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ABSTRACT

In this paper, an experimental forced response analysis for
a two degree of freedom piecewise-linear oscillator is discussed.
First, a mathematical model of the piecewise linear oscillator
is presented. Second, the experimental setup developed for the
forced response study is presented. The experimental setup is ca-
pable of investigating a two degree of freedom piecewise linear
oscillator model. The piecewise linearity is achieved by attach-
ing mechanical stops between two masses that move along com-
mon shafts. Forced response tests have been conducted, and the
results are presented. Discussion of characteristics of the oscil-
lators are provided based on frequency response, spectrogram,
time histories, phase portraits, and Poincaré sections. Period
doubling bifurcation has been observed when the excitation fre-
quency changes from a frequency with multiple contacts between
the masses to a frequency with single contact between the masses
occurs.

INTRODUCTION

Engineered structures involving mechanical contacts be-
tween the components, or internal cracks show piecewise-linear
(PWL) nonlinearity in their oscillatory responses. Hence, predic-
tion of their dynamics requires a proper modeling of such nonlin-
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earity. Followed by a pioneering work by Shaw and Holmes [1]
about impact oscillators, there have been many attempts to date
to investigate the behavior of PWL systems for their fundamen-
tal nature and practical importance [2—6]. One of the difficulties
in the prediction of PWL system dynamics is that the system
characteristics is not smooth, because there are sudden changes
in the stiffness or the masses of the system depending on the
states of the system. Therefore, typical numerical methods, such
as the time integration method, require long computational time.
This hinders analysts from conducting comprehensive paramet-
ric studies or optimizations of the systems involving such piece-
wise linearity.

The authors proposed methods to approximate the nonlinear
resonant frequencies of PWL systems, by using the concept of
bilinear frequency [1], where the system states are assumed to
have only two-states: open state and sliding state [7]. This con-
cept has been extended to form a reduction bases of the PWL
system [8]. Jung et al. then proposed a method called bilinear
amplitude approximation to approximate the amplitude of forced
response of PWL systems, where two linear systems are stitched
together to form the response of the PWL system [9]. Tien and
D’Souza then generalized the concept of bilinear amplitude and
frequency approximations for bilinear systems with gaps or pre-
stress [10], and for bilinear systems involving complex behav-
iors [11]. To date, however, experimental investigations on such
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systems have not fully been conducted. Hence, those methods
need to be experimentally validated. Therefore, the aim of this
research is to develop experimental methods that enable the in-
vestigation of the nonlinear dynamic behavior of PWL systems,
and to gain understanding of such systems.

This paper is organized as follows. In Section 1, the math-
ematical model of the PWL system of interest is described. In
Section 2, the experimental setup developed for the analysis is
presented. In Section 3, results of the forced response analysis
are shown. Conclusions of the work are then drawn in Section 4.

1 MATHEMATICAL MODEL

This section provides the mathematical model of the PWL
system to be investigated. Figure 1 shows the schematic diagram
of the system of interest. Let y; and y, denote displacements of
the two masses that are denoted as m; and m, measured from the
base (roof) whose displacement is denoted as z. m; is connected
to the base (roof) by a spring with k; being its spring constant.
my is connected also to my by another spring with k, being its
spring constant. Between the masses, there are mechanical stops
that hinder inter-penetration of the masses. This system under-
goes repetitive switching between two linear systems, which we
call the open and closed states. The open state refers to the case
where the masses are not in contact with each other, while the
closed state refers to the case where the masses are in contact
with each other.

For the open state, the equations of motion of the masses are
written as follows.

miyi =—ki(y1 —0) +ka(y2—y1 —la) +mi(g—2), (1)
myr = —ko(y2 —y1 — o) +ma(g — %), (2)

where /] and ¢, denote the unstretched lengths of springs with
stiffnesses given by k| and kj, respectively, and y, > y;. The
equilibrium states are obtained by solving Eqgs. (1) and (2) with
respect to y; and y, by setting any time derivative terms to be
Zero, i.e.,

V1 =401+ (my +my)g/ki, 3
)72:261+€2+(m1+mz)g/k1+m2g/k2. @

Introducing relative displacements x| and x, measured from each
equilibrium, i.e., y; = ¥| +x1, y» = ¥» +x2, and substituting these
back into Egs. (1) and (2), we obtain the equations of motion of
the oscillators,

Mi + Kx = — {m‘ﬂ )
mZ
where
_(m 0 (ki +ky —ko
e(m0) k=(M1E R

When the masses are in contact with each other, the system is in
the closed state. For the closed state, the masses move together
and the system indeed becomes a single system. The correspond-
ing equation of motion is written as

(m1 +m)x1 +kixy = —(my +mo)Z, (7

where x; = x;. As can be seen in Egs. (5) and (7), the system
equations change at the point when x; = x,, which makes this
system piecewise linear. In this paper, we focus on the exper-
imental realization of this mathematical model, as described in
the following section.

