

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/346363541>

Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects

Article in *Journal of Experimental Psychology Human Perception & Performance* · October 2020

DOI: 10.1037/xhp0000879

CITATIONS
0

READS
70

5 authors, including:

Hauke S. Meyerhoff
Leibniz-Institut für Wissensmedien

53 PUBLICATIONS 292 CITATIONS

[SEE PROFILE](#)

Mike Stieff
University of Illinois at Chicago

54 PUBLICATIONS 1,460 CITATIONS

[SEE PROFILE](#)

Mary Hegarty
University of California, Santa Barbara

204 PUBLICATIONS 15,735 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

Spatial Perspective Taking [View project](#)

The perception of dynamic stimuli [View project](#)

Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects

© 2020, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors' permission. The final article will be available, upon publication, via its DOI: 10.1037/xhp0000879

Hauke S. Meyerhoff¹, Nicole Jardine², Mike Stieff³, Mary Hegarty⁴, and Steve Franconeri²

¹Leibniz-Institut für Wissensmedien, Tübingen, Germany

²Northwestern University, Evanston, IL, USA

³University of Illinois at Chicago, IL, USA

⁴University of California Santa Barbara, CA, USA

1	Running Head	:	Visual ZIP files
2	Keywords	:	change detection, mental rotation, structure change, compression, visual zip file, working memory, capacity limitation
3	Address for correspondence :		Hauke S. Meyerhoff
4			Leibniz-Institut für Wissensmedien
5			Schleichstr. 6
6			72076 Tübingen
7			Germany
8	Email	:	h.meyerhoff@iwm-tuebingen.de
9	Phone/Fax	:	+49 7071 29-75612 (Phone), +49 7071 979-115 (Fax)
10	Word count	:	7794

13

Abstract

14 Given a set of simple objects, visual working memory capacity drops from 3-4 units
15 down to only 1-2 units when the display rotates. But real-world STEM experts somehow
16 overcome these limits. Here, we study a potential domain-general mechanism that might help
17 experts exceed these limits: compressing information based on redundant visual features.

18 Participants briefly saw four colored shapes, either all distinct or with repetitions of color,
19 shape, or paired color+shape (e.g., two green squares among a blue triangle and a yellow
20 diamond), with a concurrent verbal suppression task. Participants reported potential swaps
21 (change/no change) in a rotated view. In experiments 1A-1C, repeating features improved
22 performance for color, shape, and paired color+shape. Critically, Experiments 2A-2B found
23 that the benefits of repetitions were most pronounced when the repeated objects shared both
24 feature dimensions (i.e. two green squares). When color and shape repetitions were split
25 across different objects (e.g., green square, green triangle, red triangle), the benefit was
26 reduced to the level of a single redundant feature, suggesting that feature-based grouping
27 underlies the redundancy benefit. Visual compression is an effective encoding strategy that
28 can spatially tag features that repeat.

29

30

186 words

31

32

33

Public Significance Statement

34 The ability to compare objects across a rotation is limited to extremely simple objects,
35 yet STEM experts such as chemists appear to circumvent this limitation. Understanding the
36 limits of visuospatial thinking and mechanisms of overcoming these limitations is crucial for
37 developing training supporting STEM-relevant abilities. Here, we study a domain-general
38 mechanism that might allow people to exceed known limitations – leveraging redundant
39 feature information. Our results show that the ability to detect swaps between rotated views is
40 higher when people leverage redundant feature information, but that this advantage is limited
41 to a single group of objects that share the same set of redundant features.

42

43 **Visual ZIP files: Viewers beat capacity limits by compressing redundant features across**
 44 **objects**
 45

46 Visuospatial abilities such as mental rotation (Shepard & Metzler, 1971) have been
 47 identified as a critical component of success in the field of science, technology, engineering,
 48 and mathematics (STEM; National Research Council, 2006; Wai, Lubinski, & Benbow,
 49 2009). As many pupils and students face problems with visuospatial demands, one strategy is
 50 to train these skills early in life (Newcombe, 2016). Domain-specific training is capable of
 51 substantially improving performance and learning (e.g., Kellman, 2013). Moreover, there is
 52 now good evidence that specific spatial skills (such as mental rotation) can be trained (Uttal et
 53 al., 2013) and that this training can transfer to other spatial tasks. However, to date, training
 54 domain-general visuo-spatial skills has led to only small improvements in STEM performance
 55 (Cheng & Mix, 2014; Sorby, 2009; Stieff & Uttal, 2015), and these improvements further
 56 shrink when generalized beyond the trained task or over time (Miller & Halpern, 2013).

57 In the present experiments, we explore the domain-general strategy of exploiting
 58 redundant visual features (repetitions of colors and/or shapes), as they exist in multiple kinds
 59 of STEM representations. For example, the spatial structure of colors and shapes all convey
 60 critical information in molecular representations in chemistry (see Figure 1), a domain where
 61 expert chemists have a superior ability to detect changes to this structure between different
 62 views (Stieff, 2007).

63
 64 *Figure 1.* Illustration of molecular representations in organic chemistry. Dash-Wedge
 65 representations (left) mainly consist of shape information whereas Ball-and-Stick
 66 representations (right) consist of color and size information.
 67

68 Given that these molecular structures typically include redundant feature information
69 (repeated colors and shapes), we tested whether viewers would exploit these redundancies as
70 a domain-general strategy to overcome capacity limitations. We translated this application-
71 inspired question into a laboratory test that isolated distinct redundant visual features (colors
72 and/or shapes). We also tested whether this redundancy advantage extended to displays where
73 the redundant features were split across different objects. To anticipate our results, they show
74 that human observers can compress redundant visual feature information to overcome their
75 capacity limitations for detecting changes to the spatial structure of these features between
76 rotated views, but that this ability is limited to a single set of objects sharing redundant feature
77 information.

78

79 **Detecting changes between rotated views**

80 A central task for the visual system is to recognize objects as same or different even
81 when they are presented from different viewing angles. However, the mental process
82 underlying this ability has been controversial (see Peissig & Tarr, 2006, for a review).
83 Shepard and Metzler (1971) asked participants to indicate whether two sets of concatenated
84 cubes presented from different viewpoints were identical or mirror images of each other. They
85 observed a linear relationship between increased angular disparity and increased response
86 times, suggesting that their participants were continuously mentally rotating one of the objects
87 in order to solve the comparison task. But such linear performance degradation with greater
88 angular disparity does not necessarily indicate continuous mental rotation, because this effect
89 can also be observed in object recognition tasks that do not appear to involve mental rotation
90 (Edelmann & Bülthoff, 1992; Cheung, Hayward, Gauthier, 2009; Hayward & Williams, 2000,
91 Jolicœur, 1985; Tarr & Pinker, 1989; Tarr, Williams, Hayward, & Gauthier, 1998). These
92 object recognition tasks revealed distinct patterns of neural activation compared to rotation
93 (Gauthier et al., 2002) showing that distinct mental processes could lead to a comparable

94 linear decline in performance with increasing angular disparity. With the present experiments,
95 we study the accuracy with which human observers can detect changes in a spatial structure of
96 four objects following a rotation of the display. Our experiments are not intended to
97 differentiate the potential mechanisms of continuous mental rotation from other object
98 recognition processes that are similarly adversely affected by angular changes. Therefore, we
99 will use the agnostic term ‘structure change detection’ to describe our task in which
100 participants detect changes in a spatial structure of objects and their features between two
101 rotated views, rather than the more theoretically loaded terms ‘mental rotation’ or ‘object
102 recognition’.

103

104 **Capacity Limitations in Detecting Structure Changes between Rotated Views**

105 In order to refer to the amount of information that can be rotated “at once” we have
106 borrowed the term ‘capacity limitation’ from research on working memory (e.g. Cowan,
107 2001). Although this term is typically not used in mental rotation studies (but see Just &
108 Carpenter, 1985; Shah & Miyake, 1996), asking whether complete objects or structures can be
109 rotated at once can adapt the definitions of capacity limitations used in working memory
110 research. Most of the work addressing these limitations has focused on the envelope of 3D-
111 and 2D objects such as block figures (e.g., Shepard & Metzler, 1971), drawings (e.g.,
112 Pylyshyn, 1979), and polygons (e.g. Cooper & Podgorny, 1976). For connected shapes, some
113 classic work has argued in favor of a virtually unlimited capacity resulting in so-called
114 holistic rotation patterns (i.e. the entire shape at once; see Cooper & Podgorny, 1976),
115 whereas other work suggested piecemeal rotations of parts of the full shape (i.e. sequential;
116 Folk & Luce, 1987; Just & Carpenter, 1985; Yuille & Steiger, 1982).

117 Crucially, however, whether or not an object is rotated holistically or in a piecemeal
118 manner is not entirely determined by the rotated objects themselves, but also depends on the
119 spatial abilities and strategies of the observers. For instance, Khooshabeh, Hegarty, and

120 Shipley (2013) observed that participants with poor spatial abilities tend toward piecemeal
 121 strategies whereas observers with good spatial abilities are more likely to employ holistic
 122 strategies. However, other research has identified flexibility in the selection of strategies
 123 associated with good spatial abilities (Botella, Peña, Contreras, Shih, & Santacreu, 2009;
 124 Nazareth, Killick, Dick, & Pruden, 2019). Whether people use a piecemeal or holistic strategy
 125 also depends on their familiarity with the stimuli (Bethel-Fox & Shepard, 1988). Another
 126 correlate of individual differences in many of these mental rotation tasks is sex (with a male
 127 advantage in most cases; Hyde, 2005; Voyer, Voyer, & Bryden, 1995) although the causal
 128 origin for such sex difference are far from understood (Voyer, Saint-Aubin, Altman, & Doyle,
 129 *in press*)¹.

