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is devoted to a collection of results on nonlinear interpolation inequalities
vith Schrédinger operators involving Aharonov-Bohm magnetic potentials,
consequences. As symmetry plays an important role for establishing optimal-
we shall consider various cases corresponding to a circle, a two-dimensional
two-dimensional torus, and also the Euclidean spaces of dimensions 2 and
the results are new and we put the emphasis on the methods, as very lit-
1 on symmetry, rigidity and optimality in the presence of a magnetic field.
vectacular applications are new magnetic Hardy inequalities in dimensions 2

Aharonov-Bohm magnetic potential; radial symmetry; cylindrical symmetry;
reaking; magnetic Hardy inequality; magnetic interpolation inequality; opti-
its; magnetic Schrodinger operator; magnetic Keller-Lieb—Thirring inequal-
c rings.
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tion

oblems involving magnetic fields play a peculiar role in the calculus of
s fair to say that there are no simple physical intuitions that may serve
| one has to extract information through exact computations, such as
the Landau Hamiltonian. A case in point are the symmetry properies
where in the absence of magnetic fields one has fairly robust methods
The isoperimetric inequality is one of the main sources of intuition;
ts are essentially different versions of the isoperimetric problem. This
ot the case in the presence of magnetic fields and there are very few
direction.
le is the work of Avron, Herbst and Simon [2] who proved that the
of the hydrogenic atom in a constant magnetic field has cylindri-
. The proof is quite involved. Another result that comes to mind is
who proved the equivalent of the Faber—Krahn inequality for the
perator with a constant magnetic field and with a Dirichlet boundary
v domain. The disk yields the smallest ground state energy among
ual area. Again, the proof is quite involved and some arguments are
linear setting. In this connection one should mention the recent result
Nys and van Schaftingen [8] who showed perturbatively that in some
ational problem involving a small constant magnetic field the mini-
- the symmetry of the problem. Besides the constant magnetic field
class of physically relevant variational problems involve Aharonov—
ic fields and the purpose of this paper is to give an up-to-date account
dge. C
onov-Bohm effect states that the wave function of a charged quan-
passing by a thin magnetic solenoid experiences a phase shift. This,
here is no apparent interaction with the solenoid except through the
the particle with the ‘unphysical’ vector potential. This prediction
sinally by Ehrenberg and Siday in 1949 (see [18]) and then again in
nov-Bohm (see [1]) and we will stay with the custom of calling it the
hm effect. It cannot be explained in terms of classical mechanics, but
ess experimentally verified (see [4]). It counts as one of the important
hanical effects.
uestion one may pose is the influence of the Aharonov—Bohm poten-
lergies of systems, say, of a particle in a potential interacting with
[t is relatively straightforward to write the Hamiltonian for this situ-
may ask for the effect of the Aharonov—Bohm field on the spectrum
onian. One fruitful approach is to relate the ground state energy of
echanical particle in an external potential to the minimization of a

1 variational problem. This also works in the presence of magnetic
~artictilar with +he Aharonoyv_Robhmm fald Tn +hice contevt +hic leada
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hich are the dual versions of the Keller-Lieb—Thirring spectral esti-
ous symmetry settings, we are interested in getting as much insight
out the best constants in the inequalities and also about the quali-
ies of their extremal functions. Indeed, in many cases studying the
perties of those extremal functions allows us to get very accurate,
s even sharp, estimates for the best constants in the inequalities (see

-
clidean space R?, the magnetic Laplacian is defined via a magnetic
4

—ApAY =AY — 20 A -V + |APY — i (div A) .

he case of dimensions d = 2 and d = 3. The magnetic field is B =
1adratic form associated with — Ay is given by [, |Va ¢[* and well
functions in the space

HARY) == {p e L’(R?) : Vay € L2(R%)}
metic gradient takes the form
Va  =V+ iA.

—Bohm magnetic field can be considered as a singular measure sup-
set 11 = @2 = 0, where (z;)%_, is a system of cartesian coordinates.
potential is defined as follows.

18 consider polar coordinates (r,6) such that

r=lz|=+/22+2} and re’ =z +imy

ironov—Bohm magnetic potential

a a

A:ﬁ(l‘g,*l‘l):;eg (].1)

real constant and {e,, eq}, with e, = ¥, denotes the orthogonal basis
vith our polar coordinates. The magnetic gradient and the magnetic
re explicitly given by

9 1(a IV S S A
o' r\og ")) ATT02 roar 2\ae 'Y

18 consider cylindrical coordinates (p,0,z) where

p=1/x3+ 23, pe =z +izy and z =g

ironov—Bohm magnetic potential
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tic gradient and the magnetic Laplacian are explicitly given by

v o 1[0 . 0
= a 9 “h T ta), =,
A dp’ p \ 00 0z
A ? 19 1 (9 .\ &
— =——--——-—=—-=|=—-ia)] — .
A op%> pdp p* \09 022
consider Aharonov—Bohm type magnetic potentials on compact mani-
on the circle, the sphere and the torus. The expression of the magnetic
be given case by case.
- is intended to provide a general overview of the mathematical results

concerning various functional inequalities involving Aharonov-Bohm
s:

round state energy estimates.
nagnetic interpolation inequalities.
ults for optimal functions.
eller-Lieb—Thirring inequalities.
ardy inequalities.

