreading ridges, e.g., the Shatsky Rise (north-
western Pacific; Sager et al., 2019), Ontong Java 
Plateau (southwestern Pacific), and Caribbean 
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LIP (cf. plate reconstructions of Whittaker et al. 
[2015]). Studies of the Shatsky Rise (Sager 
et al., 2019) suggest it formed through plume-
ridge interaction at a triple junction that caused 
thicker-than-normal oceanic crust, rather than 
via massive LIP volcanism emplaced onto the 
ocean floor after the formation of oceanic crust. 
We argue that the Kerguelen Plateau was formed 
by a similar process of plume-induced excess 

volcanism at spreading ridges. This is supported 
by the isotopic data, which revealed dominant 
asthenospheric and continental lithospheric 
mantle components, instead of obvious plume 
components in the mantle source of the Creta-
ceous Kerguelen Plateau basalts (Figs. 4I–4L). 
However, in contrast to the Shatsky Rise, the 
major portion of which formed over a short 
interval of ∼3 Ma (Sager et al., 2019), the Cre-

taceous Kerguelen Plateau continuously erupted 
for ≥32 Ma This is due to the jumps of the 
spreading ridges toward the plume (Figs. 4B–
4D) and the slow migration and spreading rates 
of the Indian-Antarctic and Australian-Antarc-
tic Ridges (Müller et al., 1998; Olierook et al., 
2020; Whittaker et al., 2013), which enabled 
long-term plume-ridge interaction.

Some oceanic plateaus emplaced since ca. 
140 Ma may share the plume-ridge interaction 
model with the Kerguelen LIP (Whittaker et al., 
2015). Although continuous long-term mag-
matic activity has so far not been observed for 
other oceanic LIPs demonstrating plume-ridge 
interaction, controls on the timing of magmatism 
for most oceanic plateaus are extremely sparse 
(cf. review of Ontong Java LIP geochronology; 
Olierook et al., 2019b). Most lack robust and 
precise data that would allow a comprehensive 
evaluation of their emplacement episodicities. 
The longevity of oceanic plateaus formed via 
plume-ridge interaction is probably a contin-
uum, modulated by the presence of ridge jumps 
and the rate at which spreading ridges migrate 
away from the plume. To test a continuum the-
ory, more geochronology data for other oceanic 
plateaus are needed.

Oceanic plateaus such as the Kerguelen Pla-
teau and the Shatsky Rise (Sager et al., 2019) 
suggest that caution should be exercised for a 
direct analogy between oceanic and continental 
LIPs. In the case of a continental flood-basalt 
province, magma must go through thick and 
complex continental crust. As massive volumes 
of basalts accumulate in and above the crust, 
large volumes of cooled magma gradually clog 
the magmatic conduits, making further magma 
output difficult. This might be an important fac-
tor leading to the one or several ∼1–5 Ma punc-
tuated pulse(s) of continental LIPs. For the Ker-
guelen LIP, however, ridge jumps and spreading 
of the mid-ocean ridges created sufficient space 
for long-term continuous eruption and basalt 
accumulation at the spreading center.
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