130 Many of the mental rotation studies have relied on detecting changes to the shapes of
 131 objects, so that the features of parts of these objects (e.g. colors) and their spatial structure of
 132 where those colors occurred ('bindings') are not tested. But many real-world STEM rotation
 133 tasks require maintaining these bindings, and this requirement leads to severe capacity
 134 limitations. Xu and Franconeri (2015) reported a set of experiments in which participants
 135 monitored a cross-like object consisting of four distinctly colored legs for color changes
 136 between rotated views. A capacity analysis revealed that they were only able to maintain a
 137 single color attached to its corresponding leg across a 90 degree rotation of the layout between
 138 the views (for similar results, see Saiki, 2003). This capacity limitation for location-feature
 139 bindings across rotations contrasts with the observation that chemists are relatively accurate in
 140 detecting changes between rotated molecular structures (Stieff, 2007).

141 We use the metaphor of a 'Zip File' to reflect the fact that noticing and compressing
 142 redundancies in a representation is a general information-theoretic strategy for fitting
 143 information into a limited capacity storage system. In a computer, an algorithm detects

¹ In the present project, we focus on general cognitive processes which we consider to be present in participants of *both sexes*. In terms of sample size as well as male/female composition, our experiments are not designed to investigate sex differences such as differently strong manifestations of effects. Nevertheless, we screen all our analyses for sex differences and report them in the few cases where we found any.

144 redundant information which is stored only once, and then points to the original positions of
145 the redundant copies. In our examples, sources of redundant information are color and shape
146 information. Observers might use such redundant information to encode compressed versions
147 of the stimuli. Following display rotations, the stimulus could be decompressed in order to
148 map the unrotated representation with the actual test display. The Zip File analogy generates
149 an intriguing prediction that we will test in Experiment 2. If the redundancy is at the level of
150 an entire repeated object, with a pointer to the spatial positions of those same objects,
151 participants should have difficulty leveraging redundant features that are *split* across multiple
152 objects (e.g., a red square, a red triangle, and a blue triangle).

153 Indeed, research on visual search has demonstrated that a unique object sharing
154 multiple feature dimensions can be found more efficiently than objects sharing only one
155 feature dimension (Krummenacher, Müller, & Heller, 2001; Nothelfer, Gleicher, &
156 Franconeri, 2017; Wolfe, Cave, Franzel, 1989). Further, recent research on visual short-term
157 memory (i.e., pure recall of feature-location bindings) has revealed beneficial effects of
158 redundant stimulus information. For instance, Brady and Tenenbaum (2013) showed that
159 participants were more likely to detect color changes within a briefly memorized layout of
160 squares when neighboring objects were of the same color (see also Peterson & Berryhill,
161 2013, for a similar finding). Such findings show that short-term memory does not store each
162 object in a visual display independently, but instead stores information hierarchically, taking
163 advantage of redundancies and other statistical summary information (for a review see Brady,
164 Konkle, & Alvarez, 2011). In fact, in some studies, the compression of redundant visual
165 information saved memory resources so much that memory performance did not only increase
166 for the items with redundant information but also spilled over to the remaining items (e.g.,
167 Morey, 2019; Thalmann, Souza, & Oberauer, 2018). Such spillover effects have been
168 observed for color (Quinlan & Cohen, 2012; Lin & Luck, 2008; Morey, Cong, Zheng, Price,

169 & Morey, 2015) as well as for shape information (Mate & Baques, 2009; but see Quinlan &
170 Cohen, 2012).

171

172 **The Present Study**

173 In the present manuscript, we explore how leveraging such redundancies can lead to
174 improved change detection performance for a structure consisting of four objects (bindings
175 between colors/shapes to particular objects within a spatial layout). The present studies also
176 differ from previous work by asking participants not to detect new colors or shapes, but to
177 detect *swaps* after a spatial transformation (a display rotation). Such structure change
178 detection is a much more difficult operation, and one that forms a challenging problem for
179 STEM thinking (Stieff, 2007).

180 We test three hypotheses. First, we propose that redundant visual information leads to
181 improved structure change detection performance between the display rotations. We argue
182 that it is reasonable to assume beneficial effects of redundancy for structure change detection
183 as previous research has demonstrated clear links between spatial working memory – which
184 benefits from redundancy (see above) - and change detection performance across rotated
185 views (Shah & Miyake, 1996). We will refer to this possibility as the redundancy-boost
186 hypothesis. Second, we investigate the hypothesis that the benefit of redundant objects during
187 structure change detection spills over to the remaining unique items in the display (i.e. the
188 reduced demand of processing two redundant rather than two distinct objects improve
189 performance for the remaining non-redundant objects). In working memory experiments, such
190 spill-over effects arise from the reduced demand of redundant stimuli on a limited working
191 memory resource, which remains more available for other objects. Given the strong
192 connection between working memory and performance at detecting changes across rotated
193 views (Shah & Miyake, 1996), it therefore is plausible to expect such spill-over effects for
194 structure change detection too. However, since processing rotated views reflects an active

195 internal process (depending on executive control, Baddeley, 1986; or controlled attention,
196 Engle, Tuholski, et al., 1999) rather than passive memory, which comes along with more
197 severe capacity limitations, it cannot be taken for granted that such a boost for non-redundant
198 objects (i.e. a spill-over) also applies to structure change detection across rotated views. We
199 will refer to this possibility as the spill-over hypothesis.

200 Third, in order to explain the origin of redundancy-boost effects in structure change
201 detection across rotated views, we test the possibility that the benefits for redundant stimuli
202 arise from a feature-based grouping mechanism (i.e. joint attending to a set of objects sharing
203 a basic feature such as color or shape). This feature-based grouping mechanism would limit
204 the number of redundant objects that participants can take advantage of simultaneously. The
205 rationale for this hypothesis arises from recent research arguing that grouping objects by
206 similar features can only occur for a single group at a time, by isolating a set of objects that
207 have a common set of feature values (e.g., just the red ones, or just the squares, or red squares;
208 Huang, & Pashler, 2007; Huang, Treisman, & Pashler, 2007; Yu, Tam & Franconeri, 2019;
209 Yu, Xiao, et al, 2019). In our experiments we test this redundant feature information which is
210 either shared between the same objects or split across distinct subgroups of objects. We refer
211 to this possibility as the feature-based grouping hypothesis.

212

213 **Rationale of Experiment 1a-c**

214 In this set of three experiments, we test the first two of our hypotheses, the
215 redundancy-boost and the spill-over hypotheses. We test this with redundant color (with
216 constant shape; Experiment 1a), shape (with constant color; Experiment 1b), and combined
217 color and shape information (Experiment 1c). If the redundancy-boost hypothesis is correct,
218 we should observe increased structure change detection accuracy for stimuli including feature
219 redundancies relative to stimuli without such redundancies. If the spill-over hypothesis is
220 correct, not only objects with redundant features should elicit improved structure change

221 detection performance. Instead – in trials in which redundant objects are present – swaps
222 involving objects without these redundant features should also be detected more accurately as
223 they should benefit from the reduction in processing demand for the redundant objects.

224

225 **Experiment 1a**

226 Experiment code of all reported experiments, all raw data, and all analysis scripts are
227 available at <https://osf.io/n82hj/>.

