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ABSTRACT: To optimize the productivity of ion exchange
membranes used in electric field-driven ion separation processes,
an understanding of the relationship between membrane
structure−property metrics and a measure of ion separation is
necessary. The membrane separation factor is a commonly used
indicator of ion separation efficacy, and as outlined in this review, it
can be related to the intrinsic sorption and diffusion selectivity
properties of the membrane. Doing so connects the separation
factor to key theories that describe ion transport, and this
connection facilitates an analysis of the implications of these
theories on electric field-driven ion separations. The process of
electrodialysis and ion exchange membranes can be applied for
both desalination and ion separation applications, and this review
discusses relationships between commonly used metrics for electric field-driven transport (e.g., transport number) and properties
commonly used in desalination contexts (e.g., sorption and diffusivity selectivity). These relationships provide context for commonly
observed experimental trends. Additionally, some common assumptions (and their implications for describing membrane transport
properties related to a multicomponent ED system) are discussed. This review also links fundamental membrane properties (such as
sorption and diffusivity selectivity) to ion separation-critical properties (such as the ion exchange affinity). While the diffusivity
selectivity may be more important at lower current density values, the sorption selectivity is expected to be important across a wider
range of current density values. This review further highlights the interconnected manner by which ion exchange membrane
properties and external process conditions couple to influence ion separation performance.

1. INTRODUCTION

Natural resources and energy, such as freshwater, minerals, and
electricity, are indispensable to human life and the develop-
ment of society, yet continuous global population growth
continues to lead to increased demand that challenges the
supply of each.1−7 Polymer membrane-based separation
processes are known for high efficiency, reliability, and cost-
effectiveness, and they have been widely applied to mitigate
stresses on the global supply of natural resources (particularly
water) and are being considered to address challenges related
to emerging production and storage of clean-energy.8−11 For
example, highly selective reverse-osmosis (RO) membranes
can effectively desalinate water,12−24 and ion exchange
membranes (IEMs) can be used to selectively extract target
ions from a mixture of electrolytes25−31 or to serve as a
selective, conductive barrier in batteries and fuel cells.25,32−43

Among these membrane-based separations, electric field-driven
membrane-based processes are of particular interest in the field
of desalination,44−50 specific ion separations,31,51−66 and
energy applications.67−74 Processes, including electrodialysis
(ED) (for desalination and/or specific ion separations) and

reverse electrodialysis (for energy production), have been
scaled up in response to this interest.
The electric field-driven nature of ED can lead to higher

process costs in some cases as electricity can be more
expensive compared to other driving forces (e.g., thermal
energy and pressure) that are used to accomplish separa-
tions.9,49,75 However, when ED is used in ion separation
applications, the high cost of electricity could be overcome by
the value of the recovered ions. This situation could be
particularly true if the ions, e.g., lithium,76−79 or rare Earth
elements,80−82 are sufficiently valuable.
In a typical ED application, cation exchange membranes

(CEMs, which contain fixed negatively charged functional
groups) and anion exchange membranes (AEMs, which
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contain fixed positively charged functional groups) are stacked
in an alternating fashion. As a current is applied, cations will
transport preferentially across the CEMs while anions will
transport preferentially across the AEMs.54,73,83,84 If the
relative rates of transport of one cation, versus another,
through the CEM (or one anion, versus another, through the
AEM) are different, then ED can be used to fractionate ions
and to enrich a target ion via the process. Different strategies,
such as mixing nanomaterials into IEMs85,86 or coating
oppositely charged layers and/or layer-by-layer deposition of
polyelectrolytes,60,62−64,87−89 have been considered to enhance
this form of selectivity. These modifications suggest promising
strategies for developing novel IEMs that would enable the
capture or enrichment of specific ions from a multielectrolyte
solution.
Several critical challenges, such as membrane selectivity,

productivity, and durability, still need to be addressed before
this form of ion separation will likely be viable. First, many of
the high value target ions (e.g., Li+) are present at very low
concentrations compared to other ions (e.g., Na+ and Mg2+) in
the solution. Therefore, membranes offering high selectivity for
the target ion over other ions are needed.76−79 Also, the
process must be productive enough to be viable. Low
productivity in ED leads directly to higher energy consumption
and operating costs.76−79 Finally, membrane durability must
also be considered when designing new IEMs. If, for example,
ion selective surface coatings60,62−64,87−89 become damaged
over time,90,91 repair or replacement of the membranes will
result in greater cost over time.
Addressing these challenges could be facilitated by improved

understanding of structure−property relationships in IEMs.
For example, understanding what specific functional groups
enhance the separation of specific ions would go a long way
toward engineering new ion selective membranes. While efforts
have been underway, for some time, to answer these questions,
this area represents an opportunity for polymer science and
engineering to understand how the interplay of chemistry and
membrane structure contribute to transport mechanisms and
ultimately transport properties.
Recently, the greater importance of water/salt selectivity

compared to productivity has been emphasized.92,93 It is likely
that the corresponding view (that selectivity is particularly
critical) may also be the case for IEMs used in electric field-
driven processes because small molecule transport is highly
analogous in these membranes. The ion selectivity of an IEM
can be deconvoluted into sorption and diffusion selectivities,94

and both of these selectivity values can be engineered to
achieve selective transport of one ion over others. For example,
the membrane could be engineered to preferentially sorb the
target ion while excluding the others. Additionally or perhaps
alternatively, it could be engineered to preferentially restrict
the rate of transport of the other ions relative to the target ion.
This review discusses the connections between sorption and
diffusion selectivity and the overall ion selectivity of an ion
exchange membrane.
Here, the ion selectivity and its sorption and diffusion

selectivity contributors are discussed for ion exchange
membranes using the framework of the solution-diffusion
model. First, relevant theory is discussed followed by
discussion of some implications of those theories. In addition
to introducing and discussing the different ion selectivity
measures for ion exchange membranes, we review several
methods that are commonly used to quantify sorption and

diffusion selectivity. We also review important assumptions
and potential artifacts that are associated with the different
methods for determining sorption and/or diffusion selectivity
properties. Ultimately, the discussion connects measures of ion
selectivity to sorption and diffusion contributors in an effort to
provide insight for engineering next generation ion exchange
membranes.

2. THEORY
2.1. Separation Factor. The separation factor (SF)

describes the tendency of a target ion, i, to pass through a
membrane relative to some other ion, j. Typically, the
separation factor (sometimes also called the selectivity or
permselectivity) is defined as a ratio of concentration
normalized fluxes:95,96

≡
J C

J C
SF

/

/
i i

j j

s

s
(1)

where Ji is the average flux of ion i, and Ci
s is the concentration

of ion i in the upstream solution. Normalizing the flux by the
ion concentration in the upstream solution accounts for
differences in concentration, as Ji/Ci

s is effectively the
permeance of ion i in the limit where the ion concentration
on the upstream side of the membrane is much greater than
that on the downstream side of the membrane.6,9,97 Thus, SF
can be viewed as a ratio of the permeance of i to that of j, and it
is often used as a measure of the separation effectiveness (i.e.,
ion i is typically chosen to be the target ion so that SF > 1) of a
membrane for ion separation applications (e.g., electrodialysis
and Donnan dialysis).76,98

