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Abstract—CPU simulators are useful tools for modeling CPU
execution behavior. However, they suffer from inaccuracies due to
the cost and complexity of setting their fine-grained parameters,
such as the latencies of individual instructions. This complexity
arises from the expertise required to design benchmarks and
measurement frameworks that can precisely measure the values
of parameters at such fine granularity. In some cases, these
parameters do not necessarily have a physical realization and are
therefore fundamentally approximate, or even unmeasurable.

In this paper we present DiffTune, a system for learning the
parameters of x86 basic block CPU simulators from coarse-
grained end-to-end measurements. Given a simulator, DiffTune
learns its parameters by first replacing the original simulator with
a differentiable surrogate, another function that approximates
the original function; by making the surrogate differentiable,
DiffTune is then able to apply gradient-based optimization
techniques even when the original function is non-differentiable,
such as is the case with CPU simulators. With this differentiable
surrogate, DiffTune then applies gradient-based optimization to
produce values of the simulator’s parameters that minimize
the simulator’s error on a dataset of ground truth end-to-end
performance measurements. Finally, the learned parameters are
plugged back into the original simulator.

DiffTune is able to automatically learn the entire set of
microarchitecture-specific parameters within the Intel x86 sim-
ulation model of llvm-mca, a basic block CPU simulator based
on LLVM’s instruction scheduling model. DiffTune’s learned pa-
rameters lead llvm-mca to an average error that not only matches
but lowers that of its original, expert-provided parameter values.

I. INTRODUCTION

Simulators are widely used for architecture research to
model the interactions of architectural components of a
system [1, 2, 3, 4, 5, 6]. For example, CPU simulators, such
as llvm-mca [2], and llvm_sim [7], model the execution of
a processor at various levels of detail, potentially including
abstract models of common processor design concepts such as
dispatch, execute, and retire stages [8]. CPU simulators can
operate at different granularities, from analyzing just basic
blocks, straight-line sequences of assembly code instructions,
to analyzing whole programs. Such simulators allow perfor-
mance engineers to reason about the execution behavior and
bottlenecks of programs run on a given processor.

However, precisely simulating a modern CPU is challenging:
not only are modern processors large and complex, but many
of their implementation details are proprietary, undocumented,
or only loosely specified even given the thousands of pages
of vendor-provided documentation that describe any given
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processor. As a result, CPU simulators are often composed
of coarse abstract models of a subset of processor design
concepts. Moreover, each constituent model typically relies
on a number of approximate design parameters, such as the
number of cycles it takes for an instruction to pass through
the processor’s execute stage. Choosing an appropriate level
of model detail for simulation, as well as setting simulation
parameters, requires significant expertise. In this paper, we
consider the challenge of setting the parameters of a CPU
simulator given a fixed level of model detail.

Measurement. One methodology for setting the parameters of
such a CPU simulator is to gather fine-grained measurements
of each individual parameter’s realization in the physical
machine [9, 10] and then set the parameters to their measured
values [11, 12]. When the semantics of the simulator and the
semantics of the measurement methodology coincide, then
these measurements can serve as effective parameter values.
Howeyver, if there is a mismatch between the simulator and
the measurement methodology, then measurements may not
provide effective parameter settings [13, Section 5.2]. Moreover,
some parameters may not correspond to measurable values.

Optimizing simulator parameters. An alternative to de-
veloping detailed measurement methodologies for individual
parameters is to infer the parameters from coarse-grained
end-to-end measurements of the performance of the physical
machine [13]. Specifically, given a dataset of benchmarks,
each labeled with their true behavior on a given CPU (e.g.,
with their execution time or with microarchitectural events,
such as cache misses), identify a set of parameters that
minimize the error between the simulator’s predictions and
the machine’s true behavior. This is generally a discrete, non-
convex optimization problem for which classic strategies, such
as random search [14], are intractable because of the size of
the parameter space (approximately 10'933¢ possible parameter
settings in one simulator, llvm-mca).

Our approach: DiffTune. In this paper, we present DiffTune,
an optimization algorithm and implementation for learning
the parameters of programs. We use DiffTune to learn the
parameters of x86 basic block CPU simulators.

DiffTune’s algorithm takes as input a program, a description
of the program’s parameters, and a dataset of input-output



examples describing the program’s desired output, then pro-
duces a setting of the program’s parameters that minimizes
the discrepancy between the program’s actual and desired
output. The learned parameters are then plugged back into
the original program.

The algorithm solves this optimization problem via a
differentiable surrogate for the program [15, 16, 17, 18, 19].
A surrogate is an approximation of the function from the
program’s parameters to the program’s output. By requiring
the surrogate to be differentiable, it is then possible to
compute the surrogate’s gradient and apply gradient-based
optimization [20, 21] to identify a setting of the program’s
parameters that minimize the error between the program’s
output (as predicted by the surrogate) and the desired output.

To apply this to basic block CPU simulators, we instantiate
DiffTune’s surrogate with a neural network that can mimic the
behavior of a simulator. This neural network takes the original
simulator input (e.g., a sequence of assembly instructions) and
a set of proposed simulator parameters (e.g., dispatch width
or instruction latency) as input, and produces the output that
the simulator would produce if it were instantiated with the
given simulator’s parameters. We derive the neural network
architecture of our surrogate from that of Ithemal [22], a basic
block throughput estimation neural network.

Results. Using DiffTune, we are able to learn the entire set
of 11265 microarchitecture-specific parameters in the Intel
x86 simulation model of llvm-mca [2]. llvm-mca is a CPU
simulator that predicts the execution time of basic blocks. llvm-
mca models instruction dispatch, register renaming, out-of-order
execution with a reorder buffer, instruction scheduling based on
use-def latencies, execution by dispatching to ports, a load/store
unit ensuring memory consistency, and a retire control unit.!

We evaluate DiffTune on four different x86 microarchi-
tectures, including both Intel and AMD chips. Using only
end-to-end supervision of the execution time measured per-
microarchitecture of a large dataset of basic blocks from Chen
et al. [23], we are able to learn parameters from scratch
that lead llvm-mca to have an average error of 24.6%, down
from an average error of 30.0% with llvm-mca’s expert-
provided parameters. In contrast, black-box global optimization
with OpenTuner [14] is unable to identify parameters with
less than 100% error.

Contributions. We present the following contributions:

« We present DiffTune, an algorithm for learning ordinal
parameters of programs from input-output examples.

« We present an implementation of DiffTune for x86 basic
block CPU simulators that uses a variant of the Ithemal
model as a differentiable surrogate.

« We evaluate DiffTune on llvm-mca and demonstrate that
DiffTune can learn the entire set of microarchitectual
parameters in llvm-mca’s Intel x86 simulation model.