228

229 **Methods**

230 **Power Considerations**

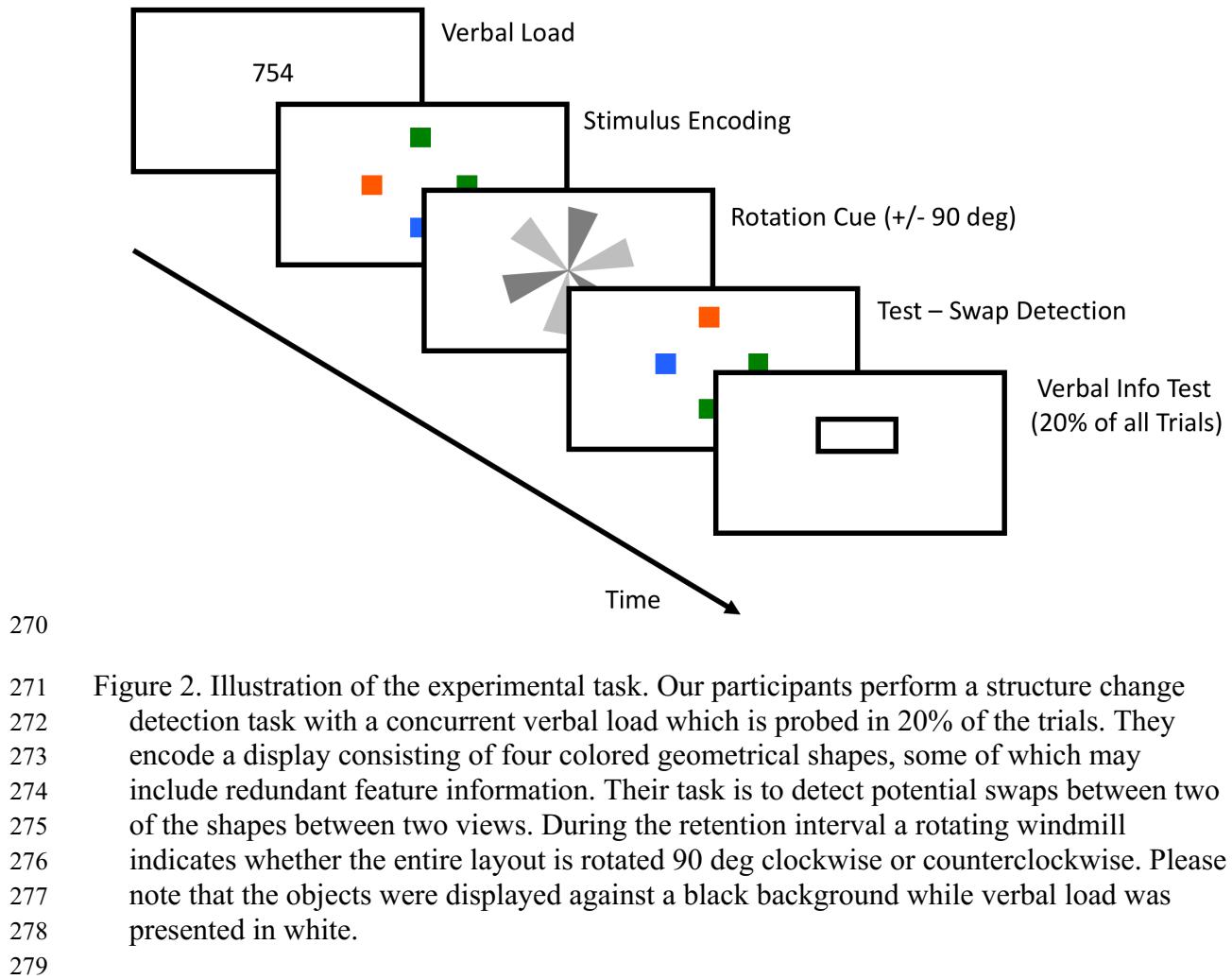
231 The most relevant statistical tests in our study focus on the comparison between
232 displays containing redundant feature information and displays without such redundancies.
233 We were not aware of previous experiments investigating the impact of redundant feature
234 information on structure change detection across rotated views. Prior to testing participants,
235 we piloted authors HM and SF as well as two naïve research assistants with the displays of
236 Experiment 1a. Introspectively, the beneficial effect of redundant color information could be
237 appreciated within a single trial. On the performance level, we observed strong increases in
238 raw accuracy (more than 10%) as well as a matching strong increase in sensitivity (d') for
239 detecting swaps between the two views (this also matches with data from working memory
240 displays studying the beneficial effects of redundant color information, e.g., Experiment 2a in
241 Brady & Tenenbaum, 2013). From these piloting results, we expected a large effect (i.e. $d_z >$
242 .8). Such an effect size would require 15 participants to achieve an acceptable level of
243 statistical power of $(1 - \beta) > .8$ at $\alpha = .05$ (G*Power, Faul, Erdfelder, Lang, & Buchner, A.). In
244 order to compensate for potential exclusions of data (e.g. due to poor dual task performance)
245 as well as a potentially weaker manifestation of the effect of redundant color information in

246 real participants than highly motivated piloting subjects, we decided to test 24 participants in
247 each experiment.

248

249 **Participants**

250 We collected data from 24 participants. For all experiments, the participants were
251 students recruited via the local Sona system. The participants received course credit in return
252 for approximately one hour of their time. After exclusion of three participants performing at
253 chance level, the final samples consisted of 21 students (12 female, 18-22 years). The
254 experimental procedure was approved by the institutional review board at a large Midwestern
255 University.


256

257 **Apparatus, Stimuli, and Procedure**

258 The experiment was run in Python using the PsychoPy libraries (Pierce, 2007). The
259 stimuli were presented on a 23-inch LCD monitor (60 Hz, 1920 x 1080 pixels) controlled by a
260 MacMini at an unrestricted viewing distance of approximately 60 cm.

261 Our participants performed a structure change detection task with four colored
262 geometrical shapes (square, cross, octagon, star; see Figure 2) each covering an area of 10
263 deg², which were presented against a black background. The shapes were placed 8 deg from
264 the center of the screen (top, bottom, right, and left) and their colors were randomly drawn
265 (without replacement) from the set of red, green, blue, yellow, magenta, and cyan. In this
266 experiment, all objects had the same shape (drawn randomly on a trial-to-trial basis) but
267 varied in their color (see Figure 3a). In half of all trials, one of the colors was replaced by one
268 of the other three colors in the display, creating redundant color information.

269

Experiment	Redundant Feature(s)		
	Absent	Present	
1a	 	 	
1b	 	 	
1c	 	 	
2a	 	 	
2b	 	 	

280

281 *Figure 3.* Illustration of the stimuli used in the five experiments. The left column illustrates
 282 displays without redundant feature information whereas the right column illustrates
 283 displays with redundant feature information. Please note that there are two conditions with
 284 different feature redundancies in Experiments 2a and 2b.

285

286 Following an initial encoding duration of 2s, the display disappeared for a retention
 287 interval of 2.2s. During the first and the last 300 ms of the retention interval, the participants
 288 saw an empty screen. During the second and the second-last 300 ms, a stationary windmill
 289 was visible. During the central 1000 ms of the retention interval, the windmill rotated 90 deg
 290 clockwise or counterclockwise, indicating the direction and extent of the display rotation to be

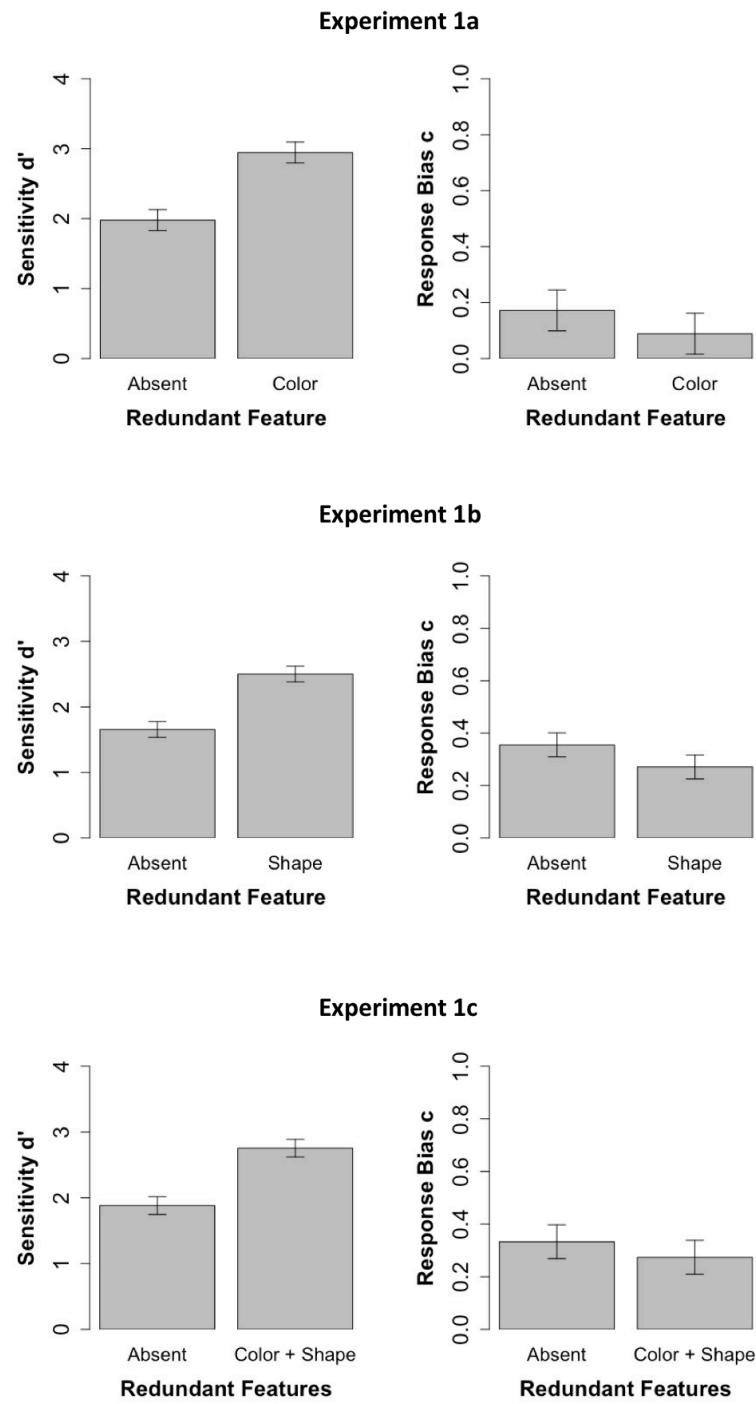
291 performed. We counterbalanced the direction of the rotation to prevent participants from
 292 anticipating the direction beforehand². The windmill had a radius of 10 deg of visual angle
 293 and consisted of 6 isosceles triangles (alternatingly colored light and dark grey) with an inner
 294 angle of 30 deg. Following the retention interval, the initial display reappeared with the shape
 295 layout rotated as indicated by the windmill. In half of all trials, two objects in the layout were
 296 swapped between the two views and the task of the participants was to indicate whether both
 297 views showed the same layout despite the rotation.