wdy inequalities, all of the above inequalities will be considered on
on the two-dimensional sphere S?, on the two-dimensional flat torus
d on R3, with consequences on Hardy inequalities on the Euclidean
d R3. It is crucial to consider precise geometric settings as we are
optimal inequalities, which rely on non-trivial symmetry results. A
ear interpolation inequality is

IVa ullacry + Mullfz vy > pa(d) lullts ) (1.3)

on u in the appropriate HY space, for any A > 0, and for any p > 2,
mpact manifold X in order to fix ideas. Assuming that vol(X) = 1,
e optimal inequality is to the determine the largest value of A > 0 for
e A (A) = A+ C for some constant C' which is computed in terms of
1ds on X'. Equality is then realized by the constants. It is usually not
ove that the equality is achieved in the inequality if pa(\) denotes
onstant, for any A > 0. If we consider the Euler-Lagrange equation,
formulated as the slightly more general rigidity question. For which
we know that any solution is actually a constant? To obtain rigidjty,
to establish symmetry properties, which is usually the most difficult
-oof. In the non-compact case, optimal functions are not constants,
ditional difficulty, but the problem can also be reduced to a symmetry

10ther interpretation of the rigidity issue in terms of a phase transition.
't manifold case, the optimal function for (1.3) is always a constant if
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[

and one can prove in many cases that th¢rejis a bifurcation from a
1se (solutions are constant) to a non-symmetric phase for a threshold
responding to the optimal inequality.
b—Thirring (KLT) inequalities are estimates of the ground state
V] for the magnetic Schrodinger operator — Aa — V' in terms of
are obtained by duality from (1.3) with ¢ = p/(p—2). KLT inequalities
ipletely equivalent to (1.3), including for optimality issues and related
ons, and essential for proving various magnetic Hardy inequalities,
of the highlights and the main motivations of this paper. However,
the fact that the accurate spectral information is carried by the KLT

ctually consider not only the superquadratic case p > 2, but also the
ase p < 2 in which the role of the L? and L? norms are exchanged.
ding nonlinear interpolation inequality is

IVa wlfagay + 1 llulfoey > Xa(e) lullfax) (1.4)

,2) and we can also draw a whole series of consequences (rigidity,
as in the superquadratic case. In particular, we are able to prove
1d interesting results on optimality and rigidity.

collects many results on functional inequalities with magnetic fields
ymetric settings. Therefore it is difficult to pick particularly significant
ywver we believe that the interest of the paper lies as much in the
ds as in the results because very little is known on optimal inequalities
 Aharonov—Bohm magnetic fields and on the symmetry properties
onding optimal fimctions. The most visible outcome of our work
nequalities, which are important tools in functional analysis. The
nagnetic field is a key feature, for instance in dimension d = 2. Let us
the attention of the reader to some results that are prominent in this

C

1 deals with nonljiear magnetic interpolation inequalitips, optimal
nd rigidity results on S! in the subquadratic case. This is a new
1alities which complements the theory on magnetic rings in the
wic case studied in [14]. It was natural to study it in view of the carré
ochnique by Bakry and Emery in [3], but as far as we know, it is an
r result in the predenge of a magnetic potential when p < 2.

2 is the counterpart of Theorem 3.1 in the case of the torus T? ~
s remarkable that we achieve an optimality result here as symmetry
roducts of manifolds are known to be difficult.

uadratic interpolation inequalities for proving KLT and then
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| to consider also what happens on S?: see Proposition 2.2 and Corol-
results in the superquadratic case. [

magnetic Hardy inequalities of Theorem 4.2 are a new and striking
of the nonlinear Hardy—Sobolev interpolation inequalities of [7] on
an space R?.

.1 and 5.2 are two examples of application of the nonlinear magnetic
n inequalities to magnetic Hardy inequalities on R?, which signifi-
ove upon the results in [19, 22].

(I

clude this introduction by some mathematical observations and some
erences. The overall question is to determine the functional spaces
pted to magnetic Schrodinger operators in the spirit of [13]. Magnetic
inequalities (without optimal constants) are usually not an issue as
educed from the non-magnetic interpolation inequalities by the dia-
wality: see for instance [27]. However we are interested in retaining
bout the magnetic field and characterizing optimality cases, which is
» difficult target. As a convention, we shall speak of Hardy—Sobolev
hen a term [ |z| ™2 |u|? dz is subtracted from the kinetic energy and of
hn—Nirenberg inequalities when various pure power weights are taken
On R, A [hasthe[same scaling properties as the non-magnetic Lapla-
n Aharonov-Bohm magnetic potential and its spectryim is explicit.
ies are spectral estimates but it has to be emphasized that they differ
ssical estimates as they inherit nonlinear properties of the interpo-
ities. Finally, it is a remarkable fact that, in presence of a magnetic
[ardy inequality can be established in the two-dimensional case (see
| for related papers).

