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1. Introduction

Variational problems involving magnetic fields play a peculiar role in the calculus of

variations. It is fair to say that there are no simple physical intuitions that may serve

as a guide and one has to extract information through exact computations, such as

in the case of the Landau Hamiltonian. A case in point are the symmetry properties

of optimizers where in the absence of magnetic fields one has fairly robust methods

to prove this. The isoperimetric inequality is one of the main sources of intuition;

rearrangements are essentially different versions of the isoperimetric problem. This

is certainly not the case in the presence of magnetic fields and there are very few

results in this direction.

An example is the work of Avron, Herbst and Simon [2] who proved that the

ground state of the hydrogenic atom in a constant magnetic field has cylindri-

cal symmetry. The proof is quite involved. Another result that comes to mind is

by Erdös [20] who proved the equivalent of the Faber–Krahn inequality for the

Schrödinger operator with a constant magnetic field and with a Dirichlet boundary

condition in a domain. The disk yields the smallest ground state energy among

domains of equal area. Again, the proof is quite involved and some arguments are

tailored for a linear setting. In this connection one should mention the recent result

of Bonheure, Nys and van Schaftingen [8] who showed perturbatively that in some

nonlinear variational problem involving a small constant magnetic field the mini-

mizers inherit the symmetry of the problem. Besides the constant magnetic field

case, another class of physically relevant variational problems involve Aharonov–

Bohm magnetic fields and the purpose of this paper is to give an up-to-date account

of our knowledge.

The Aharonov–Bohm effect states that the wave function of a charged quan-

tum particle passing by a thin magnetic solenoid experiences a phase shift. This,

despite that there is no apparent interaction with the solenoid except through the

interaction of the particle with the ‘unphysical’ vector potential. This prediction

was made originally by Ehrenberg and Siday in 1949 (see [18]) and then again in

1959 by Aharonov–Bohm (see [1]) and we will stay with the custom of calling it the

Aharonov–Bohm effect. It cannot be explained in terms of classical mechanics, but

was nevertheless experimentally verified (see [4]). It counts as one of the important

quantum mechanical effects.

Another question one may pose is the influence of the Aharonov–Bohm poten-

tial on the energies of systems, say, of a particle in a potential interacting with

the solenoid. It is relatively straightforward to write the Hamiltonian for this situ-

ation and one may ask for the effect of the Aharonov–Bohm field on the spectrum

of the Hamiltonian. One fruitful approach is to relate the ground state energy of

a quantum mechanical particle in an external potential to the minimization of a

nonlinear dual variational problem. This also works in the presence of magnetic

fields and, in particular, with the Aharonov–Bohm field. In this context, this leads

to nonlinear versions of Hardy type inequalities, or simply nonlinear interpolation
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inequalities, which are the dual versions of the Keller–Lieb–Thirring spectral esti-

mates. In various symmetry settings, we are interested in getting as much insight

as possible about the best constants in the inequalities and also about the quali-

tative properties of their extremal functions. Indeed, in many cases studying the

symmetry properties of those extremal functions allows us to get very accurate,

and sometimes even sharp, estimates for the best constants in the inequalities (see

for instance [7]).

On the Euclidean space R
d, the magnetic Laplacian is defined via a magnetic

potential A by

−ΔA ψ = −Δψ − 2 iA · ∇ψ + |A|2ψ − i (divA)ψ.

We consider the case of dimensions d = 2 and d = 3. The magnetic field is B =

curlA. The quadratic form associated with −ΔA is given by
Rd |∇A ψ|2 and well

defined for all functions in the space

H1
A(Rd) := {ψ ∈ L2(Rd) : ∇A ψ ∈ L2(Rd)}

where the magnetic gradient takes the form

∇A := ∇+ iA.

The Aharonov–Bohm magnetic field can be considered as a singular measure sup-

ported in the set x1 = x2 = 0, where (xi)
d
i=1 is a system of cartesian coordinates.

The magnetic potential is defined as follows.

• On R2, let us consider polar coordinates (r, θ) such that

r = |x| =
√
x2
1 + x2

2 and r eiθ = x1 + i x2

and the Aharonov–Bohm magnetic potential

A =
a

r2
(x2,− x1) =

a

r
eθ (1.1)

where a is a real constant and {er, eθ}, with er =
x
r , denotes the orthogonal basis

associated with our polar coordinates. The magnetic gradient and the magnetic

Laplacian are explicitly given by

∇A =

(
∂

∂r
,
1

r

(
∂

∂θ
− i a

))
, −ΔA = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

(
∂

∂θ
− i a

)2

.

• On R3, let us consider cylindrical coordinates (ρ, θ, z) where

ρ =
√
x2
1 + x2

2, ρ eiθ = x1 + i x2 and z = x3

and the Aharonov–Bohm magnetic potential

A =
a

ρ2
(x2,− x1, 0). (1.2)
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The magnetic gradient and the magnetic Laplacian are explicitly given by

∇A =

(
∂

∂ρ
,
1

ρ

(
∂

∂θ
− i a

)
,
∂

∂z

)
,

−ΔA = − ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− 1

ρ2

(
∂

∂θ
− i a

)2

− ∂2

∂z2
.

We shall also consider Aharonov–Bohm type magnetic potentials on compact mani-

folds, namely, on the circle, the sphere and the torus. The expression of the magnetic

potential will be given case by case.

This paper is intended to provide a general overview of the mathematical results

and methods concerning various functional inequalities involving Aharonov–Bohm

magnetic fields:

• Magnetic ground state energy estimates.

• Nonlinear magnetic interpolation inequalities.

• Rigidity results for optimal functions.

• Magnetic Keller–Lieb–Thirring inequalities.

• Magnetic Hardy inequalities.

Except for Hardy inequalities, all of the above inequalities will be considered on

the circle S
1, on the two-dimensional sphere S2, on the two-dimensional flat torus

T2, on R2 and on R3, with consequences on Hardy inequalities on the Euclidean

spaces R2 and R3. It is crucial to consider precise geometric settings as we are

interested in optimal inequalities, which rely on non-trivial symmetry results. A

typical nonlinear interpolation inequality is

‖∇A u‖2L2(X ) + λ ‖u‖2L2(X ) ≥ μA(λ) ‖u‖2Lp(X ) (1.3)

for any function u in the appropriate H1
A space, for any λ > 0, and for any p > 2,

say, on the compact manifold X in order to fix ideas. Assuming that vol(X ) = 1,

the issue of the optimal inequality is to the determine the largest value of λ > 0 for

which we have μA(λ) = λ+ C for some constant C which is computed in terms of

|A| and depends on X . Equality is then realized by the constants. It is usually not

difficult to prove that the equality is achieved in the inequality if μA(λ) denotes

the optimal constant, for any λ > 0. If we consider the Euler–Lagrange equation,

this can be reformulated as the slightly more general rigidity question. For which

values of λ do we know that any solution is actually a constant? To obtain rigidity,

it is essential to establish symmetry properties, which is usually the most difficult

step of the proof. In the non-compact case, optimal functions are not constants,

which is an additional difficulty, but the problem can also be reduced to a symmetry

issue.

There is another interpretation of the rigidity issue in terms of a phase transition.

In the compact manifold case, the optimal function for (1.3) is always a constant if

λ > 0 is taken small enough. For large values of λ, a simple perturbation argument

shows that no minimizer can be a constant, which results in a symmetry breaking
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phenomenon, and one can prove in many cases that there is a bifurcation from a

symmetric phase (solutions are constant) to a non-symmetric phase for a threshold

value of λ corresponding to the optimal inequality.

Keller–Lieb–Thirring (KLT) inequalities are estimates of the ground state

energy λ1[A, V ] for the magnetic Schrödinger operator −ΔA − V in terms of

‖V ‖Lq(X ) and are obtained by duality from (1.3) with q = p/(p−2). KLT inequalities

are in fact completely equivalent to (1.3), including for optimality issues and related

rigidity questions, and essential for proving various magnetic Hardy inequalities,

which are one of the highlights and the main motivations of this paper. However,

we emphasize the fact that the accurate spectral information is carried by the KLT

inequalities.

We shall actually consider not only the superquadratic case p > 2, but also the

subquadratic case p < 2 in which the role of the L2 and Lp norms are exchanged.