The separation of ions can also be evaluated using the
separation efficiency parameter, SEP, which is based on the
initial concentrations of the ions in the dilute solution and the
concentrations of the ions in the dilute solution after a fixed
amount of operating time.99,100 The two approaches for
characterizing the ion separation are related. In an effective
separation where i is the target component, the permeance of i
is greater than that of component j. Therefore, in an effective
separation process, one would expect the retention of
component j at any time t to be greater than the retention
of component i, and this situation results in a separation
efficiency parameter greater than zero and a separation factor
greater than unity. For the purpose of this review, we will focus
on the separation factor (eq 1) as it describes the relative rates
of transport of component i to that of component j.
In addition to eq 1, the separation factor is, in some cases,

also expressed as the ratio of the flux of i to that of j.101 In this
approach, the upstream solution concentrations are not used.
This approach can be useful from a process engineering point
of view because it provides direct insight into how many i ions
transfer per each j ion.
Alternatively, when SF is defined as a ratio of ion

permeances, it provides insight into how intrinsic membrane
properties affect the ion separation. As a ratio of ion
permeance values, eq 1 considers both the relative number
of ions transferred (i.e., flux) and the ion availability (i.e.,
concentration). For example, in typical Li+/Mg2+ separations,
the feed solution typically contains much less Li+ compared to
Mg2+ (e.g., the molar ratio of Li+/Mg2+ can be on the order of
0.1 depending on the source).76 In a membrane separation
process, the Li+ flux would be expected to be much less than
that of Mg2+ as a result of the smaller driving force for Li+
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transport compared to that for Mg2+ transport. Consequently,
comparing only the Li+ and Mg2+ fluxes could lead to the
conclusion that the membrane is ineffective, as a greater flux of
Mg2+ (i.e., the interfering ion) is observed relative to that of Li+

(i.e., the target ion). However, the process may actually enrich
Li+ (relative to Mg2+) in the product solution if SF > 1. This
enrichment means that Li+ (i.e., the target ion) is concentrated
in the product solution compared to the feed solution, which is
the hallmark of an effective process.76,98 Therefore, SF, as
defined in eq 1, is a useful figure of merit to inform membrane
performance for ion separations.
The definition of SF in eq 1 can be used to derive alternate

expressions for the separation factor.56,57 Often, arriving at
these expressions requires knowledge of or assumptions about
the ion transport mechanism in the membrane. Here we focus
on dense, nonporous ion exchange membranes where
transport is described using the solution-diffusion
model.102−104 While porous membranes have, in some cases,
been used in electrodialysis applications,51,105 the scope of this
review is limited to dense, nonporous membranes. The
solution-diffusion model describes cross-membrane ion trans-
port as a three-step process.102,103,106 First, ions sorb (or
partition) into the membrane from the upstream solution.
Next, the ion diffuses through the membrane, and finally, the
ion desorbs into the downstream solution.
Fick’s law is often used as the constitutive equation to relate

flux to an external concentration difference driving force.3,107

When the concentration difference across the membrane is
approximately equal to the concentration on the upstream side
of the membrane (i.e., Ci

s ≫ Ci
s,downstream), Fick’s law can be

written as107

=J
K D
L

Ci
i i

i

m
s

(2)

where Di
m is the average diffusion coefficient of ion i in the

membrane phase, L is the membrane thickness, and the ion
sorption coefficient is defined as Ki ≡ Ci

m/Ci
s, where Ci

m is the
concentration of i in the membrane phase at the upstream
face.102,106 The product of the sorption and diffusion
coefficient (i.e., KiDi

m) is typically called the permeability of
ion i, and this permeability therefore encapsulates the sorption
and diffusion components of the solution diffusion model.97,103

Correspondingly, the separation factor can be expressed as

= =
K D
KD

P
P

SF i i

j j

i

j

m

m
(3)

where the separation factor is also equal to the ion i/j
permeability selectivity (i.e., the ratio of the permeability of ion
i, Pi, to that of ion j, Pj).
In ion separation processes seeking to separate ions of like

charge, electric fields are often used to drive ion transport.
Therefore, in the limiting case where ion transport is driven
primarily by an electric field, the ion flux and separation factor
can be expressed in terms of ion transport numbers as89,108

=J
It
z Fi

i

i (4)

=
z

z
t C
t C

SF
/
/

j

i

i i

j j

s

s
(5)

where I is the current density, zi is the valence of ion i, ti is the
transport number of i, and F is Faraday’s constant. The
appearance of the ion valences in eq 5 accounts for differences
in the influence of the electric field on the transport of ions of
different valence. The transport number describes the fraction
of current carried by a particular ion and is defined as25,94

=
∑

t
z C D
z C Di
i i i

i i i i

2 m m

2 m m
(6)

Arriving at eq 5 requires an assumption that electric field-
driven migration dominates over diffusive and convective ion
transport.89,108 This assumption may be valid when the
concentration difference between the upstream solution and
the downstream solution is relatively low (to suppress the
contribution of diffusive transport) and the applied current
density is sufficiently high.94 The full expression for the
Nernst−Planck equation,107 described elsewhere, can be used
in place of this assumption to simultaneously describe the
contributions of diffusion, migration, and convection to the
flux.109

By substituting eq 6 into eq 5, the separation factor can be
expressed as

≅
z
z
K
K

D
D

SF i

j

i

j

i

j

m

m
(7)

Both eqs 3 and 7 suggest that the separation factor can be
expressed in terms of the sorption selectivity, Ki/Kj, and the

Table 1. Summary of the SF Expressions Discussed in section 2.1a

index for separation efficiency definition/formula applicability

separation factor (SF)

≡
J C

J C
SF

/

/
i i

j j

s

s general by definition

= =
K D
KD

P
P

SF i i

j j

i

j

m

m
dense membranes; transport driven by a concentration
gradient

≅
z
z
K D
KD

SF i

j

i i

j j

m

m dense membranes; transport driven by an electric field

separation efficiency parameter
(SEP)

99,100 =
{ } − { }

{ − } + { − }
×S t

c t c c t c

c t c c t c
( )

( )/ (0) ( )/ (0)

1 ( )/ (0) 1 ( )/ (0)
100%j j i i

j j i i
EP general by definition

aThe separation efficiency parameter, SEP, stems from an ion retention perspective and is based on the initial concentrations of the ions in the dilute
solution and the concentrations of the ions in the dilute solution after a fixed amount of operating time.99,100 The criteria for an effective separation,
where component i is the target ion, are SF > 1 and SEP > 0.
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diffusivity selectivity, Di
m/Dj

m. Both of these selectivity values
are intrinsic material properties of the membrane, though as
will be discussed subsequently, the sorption selectivity may
also depend on characteristics of the solution. A summary of
different forms of the separation factor is provided in Table 1.
2.2. Ion Sorption Selectivity. The equilibrium ion

sorption coefficient, Ki, is defined as the ratio of the
concentration of i in the membrane relative to that in the
external solution.9,102,106 The partitioning process, or ulti-
mately the concentration of i in the membrane, is affected by
the specific properties of the membrane.3,6,97 A particularly
profound example of this situation is the one observed when
comparing uncharged membranes and ion exchange mem-
branes (IEMs). The fixed charge groups present in ion
exchange membranes have a significant influence on ion
sorption properties.3,6,97 Furthermore, the choice of ion i and/
or the way that Ki is used to analyze transport can depend on
the application of interest. The following discussion further
describes these differences.
To start, we restrict the discussion to single-electrolyte

systems. In an uncharged membrane (i.e., a hydrophilic
material that does not contain ionizable fixed charges), the
equivalent cation and anion concentrations in the membrane
must be equal according to the principle of electro-
neutrality.106,110 For monovalent binary salts, this situation
simplifies to say that the molar cation and anion concen-
trations are identical in the membrane.110 In this case, defining
Ki using either the anion or the cation yields the same
result.106,110