r is organized[as follows. Section 2 is devoted to some preliminary
- circle S' and on the two-dimensional sphere S?. New interpolation
‘e established on the sphere S?, with an optimality result. Section 3
the study of a class of subquadratic magnetic interpolation inequal-
d on the flat torus T2. We are able to identify a sharp condition of
d deduce several Hardy inequalities in dimensions d = 2 and d = 3.
start by recalling earlier, non-optimal but numerically almost sharp,
erpolation inequalities on R? in the presence of an Aharonov-Bohm
| in order to establish some Hardy inequalities on R2. Section 5 is
wrdy inequalifiey on R3 with singularities which are either sphericajly]

y Symmetriq:l ] ]

Set-Up and Preliminary Results

s devoted to various results on the sphere S? without magnetic field
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only for completeness but also as introductory material for Secs. 2.3

wgnetic interpolation inequalities on S%

> S, we consider the uniform probability measure do, which is the
ed by the Lebesgue measure in R?*!, duly normalized and denote by
orresponding L7 norm. Here we state known results for later use.

lation inequalities without weights

ion inequalities
2 d 2 — 2
IVullLz ey = m(”uHLP(Sd) = llullizse) (2.1)

€[1,2)U(2,+00) if d =1 and d = 2, and for any p € [1,2)U(2,2*] if
* :=2d/(d — 2) is the Sobolev critical exponent. See [5, 6] for p > 2
lord>2and p< (2d®+1)/(d—1)2.

ve know from [12] that there exists a concave monotone increasing
top(A) on (0,400) such that g ,(A) is the optimal constant in the

’i||i2(sd) +A ||U||i2(sd) > po.p(A) ||U||iv(sd)a Vu e H'(SY) (2.2)

A) = Aif and only if A < d/(p—2). In this range, equality is achieved
u is a constant function: this is a symmetry range. On the opposite,
), the optimal function is not constant and we shall say that there is
1king.

| < p < 2 is similar: there exists a concave monotone increasing
Xo,p () on (0,400) such that Ag,(u) is the optimal constant in the

ullfagay + o llullo@ey = Aop () ulfagey Vu e HY(S) (2.3)

) = pif and only if p < d/(2—p). In this symmetry range, constants
1 functions, while there is symmetry breaking if u > d/(2—p): optimal
non-constant.

metry range, positive constants are actually the only positive solutions
agrange equation .

—eAu+du=ult

1 is the sign of (p — 2), while there are multiple solutions in the
aking range. The limit case p = 2 can be obtained by taking the limit

CLC
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hted Poincaré inequality for the ultra-spherical operator

ical coordinates (z,w) € [~1,1] x S?~!, we can rewrite the Laplace—
ator on S? as

1
S_Ed—i—l 5 A, with Lgu = (1 BQ)u”—dzu'
notes the Laplace-Beltrami operator on S?~! and Ly is the ultra-
-ator. In other words, £4 is the Laplace-Beltrami operator on S¢
functions which depend only on z. The operator £; has a basis of
5 Gig,q4, the Gegenbauer polynomials, associated with the eigenvalues
or any £ € N (see [28]). Here d is not necessarily an integer.
sider the eigenvalue problem

(2.4)

the unknown function according to f(z) = (1 — 22)3 g(z), we obtain

—Lra+1) 9 +2a(1+2a)g= Ay
ines the eigenvalues A = A\;, given by
2(2a+1)—1)+2a(l+2a)=((+2a)({+2a+1), LeN. (2.5)

te by gra(2) = Gy 2 (2a+1)(2) the associated eigenfunctions and define
2%)2gp a(2). By considering the lowest positive eigenvalue, we obtain
incaré inequality.

For any a € R and any function f € H{[—1,1], we have

<z>|2) dz> A, / 1Fe) - Fo)

-1

/ f(2)(1 = 2%

[1(1 - zQ)Qadz

hieved by a function f if and only if f is proportional to f1.(z) =

=2 () +

f( lfz

consistency that, if f(z) = (1 — 22)° g(z), then

((1 = 2) |f' ()P + (z)|2> dz
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it-hand side is the Dirichlet form associated with the operator

—£2(23+1)+23(1+23). E

ic rings: Superquadratic inequalities on S!

, we review a series of results which have been obtained in [14] in the
c case p > 2, in preparation for an extension to the subquadratic case
will be studied in Sec. 3.

ic interpolation inequalities and consequences

1 the superquadratic case p > 2 in dimension d = 1. We recall that
0 where 6 € [0,27) ~ S!. As in [14] we consider the space H!(S!) of
c functions u € C%Y/2(S), such that v’ € L?(S"). Inequality (2.2)
en as

(.
[/ T2y + Mlullfeey = Mulfoe, YueH(SY (2.6)
,1/(p— 2)]. \NI:ealso have the inequality [
1, - 1
(Ee@n + 7 v ey > 7 lullteey, Yu e HH(SY, (2.7)

21], with the convention that ||u*1||£22(S1) = 0 if =2 is not integrable
lal case, if u changes sign. Notice that inequality (2.7) is formally the
d—2) and A =d/(p —2) of (2.2) when d =1 (see [14, Appendix A]).
vas shown that the inequality (for complex-valued functions)

Wit + M WIEyey > nesOliplte) e B'ELC) 28)
after eliminating the phase, to the inequality
@ a2 + Ml = ap ) uls@y, Vu e HY(SY).

ce is relatively easy to prove if ¢ does not vanish, but some care
rerwise: see [14] for details. Here we denote by pi4,,(A) the optimal
.8). Using (2.8) and then (2.6), we obtain that

+a® Ju™ D + Alulfa

.
4 [0 By + ARy + 402 (1o + )
[
a’® + A\
- 40,2) <||U/||iz(S1) + m ||U||iZ(Sl)> > (a2 + /\) ||u||ip(§l)

dition (a® + \)/(1 —4a?) < 1/(p — 2), which provides an estimate of

Y E. S R R SR S [ NS |

L1
(.



