LIGHT GROUPS OF ISOMORPHISMS OF BANACH SPACES AND
INVARIANT LUR RENORMINGS
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ABSTRACT. Megrelishvili defines in [15] light groups of isomorphisms of a Banach space
as the groups on which the Weak and Strong Operator Topologies coincide, and proves
that every bounded group of isomorphisms of Banach spaces with the Point of Continu-
ity Property (PCP) is light. We investigate this concept for isomorphism groups G of
classical Banach spaces X without the PCP, specially isometry groups, and relate it to
the existence of G-invariant LUR or strictly convex renormings of X.

1. INTRODUCTION

The general objective of this note is to determine conditions on a bounded group of
isomorphisms of Banach spaces that ensure the existence of a locally uniformly rotund
(LUR) renorming invariant under the action of this group. In particular, we will be
interested in this context in the notion of lightness for such groups.

1.1. Light groups. A frequent problem in functional analysis is to determine under which
conditions weak convergence and norm convergence coincide. For example, it is well-known
that conditions of convexity of the norm of a Banach space ensure that weak and strong
convergence are equivalent on its unit sphere. The corresponding problem for isomor-
phisms of Banach spaces (or more generally of locally convex spaces) was studied by
Megrelishvili in [15] in the context of group representations, using the concept of frag-
mentability.

Given a (real) Banach space X, we denote by L(X) the set of bounded linear operators
on X, and by GL(X) the group of bounded isomorphisms of X. We also denote by
Isom(X) the group of surjective linear isometries of X. If G is a subgroup of GL(X), we
write G < GL(X). Recall that given a Banach space X, the Strong Operator Topology on
L(X) is the topology of pointwise convergence, i.e. the initial topology generated by the
family of functions f,: L(X) — X, x € X, given by f,(T) = Tz, T € L(X), and the Weak
Operator Topology on L(X) is generated by the family of functions fy .+ : L(X) — R,
z e X, ax* € X* given by fy o«(T) = a*(Tz), T € L(X).

Megrelishvili gives the following definition.
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Definition 1.1 ([15]). A group G < GL(X) of isomorphisms on a Banach space X is
light if the Weak Operator Topology (WOT) and the Strong Operator Topology (SOT)
coincide on G.

Observe that since the two operator topologies are independent of the specific choice of
norm on X, the same holds for lightness of G.

Obvious examples of light groups are the group U(H) of unitary operators on a Hilbert
space H, as well as the bounded amenable subgroups of GL(H). However, the main result
of [15] concerning light groups indicates that the restriction of amenability is not needed.
Recall that a Banach space X has the Point of Continuity Property (PCP) if for every
norm-closed non-empty bounded subset C of X, the identity on C' has a point of continuity
from the weak to the norm topology:

Theorem 1.2 ([15]). If X is a Banach space with the Point of Continuity Property (PCP)
and if G < GL(X) is bounded in norm, then G is light.

In particular, if X has the Radon-Nikodym Property (RNP) (e.g. if X is reflexive or is
a separable dual space), then every bounded subgroup of GL(X) is light.

We note here that in the literature (and indeed in [15]) PCP sometimes appears as
the formally weaker condition “every weakly-closed non-empty bounded subset has a weak-
to-norm point of continuity for the identity”. However, as was pointed out to us by G.
Godefroy, if X satisfies the second definition and F' is norm-closed and bounded, it is
readily seen that any point of continuity of the weak closure F belongs to F, so the two
definitions are equivalent.

1.2. Bounded non-light groups. A natural question that arises from Megrelishvili’s
result is to investigate in which respect his result is optimal, and whether “smallness”
assumptions on G or weaker assumptions than the PCP on X could imply that G is light.
After observing that SOT-compact groups G of isomorphisms are light (Proposition 2.3),
we show (Theorem 4.6) that any separable space containing an isomorphic copy of ¢y
admits a bounded cyclic group of isomorphisms which is not light. This shows that we
cannot really expect further general results in this direction.

Megrelishvili gives as example of a non-light group the group Isom(C([-1,1]?)). His
proof uses a construction of Helmer [12] of a separately continuous group action on [—1,1]?
that is not jointly continuous, and the equivalence of pointwise compactness and weak
compactness of bounded subsets of C(K). This leads us to looks for further examples
of non-light isometry groups, for instance within the class of spaces C'(K), where K is
an infinite compact space. We first prove (Proposition 4.3) that the isometry group of
¢, the space of real convergent sequences, is not light. Neither is the isometry group of
C({0,1}™) (Proposition 5.5). On the other hand, as a consequence of Theorem 5.7, we
show that the isometry group of C0, 1] is light, while those of the spaces C([0,1]"), n > 2,
are not light. These constructions simplify the initial example of Megrelishvili.

1.3. Light groups and LUR renormings. In another direction, we study the relation
between light groups and the existence of LUR renormings invariant under the action of
the group. Recall that a norm ||-|| on X is rotund or strictly convex if whenever the vectors
x,y belong to the unit sphere Sx of X and ||z + y| = 2, x = y. It is locally uniformly
conver (LUC) or locally uniformly rotund (LUR) at a vector ¢ € X if whenever (zy,)nen
is a sequence of vectors of X such that lim ||z,|| = |xo|| and lim ||zg + z,| = 2|z0],
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lim ||z, — zo|| = 0, and LUR if it is LUR at every point z¢ of X (or, equivalently, of
Sx). The property of the dual norm || - ||« on X™* being strictly convex or LUR is closely
related to the differentiability of the norm ||-|| on X, in the senses of Fréchet and Gateaux
respectively. All (real) separable Banach spaces admit an equivalent LUR renorming. For
this and much more on renormings of Banach spaces, see [4].