298 In order to prevent participants from encoding the layouts verbally, they performed a
 299 concurrent dual task of verbally repeating three randomly selected digits across each trial. A
 300 new random sequence was presented for 2 seconds before every trial. An experimenter was
 301 present in the room to confirm compliance with the dual task. Additionally, there was a 20%
 302 chance that participants had to enter the repeated digits after the trial. As feedback, the entered
 303 digits turned green or red for 500 ms after the response. Participants who performed the dual
 304 task below 80% were excluded from the analyses as this could potentially arise from the
 305 implementation of a verbal strategy. Average dual task performance was otherwise near
 306 ceiling between $M = 97.1\%$ and $M = 98.7\%$ across the five experiments of this report.

307 Prior to the experimental trials, our participants completed 8 practice trials. Thereafter,
 308 the participants completed 240 trials which fully counterbalanced the absence and presence of
 309 swaps, the direction of the rotation as well as any potential swaps within the layout.
 310 Subsequent trials were separated by a 1.5 seconds inter-trial-interval. Following blocks of 10
 311 trials, the participants had the chance to take breaks. The entire experiment took
 312 approximately 1 hour to complete.

313

² When screening for effects of rotation direction, there were none with regard to performance measures. However, in Experiments 1b and 1c, there was a significant main effect on response bias indicating that participants were more inclined to indicate the absence of swaps for counterclockwise than clockwise rotations. As we do not interpret response bias in our study but rather report it for the sake of completeness, we will not discuss this any further.


314 **Results**

315 **Redundancy-boost hypothesis.** In order to test the redundancy-boost hypothesis, we
 316 analyze the overall effect of the presence of redundant feature information in our displays.
 317 As visible from the raw accuracy values in Table 1, there was a positive response bias in our
 318 experiments indicating that participants responded “no swap” rather than guessing between
 319 both response alternatives when they were not certain. To compensate for this response bias,
 320 we calculated sensitivity value d' as well as response bias c from signal detection theory (for
 321 this analysis the hit rate was the proportion of correctly indicating the presence of a change
 322 and the false alarm rate was the proportion of incorrectly indicating the presence of a swap).
 323 By definition, sensitivity d' and response bias c aggregate data from all trials of one
 324 participant into one value on a continuous scale. Therefore, we compared performance for
 325 these values with t -tests for paired samples. The presence of redundant color information
 326 improved the sensitivity for detecting swaps between the two views, $t(20) = 6.76, p < .001, d_z$
 327 = 1.48, 95%-CI [1.03, 2.54]³ (see Figure 4, upper panel; see also Table 1 for the
 328 corresponding accuracy values). There were no differences in the response criterion c between
 329 trials with and without redundant color information, $t(20) = 1.19, p = .25, d_z = 0.26, 95\%-CI$
 330 [0, 0.68]. Additional exploratory analyses investigating the effect of the configuration of the
 331 redundant objects before and after the display rotation on the detectability of swaps (i.e. hits)
 332 are available in the supplementary materials.

333

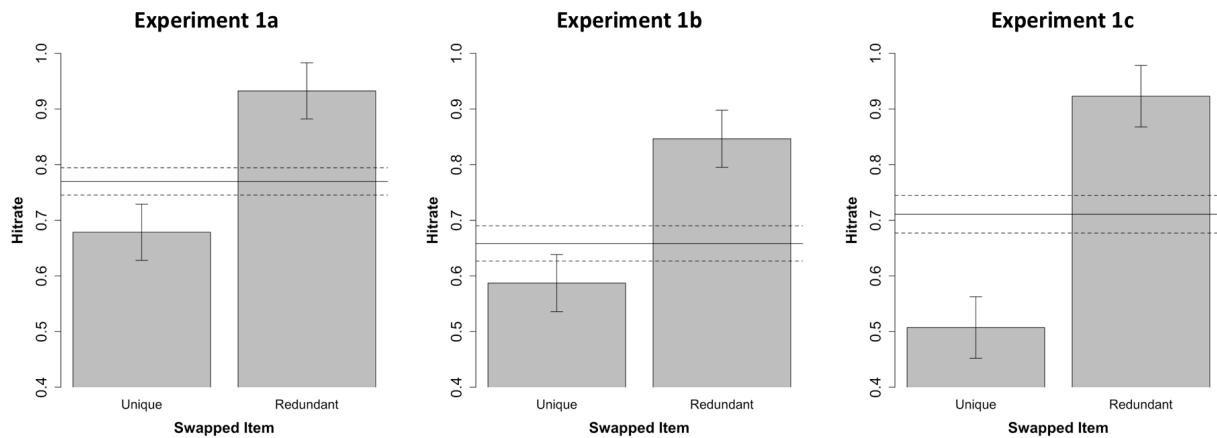
³ We used a bootstrapping approach with 10,000 iterations to calculate the 95%-CI of the effect size d_z .

334

335 Figure 4. Results of the signal detection analysis of Experiments 1a-c. The left column
 336 displays sensitivity d' . The right column displays response bias c . The error bars indicate
 337 within-subject confidence interval.

338

339 **Spill-over hypothesis.**


340 With the spill-over hypothesis, we analyze whether the beneficial effect of redundant
 341 feature information stems from a shift towards the redundant items (i.e. selectively encoding
 342 the objects with redundant feature information) or whether it spills over to the two non-
 343 redundant objects in the display. As this hypothesis focuses on differences in the detection of
 344 different kinds of swaps, we only analyzed accuracy (i.e. hits) within those trials (see Figure
 345 5, left panel). Given the restricted range of the dependent variable hit rate (i.e. 0-1) as well as
 346 potential restrictions in the variance of the conditions with redundant objects (i.e. performance
 347 above .8), we fit generalized linear mixed effect models with the logit as a link function to our
 348 data using the R-packages lme4 (Bates et al., 2020). The model included the intercepts of
 349 individual participants as random effects. We analyzed the differences between the conditions
 350 using Type II Wald chi-square tests (R-package car, Fox et al., 2020). Swaps that included
 351 one of the redundant objects were detected more often than swaps that included the two
 352 unique objects, $\chi^2(1) = 120.93, p < .001, R^2_m = .16, 95\%-CI [.09, .26]$ ⁴. When compared with
 353 swaps in the condition without any redundant objects (all-unique), swaps including the
 354 redundant objects were also detected more often, $\chi^2(1) = 111.91, p < .001, R^2_m = .15, 95\%-CI$
 355 $[.07, .26]$, however, swaps between the two unique objects within the redundant display were
 356 detected less often than swaps in the baseline condition without redundant objects (all-
 357 unique), $\chi^2(1) = 10.64, p = .001, R^2_m = .01, 95\%-CI [<.001, .03]$ (i.e. the opposite from what
 358 would be predicted by the spill-over hypothesis).

359

360

⁴ We calculated the marginal R^2 as effect size for logistic mixed models (see Johnson, 2014; Nakagawa & Schielzeth, 2013) using the R-package MuMIn (Barton, 2020). This R^2_m -value expresses the variance in the data explained by the fixed factor (i.e. the type of redundancy within our study). The 95%-CIs were calculated using a bootstrapping procedure with 10.000 iterations.

361

362 *Figure 5.* Hit rates for different types of swaps within the conditions with redundant objects
 363 across Experiments 1a-c. The solid lines refer to the means of the control conditions
 364 without redundant objects (i.e. the baseline), and the dashed lines refer to the
 365 corresponding within-subject confidence intervals. The error bars indicate within-subject
 366 confidence intervals.

367

368

Table 1: Proportions correct of all experiments

	swap M (SD)	no swap M (SD)
Experiment 1a		
Color Redundancy	88.2 (15.3)	92.1 (6.7)
No Redundancy	77.0 (14.9)	85.6 (9.3)
Experiment 1b		
Shape Redundancy	79.5 (15.7)	90.6 (12.8)
No Redundancy	65.8 (15.7)	85.8 (11.2)
Experiment 1c		
Joint Color + Shape Redundancy	84.0 (9.4)	92.54 (9.8)
No Redundancy	71.1 (12.7)	85.72 (15.3)
Experiment 2a		
Joint Color + Shape Redundancy	94.0 (6.6)	83.0 (15.2)
Split Redundancy	91.6 (8.4)	76.2 (10.8)
No Redundancy	87.2 (11.1)	72.3 (19.0)
Experiment 2b		
Split Redundancy	73.6 (12.3)	88.0 (10.9)
Color Redundancy	73.4 (13.0)	86.7 (11.8)
No Redundancy	67.8 (14.1)	85.7 (11.1)

M = mean; SD = standard deviation

369

Experiment 1b

370 **Methods**371 **Participants**

372 We collected data from 24 new participants who did not participate in any of the other
373 experiments. Four additional participants who failed to comply with instructions were
374 replaced during the data collection. After exclusion of one participant performing at chance
375 level and an additional participant with a dual task performance below 80% correct, the final
376 samples consisted of 22 students (13 female, 18-21 years).