2) + A(p —2) <1, then pap(\) = a® + X and equality in (2.8) is
only by the constants.

2)+ A(p—2) > 1, then pap(N) < a® + X and equality in (2.8) is not
by the constants.

fion a € [0,1/2] is not a restriction. First, replacing ¢ by e*** ¢ (s) for
ows that flqyrp(1t) = tap(i) so that we can assume that a € [0, 1].
idering x(s) = e~*1)(s), we find that

Whriay)? =¥ +i(1-a) X%, [

= Ulfa,p(,“)'

ic Hardy inequalities on S* and R?

can draw an leasly consequence of Proposition 2.1 on a Keller—Lieb—
- inequality. By Holder’s inequality applied with ¢ = p/(p — 2), we

@)~ /g Sl do = 19" —iavllta ey — 17" @lles) 10)Ene-

ith A = 0 and g such that p= ' [[¢|lLast) = fta,p(0), we know that
1 side is non-negative. See [14] for more details. Altogether we obtain
magnetic Hardy inequality on S' : for any a € R, any p > 2 and
if ¢ is a non-trivial potential in LI(S'), then

. Ha,
et > AL [ olun veoemye). o
ial case of the more general interpolation inequality
bl — [ 0P > W iavlsen — Ve

> —Xap(1) (V11251 (2.10)

Ja(s1), where we denote by A, (1) the inverse function of A+ f14,,(A),
Proposition 2.1. See [13] for details.
ard non-magnetic Hardy inequality on R?, i.e

/|v¢|2dg:> (d— 2)/ W"de Vo € HY(R?),
R

@ |x?

"d = 2, but this degeneracy is lifted in the presence of a Aharonov—
ic field. According to [26], we have
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 ask whether an improvement can be obtained if the singularity |z| =2
a weight which has an angular dependence. Using polar coordinates
interpolation inequélities of [12], the inequality

Vw'Q dx > (d_ 2)2 Iﬁ 90(9) |,¢|2 dl‘, %E Hl(Rd)

4 |lellnase—1)Llga |z

[24], under the condition that ¢ > 1+ 1 (d —2)?/(d — 1), again with

casure on S9!, Magnetic and non-radial improvements have been
14]. Let us give a statement in preparation for similar extensions to
nension d = 3.

1 ([14]). Let A as in (1.1), a € [0,1/2], p > 2, ¢ = p/(p — 2) and
is a non-negative function in LI(S*). With the above notations, the

[vavkiezr [ P voe )

||
onstant T > 0 which is the uln__iqlue solution of the equation
Aap (T ll@llLast)) = 0. —
- a?/||¢llLasr) if a® <1/(p+2).

ic interpolation inequalities on S?

f Secs. 2.1 and 2.2, we state some new results concerning the two-
bhere with main results in Proposition 2.2 and Corollary 2.2.

etic ground state estimate

or the magnetic Laplacian on S? and the associated Dirichlet form
where do is the uniform probability measure on S2. Using cylindrical
,z) € [0,27) x [~1,1], we can write that do = ;& dz df and assume
etic gradient takes the form

\/1—22?
z

Vau= X . (2.11)

\/17_—22<%ZGU> I:I
, a magnetic flux, so that
ou? 1 2

2 [ .2\ |9 L jou .

Vaul®=(1 z)‘az T2 |gg U

Assume that a € R. With the notation (2.11), we have
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constant
Ay =min |k — a|(|k — a] + 1). (2.12)
kEZ
t A, < A1/2 = 3/4.

n write u using a Fourier decomposition

u(z,0) = Z Z Up, (%) etho

LeN keZ

hat
/ k—a)?
au2=>"%" ((1 — 22| o (2) 7 + %MMC,Z(Z)P)
(EN keZ ]
L1
2 —a —ik6

k,e(2) = fo k—al2(2) /s2 u(z,0) Jie,\k 1/2(2) e s

(1 — 22)“67&‘ dz
1

is an eigenfunction of (2.4) with eigenvalue A = A, such that 2a =]
(2.5), we conclude that the spectrum of — Ay is given by

l+|k—a)l+|k—a|l+1), keZ, (eN. O

wadratic interpolation inequalities and consequences

2.2. Let a € R and p >[2_With the notation (2.11), there exists a
tone increasing function X — fiq () on (—Aq, +00) such that g p(N)
constant in the inequality (I