In IEMs, the concentration of counterions (i.e., cations in
cation exchange membranes or anions in anion exchange
membranes) in the membrane phase is typically greater (and
often much greater) than the concentration of co-ions (i.e.,
ions with the same charge as the fixed charge groups in the
membrane).106,110−112 When IEMs are used in desalination,
co-ion sorption is particularly important because the co-ions
are representative of the concentration of mobile salt (i.e.,
electrically neutral combinations of ions) in the mem-
brane.106,110−112 As such, the co-ion sorption coefficient in
an IEM is equivalent to the salt sorption coefficient, KS, which
is useful for studying salt permeability properties of IEMs and
ultimately salt rejection for desalination applications.106,111,112

When IEMs are used in electrodialysis, however, it is
desirable to have the counterions carry the majority of the
current (i.e., account for the majority of the ion trans-
port).25,113 As such, it is useful to consider the counterion
sorption coefficient. For example, when defining the separation
factor using eq 7, one would use the counterion sorption
coefficient as counterion transport is desired in this case.94,113

The previous examples highlight the different contexts and/
or uses of the ion sorption coefficient. Accordingly, the mobile
salt (S), co-ion (X), or counterion (M) ion sorption
coefficients (for ion i) are defined as114

≡K
C
Ci
i

S,
S
m

s
(8)

≡K
C
Ci
i

X,
X
m

s
(9)

≡K
C
Ci
i

M,
M
m

s
(10)

where in each case the sorption coefficient is the ratio of the
membrane phase ion concentration to the solution phase ion
concentration. Figure 1 further illustrates the nomenclature
embodied by eqs 8−10.

The charged (ion exchange) membrane depicted in Figure 1
contains fixed charge groups that have charges opposite to that
of the counterions. To maintain electroneutrality, each fixed
charge group (A) must be balanced by a counterion, and
additionally, each co-ion must be balanced by a counterion. If
the fixed charge group is monovalent, then the electro-
neutrality condition requires CA

m + zXCX
m = zMCM

m.114,116

This charge balance can be divided by the external salt
solution concentration to connect the charge balance to the
ion sorption coefficient definitions as

= +K
z
z

K
z

C
C

1
i i

i
M,

X

M
X,

M

A
m

s
(11)

where zX is the co-ion valence, zM is the counterion valence,
and CA

m is the membrane fixed charge concentration. For a
monovalent (1:1 MX type) electrolyte (e.g., NaCl where M is
Na+ and X is Cl−), eq 11 reduces to

= +K K
C
Ci i
i

M, X,
A
m

s
(12)

The relationship for other types of electrolyte (e.g., M2X) can
be obtained in a similar manner from eq 11 by substituting the
corresponding zX and zM values into the equation.
Theoretical models can be used, at least in principle, to

calculate the value of KX,i (and therefore KM,i) for a membrane
equilibrated with a single-electrolyte solution. In perhaps the
simplest case, the ion sorption process can be described as one
where a charge is moved from one dielectric continuum (i.e.,
the external solution phase) to the membrane phase, which is
also taken to be a dielectric continuum, and the Born model
describes this relatively simple situation.106,117−119 The
observation of specific ion effects in ion exchange membranes
suggests that dispersion energy may also be important for
describing sorption of ions that exhibit Hofmeister series

Figure 1. Nomenclature for the ion sorption coefficients and ion
concentrations for both uncharged and charged (ion exchange)
membranes exposed to a single-electrolyte solution. Often, uncharged
membranes exclude salt, and CS

m < Ci
s.106,114 In charged (ion

exchange) membranes, the counterion concentration, CM
m, is often

greater than Ci
s, and co-ions generally are excluded from the

membrane (i.e., CX
m < Ci

s).106,115 In this example, the fixed charge
group (the concentration of which is represented by CA

m) is taken to
be monovalent, which is commonly the case in IEMs.76,94−96,113
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behavior.114,119−122 Activity coefficient effects, long neglected
in the analysis of ion sorption in polymers, are critical for
accurately modeling ion sorption in hydrated polymers, and
the Donnan-Manning model can be effective at quantitatively
predicting the ion sorption properties of some highly swollen
IEMs.111,112,123,124

The aforementioned models have been applied to describe
single-electrolyte systems. Additional complications arise when
considering the multielectrolyte partitioning problem, which is
at the core of ion separation processes.76,98,105 A significant
difference between ion partitioning in multielectrolyte systems
and single-electrolyte systems is competition between different
counterions (e.g., Li+ and Mg2+) for association with the
membrane fixed charge groups (e.g., A− or SO3

− in the cation
exchange membrane example shown as Figure 2).125,126 This
competition, arising from different affinities between the
counterions and the membrane fixed charge groups, can be
described by an ion-exchange equilibrium constant.116,127

Ion exchange equilibrium between a cation exchange
membrane (CEM) and an electrolyte containing two cations
(Mi and Mj), where Mi is a monovalent cation (zi = 1) and Mj

is a divalent cation (zj = 2) can be described as127,128

+ +− + + + − +F2(A M ) M 2M (A ) Mi j i j
2

2
2

(13)

This equilibrium relationship can be used to define the ion
exchange equilibrium constant, Kiex, which is typically defined
using concentrations as opposed to thermodynamic activity
values, as128

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz= =

| | | |

K
C

C
C
C

C

C
C
C

j

j

i

i

j

j

z

i

i

z

iex

m

s

s

m

2 m

s

s

m

i j

(14)

The expression can be generalized in terms of |zi| and |zj| (as
shown on the right-hand side of eq 14). The value of Kiex can
be determined experimentally,127,128 but values are reported
often for ion exchange resins prepared using chemistry that is
similar to that used in many ion exchange membranes.129

The ion exchange equilibrium constant can be expressed
using dimensionless ion concentrations to facilitate use with
ion exchange isotherms. In the solution phase, the dimension-
less composition of counterion j (in a mixture of counterions i
and j) can be written as

=
| |

| | + | |
x

z C

z C z Cj
j j

j j i i

s

s s
(15)

The concentration of cations in the solution phase, in units
of equivalents of charge per volume, can be written as

= | | + | |C z C z Cj j i i0
s s

(16)

For example, in the multielectrolyte (MiX and MjX2) system
described in Figure 2, C0 = 2CMj2+

s + CMi+

s . The corresponding
dimensionless composition of counterion j in the membrane
phase can be written as

=
| |

y
z C

Cj
j j

m

A
m

(17)

Figure 2. Difference in CEM ion sorption behavior between a single-electrolyte system and a multielectrolyte system. In the multielectrolyte
system, both cations are present in the membrane phase, and an ion exchange equilibrium constant is generally used to describe the relative
composition of the counterions associated with the fixed charges.
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where the fixed charge group has been taken to be monovalent,
i.e., |zA| = 1. The value of yj represents the fraction of fixed
charge equivalents that are associated with counterion j, and if
only two counterions are present (i and j), then yi = 1 − yj and
represents the fraction of fixed charge equivalents that are
associated with counterion i. Using eqs 15−17 and by taking
counterion i to be a monovalent ion (i.e., |zi| = 1), eq 14 can be
simplified by introducing the dimensionless concentrations:51
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If counterion j is a monovalent ion (i.e., |zj| = 1), then the
value of Kiex does not depend on either the membrane fixed
charge concentration, CA

m, or the equivalent counterion
concentration in the solution, C0.

