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Abstract

Answering a longstanding problem originating in Christensen’s seminal work on Haar null sets
[Math. Scand. 28 (1971), 124-128; Israel J. Math. 13 (1972), 255-260; Topology and Borel
Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and
Measure Theory, North-Holland Mathematics Studies, 10 (Notas de Matematica, No. 51). (North-
Holland Publishing Co., Amsterdam—London; American Elsevier Publishing Co., Inc., New York,
1974), iii+133 pp], we show that a universally measurable homomorphism between Polish groups
is automatically continuous. Using our general analysis of continuity of group homomorphisms,
this result is used to calibrate the strength of the existence of a discontinuous homomorphism
between Polish groups. In particular, it is shown that, modulo ZF+DC, the existence of a
discontinuous homomorphism between Polish groups implies that the Hamming graph on {0, 1}
has finite chromatic number.

2010 Mathematics Subject Classification: 03E15 (primary); 22A05, 43A05 (secondary)

1. Continuity of homomorphisms

The question of whether a measurable homomorphism between topological
groups is continuous has a long and illustrious history. For example, in the very
first issue of Fundamenta Matematicae, no less than three papers by Banach,
Sierpinski and Steinhaus are dedicated to the question of continuity of Lebesgue
measurable functions f: R — R satisfying Cauchy’s functional equation

fx+y)=fx)+ f().
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C. Rosendal 2

Banach [1] and Sierpinski [19] each show that such f must be continuous,
which is also established by Fréchet [8], while Steinhaus [22] expands on the
methods of Sierpinski [18, 19] to show that, if A C R is a Lebesgue measurable
set of positive measure, then A — A contains 0 in its interior. Steinhaus’ result
is subsequently generalized to arbitrary locally compact groups by Weil (see
[25, page 50]), that is, if A is a Haar measurable set of positive Haar measure
in a locally compact group, then AA~! is an identity neighbourhood. In turn,
this implies by a simple argument that every Haar measurable homomorphism
between locally compact Polish groups is continuous.

Of course, as shown by Weil [25], in groups that are not locally compact there
is no notion of translation invariant o -finite measure and, in particular, no notion
of Haar measurable set. Instead, in a Polish group G, one may consider the
universally measurable sets, that is, sets A that are measurable with respect to
every Borel probability measure u on G. One particular reason for their interest
is the construction by Mokobodzki (see [12, 13]) and Christensen [4] of medial
limits under CH. We recall that a medial limit is a finitely additive translation
invariant probability measure p on N, which is universally measurable as
a function pw: P(N) — [0, 1]. Alternatively, via integration, medial limits
induce translation invariant positive linear functionals m: £ — R satisfying
a universal measurability condition so that liminf, x, < m(x) < limsup, x,
for all x = (x,) € £°°. While the assumption of CH is weakened to Martin’s
Axiom by Normann [14], the existence of medial limits is independent of ZFC
itself as shown by Larson [10]. (A more thorough discussion of the existence of
medial limits can be found at https://math.stackexchange.com/questions/54554/
medial-limit-of-mokobodzki-case-of-banach-limit.)

In connection with this, Christensen [2] studies the question of whether every
universally measurable homomorphism between Polish groups is continuous. He
shows the following Steinhaus type principle (see [2, Theorem 5]), which turns
out to be central to our study.

THEOREM 1. Suppose G = U?il A; is a covering of a Polish group G by
universally measurable sets A; and U is an identity neighbourhood. Then there
are a finite set F C U and some i so that

Jsaia" g™
geF
is an identity neighbourhood.

From this he immediately deduces that every universally measurable
homomorphism G —~> H between Polish groups is continuous provided H
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Continuity of universally measurable homomorphisms 3

is SIN, that is, admits a bi-invariant compatible metric. In particular, this applies
if either G or H is abelian and also provides an alternative proof of A. Douady’s
result (published by Schwartz [17]) that every universally measurable linear
operator between Banach spaces is continuous. However, the general problem
has remained open thus far.

PROBLEM 2. Is every universally measurable homomorphism G —> H
between Polish groups continuous?

Partially motivated by this and by applications to differentiability of Lipschitz
mappings, Christensen [3, 4] and other authors have developed a theory of
Haar null sets and related notions of smallness in Polish groups (see [6] for a
recent survey). One of the principal aims of this theory is to find robust notions
of smallness satisfying a variant of Steinhaus’ Theorem. For example, in [21],
Solecki studies left Haar null sets and isolates a class of Polish groups G said
to be amenable at 1 for which every universally measurable homomorphism
G - H into an arbitrary Polish group H is continuous. In another direction,
in [16] we show that Problem 2 has a positive answer when H is locally compact
or non-Archimedean (see also [7, 23] for strengthenings in the abelian case). The
main result of the present paper solves the general case of Problem 2.