377

378 **Apparatus, Stimuli, and Procedure**

379 All apparatus, stimuli, and procedures were identical to Experiment 1a except the redundant
380 feature information. In this experiment, all objects had the same color (drawn randomly on a
381 trial-to-trial basis) but varied in their shape (see Figure 3b). In half of all trials, one of the
382 shapes was replaced by one the other three shapes in the display, creating redundant shape
383 information.

384

385 **Results**

386 **Redundancy-boost hypothesis.** As in Experiment 1a, we calculated the sensitivity
387 value d' as well as the response bias c from signal detection theory for trials with and without
388 redundant objects. The presence of redundant feature information improved the sensitivity for
389 detecting swaps between the two views, $t(21) = 7.37, p < .001, d_z = 1.57, 95\%-CI [1.14, 2.45]$
390 (see Figure 4, middle panel; see also Table 1 for the corresponding accuracy values). There
391 were no differences in the response criterion c between trials with and without redundant
392 shape information, $t(21) = 1.90, p = .07, d_z = 0.40, 95\%-CI [0.03, 0.82]$.

393

394 **Spill-over hypothesis.** We analyzed hits for different types of changes using logit
395 mixed effect models. Replicating Experiment 1a, swaps that included one of the redundant
396 objects were detected more often than swaps that included the two unique objects in displays
397 with redundant objects, $\chi^2(1) = 90.93, p < .001, R^2_m = .09, 95\%-CI [.05, 13]$. When compared
398 with swaps in the condition without any redundant objects (all-unique), swaps including the
399 redundant objects were also detected more often, $\chi^2(1) = 114.06, p < .001, R^2_m = .08, 95\%-CI$
400 $[.05, .11]$. Swaps between the two unique objects within the redundant display were detected
401 less often than swaps in the baseline condition without redundant objects (all-unique), $\chi^2(1) =$
402 $5.52, p = .019, R^2_m = .004, 95\%-CI [.001, .02]$. Note that this difference is opposite to the
403 direction that would be predicted by the spill-over hypothesis (see Figure 5, middle panel).

404

405 **Experiment 1c**406 **Methods**407 **Participants**

408 We collected data from 24 new participants who did not participate in any of the other
409 experiments. After exclusion of one participant performing at chance level, the final samples
410 consisted of 23 students (10 female, 18-22 years).

411

412 **Apparatus, Stimuli, and Procedure**

413 All apparatus, stimuli, and procedures were identical to Experiments 1a and 1b except
414 the redundant feature information. In this experiment, all Objects had a unique color with a
415 unique shape (drawn randomly on a trial-to-trial basis; see Figure 3c). In half of all trials, one
416 of the objects was replaced by a second instance of one of the other three objects in the
417 display, creating redundant combinations of color and shape information.

418

419 **Results**

420 **Redundancy-boost hypothesis.** As in Experiments 1a and 1b, we calculated the
 421 sensitivity value d' as well as the response bias c from signal detection theory for trials with
 422 and without redundant objects. The presence of redundant color and shape information
 423 improved the sensitivity for detecting swaps between the two views, $t(22) = 6.75, p < .001, d_z$
 424 = 1.41, 95%-CI [1.12, 1.95]⁵ (see Figure 4, lower panel; see also Table 1 for the
 425 corresponding accuracy values). There were no differences in the response criterion c between
 426 trials with and without redundant color and shape information, $t(22) = 0.96, p = 0.35, d_z =$
 427 0.20, 95%-CI [-0.21, 0.70].

428

429 **Spill-over hypothesis.** We analyzed hits for different types of changes using logit
 430 mixed effect models. Replicating Experiments 1a and 1b, swaps that included one of the
 431 redundant objects were detected more often than swaps that included the two unique objects
 432 in displays with redundant objects, $\chi^2(1) = 220.96, p < .001, R^2_m = .23, 95\%-CI [.01, .49]$.
 433 When compared with swaps in the condition without any redundant objects (all-unique),
 434 swaps including the redundant objects were also detected more often, $\chi^2(1) = 163.91, p < .001$,
 435 $R^2_m = .16, 95\%-CI [.10, .24]$.⁶ Nevertheless, swaps between the two unique objects within the
 436 redundant display were detected less often than swaps in the baseline condition without
 437 redundant objects (all-unique), $\chi^2(1) = 44.65, p < .001, R^2_m = .03, 95\%-CI [.01, .07]$ (i.e. the
 438 opposite from what would be predicted by the spill-over hypothesis; see Figure 5, right
 439 panel).

440

⁵ Exploratory screening for effects of sex revealed a significant interaction here. Numerically, this interaction arises from females being more sensitive than males in the condition without redundancy whereas there are no differences in the condition with redundancy. Critically, the beneficial effect of redundancy was present for females, $t(9) = 3.58, p = .006, d_z = 1.13, 95\%-CI [0.83, 1.92]$, as well as males, $t(12) = 6.60, p < .001, d_z = 1.83, 95\%-CI [1.46, 2.91]$.

⁶ Exploratory screening for effects of sex revealed a significant interaction here. Numerically, this interaction arises from females revealing more hits than males for swaps in the baseline, but less hits when the swaps involved the redundant objects. Critically, however, the difference between both conditions is significant for the subgroup of females $\chi^2(1) = 43.35, p < .001 R^2_m = .09, 95\%-CI [.03, .23]$ as well as males, $\chi^2(1) = 118.85, p < .001 R^2_m = .22, 95\%-CI [.15, .33]$.

Intermediate Discussion of Experiments 1a-c

442 Across Experiments 1a-c, we observed clear evidence in favor of the redundancy-
443 boost hypothesis and clear evidence against the spill-over hypothesis in Experiments 1a-c.
444 Redundant feature information increased the sensitivity for detecting swaps in the conditions
445 including redundant feature information relative to the conditions with unique objects. Within
446 the conditions with redundancies, however, only swaps including one of the redundant objects
447 elicited more accurate swap detections. Swaps among unique objects in displays including
448 redundant objects were detected less accurately than in the baseline condition without the
449 presence of redundancy.

450

Rationale for Experiments 2a-b

452 Experiments 1a-c have confirmed the redundancy-boost hypothesis that participants
453 can leverage redundant feature information in a structure change detection task. The next
454 experiments test whether this benefit stems from feature-based grouping among entire objects
455 by testing whether participants can take advantage of multiple redundant features (color and
456 shape) that are split across groups of objects. There are two key predictions from work in
457 feature-based perceptual grouping that we test in the remaining experiments. The first
458 prediction derived from Nothelfer et al. (2017) is that feature-based grouping should be more
459 pronounced for objects that share all features (e.g., color and shape) than objects that share
460 only a subset of features (e.g., same color but distinct shapes). The second prediction is that
461 people group objects of similar color and/or shape by jointly attending to objects of the same
462 color and/or shape simultaneously, such that the feeling of objects belonging together stems
463 from the fact that they are attended together (Huang, 2019, Huang, & Pashler, 2007; Huang,
464 Treisman, & Pashler, 2007; Yu, Tam & Franconeri, 2019; Yu, Xiao, Bemis, & Franconeri,
465 2019).

466 But this means that only one group can be created at a time. If a viewer sees a green square,
467 green triangle, and a red triangle, they cannot create both the green groups and the triangle
468 groups at once. They must choose to group according to one feature or the other. If so,
469 leveraging redundant feature information for structure change detection should also be limited
470 to a single feature-based group. In Experiment 2a, we compare structure change detection
471 performance for two redundant features which are either bound to the same objects or split
472 between separate sets of objects. If the feature-based grouping hypothesis is correct, structure
473 change detection performance should be more accurate when the redundant features are
474 combined within the same objects than when they are split between objects (see Nothelfer et
475 al., 2017). In Experiment 2b, we test an additional prediction by comparing structure change
476 detection performance for the condition with two redundant features that are split between
477 separate subsets of objects relative to a condition in which only a single redundant feature is
478 present. If the feature-based grouping hypothesis is correct, the benefit arising from redundant
479 features that are split between separate groups of objects should not exceed those arising from
480 a single redundant feature because grouping is limited to a single group of objects.

481

482 **Experiment 2a**483 **Methods**484 **Participants**

485 We collected data from 24 new participants who did not participate in any of the other
486 experiments. After the exclusion of one participant who performed below 80% correct in the
487 dual task, the final samples consisted of 23 students (13 female, 18-21 years).