A fundamental result in the study of LUR renorming is the following theorem, due to
Lancien (see [14]):

Theorem 1.3 ([14]). If X is a separable Banach space with the RNP, X admits an
isometry invariant LUR renorming.

If G < GL(X,| - ||) is a bounded group of isomorphisms on X, the norm on X defined
by
]l = supllgz|l, = € X,
geG

is a G-invariant renorming of X. In other words, G < Isom(X, || - ||). So a consequence
of Lancien’s Theorem 1.3 is that whenever X is a separable space with the RNP and G
is a bounded group of isomorphisms on X, there exists a G-invariant LUR renorming of
X. The existence of G-invariant LUR renormings for general groups of isomorphisms G
was first investigated by Ferenczi and Rosendal in [7]. In this paper, problems of maximal
symmetry in Banach spaces were studied, analyzing the structure of subgroups of GL(X)
when X is a separable reflexive Banach space. An example of a super-reflexive space with
no maximal bounded group of isomorphisms was also exhibited in [7].

The relation between light groups and G-invariant LUR renormings is given by Propo-
sition 2.2. We observe that if a Banach space X admits a G-invariant LUR renorming,
then G is light. In fact, this is true even if the norm is LUR only on a dense subset of Sx.
We also show that the converse assertion is false: although the isometry group of C10, 1]
is light, C[0, 1] admits no strictly convex isometry invariant renorming (Corollary 5.10).

1.4. Light groups and distinguished families. In [6], Ferenczi and Galego investi-
gated groups that may be seen as the group of isometries of a Banach space under some
renorming. Among other results, they prove that if X is a separable Banach space and G
is a finite group of isomorphisms of X such that —Id € G, X admits an equivalent norm
Il - || such that G = Isom(X, || - ||). They also prove that if X is a separable Banach space
with LUR norm || .| and if G is an isometry group of X such that —Id € G and such
that G admits a point x € X with inf,41q ||gz — 2| > 0, then G = Isom(X, || - ||) for some
equivalent norm || - || on X. A point x satisfying the condition

inf — >0
it llgr ]

is called in [8] a distinguished point of X for the group G.

In [8], Ferenczi and Rosendal generalized results of [6] to certain uncountable Polish
groups, and also defined the concept of distinguished family for the action of a group G
on a Banach space X. It is clear that if G is an isometry group with a distinguished
point, G is SOT-discrete. However, the following question remained open: if G is an
isomorphism group of X which is SOT-discrete, should X have a distinguished point for
G? In Proposition 6.1 we will see that the answer to this question is negative, and will give
an example of an infinite countable group of isomorphisms G of ¢y which is SOT-discrete
but does not admit a distinguished point for G. In addition, this group is also not light.
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1.5. Light groups on quasi-normed spaces. Although Megrelishvili has defined the
concept of light group only for groups of isomorphisms on locally convex spaces, we can
extend the definition to quasi-normed spaces, even if they are not locally convex. We
finish this article by investigating whether the isometry groups of the quasi-normed spaces
¢, and L,[0,1], 0 < p < 1, are light.

2. LUR RENORMINGS AND LIGHT GROUPS

Let G be a bounded group of isomorphisms on a Banach space (X, [|-]|). In this section
we are interested in the existence of a G-invariant LUR renorming of X, i.e. in the
existence of an equivalent norm || - | on X which is both invariant under the action of G
and is LUR; or simply in the existence of a G-invariant dense LUR renorming, meaning a
renorming which is invariant under the action of G and is LUR on a dense subset of Sx.
When G = Isom(X, ||-||) we shall talk about isometry invariant renormings.

Proposition 2.1. Let X be a Banach space and let G < GL(X). If G is SOT-compact
and if X admits an LUR renorming, X admits a G-invariant LUR renorming.

Proof. Suppose that ||-|| is an equivalent LUR norm on X. The formula
Izl = sup [Tz, =€ X,
TeG

defines a G-invariant LUR renorming of X. Indeed, suppose that x,, n € N, and x are
vectors of X such that ||z,[ = ||z| = 1 for every n € N and lim ||z,, + z|| = 2. Then we
can find elements T}, n € N, of G such that lim || T, z,, + T,x| = 2. By SOT-compactness
of G we can assume without loss of generality that 7, tends SOT to some element 7" of

G, from which it follows that ||T,x, + Tz|| converges to 2. Since ||T,zy| < ||zn| = 1 for
every n € N and ||Tz|| < ||z|| = 1, we deduce that | Tz| = 1 and that ||T},x,|| converges
to 1. In particular, if we set, for every n € N, y,, = ”%722”, then y, belongs to the unit

sphere of (X,| - ||) and ||y, + Tx| converges to 2. By the LUR property of ||-|| at the
point Tz, we deduce that y, converges to T'x. This means that T;,x, converges to Txr. So

|z — || = | Thzn — Thnx|| converges to 0 since both Tz, and T,z converge to T'z. This
shows that || - || is LUR. O

In [8], Ferenczi and Rosendal investigate LUR renormings in the context of transitivity
of norms. Recall that a norm || -|| on X is called transitive if the orbit &'(z) of every point
x € Sx under the action of the isometry group Isom(X) is the whole sphere Sx. If for
every x € X the orbit 0(z) is dense in Sx we say that || - || is almost transitive, and if
the closed convex hull of &(z) is the unit ball Bx, we say that || - || is convez transitive.
Ferenczi and Rosendal proved that if an almost transitive norm on a Banach space is LUR
at some point of the unit sphere, it is uniformly convex. They also proved that if a convex
transitive norm on a Banach space is LUR on a dense subset of the unit sphere, it is almost
transitive and uniformly convex.