THEOREM 3. Let G —> H be a universally measurable homomorphism from
a Polish group G to a separable topological group H. Then 7 is continuous.

Somewhat surprisingly, the proof proceeds by showing that the conclusion
of Theorem 1 is already enough for the general solution and thus entirely
circumvents any further considerations of universal measurability.

LEMMA 4. Let G —> H be a homomorphism from a Polish group G
to a separable topological group H. Assume also that, for all identity
neighbourhoods U C G and V C H, there is a finite set F C U so that

s
feF

is an identity neighbourhood in G. Then 1 is continuous.

For this reason, our proof also allows us to address a different but related
question of logic, namely the strength of the existence of a discontinuous
homomorphism between Polish groups. Therefore, the discussion that follows
is relative to ZF+DC, that is, Zermelo—Fraenkel-Skolem set theory without the
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C. Rosendal 4

full axiom of choice, but only with the principle of dependent choice. This latter
principle is sufficient to establish the Baire category theorem and treat basic
concepts of analysis.

Various results of the literature indicate that some amount of AC is needed to
construct discontinuous homomorphisms between Polish groups. For example,
Larson and Zapletal [11] show that, if there is a discontinuous additive
homomorphism between two separable Banach spaces, then there is a Vitali set,
that is, a set 7 C R intersecting every translate of @Q in a single point. However,
without a linear structure on the groups, little is known.

In the following, for k > 2, by kX we denote the profinite group [ [, Z/kZ.
The Hamming graph on k™ is then the graph with vertex set k> and so that two
elements o, B € k* form an edge if they differ in exactly one coordinate n € N.
Also, by

x (k)

we denote the chromatic number of the Hamming graph on k°°, that is the
smallest cardinality « so that there is a graph colouring c: k* — «, that is,
so that neighbouring vertices get different colours under c. Since the Hamming
graph on £ has cliques of size k, we always have x (k) > k. Conversely, as we
shall show later, if there is a Vitali set, then the Hamming graph has chromatic
number y (k) = k forall k > 2. Also, if x (k) = k for some k, then x (k") = k" for
all n > 1. Similarly, if just some x (k) is finite, then all the chromatic numbers
x (k) are finite.

Anticipating our general analysis of homomorphisms, if G ~5 Hisa
homomorphism between Polish groups, we define a closed subgroup of H by

N =[xV,
Vv

where V ranges over identity neighbourhoods in G. Then N gauges the
discontinuity of 7. Indeed, assuming that 7[G] is dense in H, then N is normal
in H and the induced homomorphism

G s H/N
has closed graph and thus is continuous.
THEOREM 5. In every model of ZF+DC, one of the following conditions hold.

(1) Every homomorphism between Polish groups is continuous,

(2) the chromatic number y (k) is finite for all k > 2 and, if G ~> Hisa
homomorphism between Polish groups, then N is compact and connected,
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Continuity of universally measurable homomorphisms 5

(3) for infinitely many k > 2, we have x(k) = k and, if G s Hisa
homomorphism between Polish groups, then N is compact,

(4) there is a Vitali set.

In the above theorem, we see that the conclusions about continuity of
homomorphisms weaken as we go from (1) to (4), while, on the other hand,
the graph theoretical conclusions strengthen. For example, if (2) holds and H
is a Polish group without compact connected subgroups other than {1}, then
every homomorphism from a Polish group into H must have N = {1} and thus
is continuous. Similarly, if (3) holds, then every linear operator between two
Banach spaces is continuous.

Note also that by a result of L. Pontryagin every compact connected group N
is pro-Lie, that is, for every identity neighbourhood V C N, there is a compact
normal subgroup K € V so that N/K is a finite-dimensional Lie group. In
particular, this applies to the subgroup N in condition (2).

We should mention that the intermediate option (3) cannot be avoided. Indeed,
di Prisco and Todorcevi¢ [15] have under the assumption of large cardinals
constructed a model of ZF4+-DC in which there is no Vitali set (or equivalently,
no transversal for E), but nevertheless containing a nonprincipal ultrafilter I/ on
N. Viewing U as an index 2 subgroup of [[, Z/2Z, this gives a discontinuous
homomorphism from [ [, Z/2Z to Z/27Z.