U||%2(s2) +A ||U||%2(s2) > Ha,p(A) ||U||ip(s2)7 Vue H};(Sg)~

ap(A) = 2N+ Aa)/ (24 (p — 2)Ag) and limy—,_p, ftap(A) = 0,
by (2.12).

roof is adapted from [13, Proposition 3.1]. For an arbitrary ¢ € (0, 1),

that

o) + Mgy 2 ¢ (VA ulEae) 2o o))

A+tA,
+0=0) (191l + 255 Tl )

A+tA,
> (1= 0p (2725 ) Nl

nce of Lemma 2.2 and of the diamagnetic inequality (see, e.g., [27,
1\
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2), the estimate is obtained by choosing ¢ such that [ ]

A+tA, 2
1—t  p—2
shat f10, (2/(p —2)) = 2/(p — 2). The limit as A — —A,, is obtained
ground state of —Aa on H!(S?) as test function. O

ame method as for the proof of (2.9), we can deduce a Hardy-type

2. Leta € R, p> 2 and ¢ = p/(p—2). With the notation (2.11), if ¢
1 potential in L9(S?), then

Vaul?ach 2 _tap(0). X lu[>do, Vu e HL(S?).
||¢||LQ(S2 [
-atic Magnetic Interpolation Inequalities

s devoted to new and optimal interpolation inequalities involving L”
subquadratic range (1,2) on the circle and on the torus (Secs. 3.1
Keller-Lieb—Thirring inequalities yield new magnetic Hardy inequal-
d R3 (Sec. 3.3).

ic rings: Subquadratic ifiterpolation inequalities on S*

> results of Sec. 2.2.1 to the subquadratic range 1 < p < 2 using the

).

nt of the inequality

ase of (2.1) corresponding to d = 1, we have the non-magnetic inter-
ality

=) Wl + lulliney > lullfee), YueHY(S Y

2). Our first result is the magnetic counterpart of this inequality.

Let a € R and p € [1,2). Then there exists a concave momotone
ction p— Agp(p) on R such that

DTz + 1 llYliogy = Aap(l) [¢lf2gy, Yo € HI(SLC). (3.2)
note by A, (1) the optimal constant in (3.1).

xistence of A\, () is a consequence of (3.1) and of the diamagnetic

p = [¢] and ¢ be such that ¢ = p(6) exp(i $(#)). Since
|’ll1/—’ia¢|2= |p/|2+|¢/_a|2p22 |p/|2’

v —iav||?scy = || [0 |26, The concavity of p — Agp(p) is a



al.

ce of an optimal function
1,2) and pu > —a?, equality in (3.2) is
).

nsider a minimizing sequence {,,} for

i {10 = 10 lEaen) + 111y ¥ € H' S [llaen = 1}

gnetic inequality we know that the sequence (¢, )nen is bounded in
1e compact Sobolev embeddings, this sequence is relatively compact
in L?(S'). The map 1 > || £Zd[|72 ) is lower semi-continuous
nma, which proves the claim. O

(I

For all a € [0,1/2], p € |
 least one function in H (S

vanishing property

Asssume that a € (0,1/2), p € [1,2) and p > —a?. If p € HY(S?) is
nction for (3.2) with ||¢||rest) = 1, then ¢(s) # 0 for any s € S*.

roof goes as in [14]. Let us decompose v(s) = 9(s) €!?® as a real and an
t, respectively v; and vg, which both solve the same Euler-Lagrange

—of — p(v} +v3)2 7w = Aap(p) vy, =12,

€ C%1/2(S') and the nonlinear term is continuous, hence v is smooth.
nw = (v vy — v} vy) isleconstant. If both v; and v, vanish at the same
vanishes identically, which means that v; and vy are proportional.
/2), 1 is not 2w-periodic, a contradiction. O

ction to a scalar minimization problem

c. 2.1.1 if @ = 0 and assume in the proofs that a > 0. The main steps
on are similar to the case p > 2 of [14]. We repeat the key points for
Let us define

ey + 0 gy + el e

Qa,p,u[u] =

||U||%2(§1)

u € HY(S?) is such that u(sg) = 0 for some sq € (—, 7], then

s 2
lu(s)|* = (/ u ds) < V27 [[u/||L2(sty V|5 — sol
S0

“integrable. In this case, as mentioned earlier, we adopt the convention
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For any a € [0,1/2], p € [1,2), u > —a?,

Ao = i o .
2(1) ueHln(lslg\{o} Qap.plul]

msider functions on S! as 27-periodic functions on R. If ¢ € H!(S?),
(s) €1?* satisfies the condition
v(s +21) = ™ lafs), VseR (3.4)

||U/||32(§1) +p ||U||%p(sl)

Aap(pt) =
g ||U||%2(s1)

imization is taken on the set of the functions v € C%'/2(R) such that
 and (3.4) holds.
1 e'® written in polar form, the boundary condition becomes

u(m) = u(=7), (r)=2m (Cllflk) +¢(=m) (3.5)
., and ||U/||%2(sl) = ||U/||%2(sl) + ||U¢/||32(§1) so that

[0/ 17251y + 1w @172 (51) + 1 lullogsry

Aap(42) = min
! ||U||iz(sl)

limization is taken on the set of the functions (u,¢) € C(R)? such
L2(S') and (3.5) holds. L]

wltiplication of w by a constant so that [|ullirs1) = 1, the Euler—
wtions are

| P |ulPru = A p(p)u and (¢ u?) = 0.

by integrating the second equation and using Lemma 3.3, we find a
h that ¢’ = L/u?. Taking (3.5) into account, we deduce from

L/ ds _ ¢ ds =27 (a+ k)

02
< U

T ds (a+k)?
Ul221:L2/ kit S
|| ¢ ||L (Sh) . u2 HuilH%ﬂ(sl)
es that
Aap(p) = I}}l? Qatk,p,u [

limization is taken on all k € Z and on all functions u € H*(S).
> restriction a € (0,1/2), the minimum is achieved by k = 0.