We note that llvm-mca does not model the memory hierarchy.

« We present case studies of specific parameters learned
by DiffTune. Our analysis demonstrates cases in which
DiffTune learns semantically correct parameters that enable
Ilvm-mca to make more accurate predictions. Our analysis
also demonstrates cases in which DiffTune learns parame-
ters that lead to higher accuracy but do not correspond to
reasonable physical values on the CPU.

Our results show that DiffTune offers the promise of a
generic, scalable methodology to learn detailed performance
models with only end-to-end measurements, reducing perfor-
mance optimization tasks to simply that of gathering data.

II. BACKGROUND: SIMULATORS

Simulators comprise a large set of tools for modeling the
execution behavior of computing systems, at all different levels
of abstraction: from cycle-accurate simulators to high-level cost
models. These simulators are used for a variety of applications:

« gem5 [1] is a detailed, extensible full system simulator
that is frequently used for computer architecture research,
to model the interaction of new or modified components
with the rest of a CPU and memory system.

o« TACA [3] is a static analysis tool released by Intel
that models the behavior of modern Intel processors,
including undocumented Intel CPU features, predicting
code performance. IACA is used by performance engi-
neers to diagnose and fix bottlenecks in hand-engineered
code snippets [24].

o LLVM [25] includes internal CPU simulators to predict the
performance of generated code [26, 27]. LLVM uses these
CPU simulators to search through the code optimization
space, to generate more optimal code.

Though these simulators are all simplifications of the true

execution behavior of physical systems, they are still highly
complex pieces of software.

A. llvm-mca

For example, consider llvm-mca [2], an out-of-order super-
scalar CPU simulator included in the LLVM [25] compiler
infrastructure. The main design goal of llvm-mca is to expose
LLVM’s instruction scheduling model for testing. llvm-mca
takes basic blocks as input, sequences of straight-line assembly
instructions with no branches, jumps, or loops. For a given input
basic block, llvm-mca predicts the timing of 100 repetitions
of that block, measured in cycles.

Design. llvm-mca is structured as a generic, target-independent
simulator parameterized on LLVM’s internal model of the target
hardware. llvm-mca makes two core modeling assumptions.
First, it assumes that the simulated program is not bottlenecked
by the processor frontend; in fact, llvm-mca ignores instruction
decoding entirely. Second, llvm-mca assumes that memory data
is always in the L1 cache, and ignores the memory hierarchy.

Ilvm-mca simulates a processor in four main stages: dispatch,
issue, execute, and retire. The dispatch stage reserves physical
resources (e.g., slots in the reorder buffer) for each instruction,
based on the number of micro-ops the instruction is composed



of. Once dispatched, instructions wait in the issue stage until
they are ready to be executed. The issue stage blocks an
instruction until its input operands are ready and until all of its
required execution ports are available. Once the instruction’s
operands and ports are available, the instruction enters the
execute stage. The execute stage reserves the instruction’s
execution ports and holds them for the durations specified
by the instruction’s port map assignment specification. Finally,
once an instruction has executed for its duration, it enters the
retire stage. In program order, the retire stage frees the physical
resources that were acquired for each instruction.

Parameters. Each stage in llvm-mca’s model requires pa-
rameters. The NumMicroOps parameter for each instruction
specifies how many micro-ops the instruction is composed
of. The DispatchWidth parameter specifies how many micro-
ops can enter and exit the dispatch stage in each cycle. The
ReorderBufferSize parameter specifies how many micro-ops
can reside in the issue and execute stages at the same time. The
PortMap parameters for each instruction specify the number of
cycles for which the instruction occupies each execution port.
An additional WriteLatency parameter for each instruction
specifies the number of cycles before destination operands of
that instruction can be read from, while ReadAdvanceCycles
parameters for each instruction specify the number of cycles
by which to accelerate the WriteLatency of source operands
(representing forwarding paths).

In sum, the 837 instructions in our dataset (Section V-A) lead
to 11265 total parameters with 10'933¢ possible configurations
in llvm-mca’s Haswell microarchitecture simulation.?

B. Challenges

These parameter tables are currently manually written for
each microarchitecture, based on processor vendor documenta-
tion and manual timing of instructions. Specifically, many of
LLVM’s WriteLatency and PortMap parameters are drawn
from the Intel optimization manual [28, 29], Agner Fog’s
instruction tables [9, 11], and uops.info [10, 12], all of which
contain latencies and port mappings for assembly instructions
across different architectures and microarchitectures.

Measurability. However, these documented and measured
values do not directly correspond to parameters in llvm-
mca, because llvm-mca’s parameters, and abstract simulator
parameters more broadly, are not defined such that they have a
single measurable value. For instance, llvm-mca defines exactly
one WriteLatency parameter per instruction. However, Fog
[9] and Abel and Reineke [10] find that for instructions that
produce multiple results in different destinations, the results
might be available at different cycles. Further, the latency for
results to be available can depend on the actual value of the
input operands. Thus, there is no single measurable value that
corresponds to llvm-mca’s definition of WriteLatency.

2Based on llvm-mca’s default, expert-provided values for these parameters,
the 11265 parameters induce a parameter space of 1019336 valid configurations;
the actual values are only bounded by integer representation sizes.

Different choices for how to map from measured latencies
to WriteLatency values result in different overall errors (as
defined in Section V-A). For instance, when llvm-mca is
instantiated with Abel and Reineke [10]’s maximum observed
latency for each instruction, llvm-mca gets an error of 218%
when generating predictions for the Haswell microarchitecture;
the median observed latency results in an error of 150%; and
the minimum observed latency results in an error of 103%.

III. ApPROACH

Tuning llvm-mca’s 11265 parameters among 10'°33¢ valid
configurations? by exhaustive search is impractical. Instead, we
present DiffTune, an algorithm for learning ordinal parameters
of arbitrary programs from labeled input and output examples.
DiffTune leverages learned differentiable surrogates to make
the optimization process more tractable.

Formal problem statement. Given a program f:0 — X —
Y parameterized on parameters 6 : ©, that takes inputs x : X to
outputs y : Y, and given a function f*: X — Y that represents
ground-truth behavior, find parameters 8 € ® to minimize the
expected value of a cost function (called the loss function,
representing error) L : (Y XY) — Ry of the discrepancy
between the behavior of the program f and the ground-truth
behavior f* on a dataset of program inputs 7 C X:

arg;ninEx~I [L(f(8.x), " (x)] (1

Algorithm. Figure 1 presents a diagram of our approach. We
first optimize the surrogate f:© — X — Y to mimic the
original program, i.e., V6,x.7(6,x) ~ f(0,x). Specifically, we
optimize the surrogate to minimize the expectation of the loss
L over program inputs from 7 and samples of 6 from a pre-
defined parameter sampling distribution D:

argminE1,0-p | £(/(6.), /(0.%))]
!