2. Continuity of homomorphisms
In the following, consider a homomorphism
G- H

between Hausdorff topological groups G and H. Associated to this, we define a
closed subgroup of H by

N=(\701= {h € H | h =limn(g,) for some net g, —> 1},
U

where U varies over all identity neighbourhoods in G. Indeed, note that, if V and
U are identity neighbourhoods in G so that VV~! C U, then also

A V1-7V1 S 7VI-7 [V S x[VV-'] S 701
So NN~!' € N and N is a subgroup.
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C. Rosendal 6

LEMMA 6. Suppose that the image of G is dense in H. Then N is the smallest
closed normal subgroup of H so that the induced map

G s H/N
has closed graph G7t.
Proof. First, to verify that N is normal in H, since w[G] is dense in H and N is

closed, it suffices to show that 7 ()N (f)~! € N forall f € G.Sofixh € N,
f € G and let U be any identity neighbourhood in G. Then

henrlfUfl=n(f)'7lUln(f) =n(f)""-=wU]-=(f),

that is, 7 (f)hm(f)~' € w[U]. So w(f)Nm(f)~' € N as required.

Consider now the quotient group H/N equipped with the quotient topology,
making it a Hausdorff topological group.

Note that the graph G7 is a subgroup of G x H/N and hence so is its closure
G . Therefore, if (g, hN) € G \G7, thenalso (1, 7(g) 'hN) € G \G7. Thus,
to see that 7 has closed graph, it suffices to show that (1, fN) ¢ G7 whenever
f¢N.

So fix f ¢ N. Then there is an open identity neighbourhood U C G so that
f ¢ m[U] and thus also an open neighbourhood V of f with V N x[U] = 0.
Since U is open, we have t[U]N C 7[U]. Indeed, given u € U, let W be an
identity neighbourhood in G so that uW < U. Then

TN Cau)yn[W]l=n[uW] C x[U]

as claimed. This thus implies that VN N [U]N = ¢ and hence that U x VN/N
is a neighbourhood of (1, fN) disjoint from G7. So (1, fN) ¢ G7 as required.
To see that N is the smallest closest normal subgroup K of H so that the

induced map G > H /K has closed graph, observe that, if K is any closed
normal subgroup of H and & € N, then there is a net g, in G so that g, — 1 and
7(gy) — h, whereby also m(g,)K — hK, thatis, (1, hK) lies in the closure of

the graph of G - H /K. Thus, if G - H /K has closed graph, we see that
h € K forevery h € N. O

In order to establish Lemma 4 and thus ultimately Theorem 3, the following
lemma can be avoided. Instead, it is used to prove Lemma 9 that slightly
strengthens Lemma 4 and that is relevant when determining the class of measures
with respect to which measurability implies continuity.
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Continuity of universally measurable homomorphisms 7

LEMMA 7. Let G — H bean arbitrary homomorphism between Polish groups
and suppose that X C G is comeagre and W C G is open. Then

n[W]=n[WnNX].

Proof. Suppose first that U and V are identity neighbourhoods in G and H,
respectively, that Y C G is comeagre and let g, € G be chosen so that {7 (g,)},
is dense in 7[G]. Then G = |, g,7~'(V) and hence some g,7~'(V) is
nonmeagre in U. Let f € 7~'(V) be such that g, f € U. Then

fTat V) =@ g ™(V)

is nonmeagre in (g, f)~'-U C U~'U and so 7 ~'(V~'V) is nonmeagre in U ~'U.
It thus follows that 7 ' (V-'V)NU-U NY # 4.

As U and V were arbitrary, this shows that 7='(V) N U N'Y # @ for all
comeagre sets ¥ € G and identity neighbourhoods U and V in G and H,
respectively.

Suppose now that & € 7[W] and pick w, € W so that m(w,) — h.LetY =
M), Xw, ', which is still comeagre in G. Let also U, be identity neighbourhoods
in G so that U,w, € W and let {V,} be a neighbourhood basis at the identity
in H.

By the above, we have 7= '(V,) N U, N'Y # @, so, for each n, find g, in
this intersection. Then g,w, € U,w, € W, while, as g, € 7~ '(V,), we have
m(g,) — 1, and finally, as g, € ¥ C Xwn", we get g,w, € X. Thus g,w, €
W N X, but

limm(g,w,) =limn(g,) - limmx(w,) = h.
Soh e n[WNX]. O

LEMMA 8. Let N be a Hausdorff topological group with the property that, for
every identity neighbourhood V, there is a finite set F so that N = | J rer VS -1
Then N = {1}.