In the next proposition, we exhibit a relation between the existence of LUR renormings
and light groups.

Proposition 2.2. Let G < GL(X) be a group of isomorphisms of a Banach space X. If
X admits a G-invariant renorming which is LUR on a dense subset of Sx, G is light.

Proof. Let || .|| be a G-invariant renorming of X which is LUR on a dense subset of Sx.
Let (Ty) be a net of elements of G which converges WOT to the identity operator Id on
X, and assume that T, does not converge SOT to Id. Let x € Sx be such that T,z does
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not converge to x. Without loss of generality, we can suppose that the norm is LUR at x,
and that there exists 0 > 0 such that, for every a, ||T,z — z|| > §. By the LUR property,
there exists € > 0 such that ||Toz + z|| < 2 — ¢ for every a. Let ¢ € X* with ||¢| =1 be
such that ¢(z) = 1. Since T}, converges WOT to Id, ¢(Tox) — 1. On the other hand,

2—ec> ||Thx+2x| = max |Y(Tax + x)| > |¢p(Tox) + 1] for every a,
e *
llll=1
which contradicts the WOT convergence of T, to Id. ]

Since every separable space admits an equivalent LUR renorming, it follows by combin-
ing Propositions 2.1 and 2.2 that every SOT-compact group G < GL(X) of a separable
Banach space X is light. In fact, this result holds true even for non-separable spaces, as
observed in the next proposition:

Proposition 2.3. Let G < GL(X) be a group of isomorphisms of a Banach space X. If
G is SOT-compact, G is light.

Proof. The assumption implies that G is also WOT compact, since the WOT is weaker
than the SOT. However, the WOT is also Hausdorff, and so the two topologies must agree
on G. In other words, G is light. O

3. LIGHT GROUPS AND DISTINGUISHED POINTS

As recalled in the introduction, Lancien proved in [14] that if X is separable with the
RNP, X admits an isometry invariant LUR renorming. Although separable spaces always
admit LUR renormings, the generalization of Lancien’s result to all separable spaces is
false. For example, if X = C([—1,1]?) and G = Isom(X) then, since G is not light [15],
there is by Proposition 2.2 no equivalent G-invariant (not even dense) LUR renorming.
Another example mentioned in [8] is the case where X = L1[0,1] and G = Isom(L4][0, 1]).
In this case there is not even a strictly convex G-invariant renorming.

Here we discuss conditions which clarify the relations between the two properties of a
group G < GL(X) being light and X having a G-invariant LUR renorming, in the case
when G is SOT-discrete. The following notion was defined in [8].

Definition 3.1. Let X be a Banach space, let G < GL(X) be a bounded group of isomor-
phisms of X, and let x € X. We say that x is distinguished for G (or for the action of G
on X ) if

inf ||Tz —z|| > 0.
T#1d

If {z1,...,2n} is a finite family of vectors of X, then it is distinguished for G if

inf max ||Tz; — ;]| >0,

T#Id 1<i<n
or, equivalently, if the n-tuple (x1,...,xy,) is distinguished for the canonical action of G
on X".

This notion does not depend on the choice of an equivalent norm on X. Note also that
G is SOT-discrete exactly when it admits a distinguished finite family of vectors. We also
have, considering the adjoint action of G on X*:

Lemma 3.2. Assume that G < GL(X) is light. If G acts as an SOT-discrete group on
X, then G acts as an SOT-discrete group on X*.
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Proof. Define ¢ : G — GL(X*) by setting ¢(T)(z*) = x* o T~! for every T € G and
z* € X*. We want to show that ¢(G) is an SOT-discrete subgroup of GL(X™). For this
it suffices to show the existence of ¢ > 0 and z7,..., 2}, € Sx= such that the only element
T of G such that ||¢(T)(z}) — «}|| < € for every 1 < i < n is the identity operator Idx
on X. Since G is light and acts as an SOT-discrete group on X, it is WOT-discrete. So

there exist € > 0, 1,...,2y € Sx and z7,..., 2}, € Sx+ such that the only element 7" of
G such that |z} (T 'z; — ;)| < eforevery 1 <i<mnand1l<j<misT =Idy. The
conclusion follows immediately. O

Lemma 3.3. Let X be a Banach space, let G be a bounded subgroup of GL(X), and let
{z1,...,2n} be a distinguished family of vectors for the action of G on X. Let | - | be
a G-invariant norm on X which is LUR at x; for every 1 < ¢ < n. For any functional
xy € Sy« .- such that z}(x;) = ||xi|| for every 1 < i < n, the family {z7,...,z}} is
distinguished for the action of G on X™.

Proof. Assume that ||z;|| = 1 for every 1 <i < n. Let a = infp1q, maxi<i<p || Tw;— 24| >
0. For every T # Idy, choose 1 < i < n such that |7 'a; — x;]| > . By the LUR
property of the norm at x;, there exists ¢ > 0 depending on « but not on ¢ such that
|1T o + xi]| < 2—¢e. So af(T 1x;) < 1 —e. From this it follows, using the notation
introduced in the proof of Lemma 3.2 above, that ¢(T)(x})(z;) — z}(x;) < —e, so that
|(T)(z}) — xF|| > e. This being true for every T' # Idx, {z7,...,x}} is distinguished for

the action of G on X*. O
As a direct corollary, we obtain:

Corollary 3.4. Let X be a Banach space, let G < GL(X) be SOT-discrete, and assume
that X admits a G-invariant dense LUR renorming. If there exists a distinguished family
of cardinality n for the action of G on X, there also exists a distinguished family of
cardinality n for the action of G on X*.