The corresponding nonlinear interpolation inequality is

‖∇A u‖2L2(X ) + μ ‖u‖2Lp(X ) ≥ λA(μ) ‖u‖2L2(X ) (1.4)

for any p ∈ [1, 2) and we can also draw a whole series of consequences (rigidity,

KLT, Hardy) as in the superquadratic case. In particular, we are able to prove

several new and interesting results on optimality and rigidity.

Our paper collects many results on functional inequalities with magnetic fields

in different geometric settings. Therefore it is difficult to pick particularly significant

results. Moreover we believe that the interest of the paper lies as much in the

various methods as in the results because very little is known on optimal inequalities

in presence of Aharonov–Bohm magnetic fields and on the symmetry properties

of the corresponding optimal functions. The most visible outcome of our work

is on Hardy inequalities, which are important tools in functional analysis. The

presence of a magnetic field is a key feature, for instance in dimension d = 2. Let us

anyway draw the attention of the reader to some results that are prominent in this

paper:

• Theorem 3.1 deals with nonlinear magnetic interpolation inequalities, optimal

constants and rigidity results on S
1 in the subquadratic case. This is a new

set of inequalities which complements the theory on magnetic rings in the

superquadratic case studied in [14]. It was natural to study it in view of the carré

du champ technique by Bakry and Emery in [3], but as far as we know, it is an

entirely new result in the presence of a magnetic potential when p < 2.

• Theorem 3.2 is the counterpart of Theorem 3.1 in the case of the torus T2 ≈
S1 × S1. It is remarkable that we achieve an optimality result here as symmetry

results on products of manifolds are known to be difficult.

• Using subquadratic interpolation inequalities for proving KLT and then

Hardy type inequalities is, as far as we know, an entirely new strategy: see

Theorem 3.3.
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• It is natural to consider also what happens on S2: see Proposition 2.2 and Corol-

lary 2.2 for results in the superquadratic case.

• Results on magnetic Hardy inequalities of Theorem 4.2 are a new and striking

application of the nonlinear Hardy–Sobolev interpolation inequalities of [7] on

the Euclidean space R2.

• Theorems 5.1 and 5.2 are two examples of application of the nonlinear magnetic

interpolation inequalities to magnetic Hardy inequalities on R3, which signifi-

cantly improve upon the results in [19, 22].

Let us conclude this introduction by some mathematical observations and some

additional references. The overall question is to determine the functional spaces

which are adapted to magnetic Schrödinger operators in the spirit of [13]. Magnetic

interpolation inequalities (without optimal constants) are usually not an issue as

they can be deduced from the non-magnetic interpolation inequalities by the dia-

magnetic inequality: see for instance [27]. However we are interested in retaining

information about the magnetic field and characterizing optimality cases, which is

by far a more difficult target. As a convention, we shall speak of Hardy–Sobolev

inequalities when a term |x|−2 |u|2 dx is subtracted from the kinetic energy and of

Caffarelli–Kohn–Nirenberg inequalities when various pure power weights are taken

into account. On Rd, ΔA has the same scaling properties as the non-magnetic Lapla-

cian if A is an Aharonov–Bohm magnetic potential and its spectrum is explicit.

KLT inequalities are spectral estimates but it has to be emphasized that they differ

from semi-classical estimates as they inherit nonlinear properties of the interpo-

lation inequalities. Finally, it is a remarkable fact that, in presence of a magnetic

potential, a Hardy inequality can be established in the two-dimensional case (see

[14, 22, 24, 26] for related papers).

This paper is organized as follows. Section 2 is devoted to some preliminary

results on the circle S
1 and on the two-dimensional sphere S

2. New interpolation

inequalities are established on the sphere S2, with an optimality result. Section 3

is devoted to the study of a class of subquadratic magnetic interpolation inequal-

ities on S1 and on the flat torus T2. We are able to identify a sharp condition of

optimality and deduce several Hardy inequalities in dimensions d = 2 and d = 3.

In Sec. 4, we start by recalling earlier, non-optimal but numerically almost sharp,

results on interpolation inequalities on R2 in the presence of an Aharonov–Bohm

magnetic field in order to establish some Hardy inequalities on R2. Section 5 is

devoted to Hardy inequalities on R3 with singularities which are either spherically

or cylindrically symmetric.

2. General Set-Up and Preliminary Results

This section is devoted to various results on the sphere Sd without magnetic field

(Sec. 2.1), in the superquadratic case when d = 1 (Sec. 2.2) and when d = 2

(Sec. 2.3). Sections 2.1 and 2.2 are devoted to a survey of previous results and
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are given not only for completeness but also as introductory material for Secs. 2.3

and 3.

2.1. Non-magnetic interpolation inequalities on Sd

On the sphere Sd, we consider the uniform probability measure dσ, which is the

measure induced by the Lebesgue measure in Rd+1, duly normalized and denote by

‖·‖Lq(Sd) the corresponding Lq norm. Here we state known results for later use.

2.1.1. Interpolation inequalities without weights

The interpolation inequalities

‖∇u‖2L2(Sd) ≥
d

p− 2
(‖u‖2Lp(Sd) − ‖u‖2L2(Sd)) (2.1)

hold for any p ∈ [1, 2)∪ (2,+∞) if d = 1 and d = 2, and for any p ∈ [1, 2)∪ (2, 2∗] if
d ≥ 3, where 2∗ := 2 d/(d− 2) is the Sobolev critical exponent. See [5, 6] for p > 2

and [3] if d = 1 or d ≥ 2 and p ≤ (2 d2 + 1)/(d− 1)2.

If p > 2, we know from [12] that there exists a concave monotone increasing

function λ 
→ μ0,p(λ) on (0,+∞) such that μ0,p(λ) is the optimal constant in the

inequality

‖∇u‖2L2(Sd) + λ ‖u‖2L2(Sd) ≥ μ0,p(λ) ‖u‖2Lp(Sd), ∀u ∈ H1(Sd) (2.2)

and that μ0,p(λ) = λ if and only if λ ≤ d/(p− 2). In this range, equality is achieved

if and only if u is a constant function: this is a symmetry range. On the opposite,

if λ > d/(p− 2), the optimal function is not constant and we shall say that there is

symmetry breaking.

The case 1 ≤ p < 2 is similar: there exists a concave monotone increasing

function μ 
→ λ0,p(μ) on (0,+∞) such that λ0,p(μ) is the optimal constant in the

inequality

‖∇u‖2L2(Sd) + μ ‖u‖2Lp(Sd) ≥ λ0,p(μ) ‖u‖2L2(Sd) ∀u ∈ H1(Sd) (2.3)

and that λ0,p(μ) = μ if and only if μ ≤ d/(2−p). In this symmetry range, constants

are the optimal functions, while there is symmetry breaking if μ > d/(2−p): optimal

functions are non-constant.

In the symmetry range, positive constants are actually the only positive solutions

of the Euler–Lagrange equation

−εΔu+ λu = up−1

where ε = ±1 is the sign of (p − 2), while there are multiple solutions in the

symmetry breaking range. The limit case p = 2 can be obtained by taking the limit

as p → 2 and the corresponding inequality is the logarithmic Sobolev inequality.

Much more is known and we refer to [12] for further details.
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2.1.2. A weighted Poincaré inequality for the ultra-spherical operator

Using cylindrical coordinates (z, ω) ∈ [−1, 1]× Sd−1, we can rewrite the Laplace–

Beltrami operator on Sd as

Δ = Ld +
1

1− z2
Δω with Ld u :=

(
1− z2

)
u′′ − d z u′

where Δω denotes the Laplace–Beltrami operator on Sd−1 and Ld is the ultra-

spherical operator. In other words, Ld is the Laplace–Beltrami operator on Sd

restricted to functions which depend only on z. The operator Ld has a basis of

eigenfunctions G�,d, the Gegenbauer polynomials, associated with the eigenvalues


 (
+ d− 1) for any 
 ∈ N (see [28]). Here d is not necessarily an integer.

Let us consider the eigenvalue problem

−L2 f +
4 a2

1− z2
f = λ f . (2.4)

By changing the unknown function according to f(z) =
(
1− z2

)a
g(z), we obtain

that g solves

−L2 (2 a+1) g + 2 a (1 + 2 a) g = λ g

which determines the eigenvalues λ = λ�,a given by

λ�,a = 
(
+ 2 (2 a+ 1)− 1) + 2 a (1 + 2 a) = (
 + 2 a) (
+ 2 a+ 1), 
 ∈ N. (2.5)

We shall denote by g�,a(z) = G�,2 (2 a+1)(z) the associated eigenfunctions and define

f�,a(z) := (1− z2)ag�,a(z). By considering the lowest positive eigenvalue, we obtain

a weighted Poincaré inequality.