= 1/2 is a limit case that can be handled as in [14, Theorem II1.7].
e result holds also true, with the minimizer being in H}(S*)\{0}, and



al.

ity result

, as in [14], the study of (3.2) is reduced to the stuﬁf the inequality

o Ju g, + ey > Aap(0) fulZae, Yu € HY(SY)
(3.6)

w a real valued function. Necessary adaptations to the trivial case
she limit case a = 1/2 are straightforward and left to the reader. The
s the analogue of Proposition 2.1 in the subcritical range.

1. Letpe(1,2),a€(0,1/2), and > 0.

) +4a? <1, then Ao p(p) = a® + p and equality in (3.6) is achieved
e constants.

)+4a? > 1, then Ao p(p) < a*+p and equality in (3.6) is not achieved
1stants.

se (1) we can write

[0/ 2 (1) + @ ||u|_—_lt‘£22(51) + pullfs s

m
= (1= 40) (IR + Tz Nl

1, (.
#4 (IR + 3 I~ T )

3.1) that
1 [
e L

) < 1/(2 — p) and conclude using (2.7).

), let us consider the test function w. := 1 4 w;, where w; is the
corresponding to the first non-zero eigenvalugof — d?/ds? on H'(S'),
boundary conditions, gamely, w;(s) = coss and A\; = 1. A Taylor
ws that

Qapplus] = (1 +a® — p(2— p)) e+ 0(52)a

the result. Notice that the Taylor expansion is also valid if a = 0, so
the optimal constant in (3.1), and also that a similar Taylor expansion
of (2.7), which formally corresponds to p = — 2. O

ov—-Bohm magnetic interpolation inequalities on T?

a toy model for Aharonov—Bohm magnetic fields on the flat torus
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sider the flat torus T? = S! x St ~ [—7,7) x [-7,7) > (x,y) with
lary conditions in « and y. We denote by do the uniform probability
dx dy/(47?) and consider the magnetic gradient

Vay = Yz, —iav) (3.7)
etic kinetic energy ]

L||i2(1r2) = //qrz |Vav|?do = //11‘2 ([Wel® + by — iav]?) do.

etic ground state estimate

Assume that a € [0,1/2]. With the notation (3.7), we have

//W IVay|*do > a® //TZ W|2do, Vi € HY (T?).

ake a Fourier decomposition on the basis (€' e'*¥); jc7. We find
t modes are given by

k:(), EZOI)\QOZGP,
k=1, £=0:) 0= (1—a)*>>a® sinceac|0,1/2],
k=0, £=1:)\1=1+d>

- is the lowest mode. O

kry—Emery method applied to the 2-dimensional torus

he flow given by

1at

— lult, MEs () =0

nd, and
(IVutt, Eerzy = Al ) Eages) )
[Vuf?
8ulseey + (=) [[ AuEdr =32 =) [Vullzqon

and. Integrations by parts show that

1A E2(r2) = | Hess ullf2p2)



b ey = Alult, ) [Eaces) )

Vu® Vu 2

) (18ulay = MIVulRicen) + = 1) [Fessu - T2

L2(T2) '
1 the Poincaré inequality that
[AuU[E2 (g2 = [ Vullfepe),

constant 1, so we can conclude in the case 1 < p < 2 that
oy — Alult, -)||%2(T2) is monotone non-increasing if 0 < A < 1. As a
we have the following result.

3.1. For anyp € [quwe have

||VU||32(T2) + ||U||ip(11'2) 2 HUHiZ(’H‘Z)a Vu e HY(T?).

(I

rization result without magnetic potential

r than Proposition 3.1 follows from a tensorization argument that can
1, 17].

3.2. For any p € [L 2], we have L]
=) [Vulfagre) + lulltery = lullfee), VueHY(T?). (3-8)

factor (2 — p) is the optimal constant.

king on T? a function depending only on z € S!, it is clear that the
3.8) cannot be improved. The proof of (3.8) can be done with the
“method applied to S! and goes as follows.
sider the flow given by

ou [u/|?

1
e -1
5 = U +(@-1) »

hat <L ||u(t, )IIF»(s1) = 0 on the one hand, and

d
U ) Ry = Al iEz @)

u [u']?

= [[u" 2@y + (0= 1) | " ——do = A2 =p)[v|{a@)
St

u

u?