488

489 **Apparatus, Stimuli, and Procedure**

490 All apparatus, stimuli, and procedures were identical to Experiments 1a-c with the
491 following exceptions. We compared three conditions. We repeated the redundancy condition

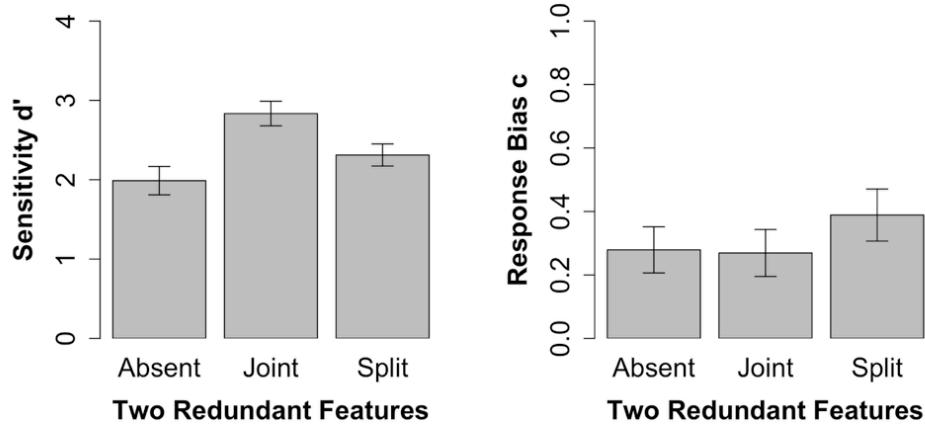
492 of Experiment 1c in which redundant objects combined the same color as well as shape
 493 information; and the no redundancy condition. Additionally, we introduced a new split
 494 redundancy condition in which there were also two redundant features, but these features
 495 were distributed between three or all four objects (e.g., a green circle, a green triangle, and a
 496 yellow triangle; see Fig. 3).

497

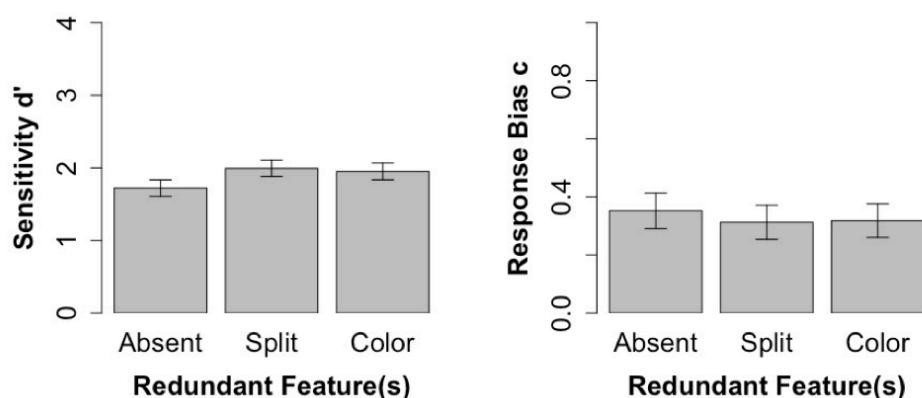
498 **Results**

499 We conducted repeated measures ANOVAs with the redundancy condition as
 500 independent variable and the sensitivity d' as well as the response bias c as dependent
 501 variables in addition to planned subsequent post-hoc comparisons.

502 We observed that the redundancy condition altered the sensitivity d' for swaps
 503 between the two views, $F(2, 44) = 15.69, p < .001, \eta_G^2 = .15, 95\%-CI [.07, .30]$ ⁷ (see also
 504 Fig. 6, upper panel). The post-hoc comparisons revealed that sensitivity on the condition with
 505 two joint redundant features (i.e. on the same objects) was higher than in the condition with
 506 two redundant features distributed across more objects, $t(22) = 4.02, p < .001, d_z = 0.84,$
 507 $95\%-CI [0.45, 1.45]$, as well as in the condition without redundancy, $t(22) = 5.01, p < .001, d_z$
 508 $= 1.04, 95\%-CI [0.70, 1.60]$. The comparison of the condition with the distributed redundant
 509 features and the baseline without redundancy trended toward significance, $t(22) = 2.07, p =$
 510 $.05, d_z = 0.43, 95\%-CI [0.5, 0.92]$. In contrast, the redundancy condition (combined: $M =$
 511 $0.27, SD = 0.38$; distributed: $M = 0.39, SD = 0.27$; no: $M = 0.28, SD = 0.40$) had no effect on
 512 the response bias c , $F(2, 44) = 1.62, p = .20, \eta_G^2 = .02, 95\%-CI [.002, .14]$. This finding
 513 signals the redundancy-boost in structure change detection is most pronounced when objects
 514 share all color as well as shape information facilitating feature-based grouping (please note
 515 that in Experiments 1a and 1b all features were redundant as one was constant across all



⁷ We calculated η_G^2 (R-package “ez”, Lawrence, 2016) as effect size to facilitate comparability to studies with different designs (Bakeman, 2005). The confidence intervals were calculated using a bootstrapping procedure with 10,000 iterations.


516 objects in the display). The results show that it is feature-based grouping rather than the
 517 number of redundant features per se which drives the benefit of redundant feature
 518 information.

519

Experiment 2a

Experiment 2b

520

521 *Figure 6.* Results of the signal detection analysis of Experiments 2a and 2b. The left column
 522 displays sensitivity d' . The right column displays response bias c . The error bars indicate
 523 within-subject confidence interval.

524

525

526

527

Experiment 2b528 **Methods**529 **Participants**

530 We collected data from 24 new participants who did not participate in any of the other
 531 experiments. After exclusion of one participant who performed at chance level in the structure
 532 change detection task and another participant who performed below 80% correct in the dual
 533 task, the final samples consisted of 22 students (12 female, 18-23 years).

534

535 **Apparatus, Stimuli, and Procedure**

536 All apparatus, stimuli, and procedures were identical to Experiments 2a with the
 537 following exceptions. We compared three conditions: the distributed redundancy condition of
 538 Experiment 2a, a color redundancy only condition in which two of four uniquely shaped
 539 objects share the same color (e.g. a green circle, a green triangle, a yellow square, and a red
 540 star, see Fig. 3), and a no redundancy condition.

541

542 **Results**

543 We again observed that the redundancy condition altered the sensitivity d' for swaps
 544 between the two views, $F(2, 42) = 3.56, p = .04, \eta^2 = .02, 95\%-CI [.004, .08]$ (see also Fig.
 545 6, lower panel). The post-hoc comparisons revealed that sensitivity in the condition with two
 546 split redundant features was higher than in the condition without redundant features, $t(21) =$
 547 $2.51, p = .020, d_z = 0.54, 95\%-CI [0.19, 0.94]$. The comparison of the condition with only
 548 redundant color information and the condition without redundancy was at the border of
 549 significance, $t(21) = 2.08, p = .050, d_z = 0.44, 95\%-CI [0.04, 0.92]$. Importantly, the condition
 550 with two distributed redundant features and only color redundancy did not differ from each
 551 other, $t(21) = 0.39, p = .70, d_z = 0.08, 95\%-CI [-0.34, 0.56]$. As in all previous experiments,
 552 the redundancy condition (Split: $M = 0.31, SD = 0.22$; Color only: $M = 0.32, SD = 0.31$; no:

553 $M = 0.35$, $SD = 0.30$) had no effect on the response bias c , $F(2, 42) = 0.28$, $p = .76$, $\eta_G^2 =$
554 $.004$, 95%-CI [$<.001$, $.07$]. This finding shows a strong limit in the number of effective
555 redundant features. In line with the feature-based-grouping hypothesis, our participants were
556 unable to take advantage of more than one redundant feature when they are not part of the
557 same object. Splitting multiple redundant features across more than a single pair of objects did
558 not improve performance beyond a single redundant feature.

559

560 **Discussion of Experiments 2a-b**

561 Across Experiments 2a-b, we observed further evidence in favor of the redundancy-
562 boost hypothesis, as redundant feature information again improved the identification of swaps
563 between views. In line with the feature-based-grouping hypothesis, we observed that this
564 benefit was more pronounced when two redundant features were combined in the same
565 objects than when they were split between more objects. In fact, in the case of split redundant
566 features, performance does not improve beyond performance with a single redundant feature,
567 suggesting that the benefit of redundancy is limited to a single redundant feature, or a single
568 group of redundant objects.

569

570 **General Discussion**

571 The current series of experiments explored how redundant feature information might
572 be leveraged to improve structure change detection performance. In line with the redundancy-
573 boost hypothesis, we observed that the presence of redundant feature information improved
574 the ability to detect swapped objects between two views separated by a 90 degree rotation.
575 The presence of redundant feature information also apparently encouraged participants to
576 preferentially encode those objects, as they more reliably detected changes that involved those
577 objects, relative to objects with no redundancy. However, contradicting the spill-over
578 hypothesis, this benefit came at the cost of the remaining objects in the display. When

579 redundant feature information was present, swaps between objects not carrying redundant
580 features were detected less often than in the conditions without redundant feature information.
581 Finally, in line with the feature-based-grouping hypothesis, we observed strict limitations with
582 regard to leveraging multiple redundant features. When two redundant features were split
583 across more than two objects, performance was less accurate than when the two redundant
584 features formed a pair of fully redundant objects. Indeed, splitting redundant features did not
585 improve performance beyond the level of a single redundant feature.

586

587 **Feature-based grouping as the mechanism of redundancy benefits**

588 Although the capacity in maintaining feature-location bindings across rotated views is
589 limited to a single object (Xu & Franconeri, 2015), leveraging redundant feature information
590 allows observers to perform beyond this limitation, by maintaining that binding across an
591 entire homogenous group. Such a mechanism would allow observers to encode more objects
592 within the same restricted capacity (see also Brady & Tenenbaum, 2013). Feature-based
593 grouping appears likely to underlie these redundancy benefits. In particular, this idea is in line
594 with the results of Experiments 2a and 2b, which have revealed limitations in leveraging
595 redundant visual features. The beneficial effects of the presence of two redundant features
596 was remarkably reduced when different combinations of redundant features were shared by
597 distinct groups of objects. In these cases, a pair of objects with redundant features shares only
598 one of the two features, but not the other (e.g., a red square and a red triangle).