127 However, if counterion j
is a divalent (i.e., |zj| = 2) or a trivalent (i.e., |zj| = 3) ion, then
Kiex is affected by the ratio of C0/CA

m, either linearly or
quadratically.51 To account for this dependence, Kiex can be
further normalized by C0/CA

m to yield the dimensionless ion
exchange affinity, αi

j:127
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Therefore, if the value of αi
j is known, one can calculate the

dimensionless counterion composition in the membrane phase,
yj, given a particular solution composition, xj. If the values of yj
and yi are known at given values of xj and xi, then the
dimensionless counterion composition values can be used to
calculate sorption coefficients for each counterion:127
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The ratio of these sorption coefficients can be taken to define
the membrane sorption selectivity of counterion i relative to
counterion j.
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The expression of Kj
i in eq 22 is related to the expression of αi

j

in eq 19. The relationship between Kj
i and αi

j will be discussed
in further detail in section 3.1.
2.3. Counterion/Counterion Diffusivity Selectivity.

The counterion/counterion diffusivity selectivity, Di
m/Dj

m,
represents the relative kinetic rates of diffusion or mobility of
counterion i relative to counterion j in the membrane.84,94

Unlike ion sorption selectivity in multielectrolyte systems,
where the selectivity often is determined experimentally, the
ion diffusivity selectivity for multielectrolyte systems can be
either experimentally measured or, in some cases, calculated
via theory. This section describes two theoretical models (the
theory of Mackie and Meares and free volume theory) that are
used to calculate ion diffusion coefficients and experimental
approaches to measure ion diffusivity properties.
2.3.1. Theory of Mackie and Meares. The theory of Mackie

and Meares is a statistical description of small molecule

diffusion in a mixture of polymer and solvent.130,131 The theory
is based on the assumption that the swollen membrane is a
homogeneous mixture of polymer and sorbed water.130 This
mixture is represented on a lattice, and lattice positions
occupied by polymer are considered impermeable. Therefore,
small molecules can only diffuse by executing diffusional jumps
between lattice positions that do not contain polymer.
The physical implication of this treatment is that cross-

membrane transport occurs through the volume of the swollen
material that is occupied by the sorbed water. As such, the
presence of the polymer has two effects on transport. First, the
presence of the polymer reduces the effective cross-sectional
area available for transport, and second, it increases the
tortuosity.130 Both of these effects lead to reduction in
diffusivity.
The Mackie and Meares model connects the membrane

phase diffusion coefficient, Di
m, to that in the external solution

via the volume fraction of water as
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where Di
s is the diffusion coefficient in bulk solution, and ϕW,

the only variable in the model, is the membrane water volume
fraction.130,131 An important feature of eq 23 is that it ensures
the diffusion coefficient in the membrane converges to the
diffusion coefficient in bulk solution as ϕW approaches unity
(i.e., the pure solution limit).106 In general, the Mackie and
Meares model is most likely to be suitable for describing
diffusion in highly swollen membranes (ϕW > 0.5)112,113 and
systems with negligible ion−polymer interactions,106 and in
these cases, the effects described by the Mackie and Meares
model can be much greater than electrostatic effects.
Applying the Mackie and Meares model for two different

counterions, i and j, and assuming the volume fraction of water
in the membrane, ϕW, is independent of the presence of the
ions, the ion diffusivity selectivity reduces to
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j
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(24)

This expression suggests that the membrane ion diffusivity
selectivity is identical to the diffusivity selectivity observed in
solution, i.e., the membrane provides no additional diffusivity
selectivity. Such a condition, which might be realized for some
highly swollen membranes, is often not valid for many
electrodialysis membranes, which typically have lower water
content (e.g., ϕW ∼ 0.3)104 and potentially non-negligible ion−
polymer interactions. Nonetheless, the ion diffusivity selectivity
obtained from the Mackie and Meares model can be treated as
a limiting value for the membrane ion diffusivity selectivity as it
represents the limiting case where the membrane makes no
contribution to the diffusivity selectivity.

2.3.2. Free Volume Theory. Yasuda et al. studied NaCl
transport in a series of hydrogels132 and suggested that cross-
membrane transport can be described using a free volume-
based model:133,134
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where V* is the minimum free volume size required by a
penetrant, and Vf is the total free volume of the membrane.
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Yasuda et al. assumed that the membrane free volume was
proportional to the hydration, H, as133

≡H
mass of water

mass of hydrated polymer (26)

= − +V H V HV(1 )f f,P f,W (27)

where (1 − H) is the mass fraction of polymer in the
membrane, Vf,P is the polymer free volume, and Vf,W is the free
volume of water. Yasuda et al. further assumed that salt alone
would not diffuse through the nonhydrated regions (or free
volume) of the polymer.133 Therefore, the free volume
available for salt transport, in eq 27, was taken to be HVf,W
or Vf ∼ HVf,W. Equations 25 and 27 lead to a useful correlation,
where H is the only variable, for Di

m/Di
s:132
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and b is an adjustable parameter related to the size of the
penetrant.
Although Yasuda’s free volume-based theory was initially

applied to hydrogels, it has also been successfully applied to
predict the penetrant diffusivity in IEMs. Xie et al. investigated
the dependence of membrane salt diffusivity on average free
volume element size for a series of sulfonated polysulfone
membranes and found that the experimentally measured
diffusivity values correlated, in a manner consistent with the
free volume-based theory, as135
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where A is a polymer related constant, γ is a correction factor
to prevent double counting the free volume elements, and VF

H

is the average free volume element size in the hydrated
polymer.
The value of V* necessarily depends on the penetrant. For

example, if NaCl is used as the model penetrant, the V* value
in eq 29 can be taken as the volume for the hydrated sodium
ion.136 This value is used rather than the combined volume of
the hydrated sodium and chloride ions since the former is
larger than the latter (i.e., as long as a free volume element is
sufficiently large to permit a hydrated sodium ion to execute a
diffusional jump, it could also permit a hydrated chloride ion to
execute a diffusional jump).135 Based on eq 29, the membrane
ion diffusivity selectivity, αD(i/j), can be expressed as
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where V* is appropriately defined for either counterion i, Vi*,
or counterion j, Vj*.
Use of eq 30 requires knowledge of the free volume of the

hydrated polymer, VF
H, and this information can, at least in

principle, be obtained from positron annihilation lifetime
spectroscopy (PALS) measurements135,137−143 or molecular
dynamics (MD)144,145 simulations. However, both the PALS
and MD approaches have some limitations that result in a
situation where VF

H data are not always available or easily
obtained for many membranes of interest. This situation limits,
at least to some extent, the use of eq 30.

An alternate approach is to measure the diffusivity selectivity
of other molecules. For example, one could measure the water/
salt diffusivity selectivity using measurements commonly made
on desalination membranes.115,146 That information, in
principle, can be used to calculate γ/VF

H using eq 30. This
approach will be discussed in more detail in section 3.2.