We then optimize the parameters 6 to minimize the discrepancy
between predictions of the surrogate f and the ground-truth
behavior f*. Specifically, we find:

arg;ninExNI [L(f(é),x),f*(x))]

2

3)

Finally, we extract the learned parameters 6 from the optimiza-
tion problem and plug them into the original program f, apply-
ing any constraints (e.g., that the parameters must be integers)
that were not enforced when optimizing against the surrogate.

Discussion. Note the similarity between Equation (1) and
Equation (3): the two equations only differ by the use of f
and f, respectively. The close correspondence between forms
makes clear that f stands in as a surrogate for the original
program, f. This is a general algorithmic approach [15] that is
desirable when it is possible to choose f such that it is easier
or more efficient to optimize 6 using f than f.
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Fig. 1: DiffTune block diagram.
TABLE I: Terms used in formalism in Section III.
Notation  Definition
f Program that we are trying to optimize.
0 Parameters of the program that we are trying to optimize.
X Input to the program.
y Output of the program on an input x.
I Dataset of program inputs to optimize against.
f* Ground truth behavior that we are trying to model with f .
L Loss function describing the error of a proposed solution.
f The surrogate, which is trained to model the original program: f = f.
D Distribution that parameters 6 are sampled from for training the surrogate.
Optimization. In our approach, we choose f to be a neural
network. Neural networks are typically built as compositions SHR64mi Timing
of differentiable architectural components, such as embedding ,
. . . 44 @ e N-TNCE
lookup tables, which map discrete input elements to real- ° g”n ““‘t‘l
. . urrogate
valued vectors; LSTMs [30], which map input sequences of N ¢
. o0
vectors to a single output vector; and fully connected layers, ! )
which are linear transformations on input vectors. By being E 2 — .
composed of differentiable components, neural networks are
end-to-end differentiable, so that they are able to be trained 1 R ®
using gradient-based optimization. Specifically, neural networks : S ————
1 2 3 4 5 6 7 8 9 10

are typically optimized with stochastic first-order optimizations
like stochastic gradient descent (SGD) [20], which repeatedly
calculates the network’s error on a small sample of the training
dataset and then updates the network’s parameters in the
opposite of the direction of the gradient to minimize the error.

By selecting a neural network as f’s representation, we are
able to leverage f’s differentiable nature not only to train f
(solving the optimization problem posed in Equation (2)) but
also to solve the optimization problem posed in Equation (3)
with gradient-based optimization. This stands in contrast to f
which is, generally, non-differentiable and therefore does not
permit the computation of its gradients.

Surrogate example. A visual example of this is presented in
Figure 2, which shows an example of the timing predicted by
Ilvm-mca (blue) and a trained surrogate of llvm-mca (orange).
The x-axis of Figure 2 is the value of the DispatchWidth
parameter, and the y-axis is the predicted timing of llvm-mca
with that DispatchWidth for the basic block consisting of
the single instruction shrq $5, 16(%rsp). The blue points
represent the prediction of llvm-mca when instantiated with

DispatchWidth

Fig. 2: Example of timing predicted by llvm-mca (blue) and a
surrogate (orange), while varying DispatchWidth. By learning
the surrogate, we are able to optimize the parameter value with
gradient descent, rather than requiring combinatorial search.

different values for DispatchWidth. The naive approach of
optimizing llvm-mca would be combinatorial search, since
without a continuous and smooth surface to optimize, it is
impossible to use standard first-order techniques. DiffTune
instead first learns a surrogate of llvm-mca, represented by the
orange line in Figure 2. This surrogate, though not exactly the
same as llvm-mca, is smooth and differentiable. Importantly,
the surrogate interpolates llvm-mca’s predictions even in places
where llvm-mca does not have a defined output, such as between
the integer-valued parameter settings. Together, these properties
mean that it is possible to optimize parameters against the
surrogate with first-order techniques like gradient descent.
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Fig. 3: Design of the surrogate, from Mendis et al. [22] with added parameter inputs. We use || to denote concatenation of

parameters to the instruction embedding.

IV. IMPLEMENTATION

This section discusses our implementation of DiffTune,
available online at https://github.com/ithemal/Diff Tune.

Parameters. We consider two types of parameters that we
optimize with DiffTune: per-instruction parameters, which
are a uniform length vector of parameters associated with
each individual instruction opcode (e.g. for llvm-mca, a vector
containing WriteLatency, NumMicroOps, etc.); and global
parameters, which are a vector of parameters that are associated
with the overall simulator behavior (e.g. for llvm-mca, a vector
containing the DispatchWidth and ReorderBufferSize).
We further support two types of constraints in our implemen-
tation: lower-bounded, specifying that parameter values cannot
be below a certain value (often O or 1), and integer-valued,
specifying that parameter values must be integers. During
optimization, all parameters are represented as floating-point.

Surrogate design. Figure 3 presents our surrogate design,
which is capable of learning parameters for x86 basic block
performance models such as llvm-mca.

We use a modified version of Ithemal [22], a learned
basic block performance model, as the surrogate. In the
standard implementation of Ithemal (without our modifications),
Ithemal first uses an embedding lookup table to map the
opcode and operands of each instruction into vectors. Next,
Ithemal processes the opcode and operand embeddings for each
instruction with an LSTM, producing a vector representing each
instruction. Then, Ithemal processes the sequence of instruction
vectors with another LSTM, producing a vector representing
the basic block. Finally, Ithemal uses a fully connected layer to
turn the basic block vector into a single number representing
Ithemal’s prediction for the timing of that basic block.

We modify Ithemal in two ways to act as the surrogate.
First, we replace each individual LSTM with a set of 4
stacked LSTMs, a common technique to increase representative
capacity [31], to give Ithemal the capacity to represent the
dependency of the prediction on the input parameters as well

as on the input basic block.3 Second, to provide the parameters
as input we concatenate the per-instruction parameters and the
global parameters to each instruction vector before processing
the instruction vectors with the instruction-level LSTM.

Solving the optimization problems. Training the surrogate
requires first defining sampling distributions for each parameter
(e.g., a bounded uniform distribution on integers). We then
generate a large simulated dataset by repeatedly sampling a
basic block from the ground-truth dataset, sampling a parameter
table from the defined sampling distributions, instantiating the
simulator with the parameter table, and generating a prediction
for the basic block. We train the surrogate using SGD against
this simulated dataset. During surrogate training, for parameters
constrained to be lower-bounded we subtract the lower bound
before passing them as input to the surrogate.