Proof. We first claim that, for every identity neighbourhood U, there is a finite
set E so that N = EU. For suppose not. Pick another identity neighbourhood
V C U sothat VV~! C U and find a set F of minimal cardinality for which
there is a finite set £ with

N=FEVF.

Fix such a set E and pick any f € F. Observe then that, by our assumption, N #
EVV'CEU.Sotakeg ¢ EVV ' =EVf-(Vf)™', whereby gVfNEVf =0
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C. Rosendal 8

andthus gVf C EVF\EVf C EV - (F\{f}). It follows that
EVf CEg'-gVf CEg -EV-(F\{f)

and thus that
N=EVF =(Eg'EUE)V - (F\{f),

which contradicts the minimality of F and hence establishing our claim.

We now show that, for any symmetric identity neighbourhood U, one has
N = U?. Since N is Hausdorff, this shows that N = {1}. Thus, to see that
N = U3, let first E be a finite set so that N = EU and let V = ﬂgeEgUg_l.
Let also F be a finite set so that N = UfeF fVf~'LFor f e F,write f~' = gu
for some g € E and u € U and observe that

fVF ' =u"g'Veu Cu'Uu C U°.
SoN:UfEFfo‘1=U3. O

We now finally arrive at the central lemma of the paper, which is a slightly
strengthened version of Lemma 4.

LEMMA 9. Let G —> H be a homomorphism from a Polish group G to a
separable topological group H. Suppose that, for all identity neighbourhoods
U C GandV C H, there is a finite set E C U so that

Ug-7'(v)-g!

gek

is comeagre in an open identity neighbourhood. Then 7 is continuous.

Proof. Let M be the closed normal subgroup of H consisting of all elements that
cannot be separated from the identity by an open set. Then the quotient group
H /M is Hausdorff. Moreover, since H/M is separable, any nonempty open set
covers H/M by countably many translates and thus, by a result of Guran [9],
H/M is embeddable into a direct product [],_, K; of separable metrisable
groups. Taking completions in the two-sided uniformity, we may assume that
the K; are Polish.

By taking compositions with the quotient map H — H /M, the embedding
H/M — T[], K; and the factor projections [[,., K; — K;, we thus have

. 13 . . .
homomorphisms G -5 K i» J € I, and to see that G 5 H is continuous
it suffices to show that each 7; is continuous. Since the maps ; still satisfy the
condition that, for all identity neighbourhoods U € G and V C K, there is a

iel
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Continuity of universally measurable homomorphisms 9

finite set E C G for which e 8" 71171 (V)-g~!is comeagre in an open identity
neighbourhood, we have thus reduced to problem to the case when H is a Polish
group.

So assume without loss of generality that H itself is Polish, that 7[G] is
dense in H and let N and 7 be as before. Since G —> H /N has closed
graph and both G and H/N are Polish, 7w is continuous. Therefore, to see
that 7 is continuous, it suffices to show that N = {1} or by Lemma 8 that,
for every identity neighbourhood V in H, there is a finite set /' € N so that
NS Uper VI

So let V be any open identity neighbourhood in H and let W be an open
identity neighbourhood so that WWW-1 C V. As 7 is continuous, 7 L{(NW)
is an identity neighbourhood in G. Therefore, by assumption, there is a finite set
E C n~'(NW) so that

B=|Jegr'(W)g™'

geE

is comeagre in an open identity neighbourhood U in G. In particular, by
Lemma 7,
N C n[U] < =[B].

Now, let I C N be a finite set so that 7[E] € FW. Then

r[BIC | n(@Wr(e) < | rwww ' r,

8€E feF

and so

NerBlc|Jwww i e v

fer feF

as required. O

We now turn to the proof of our principal result, Theorem 3. To avoid any
ambiguity, recall that, given a Borel probability measure @ on a Polish space X,
Meas,, (X) is the o-algebra of all ;-measurable sets A € X, that is, sets so that,
for some Borel set B C X, AAB is p-null. The o-algebra

X = ﬂMeasM(X),

m

where p varies over all Borel probability measures on X, is the algebra of
universally measurable sets. Of course, this is an extremely impredicative
definition and little is known about how to generate the absolutely measurable
sets by a more explicit procedure. To some extent, absolute measurability is
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C. Rosendal 10

therefore a placeholder for the requirement that all arguments about these
sets should principally be measure-theoretic and not involve definability (for
example, projective sets) or Baire category.

A map X . ¥ from a Polish space X to a topological space Y is universally
measurable if ¢~ (V) is universally measurable for every openset V C Y.

THEOREM 10. Let G —> H bea universally measurable homomorphism from
a Polish group G to a separable topological group H. Then m is continuous.