2.3.3. Conductivity Measurements. In addition to the
approaches discussed previously, the membrane ion diffusivity
selectivity can also be determined experimentally. For example,
ion transport can be measured using nuclear magnetic
resonance (NMR),147−149 neutron spin echo,150 and/or
conductivity measurements.43,59,60,94−96 Among these exper-
imental techniques, membrane conductivity measurements
regularly are used to determine ion diffusivity in ion exchange
membranes. When migration dominates over concentration-
driven transport, the ion diffusion coefficients in the membrane
are linked to the ionic conductivity as116

∑κ = F
RT

z C D
i

i i i

2
2 m m

(31)

where κ is the ionic conductivity of the membrane, F is
Faraday’s constant, R is the gas constant, and T is the absolute
temperature. For a single electrolyte system, eq 31 becomes

κ = +F
RT
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(32)

Typically, solving for both DM
m and DX

m requires two
measurements (typically a conductivity measurement and a
concentration-driven permeation measurement).113 In the
concentration-driven permeation measurement, the salt
permeability is measured, and then, it is used to calculate the
salt diffusion coefficient, which can be further deconvoluted
into DM

m and DX
m.113 Once the value of DM

m is known for each
counterion (e.g., i and j), the ion diffusivity selectivity, Di

m/Dj
m,

can be calculated.
In the absence of the concentration-driven permeation

measurement, an approximation can be used to calculate DM
m

using eq 32. In ion exchange membranes, due to the presence
of fixed charged groups in the polymer matrix, CM

m is typically
much greater than CX

m (i.e., zMCM
m = zXCX

m + CA
m or CA

m >
CX
m).3,6,97 Consequently, the contribution of co-ion migration

to the membrane ionic conductivity is often assumed to be
negligible.108 In other words, the co-ion migration term is
dropped in eq 32, and DM

m can be determined using a single
measurement. This approach only works if the counterion
transport number is sufficiently close to unity.
This assumption can lead to an overestimation of the

membrane ion diffusivity and could be propagated forward as
error when determining the membrane ion diffusivity
selectivity. Therefore, in section 3.3, we will discuss the
importance of accounting for co-ion migration while
determining counterion diffusion coefficients via conductivity
measurements. Specifically, we will discuss the effects of
solution composition and membrane physicochemical proper-
ties on co-ion transport.
Furthermore, conductivity measurements also can be used

to determine the counterion sorption selectivity of the
membrane (for counterions i and j).94,116,125 In the limit
where the transport number is sufficiently close to unity, a
single-electrolyte conductivity measurement can be used to
measure the counterion diffusion coefficients for both
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counterions (i.e., Di
m and Dj

m). Also in this limit, eq 31 can be
written in terms of the two counterions:

κ = +F
RT

z C D z C D( )i i i j j j

2
2 m m 2 m m

(33)

The Nernst−Einstein relation can be used to express the ion
diffusion coefficients as ionic mobilities:113

=u
z F
RT

Di
i

i
m m

(34)

κ = − +C F y u y u((1 ) )j i j jA
m m m

(35)

where ui
m is the membrane phase mobility of ion i, and (1 − yj)

is the dimensionless composition of i in the membrane (per eq
17). Arriving at eq 33 from eq 31 requires the assumption that
co-ion migration is negligible in the binary electrolyte system.
This assumption commonly is used for multielectrolyte
systems,94 since the concentration-driven permeation measure-
ments are less standard for multielectrolyte systems compared
to single electrolyte systems. When Di

m and Dj
m are available,

ui
m and uj

m are calculated using eq 34, and the value of yj can be
obtained using eq 35. This approach results in a situation
where the value of Kj

i can be calculated from eq 22. Although
the mathematical formula for eq 35 is rather simple, several
underlying conditions and assumptions (e.g., solution
compositions and ion−polymer interactions) need to be
understood to use eq 35 properly. Those conditions and
assumptions will be discussed further in section 3.4.

3. IMPLICATIONS
The current density is important when performing electric
field-driven experiments to determine the ion separation factor.
This consideration is particularly important for characterizing
novel membranes and for operating electric field-driven
processes. For example, potentiostatic polarization coupled
with impedance spectroscopy can result in transport numbers
that vary with current density.151 Many electric field-driven
membrane characterization experiments, however, are run
below the limiting current density to avoid concentration
polarization effects and/or other electrochemical phenomena
that occur at elevated current densities. The ion diffusivity and
sorption selectivity values are expected to be important at these

lower current density values, and the sorption selectivity is
expected to remain important at higher current density
values.151 In this section, we discuss the implications of
common assumptions and/or analysis/experimental routes on
selectivity characterization from the perspective of both the
diffusivity and sorption selectivity properties while recognizing
that the significance of the diffusivity selectivity may be limited
to lower current density situations.

3.1. Relationship between the Dimensionless Ion
Exchange Affinity and the Counterion/Counterion
Sorption Selectivity. In section 2.2, we suggest that
counterion sorption in multielectrolyte systems can be
determined from ion exchange isotherms. Specifically, the
dimensionless ion exchange affinity, αi

j, is interconnected to the
counterion/counterion sorption selectivity, Kj

i. Qualitatively, Kj
i

is inversely related to αi
j. This relationship can be realized by

considering a given solution composition. An increase in αi
j

suggests that the interactions between counterion j and the
membrane fixed charge groups become more preferential
compared to the interactions between counterion i and the
membrane fixed charge groups.116,127 Consequently, counter-
ion j is enriched in the membrane phase relative to counterion
i, which corresponds to a decrease in Kj

i.
A more quantitative interpretation of the relationship

between Kj
i and αi

j requires knowledge of the valence of
counterion j. When j is a monovalent ion (i.e., |zj| = 1), Kj

i is
equal to the reciprocal of αi

j (i.e., Kj
i = 1/αi

j as can be seen by
comparing eqs 19 and 22). Hence, Kj

i is a constant when αi
j is a

constant regardless of the solution composition. When j is a
multivalent ion, the only difference between the reciprocal of
Kj
i (i.e., Kj

i) and αi
j is the valence of counterion j. In this case,

the value of Kj
i varies with the solution composition when αi

j ≠
1, which can be found by combining eqs 19 and 22. For
example, if αi

j = 5 for a system containing divalent (j) and
monovalent (i) counterions, then Kj

i would increase from 0.26
to 0.43 when xj increases from 0.1 to 0.9. In general, when the
multivalent ions are considered, the counterion/counterion
sorption selectivity will depend on the solution composition.
The value of αi

j provides insight into the relationship
between yj and xj (in addition to its relationship to the
counterion/counterion sorption selectivity). Miyoshi et al.
reported α i

j values for a series of commercial ED
membranes.127 Using this range of αi

j values, ion exchange

Figure 3. Ion exchange isotherms for systems containing (A) two monovalent counterions and (B) a divalent (j) and a monovalent (i) counterion.
In both cases, counterion i was set as a monovalent ion, and values of αi

j values were chosen to span the range of values reported by Miyoshi et al.127
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isotherms were generated using eq 19 for systems containing
two monovalent counterions (Figure 3A) or a divalent (j) and
a monovalent (i) counterion (Figure 3B). These two types of
systems are often of interest for practical separation
applications.
When αi