599 These limitations are congruent with a recent account from the perceptual grouping
600 literature, where visual similarity grouping (e.g., color or shape) is limited to a single group at
601 a time (Huang, 2019, Huang, & Pashler, 2007; Huang, Treisman, & Pashler, 2007; Yu, Tam
602 & Franconeri, 2019; Yu, Xiao, et al, 2019). If this strict limitation transfers the visual
603 compression that aids structure change detection across rotated views, this would explain why

604 mental zip files cannot leverage across redundancies that is split across multiple objects, as in
605 Experiments 2a and 2b.

606

607 **Using leveraged feature information**

608 Following the initial feature-based grouping, there appear to be two plausible
609 mechanisms that might explain how observers can preserve redundant information across the
610 display rotation: perceptual averaging and multiple object tracking. Research on the
611 perceptual averaging of to-be-grouped objects (Ariely, 2001; Alvarez, 2011; Haberman,
612 Brady, & Alvarez, 2015) has shown that observers represent mean values of object-based
613 features which could change dynamically over time (Albrecht & Scholl, 2010). This includes
614 the average location of two or more objects (Alvarez & Oliva, 2008). It is possible that our
615 participants maintain the binding of the average location with the color binding across the
616 rotation or the display. In this case, if the transformed average locations do not match with the
617 perceived average location in the final display, the participants are able to identify the trial as
618 a swap trial.

619 In contrast, multiple object tracking does not require assumptions about averaging.
620 Instead, this account states that participants track the spatial locations of simultaneously
621 selected objects (Franconeri, Alvarez, & Enns, 2007) in parallel (see Meyerhoff, Papenmeier,
622 & Huff, 2017). Critically, these tracked objects could be maintained across brief intervals of
623 object invisibility (Horowitz, Birnkrant, Fencsik, Tran, & Wolfe, 2005) including rotations
624 (Meyerhoff, Huff, Papenmeier, Jahn, & Schwan, 2011). In agreement with our observation
625 that benefits from feature redundancies are limited to one group of objects, temporarily
626 invisible features information also cannot be maintained during object tracking (Pylyshyn,
627 2004). Similar to maintaining feature-location bindings across views, however, the
628 participants in our experiments may have been able to maintain only a single feature (i.e., the
629 redundant one), but were able to point it to multiple object locations (see Huang et al., 2007).

630 In this case, a mismatch between the maintained color and actual color at the tracked locations
631 in the final image would signal that a swap had occurred between the two views.

632 The current set of experiments is compatible with both explanations; however, future
633 research might aim at disentangling them by addressing the question of whether observers
634 maintain information about distinct objects or only the average location across the display
635 rotation. Critically, however, and independent of the exact mechanism, we propose that an
636 initial stage of feature-based grouping strongly limits any processes that arise subsequently.

637

638 **Why is there no spill-over effect?**

639 A difference between our experiments and related experiments on visuo-spatial
640 memory for color-location bindings is that the increased sensitivity for changes involving
641 redundant objects came at the expense of change sensitivity for non-redundant objects in the
642 same display. Whereas performance for such unique objects among redundant objects also
643 improved (e.g., Lin & Luck, 2008; Mate & Baques, 2009; Morey et al., 2015), or at least was
644 unaffected (e.g., Quinlan & Cohen, 2012), detecting swaps among non-redundant objects was
645 clearly impaired in our study. A plausible explanation for this difference could be provided by
646 the different capacity limitations of the different tasks at hand. Whereas a capacity limitation
647 of approximately four objects would free space for an additional object when compressing
648 two redundant objects to the size of one, no comparable free space would emerge if the initial
649 capacity limitation encompasses only one object, such as in tasks involving rotated views (Xu
650 & Franconeri, 2015). As attentional disruptions – including internal spatial manipulations
651 (Engle et al., 1999) - interfere with maintaining feature bindings (Fougnie & Marois, 2009;
652 Wheeler & Treisman, 2002), any potential spill-over from the memory representation is
653 obsolete after the display rotations in our study. We therefore argue that only passive memory
654 tasks are capable of inducing spill-over effects, whereas tasks that require a mental
655 manipulation of feature-location bindings cannot produce spill-over effects, but instead result

656 in an attentional bias toward redundant objects. In return, this bias toward redundant objects
657 lowers performance for the remaining unique objects in the display relative to conditions
658 without redundant objects, for which unique objects are encoded more or less at chance level.

659

660 **Implications for application and training**

661 As trainings of domain-general spatial skills such as mental rotation have been largely
662 ineffective in improving STEM outcomes (Stieff & Uttal, 2015), one aim of the present study
663 was to identify other domain-general mechanisms that could be candidates for training. Our
664 experiments show that visual features such as color and shape could be used to compress
665 elements of a spatial layout in order to use strictly limited capacities more efficiently (i.e. one
666 instead of two elements). Thus, explicitly encouraging observers to take advantage of
667 redundancies could be an important step toward improving spatial training. However, this
668 needs to be established in future research which should focus on the question of whether
669 individual differences in visual compression actually predict structure change detection
670 performance for in-context stimuli such as molecules. It will also be important to test whether
671 it is possible to leverage grouping cues beyond color and shape (Kubovy & Van den Berg,
672 2008).

673

674 **Conclusion**

675 Redundant visual features improve structure change detection performance (e.g.
676 identifying swaps between objects) across display rotations; however, this improvement is
677 restricted to a single group of objects, rendering mental zip files as less flexible than their
678 computer-based counterparts. Instead, this trick requires leveraging feature-based grouping
679 mechanisms to reduce demands on working memory limitations. Leveraging redundant
680 features therefore potentially could be a domain-general strategy to improve performance, for
681 training of spatial abilities in STEM domains.

682

683

Acknowledgment

684 The experimental scripts (requires PsychoPy), data as well as the scripts for the
685 analysis (requires R) are available at <https://osf.io/n82hj/> (Meyerhoff, Jardine, Stieff, Hegarty,
686 & Franconeri, 2020). This work was supported by NSF awards DRL-1661264, DRL-1661096
687 and DRL-1661151. We would like to thank Sneha Pamulapati and Jason Liou for their help
688 with the data collection.

689

690

References

691 Albrecht, A. R., & Scholl, B. J. (2010). Perceptually averaging in a continuous visual world:
692 Extracting statistical summary representations over time. *Psychological Science*, 21,
693 560-567.

694 Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual
695 cognition. *Trends in Cognitive Sciences*, 15, 122-131.

696 Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features
697 outside the focus of attention. *Psychological science*, 19, 392-398.

698 Ariely, D. (2001). Seeing sets: Representation by statistical properties. *Psychological
699 Science*, 12, 157-162.

700 Baddeley, A. (1986). *Working memory*. New York, NY, US: Oxford University Press.

701 Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs.
702 *Behavior Research Methods*, 37, 379-384

703 Barton, K. (2020). MuMIn: Multi-model inference. R-package, [https://cran.r-
704 project.org/web/packages/MuMIn/](https://cran.r-project.org/web/packages/MuMIn/)

705 Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H. ... Fox,
706 J. (2020). lme4: Linear Mixed-Effects Models using 'Eigen' and S4. R-package,
707 <https://CRAN.R-project.org/package=lme4>

708 Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity
709 and familiarity. *Journal of Experimental Psychology: Human Perception and
710 Performance*, 14, 12 - 23.

711 Botella, J., Peña, D., Contreras, M. J., Shih, P. C., & Santacreu, J. (2009). Performance as a
712 function of ability, resources invested, and strategy used. *The Journal of General
713 Psychology*, 136, 41-70.

714 Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity:
715 Beyond individual items and toward structured representations. *Journal of*
716 *Vision*, 11(5):4, 1-34.

717 Brady, T. F., & Tenenbaum, J. B. (2013). A probabilistic model of visual working memory:
718 Incorporating higher order regularities into working memory capacity
719 estimates. *Psychological Review*, 120, 85-109.

720 Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics
721 ability. *Journal of Cognition and Development*, 15, 2-11.

722 Cheung, O. S., Hayward, W. G., & Gauthier, I. (2009). Dissociating the effects of angular
723 disparity and image similarity in mental rotation and object recognition. *Cognition*, 113,
724 128-133.

725 Cooper, L. A., & Podgorny, P. (1976). Mental transformations and visual comparison
726 processes: Effects of complexity and similarity. *Journal of Experimental Psychology:*
727 *Human Perception and Performance*, 2, 503-514.

728 Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental
729 storage capacity. *Behavioral and Brain Sciences*, 24, 87-114.

730 Edelman, S., & Bülthoff, H. H. (1992). Orientation dependence in the recognition of familiar
731 and novel views of three-dimensional objects. *Vision Research*, 32, 2385-2400.

732 Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory,
733 short-term memory, and general fluid intelligence: a latent-variable approach. *Journal*
734 *of experimental psychology: General*, 128, 309-331.

735 Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical
736 power analysis program for the social, behavioral, and biomedical sciences. *Behavior*
737 *Research Methods*, 39, 175–191.