Proof. We verify the hypothesis of Lemma 9. For this, suppose V is an identity
neighbourhood in H and pick an open identity neighbourhood W so that
WW=! C V. Then A = 7~'(W) is universally measurable and, as H is
separable, covers G by countably many right translates. By Theorem 1, this
means that, for any identity neighbourhood U in G there are g, ..., g, € U
so that

aiAA g/ U U g,,AA*Ig;1

and hence also
arn '(V)gi'u---Ug,m '(V)g,!

is an identity neighbourhood. This verifies the conditions of Lemma 9 and thus
proves the theorem. 0

It is debatable whether Theorem 3 is a positive or a negative result. On the one
hand, it is certainly a regularity theorem for universally measurable sets, but, on
the other hand, it shows that there is no homomorphism analogue of the useful
medial limits of Mokobodzki.

It is of course natural to wonder whether measurability with respect to all
measures is really required for the proof of Theorem 10. For example, if the
domain group G is locally compact, the Steinhaus—Weil theorem says that any
homomorphism 7, which is measurable with respect to just the Haar measure on
G, is necessarily continuous. So can the requirement of universal measurability
be relaxed to demanding that w be measurable with respect to some single
judiciously chosen o -finite Borel measure © on G?

In general, the answer is no, as the following example shows, but it is still
interesting to identify specific o-finite Borel measures on Polish groups with
this property. Observe that, as any o -finite Borel measure is equivalent to a Borel
probability measure, we may consider these instead.

EXAMPLE 11. Let u be a Borel probability measure on a separable infinite-
dimensional real Banach space X. Then there is a p-measurable discontinuous
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Continuity of universally measurable homomorphisms 11

functional ¢: X — R. To see this, let {x,} be a countable dense sequence in X
and observe that by tightness of 1, we may find symmetric compact sets K,, C X
so that w(X \ K,,) < 1/n and 0, x,, € K,. Without loss of generality, assume that
K, € K; C ---. Observe then that C,, = conv(K,) is a compact convex set and
hence that

V, = span(C,) = U m - C,

m>1

is a K, linear subspace. As V,, are increasing and contain x,,, it therefore follows
that W = |, V, is a dense K,, linear subspace of X. Moreover, u(W) = 1. As
X is not itself K, W is a proper subspace of X and therefore contained in some
hyperplane Z of X. Then, if ¢ is a nonzero linear functional on X that vanishes
on Z, we see that, for open sets U C R, the preimage ¢~'(U) either has full or
zero measure depending on whether 0 € U or not. So ¢ is p-measurable, but
discontinuous.

On the other hand, Stroock [23] shows that, if 7: X — Y is a linear operator
between real Banach spaces that is measurable with respect to every centred
Gaussian measure on X, then 7 is bounded. Thus, in the case of Banach spaces,
we have a geometrically defined class of measures that suffices for continuity.

Recall that, when X is a Polish space, the space of Borel probability measures
P(X) on X is Polish when equipped with the initial topology given by the maps

T / fdu,
be
where f ranges over continuous bounded real-valued functions on X.

PROBLEM 12. Suppose G ~> Hisa residually measurable homomorphism
between Polish groups, that is, so that w is measurable with respect to a
comeagre set of probability measures i on G. Is 7w continuous?

A second issue arising from our proof is that the statement of Lemma 9 is an
entirely algebraic-topological criterion for continuity of homomorphisms and
it is far from clear what role the completeness of G plays in it. Of course,
ultimately, the proof makes a heavy recourse to the closed graph theorem, but
can this be avoided?

PROBLEM 13. Is Lemma 9 valid for all separable metrisable topological groups
Gand H?
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C. Rosendal 12

For the purpose of our analysis in Section 3, we now return to studying the
subgroup N associated to a homomorphism G -~ H.

LEMMA 14. The following are equivalent for a homomorphism G - H
between Polish groups.

(1) N =, #[U] is compact,

(2) for all identity neighbourhoods U C G and V C H, there is a finite set
E C U so that E - n='(V) is an identity neighbourhood in G,

(3) for all identity neighbourhoods U C G and V C H, there is a finite set
E C U sothat E -t~ (V) - E is an identity neighbourhood in G.

Proof. Without loss of generality, we assume 7[G] is dense and thus that N is
normal in H.

(1)=(2): suppose N is compact and that identity neighbourhoods U C G and
V C H are given. Fix some symmetric open identity neighbourhood W C H so
that W* C V. As N is compact, pick a finite set F € N so that N € FW. Then,
as F C N C 7[U] C w[U]W, we can find a finite set E C U with F C n[E]W
and thus

NW C FW? C z[E]W? C n[E]V.