To train the parameter table, we first initialize it to a
random sample from the parameter sampling distribution. We
generate predictions using the parameter table plugged into the
trained surrogate, and train the parameter table by using SGD
against the ground-truth dataset. Importantly, when training the
parameter table, the weights of the surrogate are not updated.
During parameter table training, for parameters constrained to
be lower-bounded we take the absolute value of the parameters
before passing them as input to the surrogate.

Parameter extraction. Once we have trained the surrogate and
the parameter table using the optimization process described
in Section III, we extract the parameters from the parameter
table and use them in the original simulator. For parameters
with lower bounds, we take the absolute value of the parameter
in the learned parameter table, then add the lower bound. For
integer parameters, we round the learned parameter to the
nearest integer. We do not use any special technique to handle
unseen opcodes in the test set, just using the parameters for
that opcode from the randomly initialized parameter table.

3A stack of 4 LSTMs resulted in the best validation error for the surrogate.
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TABLE II: Parameters learned for llvm-mca.

Parameter Count Constraint  Description
DispatchWidth 1 global Integer, >1  How many micro-ops can be dispatched each cycle in the dispatch stage.
ReorderBufferSize 1 global Integer, >1  How many micro-ops can fit in the reorder buffer.

NumMicroOps 1 per-instruction  Integer, >1  How many micro-ops each instruction contains.

WriteLatency 1 per-instruction  Integer, >0  The number of cycles before destination operands of that instruction can be read from. A
latency value of 0 means that dependent instructions do not have to wait before being issued,
and can be issued in the same cycle.

ReadAdvanceCycles 3 per-instruction  Integer, >0  How much to decrease the effective WriteLatency of source operands.
PortMap 10 per-instruction  Integer, >0  The number of cycles the instruction occupies each execution port for. Represented as a

10-element vector per-instruction, where element i is the number of cycles for which the
instruction occupies port i.

V. EvALUATION

In this section, we report and analyze the results of using
DiffTune to learn the parameters of llvm-mca across different
x86 microarchitectures. We first describe the methodological
details of our evaluation in Section V-A. We then analyze the
error of llvm-mca instantiated with the learned parameters,
finding the following:

« DiffTune is able to learn parameters that lead to lower
error than the default expert-tuned parameters across all
four tested microarchitectures. (Section V-B)

« Black-box global optimization with OpenTuner [14] cannot
find a full set of parameters for llvm-mca’s Intel x86
simulation model that match llvm-mca’s default error.
(Section V-C)

To show that our implementation of DiffTune is extensible

to CPU simulators other than llvm-mca, we evaluate DiffTune
on llvm_sim in Appendix A.

A. Methodology

Following Chen et al. [23], we use llvm-mca version
8.0.1 (commit hash 19a71£6). We specifically focus on llvm-
mca’s Intel x86 simulation model: llvm-mca supports behavior
beyond that described in Section II (e.g., optimizing zero
idioms, constraining the number of physical registers available,
etc.) but this behavior is disabled by default in the Intel
microarchitectures evaluated in this paper. We do not enable
or learn any behavior not present in llvm-mca’s default Intel
x86 simulation model, including when evaluating on AMD.

llvm-mca parameters. For each microarchitecture, we learn
the parameters specified in Table II. Following the default value
in llvm-mca for Haswell, we assume that there are 10 execution
ports available for dispatch for all microarchitectures. llvm-mca
supports simulation of instructions that can be dispatched to
multiple different ports in the PortMap parameter. However,
the simulation of port group parameters in the PortMap does
not correspond to standard definitions of port groups [9, 13, 32].
We therefore set all port group parameters in the PortMap to
zero, removing that component of the simulation.

Dataset. We use the BHive dataset from Chen et al. [23],
which contains basic blocks sampled from a diverse set of
applications (e.g., OpenBLAS, Redis, LLVM, etc.) along with

TABLE III: Dataset summary statistics.

Statistic Value
# Blocks
Train 230111
Validation 28764
Test 28764
Total 287639
Block Length
Min 1
Median 3
Mean 4.93
Max 256
Median Block Timing
Ivy Bridge 132
Haswell 123
Skylake 120
Zen 2 114
# Unique Opcodes
Train 814
Val 610
Test 580
Total 837

the measured execution times of these basic blocks unrolled in
a loop. These measurements are designed to conform to the
same modeling assumptions made by llvm-mca.

We use the latest available version of the released timings
on Github.# We evaluate on the datasets released with BHive
for the Intel x86 microarchitectures Ivy Bridge, Haswell, and
Skylake. We also evaluate on AMD Zen 2, which was not
included in the BHive dataset. The Zen 2 measurements were
gathered by running a version of BHive modified to time basic
blocks using AMD performance counters on an AMD EPYC
7402P, using the same methodology as Chen et al.. Following
Chen et al., we remove all basic blocks potentially affected by
virtual page aliasing.

We randomly split off 80% of the measurements into a
training set, 10% into a validation set for development, and
10% into the test set reported in this paper. We use the same
train, validation, and test set split for all microarchitectures.
The training and test sets are block-wise disjoint: there are
no identical basic blocks between the training and test set.
Summary statistics of the dataset are presented in Table III.

“https://github.com/ithemal/bhive/tree/5878a18/benchmark/throughput
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Objective. We use the same definition of timing as Chen et al.
[23]: the number of cycles it takes to execute 100 iterations of
the given basic block, divided by 100. Following Chen et al.’s
definition of error, we optimize llvm-mca to minimize the mean
absolute percentage error (MAPE) against a dataset:

/() =y
y

1
Error = —
|D| (x,y)eD
We note that an error of above 100% is possible when f(x) is
much larger than y.

Training methodolgy. We use Pytorch-1.2.0 on an NVIDIA
Tesla V100 to train the surrogate and parameters.

We train the surrogate and the parameter table using
Adam [21], a stochastic first-order optimization technique, with
a batch size of 256. We use a learning rate of 0.001 to train the
surrogate and a learning rate of 0.05 to train the parameter table.

To train the surrogate, we generate a simulated dataset of
2301110 blocks (10x the length of the original training set).
For each basic block in the simulated dataset, we sample a
random parameter table, with each WriteLatency a uniformly
random integer between 0 and 5 (inclusive), each value in
the PortMap uniform between O and 2 cycles to between
0 and 2 randomly selected ports for each instruction, each
ReadAdvanceCycles between 0 and 5, each NumMicroOps
between 1 and 10, the DispatchWidth uniform between 1 and
10, and the ReorderBufferSize uniform between 50 and 250.
A random parameter table sampled from this distribution has
error 171.4% +95.7%. See Section VII for more discussion of
these sampling distributions.

We loop over this simulated dataset 6 times when training
the surrogate, totaling an equivalent of 60 epochs over the
original training set. To train the parameter table, we initialize
it to a random sample from the parameter training distribution,
then train it for 1 epoch against the original training set.