Lemma 2.1. For any a ∈ R and any function f ∈ H1
0[−1, 1], we have

1

−1

(
(1− z2)|f ′(z)|2 + 4 a2

1− z2
|f(z)|2

)
dz ≥ λ1,a

1

−1

|f(z)− f̄(z)|2 dz,

where

f̄(z) = (1− z2)a

1

−1

f(z)(1− z2)a dz

1

−1

(1 − z2)2 a dz

.

Equality is achieved by a function f if and only if f is proportional to f1,a(z) =

z
(
1− z2

)a
.

Notice for consistency that, if f(z) =
(
1− z2

)a
g(z), then

1

−1

((
1− z2

) |f ′(z)|2 + 4 a2

1− z2
|f(z)|2

)
dz

=
1

−1

((
1− z2

) ∣∣g′(z)∣∣2 + 2 a (1 + 2 a) |g(z)|2
) (

1− z2
)2 a

dz,
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where the right-hand side is the Dirichlet form associated with the operator

−L2 (2 a+1) + 2 a (1 + 2 a).

2.2. Magnetic rings: Superquadratic inequalities on S1

In this section, we review a series of results which have been obtained in [14] in the

superquadratic case p > 2, in preparation for an extension to the subquadratic case

p ∈ [1, 2) that will be studied in Sec. 3.

2.2.1. Magnetic interpolation inequalities and consequences

Let us consider the superquadratic case p > 2 in dimension d = 1. We recall that

dσ = (2π)−1 dθ where θ ∈ [0, 2π) ≈ S1. As in [14] we consider the space H1(S1) of

the 2π-periodic functions u ∈ C0,1/2(S1), such that u′ ∈ L2(S1). Inequality (2.2)

can be rewritten as

‖u′‖2L2(S1) + λ ‖u‖2L2(S1) ≥ λ ‖u‖2Lp(S1), ∀u ∈ H1(S1) (2.6)

for any λ ∈ (0, 1/(p− 2)]. We also have the inequality

‖u′‖2L2(S1) +
1

4
‖u−1‖−2

L2(S1) ≥
1

4
‖u‖2L2(S1), ∀u ∈ H1(S1), (2.7)

according to [21], with the convention that ‖u−1‖−2
L2(S1) = 0 if u−2 is not integrable

and, as a special case, if u changes sign. Notice that inequality (2.7) is formally the

case p = 2 d/(d− 2) and λ = d/(p− 2) of (2.2) when d = 1 (see [14, Appendix A]).

In [14], it was shown that the inequality (for complex-valued functions)

‖ψ′ − i a ψ‖2L2(S1) + λ ‖ψ‖2L2(S1) ≥ μa,p(λ) ‖ψ‖2Lp(S1), ∀ψ ∈ H1(S1,C) (2.8)

is equivalent, after eliminating the phase, to the inequality

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + λ ‖u‖2L2(S1) ≥ μa,p(λ) ‖u‖2Lp(S1), ∀u ∈ H1(S1).

The equivalence is relatively easy to prove if ψ does not vanish, but some care

is required otherwise: see [14] for details. Here we denote by μa,p(λ) the optimal

constant in (2.8). Using (2.8) and then (2.6), we obtain that

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + λ ‖u‖2L2(S1)

= (1− 4 a2) ‖u′‖2L2(S1) + λ ‖u‖2L2(S1) + 4 a2
(
‖u′‖2L2(S1) +

1

4
‖u−1‖2L2(S1)

)

≥ (1− 4 a2)

(
‖u′‖2L2(S1) +

a2 + λ

1− 4 a2
‖u‖2L2(S1)

)
≥ (a2 + λ) ‖u‖2Lp(S1)

under the condition (a2 + λ)/(1− 4 a2) ≤ 1/(p− 2), which provides an estimate of

μa,p(λ). This estimate turns out to be optimal.

Proposition 2.1 ([14]). Let p > 2, a ∈ [0, 1/2], and λ > − a2.
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(i) If a2 (p + 2) + λ (p − 2) ≤ 1, then μa,p(λ) = a2 + λ and equality in (2.8) is

achieved only by the constants.

(ii) If a2 (p+ 2) + λ (p− 2) > 1, then μa,p(λ) < a2 + λ and equality in (2.8) is not

achieved by the constants.

The condition a ∈ [0, 1/2] is not a restriction. First, replacing ψ by eiks ψ(s) for

any k ∈ Z shows that μa+k,p(μ) = μa,p(μ) so that we can assume that a ∈ [0, 1].

Then by considering χ(s) = e−is ψ(s), we find that

|ψ′ + i a ψ|2 = |χ′ + i (1− a)χ|2,
hence μa,p(μ) = μ1−a,p(μ).

2.2.2. Magnetic Hardy inequalities on S1 and R2

As in [14], we can draw an easy consequence of Proposition 2.1 on a Keller–Lieb–

Thirring type inequality. By Hölder’s inequality applied with q = p/(p − 2), we

have

‖ψ′ − i a ψ‖2L2(S1) − μ−1

S1

φ |ψ|2 dθ ≥ ‖ψ′ − i a ψ‖2L2(S1) − μ−1 ‖φ‖Lq(S1) ‖ψ‖2Lp(S1).

Using (2.8) with λ = 0 and μ such that μ−1 ‖φ‖Lq(S1) = μa,p(0), we know that

the right-hand side is non-negative. See [14] for more details. Altogether we obtain

the following magnetic Hardy inequality on S1 : for any a ∈ R, any p > 2 and

q = p/(p− 2), if φ is a non-trivial potential in Lq(S1), then

‖ψ′ − i a ψ‖2L2(S1) ≥
μa,p(0)

‖φ‖Lq(S1) S1

φ |ψ|2 dσ, ∀ψ ∈ H1
A(S1). (2.9)

This is a special case of the more general interpolation inequality

‖ψ′ − i a ψ‖2L2(S1) −
S1

φ |ψ|2 dθ ≥ ‖ψ′ − i a ψ‖2L2(S1) − μ ‖ψ‖2Lp(S1)

≥ −λa,p(μ) ‖ψ‖2L2(S1) (2.10)

with μ = ‖φ‖Lq(S1), where we denote by λa,p(μ) the inverse function of λ 
→ μa,p(λ),

as defined in Proposition 2.1. See [13] for details.

The standard non-magnetic Hardy inequality on Rd, i.e.

Rd

|∇ψ|2 dx ≥ 1

4
(d− 2)2

Rd

|ψ|2
|x|2 dx, ∀ψ ∈ H1(Rd),

degenerates if d = 2, but this degeneracy is lifted in the presence of a Aharonov–

Bohm magnetic field. According to [26], we have

R2

|∇A ψ|2 dx ≥ min
k∈Z

(a− k)2

R2

|ψ|2
|x|2 dx, ∀ψ ∈ H1(Rd).
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Inequalities with Aharonov–Bohm magnetic potentials

It is natural to ask whether an improvement can be obtained if the singularity |x|−2

is replaced by a weight which has an angular dependence. Using polar coordinates

x ≈ (r, θ) and interpolation inequalities of [12], the inequality

Rd

|∇ψ|2 dx ≥ (d− 2)2

4 ‖ϕ‖Lq(Sd−1) Rd

ϕ(θ)

|x|2 |ψ|2 dx, ∀ψ ∈ H1(Rd)

was proved in [24], under the condition that q ≥ 1 + 1
2 (d− 2)2/(d− 1), again with

normalized measure on Sd−1. Magnetic and non-radial improvements have been

combined in [14]. Let us give a statement in preparation for similar extensions to

the case of dimension d = 3.

Corollary 2.1 ([14]). Let A as in (1.1), a ∈ [0, 1/2], p > 2, q = p/(p − 2) and

assume that ϕ is a non-negative function in Lq(S1). With the above notations, the

inequality

R2

|∇A ψ|2 dx ≥ τ
R2

ϕ(θ)

|x|2 |ψ|2 dx, ∀ψ ∈ H1(Rd)

holds with a constant τ > 0 which is the unique solution of the equation

λa,p(τ ‖ϕ‖Lq(S1)) = 0.