_ 12 l _ |ul|4 _ _ 7112
[l +=-(p-1 do — X (2
= L2(S!) p—1) o (2-p)llu ||L2(s1)
3 st

1and. Hence
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1, because of the Poincaré inequality ||u”||L2(S1) > |/ ||L2(Sl) Up to
of A, this computation also holds if p > 2 or if p = — 2, as noticed
is straightforward to extend it to the hmltﬁe p = 2 corresponding
imic Sobolev inequality.

to [11, Proposition 3.1] or [17, Theorem 2.1] and up to a straightfor-
on to the periodic setting, the optimal constant for the inequality on
s the same as for the inequality on S, provided 1 < p < 2. |

quence of Proposition 3.2, we have the inequality
22y + e llullEocr) = Aop() lulfo(rsy,  Vu € HY(T?), (3.9)
»(1) is a concave monotone increasing function on (0, +00) such that

rany p € (0,1/(2—p)).

etic interpolation inequality in the flat torus

1sider the generalization of (3.9) to the case a # 0.

Assume that p € [1,2) and a € [0,1/2]. With the notation (3.7),
concave monotone increasing function i Aq p(p) on (0, +00) such
\ap(p) = a® where A, (1) is the optimal constant in the inequality

lIZo(r2) + pllullEo ey = Map(p) [ullfoe),  Vu € HA(T?).  (3.10)

have that

1
Mapll) 2 pt (1= p (2= p)) @ for any < 5—.

1 arbitrary t € (0, 1), we can write that

U||%2(1r2) +u ||U||%p(1r2)

> t (IVa ullfar) — o fullfage))

K
# (1= (17 + 2 Bl ) + 26 sy

1
> [0, (5 )+ta} -



(.

al.

netry result in the subquadratic regime

tion of the results on magnetic rings of Theorem 3.1, we can prove a
ult for the optimal functions in (3.10)|ii_|the case p < 2. Let Ag p(p)
l constant in (3.10).

2. Assume that a € [0,1/2] and p € [1,2). Then
1

Aop(p) = Xap(p) if p < )

nal function for (3.2) is then constant with respect to x[ Moreover,
+ u if and only if u (2 — p) +4a® < 1 and equality in (3.10) is then
by the constants.

s use the notation § f dx := % ffﬂ fdzx in order to denote a normal-

on with respect to the single variable x, where y is considered as a
r almost every x € S! we can apply (3.2) to the function 1 (z,-) and

T2) T M ||1/}||%v(1r2)

D112 23y + Dap 1) [0 2aca) + 119 ] 20 ey — 0 f (][ [P dy) dz.

wi= ¢, v(z) := (f |u(z, y)|P dy) "7 and observe that

p—1 1_p-1
P

[up—l Ug dy < v17P (][ u? dy) (][ | |2 dyf (][ 1 dy) o

lequality, under the condition p < 2, that is,
0l < f P dy < 10,01 dy.
hat if p < 1421 p),
2/p
ot ([ ordas) = [ oo dap 0 161

> Nap (1) 191122 (2)

he equalitylis dchieved by functions v which are constant with respect
orem 3.1 applies. O

tic Hardy inequalities in dimensions 2 and 3

n, we draw some consequences of our results on magnetic rings of
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Lieb—Thirring inequalities on the circle

duality we obtain a spectral estimate.

3.3. Assume that a € [0,1/2] and p € [1,2). If ¢ is a non-negative
that ¢=1 € LI(S'), then the lowest eigenvalue Ay of —(0y — ia)*+ ¢
m below according to

AL > A (||</>’1||Eq1(81>)

s achieved by a constant potential ¢ if ||¢_1||Eq1(51) (2—p)+4a®><1.

Holder’s inequality with exponents 2/(2 — p) and 2/p, we get that

» 2/p
o= ([t eur) as) <o e [ oo
—p), and with p = ||¢_1||ij11(§1)7

—iavfdo+ [ olPdo> [ B DiavPdr+ulvlie,

> o) [ [0l don (3.11)

t, then there is equality in Holder’s inequality. O

al estimate (3.11) is of a different nature than (2.10) because the
oy and the magnetic kinetic energy have the same sign. By considering
case i1 (2 — p) +4a® = 1, we obtain an interesting estimate.

1. Leta €10,1/2],p € (1,2) and g = p/(2—p). If ¢ is a non-negative
that ¢~1 € LI(S'), then
1

/ [ —ia|?do +
Sl
(1 —I—T&-ag
>

2—p

—4a? 1 9
- 1 d
= 67 Mo )/Sl¢|¢| o

+a2) [l W € HU(SY.
]

ic Hardy-type inequalities in dimensions two and three

by 6 € [—m,7m) the angular coordinate associated with z € R?.
can deduce a Hardy-type inequality for Aharonov-Bohm magnetic
limension d = 2.

2. Let A as in (1.1), a € [0,1/2], p € (1,2) and ¢ = p/(2 —p). If ¢
ive potential such that ¢=' € LI(SY) with ||¢~||Lasr) = 1, then for
alued function ¢ € H'(R?) we have



al.

isider cylindrical coordinates (p, 6, z) € RT x [0,27) x R such th%
. In this system of coordinates the magnetic kinetic energy is

2 2
|vAw|2do::/ Qo) 1100 001" 4o
rs \ | Op

20 0z
»dp df dz. The following result was proved in [22, Sec. 2.2].