2 EXPERIMENTAL SETUP

Figure 2 shows the experimental setup developed for the in-
vestigation of the forced response of the two DOF PWL system.
It contains mechanical components that achieve the two DOF
PWL oscillator, and the measurement system. The entire sys-
tem is directly mounted on the head of an electrodynamic shaker
(San-Esu, SSV-750, Japan), which is capable of exciting the en-
tire system in the vertical direction. A mass is hung from the roof
of the housing by four linear springs. The mass is denoted as m;,
and the total spring constant of the four springs is denoted as k;.
The movement of m; is restricted to move only in the vertical di-
rection by attaching four linear bushings on through holes of m;
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FIGURE 2. DEVELOPED TWO DOF OSCILLATORS SUBJECT
TO VERTICAL BASE EXCITATION

and connecting them to linear shafts. The shafts stand vertically
and rigidly fixed to the bottom of the setup and the roof. Also,
another mass, which is denoted as mj, is hung from m; by two
linear springs, the total spring constant of which is denoted as
k>. The movement of my is also restricted to motion in only the
vertical direction by attaching linear bushings on through holes
of my and connecting them to the shafts. There are mechani-
cal stops attached to the masses, which hinder the movement of
the masses when they make contact with each other. Viscoelas-
tic sheets with low stiffness are attached on both surfaces of the
mechanical stops to minimize the rebound effect during impacts.

The key parameters of the oscillators are shown in Table 1.
By substituting these values into Eq. (6), we obtain the first natu-
ral frequency of the open system to be expected as f, = 1.37Hz.
Furthermore, the natural frequency for the closed system can be

TABLE 1. PARAMETER VALUES OF THE OSCILLATORS

my [kg] ma [kg] ki [N/m] Kk [N/m]
2.90 1.27 400 186
25 T T T T
O Linear (open)
20 * Nonlinear

Transmissibility
o ()}

()]

;_‘ | | | COSER
1 1.2 14 1.6 1.8 2
Excitation frequency [Hz]
(a) my
25 T T T T
O Linear (open)
20t * Nonlinear T

—_
o

Transmissibility
=

(¢,

1 1.2 14 1.6 1.8 2
Excitation frequency [Hz]
(b) my

FIGURE 3. FORCED RESPONSE OF THE OSCILLATORS

obtained from Eq. (7) to be expected as f, = 1.56Hz.

Displacements of the masses are measured by using laser
displacement sensors (Keyence, IL-300, Japan), and recorded
into a data-logger (KYOWA, EDX-200A, Japan).

3 RESULTS

First, results of forced response tests are discussed. A forced
response test has been conducted for the frequency range from
1Hz to 2Hz, which contains the first natural frequency of the
open system, and that of the closed system. Figure 3 shows
the transmissibility versus the excitation frequency of the base.
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Transmissibility here is defined as the ratio of each mass’s dis-
placement amplitude to that of the base displacement. As can be
seen from Fig. 3, both masses have primary resonance at 1.37Hz
for the linear case. This corresponds to the expected natural fre-
quency of the open system, or f,. On the other hand, for the
nonlinear case where intermittent contacts between masses oc-
cur, the first resonant frequency for the masses is slightly larger
than that of the linear case. This appears to correspond to the
bilinear frequency approximation [1] of the system, which is an
approximated resonant frequency of bilinear systems that can be
computed from the natural frequencies of the open and closed
system, as follows:

_ 2%t

=

= 1.45Hz. 8)

The magnitude of the transmissibility at the primary resonance
is smaller than that for the linear case. This makes sense because
the movement of the masses is hindered by the mechanical stops.
Interestingly, following a slight jump in the response, a sec-
ondary resonance at around 1.5Hz is observed for both masses.
This appears to correspond to the natural frequency of the closed
system, or f.=1.56Hz.

To investigate the frequency content in the responses for the
nonlinear cases, a fast Fourier transform (FFT) was conducted
on the displacement time histories for each excitation frequency,
and shown in Fig. 4. As expected, a strong peak is observed at
the frequency that corresponds to the excitation frequency. Fur-
thermore, superharmonic components, or frequency components
that are integer multiples of the excitation frequency, are also
observed. This is mostly due to the distortion in the displace-
ment time histories Moreover, as indicated in Fig. 4, subhar-
monic components, or frequency components that are fractional
multiples of the excitation frequency, are also observed at around
1.38Hz. This indicates the occurrence of a period doubling bifur-
cation. The period doubling bifurcation has been observed nu-
merically for PWL systems by Zuo and Curnier [12] and Jiang et
al. [2], for instance.