Moreover, τ = a2/‖ϕ‖Lq(S1) if a2 ≤ 1/(p+ 2).

2.3. Magnetic interpolation inequalities on S2

In the spirit of Secs. 2.1 and 2.2, we state some new results concerning the two-

dimensional sphere with main results in Proposition 2.2 and Corollary 2.2.

2.3.1. A magnetic ground state estimate

Let us consider the magnetic Laplacian on S2 and the associated Dirichlet form

S2
|∇A u|2dσ where dσ is the uniform probability measure on S

2. Using cylindrical

coordinates (θ, z) ∈ [0, 2π)× [−1, 1], we can write that dσ = 1
4π dz dθ and assume

that the magnetic gradient takes the form

∇A u =

⎛
⎜⎜⎜⎝

√
1− z2

∂u

∂z

1√
1− z2

(
∂u

∂θ
− i a u

)
⎞
⎟⎟⎟⎠ (2.11)

where a > 0 is a magnetic flux, so that

|∇A u|2 = (
1− z2

) ∣∣∣∣∂u∂z
∣∣∣∣
2

+
1

1− z2

∣∣∣∣∂u∂θ − i a u

∣∣∣∣
2

.

Lemma 2.2. Assume that a ∈ R. With the notation (2.11), we have

S2

|∇A u|2 dσ ≥ Λa
S2

|u|2 dσ, ∀u ∈ H1
A(S2)
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with optimal constant

Λa = min
k∈Z

|k − a|(|k − a|+ 1). (2.12)

Notice that Λa ≤ Λ1/2 = 3/4.

Proof. We can write u using a Fourier decomposition

u(z, θ) =
∑
�∈N

∑
k∈Z

uk,�(z) e
i k θ

and observe that

|∇A u|2 =
∑
�∈N

∑
k∈Z

(
(1 − z2)|u′

k,�(z)|2 +
(k − a)2

1− z2
|uk,�(z)|2

)

where

uk,�(z) = f�,|k−a|/2(z)
S2

u(z, θ)
2 f�,|k−a|/2(z) e−i k θ

1

−1

(
1− z2

)|k−a|
dz

dσ

and f�,|k−a|/2 is an eigenfunction of (2.4) with eigenvalue λ = λ�,a such that 2 a =

|k − a|. Using (2.5), we conclude that the spectrum of −ΔA is given by

(
+ |k − a|)(
 + |k − a|+ 1), k ∈ Z, 
 ∈ N.

2.3.2. Superquadratic interpolation inequalities and consequences

Proposition 2.2. Let a ∈ R and p > 2. With the notation (2.11), there exists a

concave monotone increasing function λ 
→ μa,p(λ) on (−Λa,+∞) such that μa,p(λ)

is the optimal constant in the inequality

‖∇A u‖2L2(S2) + λ ‖u‖2L2(S2) ≥ μa,p(λ) ‖u‖2Lp(S2), ∀u ∈ H1
A(S2).

Furthermore, μa,p(λ) ≥ 2 (λ + Λa)/
(
2 + (p − 2)Λa

)
and limλ→−Λa μa,p(λ) = 0,

with Λa given by (2.12).

Proof. The proof is adapted from [13, Proposition 3.1]. For an arbitrary t ∈ (0, 1),

we can write that

‖∇A u‖2L2(S2) + λ ‖u‖2L2(S2) ≥ t
(
‖∇A u‖2L2(S2) − Λa ‖u‖2L2(S2)

)

+(1− t)

(
‖∇|u|‖2L2(S2) +

λ+ tΛa

1− t
‖u‖2L2(S2)

)

≥ (1− t)μ0,p

(
λ+ tΛa

1− t

)
‖u‖2Lp(S2),

as a consequence of Lemma 2.2 and of the diamagnetic inequality (see, e.g., [27,

Theorem 7.21])

‖∇A u‖2L2(S2) ≥ ‖∇|u|‖2L2(S2).
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If λ < 2/(p− 2), the estimate is obtained by choosing t such that

λ+ tΛa

1− t
=

2

p− 2

and recalling that μ0,p (2/(p− 2)) = 2/(p− 2). The limit as λ → −Λa is obtained

by taking the ground state of −ΔA on H1(S2) as test function.

With the same method as for the proof of (2.9), we can deduce a Hardy-type

inequality.

Corollary 2.2. Let a ∈ R, p > 2 and q = p/(p− 2). With the notation (2.11), if φ

is a non-trivial potential in Lq(S2), then

‖∇A u‖2L2(S2) ≥
μa,p(0)

‖φ‖Lq(S2) S2

φ |u|2 dσ, ∀u ∈ H1
A(S2).

3. Subquadratic Magnetic Interpolation Inequalities

This section is devoted to new and optimal interpolation inequalities involving Lp

norms in the subquadratic range p ∈ (1, 2) on the circle and on the torus (Secs. 3.1

and 3.2). Dual Keller–Lieb–Thirring inequalities yield new magnetic Hardy inequal-

ities on R2 and R3 (Sec. 3.3).

3.1. Magnetic rings: Subquadratic interpolation inequalities on S1

We extend the results of Sec. 2.2.1 to the subquadratic range 1 < p < 2 using the

strategy of [14].

3.1.1. Statement of the inequality

As a special case of (2.1) corresponding to d = 1, we have the non-magnetic inter-

polation inequality

(2 − p) ‖u′‖2L2(S1) + ‖u‖2Lp(S1) ≥ ‖u‖2L2(S1), ∀u ∈ H1(S1) (3.1)

for any p ∈ [1, 2). Our first result is the magnetic counterpart of this inequality.

Lemma 3.1. Let a ∈ R and p ∈ [1, 2). Then there exists a concave monotone

increasing function μ 
→ λa,p(μ) on R
+ such that

‖ψ′ − i a ψ‖2L2(S1) + μ ‖ψ‖2Lp(S1) ≥ λa,p(μ) ‖ψ‖2L2(S1), ∀ψ ∈ H1(S1,C). (3.2)

Here we denote by λa,p(μ) the optimal constant in (3.1).

Proof. The existence of λa,p(μ) is a consequence of (3.1) and of the diamagnetic

inequality: let ρ = |ψ| and φ be such that ψ = ρ
(
θ) exp(i φ(θ)

)
. Since

|ψ′ − i a ψ|2 = |ρ′|2 + |φ′ − a|2 ρ2 ≥ |ρ′|2,
we have that ‖ψ′ − i a ψ‖2L2(S1) ≥ ‖ |ψ|′ ‖2L2(S1). The concavity of μ 
→ λa,p(μ) is a

consequence of the definition of λa,p(μ) as the optimal constant, i.e. the infimum

on H1(S1) � ψ of an affine function of μ.
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3.1.2. Existence of an optimal function

Lemma 3.2. For all a ∈ [0, 1/2], p ∈ [1, 2) and μ ≥ − a2, equality in (3.2) is

achieved by at least one function in H1(S1).

Proof. We consider a minimizing sequence {ψn} for

λa,p(μ) = inf
{
‖ψ′ − i a ψ‖2L2(S1) + μ ‖ψ‖2Lp(S1) : ψ ∈ H1(S1), ‖ψ‖L2(S1) = 1

}
.

By the diamagnetic inequality we know that the sequence (ψn)n∈N is bounded in

H1(S1). By the compact Sobolev embeddings, this sequence is relatively compact

in Lp(S1) and in L2(S1). The map ψ 
→ ‖ψ′ − i a ψ‖2L2(S1) is lower semi-continuous

by Fatou’s lemma, which proves the claim.

3.1.3. A non-vanishing property

Lemma 3.3. Asssume that a ∈ (0, 1/2), p ∈ [1, 2) and μ ≥ −a2. If ψ ∈ H1(S1) is

an optimal function for (3.2) with ‖ψ‖Lp(S1) = 1, then ψ(s) �= 0 for any s ∈ S1.

Proof. The proof goes as in [14]. Let us decompose v(s) = ψ(s) eias as a real and an

imaginary part, respectively v1 and v2, which both solve the same Euler–Lagrange

equation

−v′′j − μ(v21 + v22)
p
2−1 vj = λa,p(μ) vj , j = 1, 2.

Notice that v ∈ C0,1/2(S1) and the nonlinear term is continuous, hence v is smooth.

The Wronskian w = (v1 v
′
2− v′1 v2) is constant. If both v1 and v2 vanish at the same

point, then w vanishes identically, which means that v1 and v2 are proportional.