Since G — H/N is continuous, it follows that 7~!'(NW) is open in G and
thus also that 7 ~! (7 [E]V) = Em~!(V) is an identity neighbourhood.

(3)=(1): assume (3). To see that N is compact, by a result independently due
to Solecki [20] and Uspenskif [24], it is enough to show that, for every identity
neighbourhood V in H there is a finite set F € N sothat N € FV F.Solet V be
given and find a symmetric open identity neighbourhood W so that W3 C V. As

G > H/N is continuous, the set 7 ~!(N W) is open in G. There is therefore a
finite set E C 7~ '(NW) so that U = Ex~'(W)E is an identity neighbourhood
inG.As ECn ' (NW) =a Y (WN), we have r[E] € FW N WF for some
finite set F € N. Thus, by definition of N,

N C7[U] C 7[EJWR[E]C FWWWF C FWWWF C FVF,

so N is compact. O

3. A quadrichotomy for homomorphisms

We will now use our analysis of discontinuous homomorphisms to address the
amount of choice needed to produce these. For this, we must of course work in
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Continuity of universally measurable homomorphisms 13

some suitable weak background theory, which we here take to be ZF+DC. This
is appropriate, as dependent choice, DC, suffices to establish the basic concepts
of analysis that do not directly involve choice, for example, the Baire category
theorem.

3.1. Vitali sets and chromatic numbers of Hamming graphs. Recall that
by k> we denote the infinite direct product [] -, Z/kZ and that the Hamming
graph on k* is the graph with vertex set £ so that two vertices «, 8 € k* form
an edge if and only if « and g differ in exactly one coordinate n € N. A graph
colouring is just a function c¢: k* — X into some set X so that c(x) # c(B)

whenever {«, B} is an edge. Then the chromatic number

x (k)

is the smallest cardinality « so that there is a graph colouring c: k* — X into a
set X of cardinality «.

Now, suppose c: k* — X is a graph colouring and m = k" for some n > 1.
Fix a bijection ¢: Z/mZ — [|;_, Z/kZ and let (-); = proj,o¢ fori =1, ..., n.
We then define ¢;: m>* — X fori =1, ..., n by letting

ci(a) = c((a)i, (a2)i, (@3)iy .- 2)

and let C: m™ — X" be given by C(«) = (¢(«), ..., ¢,(@)). Then C is also a
graph colouring, which shows that

x (k") < x (k)"

for all n > 1. In particular, this shows that, if x (k) = k for some k, then actually
x (k) = k for infinitely many k.

The equivalence relation on k* of belonging to the same connected
component of the Hamming graph will be denoted by E((k). We observe that
o, B € k™ are Ey(k)-equivalent if they differ in only finitely many coordinates.
Also, a transversal for Ey(k) is a set T C k* intersecting every equivalence
class in exactly one point. In case T is such a transversal, one easily sees that
x (k) = k. Indeed, a colouring c: k> — Z/kZ is then defined by letting

c(@) = Z(a —4&);, modk,
i=1

where & € T is the unique representative of the equivalence class of o in T'.
As mentioned earlier, a Vitali set is aset T C R intersecting every translate of
Q1n a single point. For each k > 2, since both E\ (k) and the equivalence relation
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C. Rosendal 14

on R of belonging to the same translate of Q are hyperfinite Borel equivalence
relations, they are Borel bireducible and thus, in every model of ZF+DC, there
is a Vitali set if and only if E((k) admits a transversal. This means that we now
have a sequence of implications holding under ZF+-DC.

There is a Vitali set = x (k) = k forall k
= x (k) = k for some or, equivalently, infinitely many k
= x (k) < oo forall k.

Let us also observe the well-known fact that there can be no Baire or Haar
measurable colouring c¢: 2> — N. Indeed, given such a map c, there is some
colour n € N so that ¢~!(n) is nonmeagre, respectively, nonnull. Hence by Pettis’
Lemma, respectively, the Steinhaus—Weil Theorem, ¢~!(n) — ¢~!(n) contains
some element y with a single non-zero coordinate. Writing y = o — 8 where

c(a) = c(B), we see that « and B are neighbouring vertices in the Hamming
graph and so c fails to be a graph colouring.

3.2. The quadrichotomy. For the next lemma, a subset A of a group G
is said to be right o-syndetic provided it covers G by countably many right
translates, thatis, G = | J~ | Af, for some f, € G.