Time histories of the masses near the bifurcation point are
shown in Fig. 5. First, when the excitation frequency is 1.26Hz,
the oscillators collide with each other only once during a vi-
bration cycle, as shown in Fig. 5(a). After increasing the exci-
tation frequency to 1.29Hz, the oscillators start to collide with
each other twice during a vibration cycle, as shown in Fig. 5(b).
Then, when the excitation frequency is 1.37Hz, as can be seen in
Fig. 5(c), contact between the masses occur twice during a pe-
riod of excitation. Also, we can see that the waveforms repeat
themselves exactly after a period of excitation. Next, when the
excitation frequency is 1.38Hz, on the other hand, waveforms of
the displacements are slightly distorted, and the waveforms do
not repeat themselves after a period of excitation, as can be seen
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FIGURE 4. FFT OF THE FORCED RESPONSE

in Fig. 5(d). Again, the masses come in contact twice during a
period of excitation for this excitation frequency. Finally, when
the excitation frequency is 1.39Hz, the state of contact turns back
to the state where the masses collide only once during a period
of excitation, as shown in Fig. 5(e). Furthermore, the waveforms
appears to repeat themselves after a period of excitation. It means
that the period of oscillation turns back to that of the excitation.
In summary, when the excitation frequency is smaller than the
resonant frequency, the masses collide with each other once dur-
ing a vibration cycle. As the excitation frequency increases, the
masses start to collide twice during a vibration cycle. Then, when
the excitation frequency reaches the resonance a period doubling
bifurcation occurs, while the masses still collide with each other
twice during a cycle. When the excitation frequency is increased
slightly above the resonance, the masses start to collide only once
during a cycle.

To see the oscillators’ behaviors near the bifurcation point in
detail, phase portraits of the gap function have been plotted, and
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FIGURE 5. TIME HISTORIES OF THE MASSES NEAR THE BIFURCATION POINT
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FIGURE 6. PHASE PORTRAITS OF THE GAP FUNCTION NEAR THE BIFURCATION POINT

shown in Fig. 6. The gap function is defined as

g(t) = y2(t) = y1(1). ©)

As can be seen in Fig. 6(a), when the excitation frequency is
1.26Hz, the trajectory of the gap function forms a closed limit
cycle in the phase plane. Clearly, there is only one collision dur-
ing a vibration cycle. On the other hand, as shown in Fig. 6(b),
when the excitation frequency is 1.29Hz, the rebound effect re-
sults in a small loop near the origin of the phase plane. When
the excitation frequency is 1.37Hz, the small loop near the ori-
gin grows, as shown in Fig. 6(c). When the excitation frequency
is 1.38Hz, some parts of the limit cycle are split into multiple
paths, as shown in Fig. 6(d). This also indicates the occurrence
of a period doubling bifurcation. Finally, as shown in Fig. 6(e),
when the excitation frequency is 1.39Hz, the split paths of the
limit cycle observed in Fig. 6(b) disappear. This means that the

doubled period of the oscillation turns back to a single period.

To better understand the bifurcation characteristics dis-
cussed above, a Poincaré section [13], or stroboscopic map has
been taken from the phase portrait of the gap function. Namely,
the snapshots of the trajectory of the gap function in the phase
space are taken at time instants that are integer multiples of the
excitation period. The Poincaré section of the gap when the ex-
citation frequency is 1.29Hz is shown in Fig. 7(a). As seen in
the figure, there is only a single group of points in the plot. This
means that the periodicity of the motion is still kept for this ex-
citation frequency. As can be seen in Figs. 7(b) and (c), the pe-
riodicity is still kept at 1.29Hz and 1.37Hz. On the other hand,
as shown in Fig. 7(d), when the excitation frequency is 1.38Hz,
there are two groups of points in the plots. This again indicates
the occurrence of a period doubling bifurcation. When the exci-
tation frequency is 1.39Hz, there is again only a single group of
points in the plots, as seen in Fig. 7(e).
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FIGURE 7. POINCARE SECTION OF THE GAP FUNCTION NEAR THE BIFURCATION POINT

4 CONCLUSION

In this paper, an experimental investigation of the forced re-
sponse of a piecewise linear system has been presented. Forced
response tests were conducted to show that the experimental
setup was capable of simulating the dynamics of a piecewise lin-
ear oscillator. Furthermore, it was found that a period doubling
bifurcation occurs between frequencies where oscillators are in
contact twice during a vibration cycle, and where oscillators are
in contact only once during a vibration cycle. Further investiga-
tions of this system using numerical simulation are planned as a
part of future work.
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