With a ∈ (0, 1/2), ψ is not 2π-periodic, a contradiction.

3.1.4. A reduction to a scalar minimization problem

We refer to Sec. 2.1.1 if a = 0 and assume in the proofs that a > 0. The main steps

of the reduction are similar to the case p > 2 of [14]. We repeat the key points for

completeness. Let us define

Qa,p,μ[u] :=
‖u′‖2L2(S1) + a2 ‖u−1‖−2

L2(S1) + μ ‖u‖2Lp(S1)

‖u‖2L2(S1)

.

Notice that if u ∈ H1(S1) is such that u(s0) = 0 for some s0 ∈ (−π, π], then

|u(s)|2 =

( s

s0

u′ ds
)2

≤ √
2π ‖u′‖L2(S1)

√
|s− s0|

and u−2 is not integrable. In this case, as mentioned earlier, we adopt the convention

that

Qa,p,μ[u] :=
‖u′‖2L2(S1) + μ ‖u‖2Lp(S1)

‖u‖2L2(S1)

. (3.3)
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Lemma 3.4. For any a ∈ [0, 1/2], p ∈ [1, 2), μ > − a2,

λa,p(μ) = min
u∈H1(S1)\{0}

Qa,p,μ[u].

Proof. We consider functions on S
1 as 2π-periodic functions on R. If ψ ∈ H1(S1),

then v(s) = ψ(s) eias satisfies the condition

v(s+ 2π) = e2iπa v(s), ∀ s ∈ R (3.4)

and

λa,p(μ) = min
‖v′‖2L2(S1) + μ ‖v‖2Lp(S1)

‖v‖2L2(S1)

where the minimization is taken on the set of the functions v ∈ C0,1/2(R) such that

v′ ∈ L2(−π, π) and (3.4) holds.

With v = u eiφ written in polar form, the boundary condition becomes

u(π) = u(−π), φ(π) = 2π (a+ k) + φ(−π) (3.5)

for some k ∈ Z, and ‖v′‖2L2(S1) = ‖u′‖2L2(S1) + ‖uφ′‖2L2(S1) so that

λa,p(μ) = min
‖u′‖2L2(S1) + ‖uφ′‖2L2(S1) + μ ‖u‖2Lp(S1)

‖u‖2L2(S1)

where the minimization is taken on the set of the functions (u, φ) ∈ C(R)2 such

that u′, uφ′ ∈ L2(S1) and (3.5) holds.

Up to a multiplication of u by a constant so that ‖u‖Lp(S1) = 1, the Euler–

Lagrange equations are

−u′′ + |φ′|2 u+ μ |u|p−2 u = λa,p(μ)u and (φ′ u2)′ = 0.

If a ∈ (0, 1/2), by integrating the second equation and using Lemma 3.3, we find a

constant L such that φ′ = L/u2. Taking (3.5) into account, we deduce from

L
π

−π

ds

u2
=

π

−π

φ′ ds = 2π (a+ k)

that

‖uφ′‖2L2(S1) = L2
π

−π

ds

u2
=

(a+ k)2

‖u−1‖2L2(S1)

.

This establishes that

λa,p(μ) = min
u, k

Qa+k,p,μ[u]

where the minimization is taken on all k ∈ Z and on all functions u ∈ H1(S1).

Because of the restriction a ∈ (0, 1/2), the minimum is achieved by k = 0.

The case a = 1/2 is a limit case that can be handled as in [14, Theorem III.7].

In this case the result holds also true, with the minimizer being in H1
0(S

1)\{0}, and
with the convention defined in (3.3) for the expression of Qa,p,μ[u] when u vanishes

in S1.

2150006-15



D. Bonheure et al.

3.1.5. A rigidity result

If a ∈ (0, 1/2), as in [14], the study of (3.2) is reduced to the study of the inequality

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + μ ‖u‖2Lp(S1) ≥ λa,p(μ) ‖u‖2L2(S1), ∀u ∈ H1(S1)

(3.6)

where u is now a real valued function. Necessary adaptations to the trivial case

a = 0 and to the limit case a = 1/2 are straightforward and left to the reader. The

result below is the analogue of Proposition 2.1 in the subcritical range.

Theorem 3.1. Let p ∈ (1, 2), a ∈ (0, 1/2), and μ > 0.

(i) If μ (2 − p) + 4 a2 ≤ 1, then λa,p(μ) = a2 + μ and equality in (3.6) is achieved

only by the constants.

(ii) If μ (2−p)+4 a2 > 1, then λa,p(μ) < a2+μ and equality in (3.6) is not achieved

by the constants.

Proof. In case (i) we can write

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + μ ‖u‖2Lp(S1)

= (1− 4 a2)

(
‖u′‖2L2(S1) +

μ

1− 4 a2
‖u‖2Lp(S1)

)

+4 a2
(
‖u′‖2L2(S1) +

1

4
‖u−1‖2L2(S1)

)
,

deduce from (3.1) that

‖u′‖2L2(S1) +
μ

1− 4 a2
‖u‖2Lp(S1) ≥

μ

1− 4 a2
‖u‖2L2(S1)

if μ/(1− 4 a2) ≤ 1/(2− p) and conclude using (2.7).

In case (ii), let us consider the test function uε := 1 + εw1, where w1 is the

eigenfunction corresponding to the first non-zero eigenvalue of − d2/ds2 on H1(S1),

with periodic boundary conditions, namely, w1(s) = cos s and λ1 = 1. A Taylor

expansion shows that

Qa,p,μ[uε] =
(
1 + a2 − μ (2− p)

)
ε2 + o(ε2),

which proves the result. Notice that the Taylor expansion is also valid if a = 0, so

that (p−2) is the optimal constant in (3.1), and also that a similar Taylor expansion

holds in case of (2.7), which formally corresponds to p = − 2.

3.2. Aharonov–Bohm magnetic interpolation inequalities on T2

We consider a toy model for Aharonov–Bohm magnetic fields on the flat torus

which can be seen as a 2-dimensional cylinder, with periodicity along the axis. It is

a 2-dimensional extension of the superquadratic magnetic ring model of Sec. 3.1.
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Let us consider the flat torus T2 = S1 × S1 ≈ [−π, π) × [−π, π) � (x, y) with

periodic boundary conditions in x and y. We denote by dσ the uniform probability

measure dσ = dx dy/(4π2) and consider the magnetic gradient

∇A ψ := (ψx, ψy − i a ψ) (3.7)

and the magnetic kinetic energy

‖∇A u‖2L2(T2) =
T2

|∇A ψ|2 dσ =
T2

(|ψx|2 + |ψy − i a ψ|2) dσ.
3.2.1. A magnetic ground state estimate

Lemma 3.5. Assume that a ∈ [0, 1/2]. With the notation (3.7), we have

T2

|∇A ψ|2 dσ ≥ a2

T2

|ψ|2 dσ, ∀ψ ∈ H1
A(T2).

Proof. We make a Fourier decomposition on the basis (ei � x ei k y)k,�∈Z. We find

that the lowest modes are given by

k = 0, 
 = 0 : λ00 = a2,

k = 1, 
 = 0 : λ10 = (1− a)2 ≥ a2 since a ∈ [0, 1/2],

k = 0, 
 = 1 : λ01 = 1 + a2.

Therefore, λ00 is the lowest mode.

3.2.2. The Bakry–Emery method applied to the 2-dimensional torus

We consider the flow given by

∂u

∂t
= Δu+ (p− 1)

|∇u|2
u

and observe that

d

dt
‖u(t, ·)‖2Lp(T2) = 0

on the one hand, and

−1

2

d

dt

(
‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2)

)

= ‖Δu‖2L2(T2) + (p− 1)
T2

Δu
|∇u|2
u

dσ − λ (2− p) ‖∇u‖2L2(T2)

on the other hand. Integrations by parts show that

‖Δu‖2L2(T2) = ‖Hessu‖2L2(T2)

and

T2

Δu
|∇u|2
u

dσ = − 2
T2

Hessu :
∇u⊗∇u

u
dσ +

T2

|∇u|4
u2

dσ.
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Hence

−1

2

d

dt

(
‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2)

)

= (2− p)
(
‖Δu‖2L2(T2) − λ ‖∇u‖2L2(T2)

)
+ (p− 1)

∥∥∥∥Hess u− ∇u⊗∇u

u

∥∥∥∥
2

L2(T2)

.