738 Folk, M. D., & Luce, R. D. (1987). Effects of stimulus complexity on mental rotation rate of
739 polygons. *Journal of Experimental Psychology: Human Perception and*
740 *Performance, 13*, 395-404.

741 Fougnie, D., & Marois, R. (2009). Attentive tracking disrupts feature binding in visual
742 working memory. *Visual Cognition, 17*, 48-66.

743 Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G, ... & R core team (2020).
744 car: Companion to applied regression. R package, [https://CRAN.R-
745 project.org/package=car](https://CRAN.R-project.org/package=car)

746 Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected
747 at once? *Journal of Experimental Psychology: Human Perception and Performance, 33*,
748 1003-1012.

749 Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C.
750 (2002). BOLD activity during mental rotation and viewpoint-dependent object
751 recognition. *Neuron, 34*, 161-171.

752 Haberman, J., Brady, T. F., & Alvarez, G. A. (2015). Individual differences in ensemble
753 perception reveal multiple, independent levels of ensemble representation. *Journal of*
754 *Experimental Psychology: General, 144*, 432-446.

755 Hayward, W. G., & Williams, P. (2000). Viewpoint dependence and object discriminability.
756 *Psychological Science, 11*, 7-12.

757 Horowitz, T. S., Birnkrant, R. S., Fencsik, D. E., Tran, L., & Wolfe, J. M. (2006). How do we
758 track invisible objects?. *Psychonomic Bulletin & Review, 13*, 516-523.

759 Huang, L. (2019). Unit of visual working memory: A Boolean map provides a better account
760 than an object does. *Journal of Experimental Psychology: General*.

761 Huang, L., & Pashler, H. (2007). A Boolean map theory of visual attention. *Psychological
762 Review, 114*, 599-631.

763 Huang, L., Treisman, A., & Pashler, H. (2007). Characterizing the limits of human visual
764 awareness. *Science*, 317, 823-825.

765 Hyde, J. S. (2005). The gender similarities hypothesis. *American Psychologist*, 60, 581-592.

766 Johnson, P. C. (2014). Extension of Nakagawa & Schielzeth's R^2_{GLMM} to random slopes
767 models. *Methods in Ecology and Evolution*, 5, 944-946.

768 Jolicoeur, P. (1985). The time to name disoriented natural objects. *Memory & Cognition*, 13,
769 289-303.

770 Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: accounts of mental
771 rotation and individual differences in spatial ability. *Psychological Review*, 92, 137.

772 Kellman, P. J. (2013). Adaptive and perceptual learning technologies in medical education
773 and training. *Military Medicine*, 178, 98-106.

774 Khooshabeh, P., Hegarty, M., & Shipley, T. F. (2013). Individual differences in mental
775 rotation. *Experimental Psychology*, 60, 164-171.

776 Krummenacher, J., Müller, H. J., & Heller, D. (2001). Visual search for dimensionally
777 redundant pop-out targets: Evidence for parallel-coactive processing of dimensions.
778 *Perception & Psychophysics*, 63, 901-917.

779 Kubovy, M., & Van Den Berg, M. (2008). The whole is equal to the sum of its parts: A
780 probabilistic model of grouping by proximity and similarity in regular
781 patterns. *Psychological Review*, 115, 131-154.

782 Lawrence, M. A. (2016). ez: Easy Analysis and Visualization of Factorial Experiments. R-
783 package, <https://CRAN.R-project.org/package=ez>

784 Lin, P. H., & Luck, S. J. (2009). The influence of similarity on visual working memory
785 representations. *Visual Cognition*, 17, 356-372.

786 Mate, J., & Baqués, J. (2009). Short article: Visual similarity at encoding and retrieval in an
787 item recognition task. *Quarterly Journal of Experimental Psychology*, 62, 1277-1284.

788 Meyerhoff, H.S., Huff, M., Papenmeier, F., Jahn, G., & Schwan, S. (2011). Continuous visual
789 cues trigger automatic spatial target updating in dynamic scenes. *Cognition*, 121, 73-82.

790 Meyerhoff, H. S., Jardine, N., Stieff, M., Hegarty, M., & Franconeri, S. (2020). Raw data,
791 scripts, and code for “Visual ZIP files: Viewers beat capacity limits by compressing
792 redundant features across objects”. <https://doi.org/10.17605/OSF.IO/N82HJ>

793 Meyerhoff, H.S., Papenmeier, F., & Huff, M. (2017). Studying visual attention using the
794 multiple object tracking paradigm: a tutorial review. *Attention, Perception, &*
795 *Psychophysics*, 79, 1255-1274.

796 Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for
797 gifted STEM undergraduates? *Learning and Individual Differences*, 26, 141-152.

798 Morey, C. C. (2019). Perceptual grouping boosts visual working memory capacity and
799 reduces effort during retention. *British Journal of Psychology*, 110, 306-327.

800 Morey, C. C., Cong, Y., Zheng, Y., Price, M., & Morey, R. D. (2015). The color-sharing
801 bonus: Roles of perceptual organization and attentive processes in visual working
802 memory. *Archives of Scientific Psychology*, 3, 18.

803 Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R^2 from
804 generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4, 133-
805 142.

806 National Research Council. (2006). Learning to think spatially. Washington, DC: The
807 National Academies Press.

808 Nazareth, A., Killick, R., Dick, A. S., & Pruden, S. M. (2019). Strategy selection versus
809 flexibility: Using eye-trackers to investigate strategy use during mental rotation. *Journal*
810 *of Experimental Psychology: Learning, Memory, and Cognition*, 45, 232-245.

811 Newcombe, N. S. (2016). Thinking spatially in the science classroom. *Current Opinion in*
812 *Behavioral Sciences*, 10, 1-6.

813 Nothelfer, C., Gleicher, M., & Franconeri, S. (2017). Redundant encoding strengthens
814 segmentation and grouping in visual displays of data. *Journal of Experimental*
815 *Psychology: Human Perception and Performance*, 43, 1667-1676.

816 Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. *Journal of Neuroscience*
817 *Methods*, 162, 8-13.

818 Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: Do we know more now than we
819 did 20 years ago? *Annual Reviews of Psychology*, 58, 75-96.

820 Peterson, D. J., & Berryhill, M. E. (2013). The Gestalt principle of similarity benefits visual
821 working memory. *Psychonomic Bulletin & Review*, 20, 1282-1289.

822 Pylyshyn, Z. W. (1979). The rate of “mental rotation” of images: A test of a holistic analogue
823 hypothesis. *Memory & Cognition*, 7, 19-28.

824 Pylyshyn, Z. (2004). Some puzzling findings in multiple object tracking: I. Tracking without
825 keeping track of object identities. *Visual Cognition*, 11, 801-822.

826 Quinlan, P. T., & Cohen, D. J. (2012). Grouping and binding in visual short-term
827 memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 38,
828 1432-1438.

829 Saiki, J. (2003). Feature binding in object-file representations of multiple moving
830 items. *Journal of Vision*, 3, 6-21.

831 Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial
832 thinking and language processing: An individual differences approach. *Journal of*
833 *Experimental Psychology: General*, 125, 4-27.

834 Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional
835 objects. *Science*, 171, 701-703.

836 Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering
837 students. *International Journal of Science Education*, 31, 459-480.

838 Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. *Learning and*
839 *Instruction*, 17, 219-234.

840 Stieff, M., & Uttal, D. (2015). How much can spatial training improve STEM
841 achievement? *Educational Psychology Review*, 27, 607-615.

842 Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape
843 recognition. *Cognitive Psychology*, 21, 233-282.

844 Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, I. (1998). Three-dimensional object
845 recognition is viewpoint dependent. *Nature Neuroscience*, 1, 275-277.

846 Thalmann, M., Souza, A. S., & Oberauer, K. (2019). How does chunking help working
847 memory? *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 45,
848 37-55.

849 Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., &
850 Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training
851 studies. *Psychological Bulletin*, 139, 352-402.

852 Voyer, D., Saint-Aubin, J., Altman, K., & Doyle, R. A. (in press). Sex differences in tests of
853 mental rotation: Direct manipulation of strategies with eye-tracking. *Journal of*
854 *Experimental Psychology: Human Perception and Performance*.

855 Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial
856 abilities: a meta-analysis and consideration of critical variables. *Psychological Bulletin*,
857 117, 250-270.

858 Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning
859 over 50 years of cumulative psychological knowledge solidifies its importance. *Journal*
860 *of Educational Psychology*, 101, 817-835.

861 Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. *Journal of*
862 *Experimental Psychology: General*, 131, 48-64.

863 Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: an alternative to the feature
864 integration model for visual search. *Journal of Experimental Psychology: Human*
865 *Perception and Performance*, 15, 419-433.

866 Xu, Y., & Franconeri, S. L. (2015). Capacity for visual features in mental
867 rotation. *Psychological Science*, 26, 1241-1251.

868 Yu, D., Tam, D., & Franconeri, S. L. (2019). Gestalt similarity groupings are not constructed
869 in parallel. *Cognition*, 182, 8-13.

870 Yu, D., Xiao, X., Bemis, D. K., & Franconeri, S. L. (2019). Similarity grouping as feature-
871 based selection. *Psychological Science*, 30, 376-385.

872 Yuille, J. C., & Steiger, J. H. (1982). Nonholistic processing in mental rotation: Some
873 suggestive evidence. *Perception & Psychophysics*, 31, 201–209.