B. Error of Learned Parameters

Table IV presents the average error and correlation of llvm-
mca with the default parameters (labeled default), llvm-mca
with the learned parameters (labeled DiffTune). As baselines,
Table IV also presents Ithemal’s error, as the most accurate
predictor evaluated by Chen et al., IACA’s error, as the most
accurate analytical model evaluated by Chen et al., and llvm-
mca with parameters learned by OpenTuner (which we discuss
further in Section V-C). Because IACA is written by Intel to
analyze Intel microarchitectures, it does not generate predictions
for Zen 2. We report mean absolute percentage error, as defined
in Section V-A, and Kendall’s Tau rank correlation coefficient,
measuring the fraction of pairs of timing predictions in the test
set that are ordered correctly. For the learned parameters, we
report the mean and standard deviation of error and Kendall’s
Tau across three independent runs of DiffTune.

Across all microarchitectures, the parameter set learned by
DiffTune achieves equivalent or better error than the default
parameter set. These results demonstrate that DiffTune can learn

TABLE 1V: Error of llvm-mca with the default and learned
parameters, compared against baselines.

Architecture Predictor Error Kendall’s Tau

Ivy Bridge Default 33.5% 0.788
DiffTune  25.4% +0.5% 0.735+0.012

Ithemal 9.4% 0.858

IACA 15.7% 0.810

OpenTuner 102.0% 0.515

Haswell Default 25.0% 0.783
DiffTune  23.7%+1.5% 0.745+0.009

Ithemal 9.2% 0.854

IACA 17.1% 0.800

OpenTuner 105.4% 0.522

Skylake Default 26.7% 0.776
DiffTune  23.0% + 1.4% 0.748 +0.008

Ithemal 9.3% 0.859

TIACA 14.3% 0.811

OpenTuner 113.0% 0.516

Zen 2 Default 34.9%5 0.794
DiffTune  26.1% + 1.0% 0.689 +0.007

Ithemal 9.4% 0.873

IACA N/A N/A

OpenTuner 131.3% 0.494

TABLE V: Error of llvm-mca with default and learned parame-
ters on Haswell, grouped by BHive applications and categories.

Default Learned

Block Type # Blocks Error Error
OpenBLAS 1478 28.8% 29.0%
Redis 839 41.2% 22.5%
SQLite 764 32.8% 21.6%
GZip 182 40.6% 20.6%
TensorFlow 6399 33.5% 22.1%
Clang/LLVM 18781 22.0% 21.0%
Eigen 387 44.3% 23.8%
Embree 1067 34.1% 21.3%
FFmpeg 1516 30.9% 21.2%
Scalar (Scalar ALU operations) 7952 17.2% 18.9%
Vec (Purely vector instructions) 104 35.3% 39.6%
Scalar/Vec

(Scalar and vector arithmetic) 614 33.6% 37.5%
Ld (Mostly loads) 10850 27.2% 24.4%
St (Mostly stores) 4490 24.7% 08.7%
Ld/St (Mix of loads and stores) 4754 27.9% 30.3%

all of llvm-mca’s microarchitecture-specific parameters, from
scratch, to equivalent accuracy as the hand-written parameters.

We also analyze the error of llvm-mca on the Haswell
microarchitecture using the evaluation metrics from Chen et al.
[23], designed to validate x86 basic block performance models.
Chen et al. present three forms of error analysis: overall error,
per-application error, and per-category error. Overall error is
the error reported in Table IV. Per-application error is the
average error of basic blocks grouped by the source application
of the basic block (e.g., TensorFlow, SQLite, etc.; blocks can
have multiple different source applications). Per-category error

Sllvm-8.0.1 does not support Zen 2. This default error we report for Zen 2
uses the znverl target in llvm-8.0.1, targeting Zen 1. The Zen 2 target in
1lvim-10.0.1 has a higher error of 39.8%.



is the average error of basic blocks grouped into clusters based
on the hardware resources used by each basic block.

The per-application and per-category errors are presented in
Table V. The learned parameters outperform the defaults across
most source applications, with the exception of OpenBLAS
where the learned parameters result in 0.2% higher error. The
learned parameters perform similarly to the default across
most categories, with the primary exceptions of the Scalar/Vec
category and the St category, in which the learned parameters
perform significantly better than the default parameters.

C. Black-box global optimization with OpenTuner

In this section, we describe the methodology and perfor-
mance of using black-box global optimization with Open-
Tuner [14] to find parameters for llvm-mca. We find that
OpenTuner is not able to find parameters that lead to equivalent
error as DiffTune in llvm-mca’s Intel x86 simulation model.

Background. We use OpenTuner as a representative example
of a black-box global optimization technique. OpenTuner is
primarily a system for tuning parameters of programs to
decrease run-time (e.g., tuning compiler flags, etc.), but has
also been validated on other optimization problems, such as
finding the series of button presses in a video game simulator
that makes the most progress in the game.

OpenTuner is an iterative algorithm that uses a multi-armed
bandit to pick the most promising search technique among an
ensemble of search techniques that span both convex and non-
convex optimization. On each iteration, the bandit evaluates the
current set of parameters. Using the results of that evaluation,
the bandit then selects a search technique that then proposes a
new set of parameters.

Methodology. For computational budget parity with Diff-
Tune, we permit OpenTuner to evaluate the same num-
ber of basic blocks as used end-to-end in our learning
approach. We initialize OpenTuner with a sample from
DiffTune’s parameter table sampling distribution. We con-
strain OpenTuner to search per-instruction (NumMicroOps,
WriteLatency, ReadAdvanceCycles, PortMap) parameter
values between 0 and 5, DispatchWidth between 1 and 10,
and ReorderBufferSize between 50 and 250; these ranges
contain the majority of the parameter values observed in the
default and learned parameter sets.® We evaluate the accuracy
of llvm-mca with the resulting set of parameters using the
same methodology as in Section V-B.

Results. Table IV presents the error of llvm-mca when param-
eterized with OpenTuner’s discovered parameters. OpenTuner’s
parameters perform worse than those of DiffTune, resulting in
error above 100% across all microarchitectures. Thus, DiffTune
requires substantially fewer examples to optimize llvm-mca
than OpenTuner requires.

6Widening the search space beyond this range resulted in a significantly
higher error for OpenTuner.

TABLE VI: Default and learned global parameters.

Architecture ~ Parameters DispatchWidth ReorderBufferSize
Haswell Default 4 192
Learned 4 144

VI. ANALYSIS

In this section, we analyze the parameters learned by Diff-
Tune on llvm-mca, answering the following research questions:
« How similar are the learned parameters to the default
parameters in llvm-mca? (Section VI-A)
« How optimal are the learned parameters? (Section VI-B)
« How semantically meaningful are the learned parameters?
(Section VI-C)

A. Comparison of Learned Parameters to Defaults

This section compares the default parameters to the learned
parameters (from a single run of DiffTune) in Haswell.