We know from the Poincaré inequality that

‖Δu‖2L2(T2) ≥ ‖∇u‖2L2(T2),

with optimal constant 1, so we can conclude in the case 1 ≤ p < 2 that

‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2) is monotone non-increasing if 0 ≤ λ ≤ 1. As a

consequence, we have the following result.

Proposition 3.1. For any p ∈ [1, 2), we have

‖∇u‖2L2(T2) + ‖u‖2Lp(T2) ≥ ‖u‖2L2(T2), ∀u ∈ H1(T2).

3.2.3. A tensorization result without magnetic potential

A result better than Proposition 3.1 follows from a tensorization argument that can

be found in [11, 17].

Proposition 3.2. For any p ∈ [1, 2), we have

(2 − p) ‖∇u‖2L2(T2) + ‖u‖2Lp(T2) ≥ ‖u‖2L2(T2), ∀u ∈ H1(T2). (3.8)

Moreover the factor (2− p) is the optimal constant.

Proof. By taking on T2 a function depending only on x ∈ S1, it is clear that the

constant in (3.8) cannot be improved. The proof of (3.8) can be done with the

Bakry–Emery method applied to S1 and goes as follows.

Let us consider the flow given by

∂u

∂t
= u′′ + (p− 1)

|u′|2
u

and observe that d
dt ‖u(t, ·)‖2Lp(S1) = 0 on the one hand, and

−1

2

d

dt
(‖u′(t, ·)‖2L2(S1) − λ ‖u(t, ·)‖2L2(S1))

= ‖u′′‖2L2(S1) + (p− 1)
S1

u′′ |u′|2
u

dσ − λ (2− p) ‖u′‖2L2(S1)

= ‖u′′‖2L2(S1) +
1

3
(p− 1)

S1

|u′|4
u2

dσ − λ (2− p) ‖u′‖2L2(S1)

on the other hand. Hence

−1

2

d

dt

(
‖u′(t, ·)‖2L2(S1) − λ ‖u(t, ·)‖2L2(S1)

)
≤ 0
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if λ (2 − p) ≤ 1, because of the Poincaré inequality ‖u′′‖2L2(S1) ≥ ‖u′‖2L2(S1). Up to

a sign change of λ, this computation also holds if p > 2 or if p = − 2, as noticed

in [14], and it is straightforward to extend it to the limit case p = 2 corresponding

to the logarithmic Sobolev inequality.

According to [11, Proposition 3.1] or [17, Theorem 2.1] and up to a straightfor-

ward adaptation to the periodic setting, the optimal constant for the inequality on

T2 = S1 × S1 is the same as for the inequality on S1, provided 1 ≤ p < 2.

As a consequence of Proposition 3.2, we have the inequality

‖∇u‖2L2(T2) + μ ‖u‖2Lp(T2) ≥ Λ0,p(μ) ‖u‖2L2(T2), ∀u ∈ H1(T2), (3.9)

where μ 
→ Λ0,p(μ) is a concave monotone increasing function on (0,+∞) such that

Λ0,p(μ) = μ for any μ ∈ (
0, 1/(2− p)

)
.

3.2.4. A magnetic interpolation inequality in the flat torus

Now let us consider the generalization of (3.9) to the case a �= 0.

Lemma 3.6. Assume that p ∈ [1, 2) and a ∈ [0, 1/2]. With the notation (3.7),

there exists a concave monotone increasing function μ 
→ Λa,p(μ) on (0,+∞) such

that limμ→0+ Λa,p(μ) = a2 where Λa,p(μ) is the optimal constant in the inequality

‖∇A u‖2L2(T2) + μ ‖u‖2Lp(T2) ≥ Λa,p(μ) ‖u‖2L2(T2), ∀u ∈ H1
A(T2). (3.10)

Moreover, we have that

Λa,p(μ) ≥ μ+ (1− μ (2 − p)) a2 for any μ ≤ 1

2− p
.

Proof. For an arbitrary t ∈ (0, 1), we can write that

‖∇A u‖2L2(T2) + μ ‖u‖2Lp(T2)

≥ t
(
‖∇A u‖2L2(T2) − a2 ‖u‖2L2(T2)

)

+(1− t)

(
‖∇|u|‖2L2(T2) +

μ

1− t
‖u‖pL2(T2)

)
+ t a2 ‖u‖2L2(T2)

≥
[
(1 − t) Λ0,p

(
μ

1− t

)
+ t a2

]
‖u‖2L2(T2)

using the diamagnetic inequality ‖∇A u‖2L2(T2) ≥ ‖∇|u| ‖2L2(T2). Inequality (3.9)

applies with μ = 1/(2− p) and t = 1− μ (2− p).
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3.2.5. A symmetry result in the subquadratic regime

As an application of the results on magnetic rings of Theorem 3.1, we can prove a

symmetry result for the optimal functions in (3.10) in the case p < 2. Let Λa,p(μ)

be the optimal constant in (3.10).

Theorem 3.2. Assume that a ∈ [0, 1/2] and p ∈ [1, 2). Then

Λa,p(μ) = λa,p(μ) if μ ≤ 1

p− 2

and any optimal function for (3.2) is then constant with respect to x. Moreover,

Λa,p(μ) = a2 + μ if and only if μ (2 − p) + 4 a2 ≤ 1 and equality in (3.10) is then

achieved only by the constants.

Proof. Let us use the notation f dx := 1
2π

π

−π f dx in order to denote a normal-

ized integration with respect to the single variable x, where y is considered as a

parameter. For almost every x ∈ S1 we can apply (3.2) to the function ψ(x, ·) and
get

‖∇A ψ‖2L2(T2) + μ ‖ψ‖2Lp(T2)

≥ ‖∂xψ‖2L2(T2) + λa,p(μ) ‖ψ‖2L2(T2) + μ ‖ψ‖2Lp(T2) − μ

(
|ψ|p dy

) 2
p

dx.

Let us define u := |ψ|, v(x) := ( |u(x, y)|p dy)1/p and observe that

|vx| = v1−p up−1 ux dy ≤ v1−p

(
up dy

) p−1
p

(
|ux|2 dy

) 1
2
(

1 dy

) 1
2− p−1

p

by Hölder’s inequality, under the condition p ≤ 2, that is,

|vx|2 ≤ |ux|2 dy ≤ |∂xψ|2 dy.

We conclude that if μ ≤ 1/(2− p),

S1

|vx|2 dσ + μ

(
S1

|v|p dσ
)2/p

− μ
S1

|v|2 dσ + λa,p(μ) ‖ψ‖2L2(T2)

≥ λa,p(μ) ‖ψ‖2L2(T2)

using (3.1). The equality is achieved by functions v which are constant with respect

to x and Theorem 3.1 applies.

3.3. Magnetic Hardy inequalities in dimensions 2 and 3

In this section, we draw some consequences of our results on magnetic rings of

Sec. 3.1. Here dσ denotes the uniform probability measure on S1. The method relies

on Keller–Lieb–Thirring dual estimates.
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3.3.1. Keller–Lieb–Thirring inequalities on the circle

As in [13], by duality we obtain a spectral estimate.

Proposition 3.3. Assume that a ∈ [0, 1/2] and p ∈ [1, 2). If φ is a non-negative

potential such that φ−1 ∈ Lq(S1), then the lowest eigenvalue λ1 of −(∂y − i a)2 + φ

is bounded from below according to

λ1 ≥ λa,p

(
‖φ−1‖−1

Lq(S1)

)
and equality is achieved by a constant potential φ if ‖φ−1‖−1

Lq(S1) (2− p) + 4 a2 ≤ 1.

Proof. Using Hölder’s inequality with exponents 2/(2− p) and 2/p, we get that

‖ψ‖2Lp(S1) =

(
S1

φ− p
2

(
φ |ψ|2) p

2 dσ

)2/p

≤ ‖φ−1‖Lq(S1)
S1

φ |ψ|2 dσ

with q = p/(2− p), and with μ = ‖φ−1‖−1
Lq(S1),

S1

|ψ′ − i a ψ|2 dσ +
S1

φ |ψ|2 dσ ≥
S1

|ψ′ − i a ψ|2 dσ + μ ‖ψ‖2Lp(S1)

≥ λa,p(μ)
S1

|ψ|2 dσ. (3.11)

If φ is constant, then there is equality in Hölder’s inequality.