4. BOUNDED GROUPS WHICH ARE NOT LIGHT

Isometry groups are especially relevant to our study. We introduce the following defi-
nition:
Definition 4.1. A Banach space X is light if Isom(X) is a light subgroup of GL(X).

Observe that since the isometry group of a Banach space (X, ||.]|) is not invariant by
equivalent renorming, the notion of lightness for a Banach space depends very much on
the choice of the norm. In our terminology, Megrelishvili proves in [15] that all spaces with
the PCP are light but that C([0,1]?) is not light. Also, it is easy to observe the following
fact:

Fact 4.2. The space ¢y is light.
Proof. Every isometry T of ¢y (endowed with the usual supremum norm) has the form
T((wk)ken) = (ExTo(k)kens  (Tr)ken € o,

where (ex)ren € {—1,1}N and o is a permutation of N. Using this, it is not difficult to
check that whenever (T},)qcr is a net of isometries of ¢y which converges to Id in the WOT,
it automatically converges to Id in the SOT. O



LIGHT GROUPS AND INVARIANT LUR RENORMINGS 7

Another proof of Fact 4.2 is based on the observation that ¢y admits a particular LUR
renorming, namely the Day’s renorming given by

" a2\ ?
ag
|z||p = sup (Z 1k > , € co,

k=1

where the supremum is taken over all n € N and all permutations o of N (see [4, p. 69]).
Since this renorming is isometry invariant, it follows from Proposition 2.2 that cq is light.

Note that the Day’s renorming is actually defined on ¢, and therefore on the space ¢ of
convergent real sequences. In view of Proposition 4.3 below, it may be amusing to observe
that Day’s renorming is not strictly convex on ¢ (not even on a dense subset of S.). In
fact, it is not strictly convex at the point (1,1,...) since for every x = (xj)ren € ¢ such
that ||z|lcc = 1 and |zx| = 1 for infinitely many indices k, we have ||z|p = ||(1,1,...)|p.

We now provide an elementary example of a space which is not light.

Proposition 4.3. There exists a subgroup G < Isom(c) which has a distinguished point,
but whose dual action on {1 is not SOT-discrete. In particular the space ¢ is not light.

Proof. Define G as the subgroup of isometries T" of ¢ of the form

T((zr)ken) = (exTk)ken, (Tk)ren € ¢,

where the sequence (gg), € {—1,1}" is eventually constant. One easily sees that (1,1,...)
is a distinguished point for G. On the other hand, the dual space of ¢ identifies isomor-
phically with ¢, where ¢ = (yr)ren € ¢1 acts on an element x = (xg)ren € ¢ by the
formula

o0
x) =1y lim z + Th—1-
o(z) ylk—wo k kZka k—1
For every n € N, define the operator T,, € G by setting, for every (zx)ren € ¢,

Tn(JTl,l'Q, -o 9y Tp—1,Tn; Tntl,-- ) = (xla:EZa <oy Tn—1, =Tn, Ln4l,--- )

SOT
Obviously T,, —~ Id, but for every n € N and every = € ¢ we have

o0 o0
(To(x)) = g1 lim (T () + g Y (Tn (@)1 = <y1 Jlim a, + g Yk ka_1> — 2y,

which tends to ¢(z) as n tends to infinity. Hence T, WO Id and G is not light, which
implies that Isom(c) itself is not light. Actually the inequality |(7;'¢ — ¢)(2)| = 2|ynxn| <
2lynlllz]l, = € ¢, ¢ € £y, implies that T tends SOT to Id, so the dual action of G on ¢; is
not SOT-discrete. O

Remark 4.4. Note that the non-light subgroup G of Isom(c) constructed in the proof
above has the property that all its elements belong to the group Isom¢(c) of isometries
which are finite rank perturbations of the identity.

We observe the following relation between groups acting on a space and on a comple-
mented subspace.

Lemma 4.5. AssumeY embeds complementably in X . If every bounded group of isomor-
phisms on X is light, then every bounded group of isomorphisms on Y is light.



8 L. ANTUNES, V. FERENCZI, S. GRIVAUX, AND C. ROSENDAL

Proof. Let Z be a closed subspace of X such that X ~Y @ Z. Let G < GL(Y) be a
bounded subgroup and for each 7' € G, consider the operator T' = T @ Idy € GL(X).
These operators form a bounded subgroup G of GL(X) which is therefore light.

Let (Tw)aer be a net in G such that Ty, wor
light, T. 0T 1q x. Since for every y € Y,
”Ta(y) - yHY = ||Ta(y70) - (yao)HX — 05

it follows that T}, °2% Idy-. O

— Idy. Then Ta W—O;f Idx, and since G is

Assume that X is separable and that G < GL(X) is a bounded group of isomorphisms
on X. As we have seen, if X either has the RNP or G is SOT-compact, then X admits a
G-invariant LUR-renorming. It is natural to wonder whether the assumption on G may
be weakened somewhat and, in particular, whether a similar result holds true for cyclic
groups G. We show that it is not the case.

Theorem 4.6. Let X be a separable Banach space containing an isomorphic copy of co.
Then GL(X) contains a WOT-indiscrete bounded cyclic subgroup G with a distinguished
point in X. In particular, G is not light.