j is unity (and, accordingly, Kj
i = 1), the

dimensionless composition of counterion j in the membrane
phase is identical to its composition in the solution. In other
words, counterion sorption or ion exchange into the
membrane phase does not result in a situation where
counterion j is enriched relative to the composition in the
external solution. This situation is the case regardless of
whether the solution contains two monovalent counterions
(Figure 3A) or a divalent and a monovalent counterion (Figure
3B). When αi

j is greater than 1 (and, accordingly, Kj
i < 1), the

dimensionless composition of counterion j in the membrane
phase is always greater than its concentration in the solution
(i.e., counterion j is enriched in the membrane phase and
counterion i is excluded by the membrane phase). When αi

j

values are sufficiently large (e.g., >5 for a monovalent−
monovalent ion pair or >15 for a divalent−monovalent ion
pair), the dimensionless composition of counterion j in the
membrane phase becomes close to unity (i.e., yj > 0.9, the
majority of the counterions in the membrane are counterion j)
when the dimensionless composition of counterion j in the
solution is greater than 0.7. This situation is often encountered
in practical ion separation processes when the nontarget ions,
which often have high αi

j values, are the dominating species in
the solution.76,98,152

For example, in the Li+/Mg2+ separation, the molar ratio of
Li+/Mg2+ is around 0.1 in the external solution.76 In that case,
the dimensionless composition of Mg2+ in the solution is xj =
0.947, and the binding affinity of Mg2+ toward sulfonate groups
is greater than that of Li+,129 so the majority of the counterions
in the membrane will be Mg2+ (i.e., yj ≥ 0.947). Consequently,
the contribution of Mg2+ to the membrane ionic conductivity
will be close to 100% (eq 35). Although this behavior does not
affect the determination of the ion sorption selectivity using
ion exchange experiments, it could result in challenges when
determining the ion sorption selectivity from conductivity
measurements, as discussed in section 3.4.
3.2. Using Free Volume Theory to Relate Measures of

Diffusivity Selectivity. In section 2.3, we suggested a free
volume theory-based framework that would allow the
membrane counterion/counterion diffusivity selectivity,
αD(i/j), to be estimated from a measure of the water/salt
diffusivity selectivity, αD(W/S) (or, in principle the selectivity of
any two other small molecules). One reason to connect αD(i/j)

and αD(W/S) is that some IEMs, and in particular some
CEMs,153−155 are of interest for both desalination and electric
field-driven ion separation applications. Using two other probe
molecules (e.g., water, W, and a single electrolyte, S) to
measure diffusivity selectivity (αD(W/S) in this case) could
provide insight into hydrated polymer free volume as

γ α
= * − *V V V

ln( )

( )
D

F
H

(W/S)

S W (36)

The ratio γ/VF
H is a characteristic of the membrane, and it

could then be used in eq 30 to estimate the counterion/
counterion diffusivity selectivity as
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Figure 4 shows an example of this relationship where eq 37
connects transport property data obtained within the context

of desalination membranes to that within the context of
electric field-driven counterion separations.
When the membrane water/salt diffusivity selectivity is 2,

which is the limiting value based on water and NaCl diffusion
coefficients in bulk solution, the counterion/counterion
diffusivity selectivity for all of the ion pairs considered reduces
to a value close to the corresponding diffusivity selectivity in
bulk solution (Figure 4).106 This free volume-based approach
also predicts that selectivity for the smaller counterion relative
to the bigger counterion increases as the membrane water/salt
diffusivity selectivity increases. It also predicts that the
diffusivity selectivity is greater when the size difference
between the ions is greater. Both of these observations are
generally aligned with Cohen-Turnbull theory, which forms
the basis of the free volume-based theory.134

As an example of this approach, the water and salt diffusion
coefficients for the Neosepta CMX membrane are reported to
be 2.5 × 10−6 cm2/s and 2.1 × 10−7 cm2/s, respectively, so
αD(W/S) = 12 for the CMX membrane.104 According to eq 37,
the values of αD(K

+
/Na

+
) and αD(Mg

2+
/Na

+
) are 1.77 and 0.147,

respectively, when αD(W/S) = 12. These values, predicted using
eq 37, only differ by approximately 10% from the
corresponding values measured using a conductivity technique:
αD(K

+
/Na

+
) = 1.62 and αD(Mg

2+
/Na

+
) = 0.165.94

While eq 37 reveals a connection between a measure of
diffusion selectivity, commonly considered for desalination
membranes, and a measure of counterion/counterion
selectivity that is useful in electric field-driven ion separation
applications, the approach does have limitations. Equation 37
suggests that desalination membranes with high αD(W/S) values
should also have high αD(i/j) values. While this design criterion
results directly from the theory, it may not tell the entire story

Figure 4. Counterion/counterion diffusivity selectivity values
calculated using the water/salt diffusivity selectivity (eq 37). The
counterion j was taken as Na+, and the salt (water/salt diffusivity
selectivity) was taken as NaCl. The range of the water/salt diffusivity
selectivity values was chosen based on data reported for a series of
sulfonated polysulfones.135
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from a practical perspective. For example, a desalination
membrane with a high αD(W/S) value may have very low ionic
conductivity due to the lack of fixed charge carriers.12,13 This
potential situation highlights the need to consider both the
selectivity and productivity (in this case, ionic conductivity)
properties of membranes for separation applications.
Additionally, the approach to selecting specific values of Vj*

and Vi* presently is not well-defined. When free volume theory
is applied to a desalination membrane, the V* value represents
the minimum free volume element size for a molecule to
execute a diffusional jump.135 In electrodialysis, both diffusion
and migration occur,156 and this situation might suggest
different interpretation of the V* values. For the purpose of the
example discussed previously, we applied the same inter-
pretation of the V* values to the counterions and the water and
single electrolyte used to obtain the desalination-based
diffusivity selectivity. While this approach appeared to be
sufficient for connecting the two measures of diffusivity
selectivity for the Neosepta CMX membrane, additional
verification of this V* value analysis could be necessary for
different membranes or ions.
3.3. Influence of Co-ion Transport on Diffusion

Coefficients Determined Using Conductivity Measure-
ments. As discussed in section 2.3.3, conductivity measure-
ments can be used to measure counterion diffusivity (without
the use of an additional experiment, e.g., concentration-driven
permeation measurements) if the contribution of co-ion
migration to conductivity is negligible. This approximation
can lead to an overestimation of individual counterion
diffusivity values, and if these values are used to calculate
counterion/counterion diffusivity selectivity, this overestima-
tion may lead to errors in the membrane ion diffusivity
selectivity. This overestimation artifact becomes more
significant when the membrane counterion transport number
decreases and the fraction of the current carried by the co-ions
increases. This section discusses an approach to estimate the
extent to which neglecting co-ion transport affects the
counterion diffusivity calculation.
3.3.1. Theory to Support Analysis. The co-ion concen-

tration in a charged ion exchange membrane, in the simplest
case, is described by Donnan theory.3,9,97,116,157 When an IEM
is brought into equilibrium with an electrolyte solution, an
electric potential (i.e., the Donnan potential) is established at
the IEM/electrolyte interface.116,158 This Donnan potential
occurs due to the difference in the thermodynamic activity of
the ions inside the membrane relative to their corresponding
thermodynamic activity values in the external solution caused
by the presence of fixed charge groups in the ion exchange
membrane.116,158 The result of this Donnan potential is that
co-ions are excluded from sorbing into the membrane.116,158

The strength or effectiveness of Donnan exclusion increases
with the absolute value of the Donnan potential, so co-ion
sorption is suppressed to a greater extent in situations where
the Donnan potential at the IEM/electrolyte interface is
higher.116 Next, for a given IEM/electrolyte system, the
Donnan potential increases (and co-ion sorption decreases)
with increases in the difference between the counterion activity
in the membrane and that in the external solution.116 The
Donnan potential also decreases as the counterion valence
increases meaning that co-ion sorption tends to be more
significant when the multivalent counterions are exposed to the
membrane.116 At the same time, Donnan exclusion is more
effective at reducing the sorption of multivalent co-ions.116

Therefore, co-ion sorption (and, thus, co-ion transport) is
affected by both solution and membrane factors.
Donnan theory can be used to develop an expression for the

co-ion sorption coefficient:3,116
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where γ±
s is the mean ionic activity coefficient in the solution,

and γ±
m is the mean ionic activity coefficient in the membrane.