Distributional similarities. To determine the distribu-
tional similarity of the learned parameters to the de-
fault parameters, Figure 4 shows histograms of the val-
ues of the default and learned per-instruction parame-
ters (NumMicroOps, WriteLatency, ReadAdvanceCycles,
PortMap). The primary distinctions between the distributions
are in WriteLatency and ReadAdvanceCycles; the learned
parameters otherwise follow similar distributions to the defaults.
The distributions of default and learned WriteLatency
values in Figure 4b primarily differ in that only 1 out of the 837
opcodes in the default Haswell parameters has WriteLatency
0 (VZEROUPPER), whereas 251 out of the 837 opcodes in the
learned parameters have WriteLatency 0. As discussed in
Table II, a WriteLatency value of O means that dependent
instructions do not have to wait before being issued, and can be
issued in the same cycle; instructions may still be bottlenecked
elsewhere in the simulation pipeline (e.g., in the execute stage).
The distributions of default and learned
ReadAdvanceCycles are presented in Figure 4c. The
default ReadAdvanceCycles are mostly 0, with a small
population having values 5 and 7; in contrast, the learned
ReadAdvanceCycles are fairly evenly distributed, with
a plurality being 0. Given that a significant fraction of
learned WriteLatency values are 0, it is likely that many
ReadAdvanceCycles values have little to no effect.”

Global parameters. Table VI shows the default
and learned global parameters (DispatchWidth and
ReorderBufferSize). The Ilearned DispatchWidth

parameter is close to the default DispatchWidth parameter,
while the learned ReorderBufferSize parameter differs
significantly from the default. By analyzing llvm-
mca’s sensitivity to values of DispatchWidth and

7As noted in Section II, llvm-mca subtracts ReadAdvanceCycles from
WriteLatency to compute a dependency chain’s latency. The result of this
subtraction is clipped to be no less than zero.
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Fig. 4: Distributions of default and learned parameter values on Haswell.
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Fig. 5: llvm-mca’s sensitivity to values of DispatchWidth
(Top) and ReorderBufferSize (Bottom) within the default
(Blue) and learned (Orange) parameters.

ReorderBufferSize within the default and learned
parameters in Figure 5, we find that although the learned
global parameters do not match the default values exactly, they
approximately minimize llvm-mca’s error because there is a
wide range of values that result in approximately the same
error. While llvm-mca is sensitive to small perturbations in
the value of the DispatchWidth parameter (with the default
parameters, a DispatchWWidth of 3 has error 33.5%, 4 has
error 25.0%, and 5 has error 26.8%), it is relatively insensitive
to perturbations of the ReorderBufferSize (with the default
parameters, all ReorderBufferSize values above 70 have

error 25.0%). This is primarily because one of llvm-mca’s core

modeling assumptions, that memory accesses always resolve in
the L1 cache, means that most instructions spend few cycles in
the issue, execute, and retire phases; the ReorderBufferSize

is therefore rarely a bottleneck in llvm-mca’s modeling of
the BHive dataset.

B. Optimality

This section shows that while the parameters learned by
DiffTune match the error of the default parameters, the learned
values are not optimal: by using DiffTune to optimize just a
subset of llvm-mca’s parameters, and keeping the rest as their
expert-tuned default values, we are able to find parameters with
lower error than when learning the entire set of parameters.



Experiment. We learn only each instruction’s WriteLatency
in llvm-mca. We keep all other parameters as their default
values. The dataset and objective used in this task are otherwise
the same as presented in Section V-A.

Methodology. Training hyperparameters are similar to those
presented in Section V-A, and are reiterated here with modifi-
cations made to learn just WriteLatency parameters. We train
both the surrogate and the parameter table using Adam [21]
with a batch size of 256. We use a learning rate of 0.001 to train
the surrogate and a learning rate of 0.05 to train the parameter
table. To train the surrogate, we generate a simulated dataset of
2301110 blocks. For each basic block in the simulated dataset,
we sample a random parameter table, with each WriteLatency
a uniformly random integer between O and 10 (inclusive). We
loop over this simulated dataset 3 times when training the
surrogate. To train the parameter table, we initialize it to a
random sample from the parameter training distribution, then
train it for 1 epoch against the original training set.

Results. On Haswell, this application of DiffTune results in
an error of 16.2% and a Kendall Tau correlation coefficient
of 0.823, compared to an error of 23.7% and a correlation of
0.745 when learning the full set of parameters with DiffTune.
These results demonstrate that DiffTune does not find a globally
optimal parameter set when learning llvm-mca’s full set of
parameters. This suboptimality is due in part to the non-convex
nature of the problem and the size of the parameter space.

C. Case Studies

This section presents case studies of basic blocks simulated
with the default and with the learned parameters, showing where
the learned parameters better reflect the ground truth data, and
where the learned parameters reflect degenerate cases of the
optimization algorithm. To simplify exposition, the results in
this section use just the learned WriteLatency values from
the experiment in Section VI-B.

PUSH64r. The default WriteLatency with the Haswell param-
eters for the PUSH64r opcode (push a 64-bit register onto the
stack, decrementing the stack pointer) is 2 cycles. In contrast,
the WriteLatency learned by DiffTune is O cycles. This leads
to significantly more accurate predictions for blocks that contain
PUSH64r opcodes, such as the following (in which the default
and learned latency for testl are both 1 cycle):

pushq %rbx
testl %r8d, %r8d

The true timing of this block as measured by Chen et al. [23] is
1.01 cycles. On this block, llvm-mca with the default Haswell
parameters predicts a timing of 2.03 cycles: The PUSH64r forms
a dependency chain with itself, so the default WriteLatency
before each PUSH64r can be dispatched is 2 cycles. In contrast,
Ilvm-mca with the learned Haswell values predicts that the
timing is 1.03 cycles, because the learned WriteLatency is 0
meaning that there is no delay before the following PUSH64r
can be issued, but the PortMap for PUSH64r still occupies

HWPort4 for a cycle before the instruction is retired; this 1-
cycle dependency chain results in a more accurate prediction.
In this case, DiffTune learns a WriteLatency that leads to
better accuracy for the PUSH64r opcode.