Proof. Consider the space ¢(R?) of convergent sequences in the euclidean space R? with
the supremum norm. We define an isometry T of ¢(R?) by setting

T((azn)neN) = (RnZn)nen  for every z = (z,)nen € c(R?),

(3l )

cos( ="

where, for every n € N,

is the rotation of R? of angle . Observe that, since lim,, 2% F =0, we have

hénT((wn)nGN) = h?gn(RnfUn)nelN = hrrln(fvn)nehd for every x = (zn)nen € C(lRQ)'

As also RfL! = Idg: whenever k > n, we deduce that T YOI 1d. So the cyclic subgroup
(T) of GL(c(R?)) generated by T is indiscrete in the WOT.

On the other hand, if we define © = (z,)nen € ¢(R?) by setting z,, = (1,0) for every
n € N, we find that, for every k € N,
170 = af| g > RSy — waella = 1(~1,0) — (1,0)]l; = 2.

So z is a distinguished point for (7T').

Observe now that c([R2) ~chc~cyP ey > ¢y, so T can be seen as an automorphism
of ¢y. Also, if X is a separable Banach space containing ¢y, cg is complemented in X by
Sobczyk’s Theorem, i.e. X can be written as X = ¢g @Y for some subspace Y of X. Then
Lemma 4.5 applies. Actually the group G generated by S =T @1 on X is not light, since

gkt WO Id, while G has a distinguished point in X. O

Remark 4.7. It follows from Theorem 4.6 that any separable Banach space X containing
an isomorphic copy of ¢y admits a renorming || . || such that (X, | .|) is not light.

We finish this section with the following observation:
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Lemma 4.8. Suppose G is an abelian group acting by isometries on a metric space (X, d)
without isolated points, and inducing a dense orbit G - x for some element x € X. Then,
for every € > 0, there exists g € G \ {1} such that sup.exd(gz,z) < €.

Proof. Indeed, since X has no isolated points and the orbit G - z is dense, we may pick
g € G so that 0 < d(gx,z) < e. For any y in G - x, written y = ha for h € G, we have

d(gy,y) = d(ghx, hx) = d(hgz, hx) = d(gz,z) <.
The result follows by density. O

As a particular instance, note that if G is an SOT-discrete group of isometries of a
Banach space X of dimension > 1 with a dense orbit on Sx, then GG cannot be abelian.

5. LUR AND STRICTLY CONVEX ISOMETRY INVARIANT RENORMINGS

Proposition 2.2 leads to the following question:

Question 5.1. Does there exist a light Banach space X which admits no isometry invari-
ant LUR renorming?

It was observed in [8] that X = L]0, 1] does not admit any isometry invariant dense
LUR renorming. In fact, since the norm of L;[0, 1] is almost transitive and is not strictly
convex, any equivalent renorming is just a multiple of the original norm, so it is not strictly
convex either, and hence is not LUR. Thus L;]0, 1] could be a natural example of a light
Banach space which admits no isometry invariant LUR renorming. However,

Proposition 5.2. The space L1[0,1] is not light.
Proof. For every n € N, define ¢, : [0,1] — [0, 1] by setting
1 — cos(2"t)

tel0,1
on ’ [7]7

Spn(t) =t+
and T), : L1[0,1] — L]0, 1] by
To()(t) = () f(en(t),  f € L]0, 1], t € [0,1].

Note that ¢y, is a differentiable bijection from [0, 1] into itself. So T;, is a surjective linear
SOT
isometry of L;[0,1]. Moreover, T,, -/~ Id, since for f =1 we have

2
|7, (1) — 1|1 = ||sin(2"7z)||; = — for every n € N.
T
On the other hand, T, WOT 14, To prove this, we need to check that

1 1
/0 T.(f)(t)g(t)dt —>/0 f(t)g(t)dt for every f € L1]0,1] and g € L[0,1].

By the linearity of T;, and the density of step functions in L;[0, 1], it is sufficient to consider
the case where f is the indicator function of a segment I, = [22—12, Q(SII)
and 0 < k < 2™~! — 1. In this case the function ¢, is a bijection from I, 1 into itself for

every n > m. Thus f oy, = ¢,, and

1 1 1
/ To(f)(Dg(t)dt = / () F (on(t))g(t)dt = / () F () g(t)dt
0 0 0

], where m > 1

1 1
_ / FO)g(t)dt + / sin(2"r) £ (g () dt.
0 0
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The result then follows from the Riemann-Lebesgue Lemma. U

Remark 5.3. Another space of which it is well known that it does not admits any LUR
renorming is £,. Indeed £, does not admit any equivalent norm with the Kadec-Klee prop-
erty ([4, Ch. 2, Th. 7.10]), while every LUR norm satisfies the Kadec-Klee property ([4,
Ch. 2, Prop. 1.4]). However, ¢+, does admit a strictly convex renorming (see [5, p. 120]).
We note here that it does not admit any isometry invariant strictly convex renorming. To
see this, consider the points x = (1,1,0,1,0,1,0,...) and y = (—1,1,0,1,0,1,0,...). Set-
ting z = (z+y)/2=(0,1,0,1,0,1,0,...), it is readily seen that there exist two isometries
T and S of {y such that Tx = y and Sz = 2. So, for any isometry invariant renorming
Il - || of £oc we have ||z|| = |ly]l = ||z]|, and therefore || - || cannot be strictly convex.

We now prove
Proposition 5.4. The space Ly is not light.
Proof. Consider the sequence of isometries T, : £oo — £oo, 7 € N, defined by

To(X1, ooy 1, Ty Ty - - ) = (T1y ooy T 1y — Ty Tt 1y -+ )y T = (Tp)keN € Loo-

SOT
Notice that T,, -~ Id, since || T,(1,1,...) — (1,1,...)|lec = 2 for every n € N. On the

other hand, observe that T, WO 14. Indeed, if (e;);en denotes the canonical basis of /o,

the sequence (5(e;))jen belongs to ¢ for every 5 € €5 . In particular, 5(e;) — 0. Thus
WOT

B(Thx —x) = —2x,0(en) — 0 for every x € {o and § € £, showing that T,, — Id. O
A similar proof shows that the space of continuous functions on the Cantor space is not
light.