LEMMA 15 (ZF+DC). Suppose there is no Vitali set. Then, for every right o -
syndetic subset A of a Polish group G and identity neighbourhood U C G, there
is finite set E C U so that

EAAT'E

has nonempty interior.

Proof. Write G = |J;, Af, for some f, € G and suppose that EAA™'E has
empty interior for every finite set E C U. Without loss of generality, we assume
U is symmetric. Then, by induction, we can find g, g», ... € U so that

(1) gi,---g,€Uforalli; <--- <i,,
(2) foralli; <---<i, <kand j <--- < j, <k we have
gt g g AAT g g,
(3) foralli; < i, < --- the infinite product
8i18ir8i3 " "
converges in G,
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Continuity of universally measurable homomorphisms 15

(4) the map ¢: 2°° — G defined by

@) =gV

where g° = 1, is a continuous injection and thus a homeomorphism with its
image.

Assume that o and g are Ey(2)-equivalent but distinct, say a(k) =1, 8(k) =0
and a(n) = B(n) for all n > k. Then we can write

) = gi, -+~ &,8h,  ®(B) =g - 8.h

forsomei; <---<i, <k,ji<---< j,<kandh € G. Thus
P@PB) " =g -8, 88 8, EAAT

In particular, this shows that each set B,, = ¢~'(Af,,) can only intersect an
Ey(2)-equivalence class in a single point and hence is a partial E((2)-transversal.

Now, since 2% = | J,, B, this means that a transversal 7' C 2* for E((2) can
be defined by

T=JB,\[BU---UB,lx).

Thus, if the conclusion of the lemma fails, there is a transversal for Ey(2) and
hence also a Vitali set. [

LEMMA 16 (ZF+DC). Suppose G ~> Hisa homomorphism between Polish
groups so that N = (), w[U] is compact. Assume that V, W C H are symmetric
open identity neighbourhoods so that

(1) hVh™' =V forallh € N,

(2) thereisaset F C N with |F|=pand N C VF,

) thereisaset E C N with |E| =k and VW?h,N\VW?2h, = () for all distinct
hl, I’l2 e E.

Then x (k) < p.

Proof. Since N is compact and V F is open, by shrinking W, we may assume
that NW C VF. Letthen U C G be a symmetric open identity neighbourhood
so that U C 7' (N W), which is possible since the induced map G — 7[G]/N
is continuous.

Now, for every identity neighbourhood O in G, N C Wr[O], so we may
inductively choose sets Ey, E;, ... € G so that
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C. Rosendal 16

(1) E,---E, CU for all n,

(2) |Ei| =k,

(3) VWr(g) N VWnr(f) = ¢ for all distinct g, f € E,,
(4) themap ¢: [[2, E; — U given by

(]5(81, 82, 83 )= 818283 - - -

is well defined, injective and continuous with respect to the product
topology on [ 2, E;.

Now, suppose &, B € [[r-, E; differ in a single coordinate n. Then we can write
¢(a) =ugx and ¢p(B) = ufx forsomeu € U C 7~ ' (NW), x € G and distinct
g, f € E,, whereby (¢ («)) = hwr(g)m(x) and w (¢ (B)) = hwn (f)m(x) for
some h € N and w € W. Thus

V(@) NVr(p(B) = Vhwr(g)m(x) N Vhwn (h)mw(x)
C hVWr(g)m(x) NhV W (h)m(x)
=h[VWr(g) N VWr(f)]m(x)
=0

and so 77 (¢ («)) and (¢ (B)) cannot belong to the same right translate Vz of V
by any z € H. Since im(¢) € U C 7w~ '(V F), it thus follows that the sets

A= (wd) ' (V2)

for z € F cover [[-, E; by sets that are discrete in the Hamming graph on the
product [];~, E;, which we may identify with k. So x (k) < |F| = p. O

THEOREM 17 (ZF+DC). One of the following conditions hold.
(1) Every homomorphism between Polish groups is continuous,

(2) the chromatic number x (k) is finite for all k > 2 and, if G ~S Hisa
homomorphism between Polish groups, then N is compact and connected,

(3) for infinitely many k > 2, we have x(k) = k and, if G —> H is a
homomorphism between Polish groups, then N is compact,

(4) there is a Vitali set.
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Continuity of universally measurable homomorphisms 17