XOR32rr. The default WriteLatency in Haswell for the
XOR32rr opcode (xor two registers with each other) is 1 cycle.
The WriteLatency learned by DiffTune is again O cycles. This
is not always correct — however, a common use of XOR32rr is
as a zero idiom, an instruction that sets a register to zero. For
example, xorq %rax, %rax performs an xor of %rax with
itself, effectively setting %rax to zero. Intel processors have a
fast path for zero idioms — rather than actually computing the
xor, they simply set the value to zero. Most of the instances
of XOR32rr in our dataset (4047 out of 4218) are zero idioms.
This leads to more accurate predictions in the general case, as
can be seen in the following example:

xorl %ri13d, %ri3d

The true timing of this block is 0.31 cycles. With the default
WriteLatency value of 1, the Intel x86 simulation model
of llvm-mca does not recognize this as a zero idiom and
predicts that this block has a timing of 1.03 cycles. With the
learned WriteLatency value of O and the fact that there are
no bottlenecks specified by the PortMap, llvm-mca executes
the xors as quickly as possible, bottlenecked only by the
NumMicroOps of 1 and the DispatchWidth of 4. With this
change, llvm-mca predicts that this block has a timing of 0.27
cycles, again closer to the ground truth.

ADD32mr. Unfortunately, it is impossible to distinguish between
semantically meaningful values that make the simulator more
correct, and degenerate values that improve the accuracy of the
simulator without adding interpretability. For instance, consider
ADD32mr, which adds a register to a value in memory and writes
the result back to memory:

addl  %eax, 16(%rsp)

This block has a true timing of 5.97 cycles because it is
essentially a chained load, add, then store—with the L1
cache latency being 4 cycles. However, llvm-mca does not
recognize the dependency chain this instruction forms with
itself, so even with the default Haswell WriteLatency of 7
cycles for ADD32mr, llvm-mca predicts that this block has an
overall timing of 1.09 cycles. Our methodology recognizes the
need to predict a higher timing, but is fundamentally unable
to change a parameter in llvm-mca to enable llvm-mca to
recognize the dependency chain (because no such parameter
exists). Instead, our methodology learns a degenerately high
WriteLatency of 62 for this instruction, allowing llvm-mca
to predict an overall timing of 1.64 cycles, closer to the true
value. This degenerate value increases the accuracy of llvm-
mca without leading to semantically useful WriteLatency
parameters. This case study shows that the interpretability of
the learned parameters is only as good as the simulation fidelity;
when the simulation is a poor approximation to the physical
behavior of the CPU, the learned parameters do not correspond
to semantically meaningful values.



VII. Future WORK

DiffTune is an effective technique to learn simulator pa-
rameters, as we demonstrate with llvm-mca (Section V) and
Ilvim_sim (Appendix A). However, there are several aspects of
DiffTune’s approach that are designed around the fact that llvim-
mca and llvm_sim are basic block simulators that are primarily
parameterized by ordinal parameters with few constraints
between the values of individual parameters. We believe that
DiffTune’s overall approach—differentiable surrogates—can be
extended to whole program and full system simulators that
have richer parameter spaces, such as gem5, by extending a
subset of DiffTune’s individual components.

Whole program and full system simulation. DiffTune
requires a differentiable surrogate that can learn the simulator’s
behavior to high accuracy. Ithemal [22]—the model we use for
the surrogate—operates on basic blocks with the assumption
that all data accesses resolve in the L1 cache, which is compati-
ble with our evaluation of llvm-mca and llvm_sim (which make
the same assumptions). While Ithemal could potentially model
whole programs (e.g., branching) and full systems (e.g., cache
behavior) with limited modifications, it may require significant
extensions to learn such more complex behavior [33, 34].

In addition to the design of the surrogate, training the
surrogate would require a new dataset that includes whole
programs, along with any other behavior modeled by the
simulator being optimized (e.g., memory). Acquiring such
a dataset would require extending timing methodologies like
BHive [23] to the full scope of target behavior.

Non-ordinal parameters. DiffTune only supports ordinal
parameters and does not support categorical or boolean param-
eters. DiffTune requires a relaxation of discrete parameters to
continuous values to perform optimization, along with a method
to extract the learned relaxation back into the discrete parameter
type (e.g., DiffTune relaxes integers to real numbers, and
extracts the learned parameters by rounding back to integers).
Supporting categorical and boolean parameters would require
designing and evaluating a scheme to represent and extract
such parameters within DiffTune. One candidate representation
is one-hot encoding, but has not been evaluated in DiffTune.

Dependent parameters. All integers in the range [1,0)
are valid settings for llvm-mca’s parameters. However, other
simulators, such as gem5, have stricter conditions—expressed
as assertions in the simulator—on the relationship among
different parameters.® DiffTune also does not apply when there
is a variable number of parameters: we are able to learn the
port mappings in a fixed-size PortMap, but do not learn the
number of ports in the PortMap, instead fixing it at 10 (the
default value for the Haswell microarchitecture). Extending
DiffTune to optimize simulators with rich, dynamic constrained

8For an example, see https://github.com/gem5/gem5/blob/v20.0.0.0/src/
cpu/o3/decode_impl.hh#L.423, which is based on the interaction between
different parameters, defined at https://github.com/gem5/gem5/blob/v20.0.0.0/
src/cpu/o3/decode_impl.hh#L75.

relationships between parameters motivates new work in
efficient techniques to sample such sets of parameters [35].

Sampling distributions. Extending DiffTune to other simula-
tors also requires defining appropriate sampling distributions for
each parameter. While the sampling distributions do not have
to directly lead to parameter settings that lead the simulator
to have low error (e.g., the sampling distributions defined in
Section V-A lead to an average error of llvm-mca on Haswell
of 171.4% +95.7%), they do need to contain values that the
parameter table estimate may take on during the parameter
table optimization phase (because neural networks like our
modification of Ithemal are not guaranteed to be able to
accurately extrapolate outside of their training distribution).
Other approaches to optimizing with learned differentiable
surrogates handle this by continuously re-optimizing the
surrogate in a region around the current parameter estimate [16],
a promising direction that could alleviate the need to hand-
specify proper sampling distributions.

VIII. RELATED WORK

Simulators are widely used for architecture research to model
the interactions of architectural components of a system [,
2, 4, 5, 6]. Configuring and validating CPU simulators to
accurately model systems of interest is a challenging task [23,
36, 37]. We review related techniques for setting CPU simulator
parameters in Section VIII-A, as well as related techniques to
DiffTune in Section VIII-B.

A. Setting CPU Simulator Parameters

In this section, we discuss related approaches for setting
CPU simulator parameters.

Measurement. One methodology for setting the parameters
of an abstract model is to gather fine-grained measurements
of each individual parameter’s realization in the physical
machine [9, 10] and then set the parameters to their measured
values [11, 12]. When the semantics of the simulator and the
semantics of the measurement methodology coincide, then
these measurements can serve as effective parameter values.
However, if there is a mismatch between the simulator and
measurement methodology, then measurements may not provide
effective parameter settings.