Proposition 5.5. The space C({0,1}™) is not light.

Proof. For each integer n € N, define T,, € Isom(C({0,1}M)) by setting, for every f €
C({0,1}N) and every z € {0, 1},

—f(x), if x € Ny,
f(z), otherwise,

Tu(f)(x) = {

where N, is the basic open subset of {0,1}" defined by

N, = {(mk)kew € {0, 1}N; Ty =-=Tp_1=1, x,= 0}.
SOT
Then T,, —/ Id, since taking the constant function f =1 we have ||1,,(f) — fl|lco = 2 for

every n € N. On the other hand, the same proof as that of Proposition 5.4 shows that

7, YO 1d. Indeed, any functional ® € C({0,1}N)* extends to a continuous functional on

L>({0,1}M), also denoted by ®. If y, denotes for each n € N the indicator function of
the set N, ®(x,) — 0, and this proves our claim. O

So far we know that the spaces C([0,1]?) and C({0,1}™) are not light. It may seem
reasonable to conjecture that none of the spaces C(K), where K is any infinite compact
metric space, is light. However, our next result shows that this is not the case.

Proposition 5.6. Let K be an infinite compact connected space. Then C(K) is light
if and only if the topologies of pointwise and uniform convergence coincide on the group
Homeo(K) of homeomorphisms of K.
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Proof. Suppose first that the topologies of pointwise and uniform convergence coincide on

Homeo(K). Let (Th)aer be a net of isometries of C'(K) such that T, WO 1. By the

Banach-Stone Theorem and the connectedness of K, each isometry T, of C(K) has the
form

Tu(f) = cafopa forevery f € C(K),

where €4 € {—1,1} and ¢, € Homeo(K). Since T wor Id, e, — 1, so we can suppose

without loss of generality that e, = 1 for every a € I. Moreover, the fact that T, WO 1q

also implies that the net (4 )qecs converges pointwise to the identity function idx on K.

Our assumption then implies that (4 )aecr converges uniformly to idgx on K, from which

it easily follows that T, 29%1d. Thus C (K) is light.

Conversely, suppose that C'(K) is light. Let (¢4 )acs be a net of elements of Homeo(K)
which converges pointwise to ¢ € Homeo(K). Consider the isometries Ty, and T of C(K)
defined by

To(f)=fopa and T(f)=fop forevery f € C(K).

Then T, WO 14, Since C(K) is light, T, %91 14 and thus (Pa)acr converges to ¢
uniformly on K. 0

Birkhoff studied in his paper [2] various topologies on so-called “transformation spaces”,
in particular on the groups of homeomorphisms of topological spaces. The notions of A-, B-
and C-convergence of sequences of homeomorphisms on a given space X introduced there
correspond respectively to pointwise convergence, continuous convergence, and continuous
convergence in both directions. Since on compact spaces continuous convergence and
uniform convergence coincide, Proposition 5.6 can be rephrased, using Birkhoff’s language,
as saying that for compact connected spaces K, C(K) is light if and only if A- and B-
convergence coincide on Homeo(K'). Now, it is observed in [2, Th. 18] that A-convergence
implies B- and C-convergence for homeomorphisms of finite unions of segments of the
real line (this is essentially the content of Dini’s second convergence theorem), while if K
contains an n-dimensional region with n > 2 (i.e. an open set homeomorphic to an open
subset of R™), A-convergence implies neither B- nor C-convergence for homeomorphisms
of K ([2, Th. 19]). In a more modern language, there exists under this assumption a
sequence (¢p)nen of homeomorphisms of K such that ¢, converges pointwise but not
uniformly on K to the identity function on K. Combined with Proposition 5.6 above, this
yields:

Theorem 5.7. Let K be an infinite compact connected space.
(a) If K is homeomorphic to a finite union of segments of R, C'(K) is light.
(b) If K contains an n-dimensional region for some n > 2, C(K) is not light.

For instance, the space C[0, 1] is light, while spaces C([0,1]"), n > 2, are not light. We
thus retrieve in a natural way the original example of Megrelishvili of a non-light space.

Theorem 5.7 allows us to answer Question 5.1 in the negative. Although C[0, 1] is light,
it does not admit any isometry invariant LUR renorming. In fact, C|0, 1] does not admit
any isometry invariant strictly convex renorming. In order to prove this, we need the
following lemma:

Lemma 5.8. Let f € C[0,1] be such that there exists an interval [a,b] C [0,1], a < b,
on which f is strictly monotone. Then there exists g € C10,1] with the following three
properties:
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f+y
@ 1l =gl = 52|
() IIf = glloo > 0;
(c) there exist two homeomorphisms ¢ and 1 of [0, 1] such that g = fop and % = for).

Proof. Let 0 < a < b < 1 be such that f is strictly monotone on [a,b]. Without loss of
generality, suppose that f is strictly increasing on [a,b]. Let & : [a,b] — [f(a), f(b)] be
an increasing homeomorphism such that § # f|,. Define g € C[0, 1] and an homeomor-
phism ¢ : [0,1] — [0,1] by

&(x if x € |a,]; F (¢ (x if x € [a,b];
oy JE@ 0.1 ooy = [ €@ .3
f(x) otherwise x otherwise.
f+g f+g
Then, g = f o ol = 1l = | 52| and 1 =gl > 0. Moreover, fow =132,
where v : [0,1] — [0, 1] is the homeomorphoiosm defined by
(@) @)Y .
w(fﬁ): f ( 2 1 xe[a’7b]7
x otherwise.
U
Proposition 5.9. Let || - || be an isometry invariant renorming of C|0,1]. Then there
exists a dense subset of C|0,1] where || - || is not strictly convex.