The spectral estimate (3.11) is of a different nature than (2.10) because the

potential energy and the magnetic kinetic energy have the same sign. By considering

the threshold case μ (2− p) + 4 a2 = 1, we obtain an interesting estimate.

Corollary 3.1. Let a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2−p). If φ is a non-negative

potential such that φ−1 ∈ Lq(S1), then

S1

|ψ′ − i a ψ|2 dσ +
1− 4 a2

2− p
‖φ−1‖Lq(S1)

S1

φ |ψ|2 dσ

≥
(
1− 4 a2

2− p
+ a2

)
‖ψ‖2L2(S1), ∀ψ ∈ H1(S1).

3.3.2. Magnetic Hardy-type inequalities in dimensions two and three

Let us denote by θ ∈ [−π, π) the angular coordinate associated with x ∈ R2.

As in [14], we can deduce a Hardy-type inequality for Aharonov–Bohm magnetic

potentials in dimension d = 2.

Corollary 3.2. Let A as in (1.1), a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2 − p). If φ

is a non-negative potential such that φ−1 ∈ Lq(S1) with ‖φ−1‖Lq(S1) = 1, then for

any complex valued function ψ ∈ H1(R2) we have

R2

|∇A ψ|2 dx+
1− 4 a2

2− p R2

φ(θ)

|x|2 |ψ(x)|2 dx ≥
(
1− 4 a2

2− p
+ a2

)
R2

|ψ|2
|x|2 dx.
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Let us consider cylindrical coordinates (ρ, θ, z) ∈ R+ × [0, 2π) × R such that

|x|2 = ρ2 + z2. In this system of coordinates the magnetic kinetic energy is

R3

|∇A ψ|2 dx =
R3

(∣∣∣∣∂ψ∂ρ
∣∣∣∣
2

+
1

ρ2

∣∣∣∣∂ψ∂θ − ia ψ

∣∣∣∣
2

+

∣∣∣∣∂ψ∂z
∣∣∣∣
2
)
dx

where dμ := ρ dρ dθ dz. The following result was proved in [22, Sec. 2.2].

Lemma 3.7. For any ψ ∈ H1(R3), we have

R+×[0,2π)×R

(∣∣∣∣∂ψ∂ρ
∣∣∣∣
2

+

∣∣∣∣∂ψ∂z
∣∣∣∣
2
)
dμ ≥ 1

4 R+×[0,2π)×R

|ψ|2
ρ2 + z2

dμ, ∀ψ ∈ H1(R3).

Proof. We give an elementary proof. Assume that ψ is smooth and has compact

support. The inequality follows from the expansion of the square

R+×[0,2π)×R

(∣∣∣∣∂ψ∂ρ +
ρψ

2 (ρ2 + z2)

∣∣∣∣
2

+

∣∣∣∣∂ψ∂z +
z ψ

2 (ρ2 + z2)

∣∣∣∣
2
)
dμ ≥ 0, ∀ψ ∈ H1(R3)

and of an integration by parts of the cross terms.

Lemma 3.7 is an improved version of the standard Hardy inequality in the

sense that the left-hand side of the inequality does not involve the angular part of

the kinetic energy. A consequence of Corollary 3.1 and Lemma 3.7 is a Hardy-like

estimate in dimension d = 3. For the angular part we argue as in Corollary 3.2.

Details of the proof are left to the reader.

Theorem 3.3. Let A as in (1.2), a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2 − p). If φ

is a potential such that φ−1 ∈ Lq(S1) with ‖φ−1‖Lq(S1) = 1, then for any complex

valued function ψ ∈ H1(R3) we have

R3

|∇A ψ|2 dx+
1− 4 a2

2− p R3

φ(θ)

ρ2
|ψ(x)|2 dx

≥ 1

4 R3

|ψ|2
|x|2 dx+

(
1− 4 a2

2− p
+ a2

)
R3

|ψ|2
ρ2

dx.

A simple case is φ ≡ 1, for which we obtain that

R3

|∇A ψ|2 dx ≥ 1

4 R3

|ψ|2
|x|2 dx+ a2

R3

|ψ|2
|ρ|2 dx ∀ψ ∈ H1

A(R3) .

4. Aharonov–Bohm Magnetic Interpolation Inequalities in R2

Magnetic interpolation inequalities on R2 are considered without weights in Sec. 4.1.

Weights are then introduced as in [7] in order to prove the new magnetic Caffarelli–

Kohn–Nirenberg inequality of Corollary 4.1 in Sec. 4.2 and a magnetic Hardy

inequality on R2 in Theorem 4.2 (Sec. 4.3).
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4.1. Magnetic interpolation inequalities without weights

Let us consider on R2 the Aharonov–Bohm magnetic potential A given by (1.1).

Using the diamagnetic inequality

|∇A ψ|2 ≥ |∇|ψ||2 a.e. in R
2

and, for any p ∈ (2,∞) and λ > 0, the Gagliardo–Nirenberg inequality

‖∇ψ‖2L2(R2) + λ ‖ψ‖2Lp(R2) ≥ Cp λ
p
2 ‖ψ‖2L2(R2), ∀ψ ∈ H1(R2) ∩ Lp(R2) (4.1)

with optimal constant Cp, we deduce that

‖∇A ψ‖2L2(R2) + λ ‖ψ‖2L2(R2) ≥ μa,p(λ) ‖ψ‖2Lp(R2), ∀ψ ∈ H1
a(R

2). (4.2)

See [13, Sec. 3] for details. Here μa,p(λ) is the optimal constant in (4.2) for any

given a, p and λ and, as a function of λ, μa,p(λ) is monotone increasing and con-

cave. Notice that right-hand sides in (4.1) and (4.2) involve norms with respect to

Lebesgue’s measure. It turns out that μa,p(λ) is equal to the best constant of the

non-magnetic problem.

Proposition 4.1. Let a ∈ R and p ∈ (2,∞). The optimal constant in (4.2) is

μa,p(λ) = Cp λ
p
2 , ∀λ > 0

and equality is not achieved on H1(R2) ∩ Lp(R2) if a ∈ R\Z.

Proof. By construction we know that μa,p(λ) ≥ Cp λ
p/2. By taking an optimal

function ψ for (4.1) and considering ψn(x) = ψ(x+ n e) with n ∈ N and e ∈ S1, we

see that there is equality.

Let us prove by contradiction that equality is not achieved. If ψ ∈ H1(R2) ∩
Lp(R2) is optimal, let φ = e i a θψ. Since

‖∇A ψ‖2L2(R2) =
R2

|∂rψ|2 + |∂θφ|2
|x|2 dx

and equality in (4.1) is achieved by functions with a constant phase only, this

means that ∂θφ = 0 a.e., a contradiction with the periodicity of ψ with respect to

θ ∈ [0, 2π) if a �∈ Z.

Proposition 4.1 means that the Aharonov–Bohm magnetic potential plays no

role in non-weighted interpolation inequalities. This is why it is natural to introduce

weighted norms with adapted scaling properties.

4.2. Magnetic Caffarelli–Kohn–Nirenberg inequalities in R2

The Caffarelli–Kohn–Nirenberg inequality

R2

|∇v|2
|x|2a dx ≥ Ca

(
R2

|v|p
|x|b p

dx

)2/p

, ∀ v ∈ D(R2) (4.3)
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has been established in [9] and, earlier, in [25]. The exponent b = a+ 2/p is deter-

mined by the scaling invariance and as p varies in (2,∞), the parameters a and b

are such that a < b ≤ a + 1 and a < 0. The case a > 0 can be considered in an

appropriate functional space after a Kelvin-type transformation: see [10, 16], but

we will not consider this case here. As noticed for instance in [16], by considering

v(x) = |x|a u(x), Ineq. (4.3) is equivalent to the Hardy-Sobolev inequality

R2

|∇u|2 dx+ a2

R2

|u|2
|x|2 dx ≥ Ca

(
R2

|u|p
|x|2 dx

)2/p

, ∀u ∈ D(R2). (4.4)

The optimal functions for (4.3) are radially symmetric if and only if

b ≥ bFS(a) := a− a√
1 + a2

according to [15, 23]. We refer to [7] for more details and for the proof of the

following magnetic Hardy–Sobolev inequality.