The value of CA
m is the fixed charge concentration of the

membrane, and the value of γ±
s can be determined using the

Pitzer model.159−161 Determining the value of γ±
m, however, is

less straightforward.
Manning’s counterion condensation theory describes the

thermodynamic circumstances that lead to a situation where
counterions condense or undissociate in the material.162 The
theory was developed for polyelectrolytes in solution, so it
assumes that the fixed charge groups are distributed evenly
along the polymer backbone.162 The so-called Manning
parameter, ξ, defines a critical point at which counterion
condensation occurs in the membrane:

ξ
λ

πε ε
= =

b
e
kTb4

B
2

0 (39)

where λB is the Bjerrum length (i.e., λB = e2/4πε0εkT), b is the
spacing between two adjacent charge groups on the polymer
backbone, e is the elementary charge, ε0 is the permittivity of
free space, ε is the relative dielectric permittivity (or dielectric
constant) of the hydrated membrane, and k is Boltzmann’s
constant.111,162 Above the critical point (i.e., when ξ > ξcrit,
where ξcrit = 1 if the fixed charge group is monovalent),
counterion condensation occurs such that the value of ξ is to
ξcrit.

162 Thus, this condensation process acts to reduce the fixed
charge group concentration in the membrane (i.e., CA

m

decreases as a result of counterion condensation).111,162

Recently, Kamcev et al. used Manning’s counterion con-
densation theory to calculate the value of γ±

m. Their Donnan-
Manning model effectively described co-ion sorption in some
highly swollen commercial IEMs.111

Another result of counterion condensation is that the
counterions in the membrane may exist in one of two different
forms.113 The condensed form is the situation where the
counterions interact strongly with the fixed charged groups and
may reduce the effective membrane fixed charge concentration,
and the uncondensed form is the situation where the
counterions are considered to be dissociated from the fixed
charged groups.113 Condensed counterions may have unique
transport behavior compared to uncondensed counterions.
When transport is driven by a concentration gradient, the
condensed counterions are assumed to be immobile since they
are localized near the polymer backbone.112 When the
transport is driven by an electric field, however, these
condensed counterions are mobile163−166 and may have
greater mobility compared to the uncondensed counterions.113

3.3.2. Analysis for an Idealized Cation Exchange
Membrane. With that framework in mind, we return to the
analysis about the extent to which neglecting co-ion transport
affects the calculation of the counterion diffusion coefficient
obtained using a single ionic conductivity measurement. To
analyze this scenario, we will consider an idealized case where
ion−polymer interactions are negligible, and the membrane is
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a CEM with monovalent fixed charge groups and uncondensed
counterions. Therefore, we will use the theory of Mackie and
Meares130,131 to describe the diffusion coefficients in the
membrane relative to those in bulk solution. Additionally, we
will calculate the membrane phase co-ion concentration, CX

m,
using the Donnan-Manning model (by assuming the
membrane fixed charge concentration and dimensionless linear
charge density values were 6.21 mol/L and 1.5, respectively,
which is representative of the Selemion CMV mem-
brane104).111 The membrane phase counterion concentration,
CM
m, will be calculated using the electroneutrality requirement

(i.e., CA
m + |zX|CX

m = |zM|CM
m). Using the information described

above, we will define and calculate the minimum counterion
transport number, tM,min

m , as

=
+

t
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Because the minimum counterion transport number describes
the fraction of ionic current carried by the counterions, it can

be used to estimate the extent to which the counterion
diffusion coefficient is overestimated as a result of neglecting
co-ion transport. This calculation can be done as
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where 1/tM,min
m reflects the overestimation (i.e., as tM,min

m

decreases, the counterion diffusivity becomes increasingly
overestimated). To highlight the effects of solution composi-
tion and membrane physicochemical properties on the co-ion
sorption and migration, the minimum counterion transport
number and the maximum diffusivity overestimation are
plotted against the external salt concentration (Figure 5) and
the fixed charge group concentration (Figure 6) used in the
calculations.
The minimum counterion transport number (for this

example that is representative of a Selemion CMV cation
exchange membrane and all electrolytes considered) decreased

Figure 5. Minimum counterion transport number (calculated using eq 40) (A) and the maximum diffusivity overestimation (calculated using eq
41) (B) in a CEM presented as a function of salt solution concentration for different electrolytes. In those calculations, the co-ion concentration in
the membrane was calculated using the Donnan-Manning model,111 the solution activity was calculated using the Pitzer model,159−161 and the
membrane fixed charge concentration and dimensionless linear charge density values were taken as 6.21 mol/L and 1.5, respectively, to be
consistent with the Selemion CMV membrane.104

Figure 6. Minimum counterion transport number (calculated using eq 40) (A) and the maximum diffusivity overestimation (calculated using eq
41) (B) in a CEM presented as a function of fixed charge concentration for different electrolytes. The salt solution concentration was fixed at 0.5 M,
and the other details of the calculation are provided in the Figure 5 caption.
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by 0.2−16% as the solution salt concentration increased
(Figure 5A), and the maximum diffusivity overestimation
increased by 0.2% to 19% as the solution salt concentration
increased (Figure 5B). These results show that co-ion
transport becomes more important as the solution salt
concentration increases, and they are consistent with Donnan
theory.116 When the external salt solution concentration
increases, the difference between the fixed charge concen-
tration and the ion concentration in solution deceases. This
situation leads to a reduction in the Donnan potential (and
therefore a reduction in Donnan exclusion effectiveness).
Consequently, the values of CX

m (and, thus, KX) increase, and
co-ion transport becomes more significant.
In addition to the salt solution concentration, the salt type

also affects the minimum cation transport number and the
maximum diffusivity overestimation. The effects of salt type are
secondary, however, compared to the effects of salt solution
concentration. In the following discussion, we will hold the salt
solution concentration constant.
When the salt type is the same (e.g., NaCl vs KCl), the value

of γ±
s is the only difference in the Donnan-Manning model,112

and the salt with the lower value of γ±
s (i.e., KCl) will have

lower co-ion sorption and transport compared to the salt with
the greater value of γ±

s . When the co-ion is the same in both
electrolytes (e.g., NaCl and CaCl2), several factors affect co-ion
sorption. First, the Donnan potential that results from the
divalent Ca2+ ion is lower compared to the monovalent Na+

ion, and the lower Donnan potential directly translates into
higher co-ion sorption.116 Next, counterion condensation is
more likely to occur with the divalent Ca2+ ion than with the
monovalent Na+ ion.112 Counterion condensation reduces the
Donnan potential and leads to an increase in co-ion
sorption.116 These two effects overpower the effect of the
lower value of γ±

s for CaCl2 compared to that of NaCl. As such,
having a counterion with a greater valence will lead to greater
co-ion sorption and transport. When the counterion is the
same (e.g., KCl vs K2SO4), Donnan exclusion is more effective
at excluding the co-ion with the higher valence.116 Addition-
ally, the value of γ±

s commonly is lower for higher valent co-
ions (e.g., SO4

2−) compared to monovalent co-ions. As such,
both activity coefficient and Donnan exclusion effects lead to
lower co-ion sorption and transport.
The minimum cation transport number increased by 0.2% to