Proof. Let f € C]0,1] be a non-constant and affine function, and take g, and v as in
Lemma 5.8. Since f — fop and f+ f o1 define surjective linear isometries of C|0, 1],

f+yg
ol =17 ol =Sl =1 ol = | 52
So || - || is not strictly convex at the point f. The result then follows from the fact that
the set of piecewise linear functions is dense in C]0, 1]. O

Combining Theorem 5.7 and Proposition 5.9, we obtain:

Corollary 5.10. The space C[0,1] is light, but does not admit any isometry invariant
LUR renorming.

Remark 5.11. Using the same arguments as in the proofs of Proposition 5.6, Theorem
5.7 and Proposition 5.9, one can prove that Cy(R) is light, but does not admit a strictly
convex isometry invariant renorming either.

Remark 5.12. The examples presented in this section show that there is no general
relation between closed subspaces and their respective isometry groups, in terms of being
light, apart from Lemma 4.5. In fact:

(1) o is a closed subspace of £, ¢g is light, but o, is not;
(2) cis isometrically isomorphic to a closed subspace of C0, 1], ¢ is not light but C0, 1]
is light.



LIGHT GROUPS AND INVARIANT LUR RENORMINGS 13

6. AN EXAMPLE OF A GROUP WITH A DISCRETE ORBIT BUT NO DISTINGUISHED POINT

In this section we solve a problem of [8], mentioned in the introduction, by exhibiting
an SOT-discrete group of isomorphisms of ¢y which admits no distinguished point. More
generally, we show the following:

Proposition 6.1. For any integer v > 2, there exists a bounded infinite SOT-discrete
group of isomorphisms of ¢y of the form Id + F, F € L(co) of finite rank, admitting a
distinguished family of cardinality r, but none of cardinality v — 1.

Proof. Since ¢y ~ {7 @ co it is enough to define the group G as an infinite bounded
SOT-discrete group of isomorphisms on ¢} @ co.

Let (en)nen be the canonical basis of ¢y, and let (U, )nen be the sequence of isometries
of ¢y defined by setting, for every n,m € N, Uy(e,) = —e, and Up(en) = e, whenever
m # n. Let (¢n)nen be dense in the unit sphere of £, and define the rank-one operator
Ry, : 0] — co by Ry(x) = ¢pp(x)en, © € ¢1. We then define an operator T;, on ¢] D o in

matrix form as
Id 0
T, = ( " Uﬂ) .

It is readily checked that T2 = Id for every n € N and that for every distinct integers
Ny, ..., Nk,

Id 0
Th, ... Th, = .
" Mt <Rn1 +--+ Ry, Uy ... Unk>
Therefore the group G generated by the operators T), is abelian. Furthermore, since for
every x € /]

[(Bny 4 4 By )zl = ||y (2)eny + -+ 4 Pny (@) en, || < max|én, ()] - [|z]]

it follows that ||T5,, + -+ 15, || < 2, and thus G is a bounded subgroup of GL(#] ®« ¢o).

We claim that no family {z1,...,z,_1} of £] @ ¢ is distinguished for G. Indeed, writing
each vector z;, 1 <i <r —1, as (y;, 2;) with y; € £] and z; € ¢o, we note that U,z; — 2;
for every 1 < ¢ < r — 1. Since the vectors y1,...,%.—1 generate a subspace of dimension
strictly less than r of ¢7, there exists a norm 1 functional ¢ € £ such that ¢(y;) = 0 for
every 1 <i <r—1. Let D C N be such that ¢, = ¢ in ¢ as n tends to infinity along D.
Then R, (y;) — 0 as n tends to infinity along D, and therefore T),(z;) — z; as n tends to
infinity along D for every 1 <i <r — 1. So the family {z1,...,2,-1} is not distinguished
for G.

On the other hand, if we denote by (fi,..., f;) the canonical basis of ¢7, then the
family {f1 ©0, ..., f, ®0} is distinguished for G. To check this, note that for any operator
T € GL({] ® cp) of the form

T_( Id 0)
>herfx U)”

where F' in a non-empty subset of N, and U is an isometry of ¢y, we have

IT(f,@0) — f, & 0] = max|éx(f,)|  forevery 1< s <.
S

Since, for each k € F, ¢y is normalized in ¢, |¢r(fs)| > 1 for at least one index s. It
follows that

— >
max |T(fs ©0) ~ fs® 0] > 1,



14 L. ANTUNES, V. FERENCZI, S. GRIVAUX, AND C. ROSENDAL

and so
%22{12152 |T(fs ®0) = fs @ 0[]} > 1.
T#Id
Hence {f1,..., f+} is a distinguished family for G. .

We immediately deduce

Corollary 6.2. The group of isomorphisms of cg constructed in the proof of Proposition
6.1 is not light.

Proof. For every = € (7, the sequence (R, (x))nen tends weakly to 0 in ¢g. We also know
that the sequence (U, )nen tends WOT to Id. Therefore (7),)nen also tends WOT to Id.
On the other hand, we have for every x € ¢] and every n € N that

[Tn(2 & 0) =2 & 0| = [[Rn ()] = [|fn()]].