All fine-grained measurement frameworks rely on accurate
hardware performance counters to measure the parameters of
interest. Such performance counters do not always exist, such
as with per-port measurement performance counters on AMD
Zen [13]. When such performance counters are present, they
are not always reliable [38].

Optimizing CPU simulators. Another methodology for set-
ting parameters of an abstract model is to infer the parameters
from end-to-end measurements of the performance of the
physical machine. In the most related effort in this space,
Ritter and Hack [13] present a framework for inferring port
usage of instructions based on optimizing against a CPU model
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that solves a linear program to predict the throughput of a
basic block. Their approach is specifically designed to infer
port mappings and it is not clear how the approach could
be extended to infer different parameters in a more complex
simulator, such as extending their simulation model to include
data dependencies, dispatch width, or reorder buffer size. To
the best of our knowledge, DiffTune is the first approach
designed to optimize an arbitrary simulator, provided that
the simulator and its parameters match DiffTune’s scope of
applicability (Section VII).

B. Differentiable surrogates and approximations

In this section, we survey techniques related to DiffTune
that facilitate optimization by using differentiable surrogates
or approximations.

Optimization with learned differentiable surrogates. Opti-
mization of black-box and non-differentiable functions with
learned differentiable surrogates is an emerging set of tech-
niques, with applications in computer graphics [39], physical
sciences [16, 17], reinforcement learning [18], and computer
security [19]. Tseng et al. [39] use a convolutional neural
network as a learned differentiable surrogate to optimize
32 parameters in a black-box camera imaging pipeline. Shi-
robokov et al. [16] use learned differentiable surrogates to
optimize parameters for generative models of small physics
simulators. This technique is similar to an iterative version of
DiffTune that continuously re-optimizes the surrogate around
the current parameter table estimate. Louppe and Cranmer
[17] propose optimizing non-differentiable physics simulators
by formulating the joint optimization problem as adversarial
variational optimization. Louppe and Cranmer’s technique is
applicable in principle, though it has only been evaluated in
small settings with a single parameter to learn. Grathwohl et al.
[18] use learned differentiable surrogates to approximate the
gradient of black-box or non-differentiable functions, in order to
reduce the variance of gradient estimators of random variables.
While similar, Grathwohl et al.’s surrogate optimization has
a different objective: reducing the variance of other gradient
estimators [40], rather than necessarily mimicking the black-box
function. She et al. [19] use learned differentiable surrogates
to approximate the branching behavior of real-world programs
then find program inputs that trigger bugs in the program. She
et al.’s surrogate does not learn the full input-output behavior
of the program, only estimating which edges in the program
graph are or are not taken.

CPU simulator surrogates. Ipek et al. [41] use neural
networks to learn to predict the IPC of a cycle-accurate
simulator given a set of design space parameters, to enable
efficient design space exploration. Lee and Brooks [42] use
regression models to predict the performance and power usage
of a CPU simulator, similarly enabling efficient design space
exploration. Neither Ipek et al. nor Lee and Brooks then use
the models to optimize the simulator to be more accurate; both

also apply exhaustive or grid search to explore the parameter
space, rather than using the gradient of the simulator surrogate.

Differentiating arbitrary programs. Chaudhuri and Solar-
Lezama [43] present a method to approximate numerical
programs by executing programs probabilistically, similar to
the idea of blurring an image. This approach lets Chaudhuri
and Solar-Lezama apply gradient descent to parameters of
arbitrary numerical programs. However, the semantics presented
by Chaudhuri and Solar-Lezama only apply to a limited set
of program constructs and do not easily extend to the set of
program constructs exhibited by large-scale CPU simulators.

IX. ConcLuUsION

CPU simulators are complex software artifacts that require
significant measurement and manual tuning to set their param-
eters. We present DiffTune, a generic algorithm for learning
parameters within non-differentiable programs, using only end-
to-end supervision. Our results demonstrate that DiffTune is
able to learn the entire set of 11265 microarchitecture-specific
parameters from scratch in llvm-mca. Looking beyond CPU
simulation, DiffTune’s approach offers the promise of a generic,
scalable methodology to learn the parameters of programs
using only input-output examples, potentially reducing many
programming tasks to simply that of gathering data.
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APPENDIX A
LLVM_SIM

To evaluate that our implementation of DiffTune (Section IV)
is extensible to simulators other than llvm-mca, we evaluate
our implementation on llvm_sim [7], learning all parameters
that 1lvm_sim reads from LLVM. llvm_sim is a simulator that
uses many of the same parameters (from LLVM’s backend) as
Ilvm-mca, but uses a different model of the CPU, modeling
the frontend and breaking up instructions into micro-ops and
simulating the micro-ops individually rather than simulating
instructions as a whole as llvm-mca does.

Behavior. llvm_sim [7] is also an out-of-order superscalar
simulator exposing LLVM’s instruction scheduling model.
Ilvm_sim is only implemented for the x86 Haswell microarchi-
tecture. Similar to 1lvm-mca, llvm_sim also predicts timings of



TABLE VII: Parameters learned for llvm_sim.

Parameter Count Constraint  Description
WriteLatency 1 per-instruction ~ Integer, >0  The number of cycles before destination operands of that instruction can be read from.
PortMap 10 per-instruction  Integer, >0  The number of micro-ops dispatched to each port.

TABLE VIII: Learning all parameters: error of llvm_sim with
the default and learned parameters.

Architecture Predictor Error Kendall’s Tau
Haswell Default 61.3% 0.7256
DiffTune 44 1% 0.718
Ithemal 9.2% 0.854
IACA 17.1% 0.800
OpenTuner  115.6% 0.507

basic blocks, assuming that all data is in the L1 cache. llvm_sim
primarily differs from llvm-mca in two aspects: It models the
front-end, and it decodes instructions into micro-ops before
dispatch and execution. llvm_sim has the following pipeline:
« Instructions are fetched, parsed, and decoded into micro-
ops (unlike Ilvim-mca, llvm_sim does model the frontend)
o Registers are renamed, with an unlimited number of
physical registers
« Micro-ops are dispatched out-of-order once dependencies
are available
« Micro-ops are executed on execution ports
« Instructions are retired once all micro-ops in an instruction
have been executed

Parameters. We learn the parameters specified in Table VII.
We again assume that there are 10 execution ports available to
dispatch for all microarchitectures and do not learn to dispatch
to port groups. All other hyperparameters are identical to those
described in Section V-A.

Results. Table VIII presents the average error and correlation
of llvm_sim with the default parameters, llvm_sim with
the learned parameters, Ithemal trained on the dataset as a
lower bound, and the OpenTuner [14] baseline. By learning
the parameters that llvm_sim reads from LLVM, we reduce
Ilvm_sim’s error from 61.3% to 44.1%.
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