16% as the fixed charge concentration increased (Figure 6A),
and the maximum diffusivity overestimation decreased by 0.2%
to 19% as the fixed charge concentration increased (Figure
6B). Similar to the results in Figure 5, the results in Figure 6
are consistent with Donnan theory.116 If the solution
composition is held constant and counterion condensation
behavior does not change, increasing the value of the fixed
charge concentration leads to an increase in the Donnan
potential (and, therefore, an enhancement in Donnan
exclusion effectiveness). Consequently, the values of CX

m

(and, thus, KX) decrease, and the co-ion transport becomes
less important.
This analysis could inform the design of conductivity

measurements for diffusivity selectivity calculations. The
assumption of negligible co-ion transport will be most
applicable when the solution salt concentration is moderate
(e.g., ∼0.5 M), the membrane fixed charge concentration is
high (i.e., CA

m > 6 mol/L), and the co-ion is chosen to be the
sulfate ion. In situations where greater salt concentration is
required, the membrane fixed charge concentration is low (e.g.,

a CR61 membrane with CA
m < 3.5 mol/L), or the sulfate co-ion

cannot be used, the Donnan-Manning analysis should be
performed to estimate influence of co-ion transport on the
counterion diffusion coefficient. Preferably, the ionic con-
ductivity measurement should be coupled with the concen-
tration-driven permeation measurement to determine the
diffusivity selectivity without the need for an assumption
about the contribution of the co-ion to the ionic conductivity.

3.4. Determining the Counterion/Counterion Sorp-
tion Selectivity Using Conductivity Measurements. An
attractive feature of conductivity measurements is that they can
be used to determine the dimensionless composition of
counterion j in the membrane (i.e., yj) using eq 35. Coupled
with eq 22, the value of Kj

i can be calculated. However, the
applicability of eq 22 depends on the ion−polymer interactions
and the solution compositions.
The linearity of eq 35 suggests that the ionic conductivity of

the membrane exposed to a multielectrolyte system containing
two different counterions is bounded by the separate ionic
conductivity values of the membrane in contact with each of
the two corresponding single-electrolyte systems. Furthermore,
it suggests that the membrane ionic conductivity is expected to
vary linearly with yj (i.e., as the counterion composition in the
membrane changes, the conductivity of the membrane will
change accordingly between the two limiting cases (i.e., yj = 0
and yj = 1). Arriving at this linear relationship requires an
assumption that the mobility of each ionic species is
independent of the other ionic species in a solution of interest
and that the conductivity of this solution is the weighted
average of the conductivity of each ionic species (i.e., an
assumption that Kohlrausch’s law is valid).167

In a hydrated CEM, the value of CM
m is often high (e.g., CM

m >
3 mol/L), so the membrane cannot be treated as a dilute or
ideal system. Furthermore, the presence of fixed charge groups
prevents the ions from moving freely inside the membrane.
Logette et al.125 studied membrane ionic conductivity for a
series of ion pairs and found that the membrane conductivity
for monovalent/divalent and monovalent/trivalent ion pairs
deviated more from the Kohlrausch’s law predicted values than
the conductivity for monovalent/monovalent ion pairs.
Nevertheless, if counterion condensation occurs in the

membrane, as discussed earlier, the condensed counterions
may have a greater mobility than the uncondensed counter-
ions.113 Hence, if two counterions, i and j, have different
condensation behavior, the membrane ion conductivity might
not vary linearly with yj. Therefore, caution is warranted when
using eq 35 with different multielectrolyte systems of interest.
The validity of Kohlrausch’s law for a particular electrolyte
solution should be verified. If eq 35 does not describe the
particular system, ion exchange experiments would be needed
to obtain yj and Kj

i.
If eq 35 does describe the system of interest, yj can be

determined by interpolation. The interpolation, however,
requires that the difference in membrane ionic conductivity
between the multielectrolyte system and each single-electrolyte
system is measurable. This requirement might not always be
met in practical ion separation processes. For example, in the
Li+/Mg2+ separation case discussed earlier,76 the membrane
counterions are mostly Mg2+, so the contribution of Mg2+, in
the Li+/Mg2+ mixture, to the membrane ion conductivity is
nearly 100%. Consequently, it could be difficult to differentiate
between the membrane ionic conductivity measured using the
Li+/Mg2+ solution and that measured using the pure Mg2+ salt
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solution, which would compromise this approach for character-
izing Kj

i based on ionic conductivity measurements.
Equation 35 may be most suitable for systems where the

difference between the dimensionless concentrations of
counterions i and j in the solution is not dramatic (e.g., 0.2
< xj < 0.6), as this situation is likely to translate into a situation
where the dimensionless compositions of counterions i and j in
the membrane are not pushed toward the limiting values. For
systems similar to the Li+/Mg2+ case encountered in practical
separations, an alternative method could be used. A model
solution, where 0.2 < xj < 0.6, could be prepared for the
conductivity measurements, and eq 35 could be applied to
calculate yj, which could be further translated into αi

j using eq
19. The αi

j value could then be used to calculate a new set of
corresponding yj values at xj values of interest, and Kj

i could be
calculated from this set of data using eq 22.

4. SUMMARY

In this review, definitions of the separation factor were
discussed along with connections to the sorption and
diffusivity selectivity properties of ion exchange membranes
to provide insight into the use of IEMs in electric field-driven
specific ion separation applications. The ion sorption
selectivity can be determined from ion exchange isotherm or
ionic conductivity measurements. When ion exchange
isotherm measurements are used to determine the sorption
selectivity, a dimensionless ion exchange affinity is used to
connect the ion concentration in the membrane for a given
solution composition and membrane fixed charge concen-
tration. Alternatively, conductivity measurements can be used
to determine the sorption selectivity when the counterion form
of the membrane is not dominated by a single counterion and
when ion specific interactions with the polymer are negligible.
The diffusivity selectivity can be estimated using theory or be
determined using ionic conductivity measurements. Free
volume theory may be useful for connecting membrane
water/salt selectivity, which is often measured for materials
that are of interest for desalination, and the counterion/
counterion diffusivity selectivity that is critical for specific ion
separations. The influence of co-ion transport on diffusivity
measurements made via conductivity measurements was
estimated via sample calculations to highlight situations
where neglecting co-ion transport is inappropriate. The
discussion here is most applicable to homogeneous ion
exchange membranes, but the connections between the ion
separation factor and the sorption and diffusivity selectivity
values could form the basis for understanding a wide range of
membranes that are of interest for electric field-driven ion
separation processes.
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