By the density of the sequence (¢,)nen in the unit sphere of £, this implies that the
sequence (T,,(x@®0))pen does not tend to z in norm, and thus (7}, )nen does not tend SOT
to Id. (|

We have thus proved:

Corollary 6.3. There exists a bounded group G of isomorphisms of co which is infinite,
not light, SOT-discrete, and does not admit a distinguished point.

Proof. Take r = 2 in Proposition 6.1. O

7. QUASI-NORMED SPACES

Although Megrelishvili has defined the concept of light group of isomorphisms only for
locally convex spaces, we can extend the definition to quasi-normed spaces, even if these
spaces are not locally convex. One could ask if there is a general answer for the isometry
groups of non-locally convex spaces, in terms of being light. The spaces ¢, and L,[0,1],
0 < p < 1, are examples that give a negative answer to this question.

Recall that for 0 < p < 1, (L,[0,1])* = {0}, i.e., the only linear continuous functional

f:Lp[0,1] = R is the constant function f = 0 (see [13, p. 18]). Considering the sequence
SOT
(T},)nen constantly equal to — Id, we observe that T,, —~ Id while T, WOT'1d. So L,[0,1]

is trivially non-light for every 0 < p < 1. On the other hand,

Proposition 7.1. For 0 < p < 1, the space £, is light.
Proof. Let 0 < p <1, and let (T,)aer be a net in Isom(¢,,) such that T, WOT'14. Bach Te,
(

acts on vectors (2, )nen € €p as To((zn)nen) = ( 5{1)1:% n))JneN, Where o, is a permutation

of N and (aﬁf‘))new is a sequence of elements of {—1,1} (the proof of this fact is similar

of the case where p > 1 and p # 2, found in [1, p. 178]). Assume, by contradiction, that
SOT
Ty, —/ Id. Then there exist € £,, ¢ > 0 and an infinite sequence («;);en of indices

in [ such that ||Th,z — x|[h > € for every i € N. Since x € ¢, there exists N € N such
that 7 v q |zk|? < €/2. The dual space of £, identifies isomorphically with £, where
® = (yr)ren acts on an element x = (x)ren € £p by the formula ®(z) = >, . yxTr (see
[13, p. 21]). Considering for 1 < j < N the functionals ®; identified with the vectors of
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the canonical basis e; € {, as well as the vectors e, € £, for 1 < k < N, we obtain by
the WOT convergence of Ty, to Id that

;(Taler)) — j(er) = €56, 1y — 1 — 0,

where 0, ; = 1if k = j and d;; = 0 if & # j. In particular, 5;(€a)5aa(k),k — 1 for every
1 <k < N. So we may assume that the permutations o, fix the first IV integers and that

6,(:[) =1 for every 1 < k < N. Hence we have for every i € N

o (o ¢] c
S Ta @)l = > jzxl” < 5
k=N+1 k=N+1

However, taking z = (z)ken € £p defined by 2z, =0if 1 <k < N and 2z, = 1if k > N, we
have [|2][} = S5y [anl? < /2 and

[Ta;z = 2l = 1T,z = 2l < [[Ta;2llp + [I21l; = €

for every i € N, which is a contradiction. [l
We finish the paper with a few related questions or comments.

8. QUESTIONS AND COMMENTS

Our first question concerns renormings of the space c. Since it c is not light, as proved
in Proposition 4.3, it does not admit any isometry invariant LUR renorming. But it may
still admit an isometry invariant strictly convex renorming.

Question 8.1. Does ¢ admits an isometry invariant strictly conver renorming?

We have observed in Section 4 that if the isometry group Isom(X) of a Banach space
X of dimension > 1 acts almost transitively on Sx and is SOT-discrete, it is not abelian.

Question 8.2. Suppose X is a separable Banach space of dimension > 1 and G < Isom(X)
is an SOT-discrete amenable subgroup. Can G have a dense orbit on Sx ¢

We have seen in Corollary 6.3 that there exists a bounded group G of isomorphisms
of ¢g which is infinite, not light, SOT-discrete, and does not admit a distinguished point.
One may wonder about the role of the space ¢y in this construction. For example, one can
ask:

Question 8.3. Does there exist a reflexive space X with an SOT-discrete bounded group
G < GL(X) that does not admit a distinguished point?

Of course such a group G, if it exists, must be light, as all reflexive spaces are light.
Noting that the example of Proposition 4.3 is a group of finite rank perturbations of the
identity on the space cg, a question in the same vein is:

Question 8.4. Does there exist a reflexive space X with an SOT-discrete infinite bounded
group G < GL(X) such that all elements of G are finite rank perturbations of the identity?

This question is relevant to [7], where isometry groups on complex, reflexive, separable,
hereditarily indecomposable spaces are studied. A negative answer to this question would
imply that all isometry groups on such spaces act almost trivially, i.e., there would exist
an isometry invariant decomposition F'@® H of the space where I is finite dimensional and
all elements of the group act as multiple of the identity on H, [7] Theorem 6.9.
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Another natural space which could be investigated in this context is the universal space
of Gurarij, whose isometry group possesses a very rich structure (see [11] for its definition
and [10] for a recent survey).

Question 8.5. Is the isometry group of the Gurarij space light?

Finally it remains open whether the converse to Megreleshvili’s result holds:

Question 8.6. Does a Banach space X have the PCP if and only if all bounded subgroups
of GL(X) are light?

The answer is positive when X has an unconditional basis: this follows from Theo-
rem 4.6, the fact that an unconditional basis whose span does not contain ¢y must be
boundedly complete, and the fact that separable dual spaces have the RNP and therefore
the PCP.

(1

2]
B3l

(4]

5]
(6]
(7l
(8]
(9]
[10]
(11]
(12]
(13]
(14]

(15]
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