Theorem 4.1 ([7]). Let a ∈ [0, 1/2], A as in (1.1) and p > 2. For any λ > − a2,

there is an optimal function λ 
→ μ(λ) which is monotone increasing and concave

such that

R2

|∇A ψ|2 dx+ λ
R2

|ψ|2
|x|2 dx ≥ μ(λ)

(
R2

|ψ|p
|x|2 dx

)2/p

, ∀ψ ∈ H1
A(R2). (4.5)

If a ∈ [0, 1/2), the optimal function in (4.5) is

ψ(x) = (|x|α + |x|−α)−
2

p−2 , ∀x ∈ R
2, with α =

p− 2

2

√
λ+ a2,

up to a scaling and a multiplication by a constant, if

λ ≤ λ
 := 4
1− 4 a2

p2 − 4
− a2.

Conversely, if a ∈ [0, 1/2] and λ > λ• with

λ• :=
8
(√

p4 − a2 (p− 2)2 (p+ 2) (3 p− 2) + 2
)
− 4 p (p+ 4)

(p− 2)3 (p+ 2)
− a2,

there is symmetry breaking, i.e. the optimal functions are not radially symmetric.

An explicit computation shows that λ
 < λ• for any a ∈ (0, 1/2), and so there is

a zone where we do not know whether the optimal functions in (4.5) are symmetric

or not. Nevertheless, as shown in [7], the values of λ
 and λ• are numerically very

close to each other. If λ ≤ λ
, the expression of μ(λ) is explicit and given by

μ(λ) =
p

2
(2 π)1−

2
p (λ+ a2)1+

2
p

⎛
⎝ 2

√
π Γ

(
p

p−2

)
(P − 2) Γ

(
p

p−2 + 1
2

)
⎞
⎠

1− 2
p

.

See [7, Appendix] for the details of the computation of the constant.
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Inspired by the equivalence of (4.3) and (4.4), we prove that the magnetic

Hardy–Sobolev inequality (4.5) is equivalent to an interpolation inequality of

Caffarelli–Kohn–Nirenberg type in the presence of the Aharonov-Bohm magnetic

field.

Corollary 4.1 (Magnetic Caffarelli–Kohn–Nirenberg inequality). Let p ∈
(2,+∞) and A as in (1.1) for some a ∈ [0, 1/2] and a ≤ 0. With μ as in Theo-

rem 4.1, for any γ < a2 + a2, we have that

R2

|∇A φ|2
|x|2a dx ≥ γ

R2

|φ|2
|x|2a+2

dx+ μ(a2 − γ)

(
R2

|φ|p
|x|a p+2

dx

)2/p

,

∀φ ∈ D(R2;C)

and μ(λ) with λ = a2 − γ is the optimal constant.

The cases of symmetry and symmetry breaking in Theorem 4.1 have their exact

counterpart in Corollary 4.1. Details are left to the reader.

Proof. Let us consider the function φ(x) = |x|a ψ(x) and observe that

R2

|∇A φ|2
|x|2a dx =

R2

|∇A ψ|2 dx+ a2

R2

|ψ|2
|x|2 dx

and conclude by applying (4.5) to ψ with λ = a2 − γ.

4.3. A magnetic Hardy inequality in R2

Another consequence of Theorem 4.1 is the following magnetic Keller–Lieb–

Thirring inequality, which can be found in [7, Theorem 1]. Let q = p/(p− 2). The

ground state energy λ1 of the magnetic Schrödinger operator −ΔA − φ on R2 is

such that

λ1(−ΔA − φ) ≥ −λ (μ) where μ =

(
R2

|φ|q |x|2 (q−1) dx

)1/q

(4.6)

and μ 
→ λ(μ) is a convex monotone increasing function on R+ such that

limμ→0+ λ(μ) = − a2, defined as the inverse of λ 
→ μ(λ) of Theorem 4.1. Again

λ (μ) is optimal in (4.6) and the cases of symmetry and symmetry breaking are in

correspondence with the ones of Theorem 4.1.

Alternatively, let us consider a function φ on R2. We can estimate an associated

magnetic Schrödinger energy from below by

R2

(
|∇A ψ|2 − τ

φ

|x|2 |ψ|2
)
dx ≥

R2

|∇A ψ|2 dx

− τ

(
R2

|φ|q
|x|2 dx

) 1
q
(

R2

|ψ|p
|x|2 dx

) 2
p

2150006-25



D. Bonheure et al.

by Hölder’s inequality, with q = p/(p − 2), for an arbitrary parameter τ > 0. For

an appropriate choice of τ , we obtain the following result.

Theorem 4.2 (A Magnetic Hardy Inequality). Let q ∈ (1, 2) and A as

in (1.1) for some a ∈ [0, 1/2]. Then for any function φ ∈ Lq
(
R2 |x|−2 dx

)
, we have

R2

|∇A ψ|2 dx ≥ μ(0)

(
R2

|φ|q
|x|2 dx

)− 1
q

R2

φ

|x|2 |ψ|2 dx ∀ψ ∈ H1
A(R2),

where μ(·) is the best constant in (4.5). Finally, when a2 ≤ 4/(12 + p2), we know

the value of μ(0) explicitly:

μ(0) =
p

2
(2 π)1−

2
p a2+

4
p

⎛
⎝ 2

√
π Γ

(
p

p−2

)
(p− 2) Γ

(
p

p−2 + 1
2

)
⎞
⎠

1− 2
p

.

5. Aharonov–Bohm Magnetic Hardy Inequalities in R3

In this section we address the issue of improved magnetic Hardy inequalities with

the Aharonov–Bohm magnetic potential in dimension d = 3 as defined by (1.2).

Our results improve upon [19, Sec. V.B], including the case of a constant magnetic

field.

5.1. An improved Hardy inequality with radial symmetry

In [19, Sec. V.B], it is proved that for all a > 0, there is a constant C(a) such that

C(a) = a2 if a ∈ [0, 1/2] and

R3

|∇A ψ|2 dx ≥
(
1

4
+ C(a)

)
R3

|ψ|2
|x|2 dx, ∀ψ ∈ H1

A(R3). (5.1)

If we allow for an angular dependence, we have the following result.

Theorem 5.1. Let A as in (1.2), a ∈ [0, 1/2] and q ∈ (1,+∞). Then, for all

φ ∈ Lq(S2),

R3

|∇A ψ|2 dx ≥
R3

(
1

4
+

μa,p(0)

‖φ‖Lq(S2)
φ(ω)

) |ψ|2
|x|2 dx, ∀ψ ∈ H1

A(R3).

Here ω = x/|x| and μa,p is defined as in Proposition 2.2.

In the case a ∈ [0, 1/2], according to Proposition 2.2, we find in the limit case

as p → 2+ that μa,2(0) ≥ Λa = a (a + 1) and improve the estimate (5.1) to

C(a) = a (a+ 1) if φ ≡ 1.

Proof. Let us use spherical coordinates (r, ω) ∈ [0,+∞) × S2. The result follows

from an expansion of the square and an integration by parts in

0 ≤
+∞

0

∣∣∣∣∂rψ +
1

2 r
ψ

∣∣∣∣
2

r2 dr =
+∞

0

|∂rψ|2 r2 dr − 1

4

+∞

0

|ψ|2 dr
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for the radial part of the Dirichlet integral, and from Corollary 2.2 for the angular

part.

5.2. An improved Hardy inequality with cylindrical symmetry

The improved Hardy inequality (without angular kinetic energy) of Lemma 3.7

and (2.9) can be combined into the following improved Hardy inequality in presence

of a magnetic potential.

Theorem 5.2. Let A as in (1.2), a ∈ [0, 1/2], p > 2, q = p/(p−2) and φ ∈ Lq(S1).

For any ψ ∈ H1
A(R3), we have

R3

|∇A ψ|2 dx ≥ 1

4 R3

|ψ|2
|x|2 dx+

μa,p(0)

‖φ‖Lq(S1) R+×[0,2π)×R

φ(θ)

ρ2
|ψ(ρ, θ, z)|2 dμ.

Notice that the inequality is a strict improvement upon the Hardy inequality

without a magnetic potential combined with the diamagnetic inequality. A sim-

ple case which is particularly illuminating is φ ≡ 1 with a2 ≤ 1/(p + 2) so that

μa,p(0) = a2 according to Proposition 2.1, in which case we obtain that

R3

|∇A ψ|2 dx ≥ 1

4 R3

|ψ|2
|x|2 dx+ a2

R3

|ψ|2
|ρ|2 dx, ∀ψ ∈ H1

A(R3).
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