Proof. In all of the proof, we suppose that (4) fails, that is, there is no Vitali
set. Then, by Lemma 15, for every right o-syndetic set A € G and identity
neighbourhood U C G, there is a finite set £ C U so that E AA7'Eisan identity
neighbourhood in G. So suppose G > Hisa homomorphism between Polish
groups so that 7[G] is dense in H and U € G, V C H identity neighbourhoods.
Pick a symmetric open identity neighbourhood W so that W2 C V. Then A =
7~ 1(W) is right o -syndetic, so, for some finite E C U,

E-n7'W) -z "Wy E C E- a7 (V)-E

are identity neighbourhoods in G. By Lemma 14, this shows that N is compact.
Now, assume there is some G —> H so that N is compact but not connected.
Then, by a theorem of van Dantzig [5], N has a clopen proper normal subgroup
M < N. Since N is compact, the index k = [N : M] > 1 is finite and so the
cosetsof M in N,
M1 g e ey Mk,

are pairwise disjoint compact sets in H. We may thus choose a symmetric open
identity neighbourhood W C H so that also

WM., ..., WM,

are pairwise disjoint. Moreover, as N is compact, we may suppose that AtWh~! =
W forall h € N. Then V = WM is symmetric and open in H and VW?h =
WMW?h = W3Mh for all h € N. It thus follows that VW?2h, N VW?h, = ¢
whenever hy, h, € N belong to distinct M-cosets. Letting F € N be a set of
coset representative for M in N, weseethat N € VF = WMF = WN. Letting
also £ = F, Lemma 16 implies that x (k) = k and thus that y (k") = k™ for all
m > 1.

Now, assume instead there is a discontinuous homomorphism G - H
between Polish groups. Then N is compact but N # {1}. We may thus find
some symmetric open identity neighbourhood V C H so that A2Vh~! = V for
all h € N and so that V3h, N V3h, = @ for some elements A, h, € N. Let
then E = {h, h,}, W = V and let F € N be any finite set so that N C VF.
By Lemma 16, it follows that x(2) < |F| and hence that x (k) < oo for all
k> 2. O

COROLLARY 18 (ZF4+-DC). Suppose that y (k) > k for all k > 2 and let H be
a countable index subgroup of a Polish group G. Then H is open in G.

Proof. Consider the group Sym(G/H) of all permutations of the left-coset
space G/H of H.Equipped with the permutation group topology, that is, where
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C. Rosendal 18

pointwise stabilizers are declared open, Sym(G/H) is a Polish group. Since the
only compact connected subgroup N < Sym(G/H) is N = {1}, by Theorem 17,
the homomorphism

G — Sym(G/H),

is continuous and hence H is open in G. O

3.3. TI'-measurability. It is not hard to verify that the proof of our
quadrichotomy relativizes to I"-measurability, where I” is an adequate pointclass
in Polish spaces in the sense below. That is, in Theorem 17, we may replace
abstract homomorphisms by I'-measurable homomorphisms, transversals by
I'-measurable transversals and colourings by I'-measurable colourings. The
proofs are exactly the same, except that one must track the I"-measurability of
all sets involved in the constructions.

DEFINITION 19. A pointclass I" in Polish spaces is said to be adequate if,
for every Polish space X, I'(X) is a o-algebra containing the Borel sets and,
whenever ¢: X — Y is a homeomorphism between Polish spaces, then A C X
is I"-measurable if and only if ¢[A] is.

For example, I" could be the pointclass of universally measurable sets or
simply the pointclass of all subsets of Polish spaces.

One particular application that seems most interesting when involving I"-
measurability is the following corollary.

COROLLARY 20 (ZF+-DC). Let I' be an adequate point class in Polish spaces
so that, for all k > 2, the Hamming graph on k* has I'-chromatic number > k.
Then, for every symmetric, right o-syndetic, I"-measurable subset A > 1 of a
Polish group G, there is a power A" with nonempty interior.

Proof. Let H = (A) be the subgroup generated by A, which as A is right o-
syndetic must have countable index in G. Write G = |, Af, for some fi, f>,
... € G and observe that, if Af, N H # (J, then f, € H. It follows that H =
U .en Afa and hence H is itself I"-measurable and thus open by Corollary 18.
Again, by Lemma 15, we find a finite set E C H, so that E A?E has nonempty
interior. As A > 1 is a symmetric generating set for H, we have E C A* for
some k and thus A%**2 has nonempty interior. O

In this connection, we should mention one problem that Theorem 3 does
not address, but which is certainly of high interest in the study of universally
measurable sets.
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Continuity of universally measurable homomorphisms 19

PROBLEM 21. Is there a number n > 1 so that int(A") # ) whenever A > 1 is
a universally measurable, symmetric, right o -syndetic subset of a Polish group?
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