2
+

—ia

For any ¢ € Hl(R3), we have

iy dp > 1/// 2|¢|22du, vy € H'(R?).
.\ | Op 4 J)r+ x[0,2m)xr P°+ 2

ive an elementary proof. Assume that v is smooth and has compact
inequality follows @n the expansion of the square

0z

o [ N L L |3

— + —t—— dp >0 HY (R
(ap+2(p2+zz> oz ey |20y e R
gration by parts of the cross terms. O

7 is an improved version of the stdndhrd Hardy inequality in the
» left-hand side of the inequality does not involve the angular part of
ergy. A consequence of Corollary 3.1 and Lemma 3.7 is a Hardy-like
imension d = 3. For the angular part we argue as in Corollary 3.2.
proof are left to the reader.

3. Let A as in (1.2), a € [0,1/2], p € (1,2) and ¢ =p/(2 —p). If ¢
such that ¢~1 € LI(S!) with ||¢_1||Lq(gl) =1, then for any complex
n ¢ € H(R?) we have

1—4a? 4
[vavp e+ 20 [ AP a

v 1-4a® / s
> dx ——d
_4/Rs |z|? e ) e
ase is ¢ = 1, for which we obtain that
2 2
avldez g | et [, ¥ gHa(
I:I L]

v—Bohm Magnetic Interpolation Inequalities in R?

rpolation inequalities on R? are considered without weights in Sec. 4.1.
1en introduced as in [7] in order to prove the new magnetic Caffarelli-
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ic interpolation inequalities without weights

r on R? the Aharonov—Bohm magnetic potential A given by (1.1).
nagnetic inequality

IVa®]? > |V|Y|]* ae. in R?
€ (2,00) apd A > 0, the Gagliardo-Nirenberg inequality
k) AN Eoge) = Cp AT [2ey, Vo G%(Rz) NLP(R?)  (4.1)
constant C,,, we deduce that
D122 @2y + AMYlE2@e) = HapON) [€1E@e), VY € Ha(R?).  (4.2)

3] for details. Here pq,()) is the optimal constant in (4.2) for any
| A and, as a function of A, p,,(A) is monotone increasing and con-
hat right-hand sides in (4.1) and (4.2) involve norms with respect to
asure. It turns out that p, (M) is equal to the best constant of the
problem.

4.1. Let a € R and p[E(2,00). The optimal constant in (4.2) is
fap(A) = Cp A%, YA >0

s not achieved on H'(R?) N LP(R?) if a € R\Z.

nstruction we know that s, ,(\) > C, \P/2. By taking an optimal

(4.1) and considering v, (z) = 1 (z + ne) with n € N and e € S*, we

is equality. L]

ve by contradiction that equality is not achieved. If 1 € HY(R?) N
mal, let ¢ = e?*%). Since

Do d|?
VA blaqeey £ l0r01? + 12
R2 ||

in (4.1) is achieved by functions with a constant phase only, this

¢ = 0 a.e., a contradiction with the periodicity of 1 with respect to
& 7. |

n 4.1 means that the Aharonov-Bohm magnetic potential plays no
ighted interpolation inequalities. This is why it is natural to introduce
1s with adapted scaling properties.

ic Caffarelli-Kohn—Nirenberg inequalities in R?

—Kohn—Nirenberg inequality
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L
blished in [9] and, earlier, in [25]. The exponent b = a + 2/p is deter-

scaling invariance and as p varies in (2, 00), the parameters a and b
a<b<a+1anda<0. The case a > 0 can be considered in an
mctional space after a Kelvin-tyyje transformation: see [10, 16], but
msider this case here. As noticed for instance in [16], by considering
r), Ineq. (4.3) is equivalent to the Hardy-Sobolev inequality

p 2/,

L|2d9:+a2/ b’ 4> g(/ :“:2 ) £ vuep®?). (1)
R2 |

unctions for (4.3) are radially symmetric if and only if[ ]

2

V1+ a2

[15, 23]. We refer to [7] for more details and for the proof of the
netic Hardy—Sobolev inequality.

b > bpg(a) :=a—

L ([7]). Leta €[0,1/2], A as in (1.1) and p 2] For any A\ > — a?,
timal function X — (X)) which is monotone increasing and concave

2/
mﬂ/ %dzZu(/\) </ Wdl«> p, Vi € Hy (R?). (4.5)
R R

2 [2]? 2 [2]?

, the optimal function in (4.5) is

-2
= (||* + |x|_a)_%, Vo € R?  witha = pT VA a?,
g and a multiplication by a constant, if
1—4ad?
Ldat o
p*—4
“a €10,1/2] and X\ > Ao with

3(\/174—a2(p—2)2(p+2)(3p—2)+2):—4p(p+4)
(p—2)3(p+2)

etry breaking, i.e. the optimal functions are not radially symmetric.

A< )\, =4

—a”,

t computation shows that A, < A for any a € (0,1/2), and so there is
we do not know whether the optimal functions in (4.5) are symmetric
theless, as sil;&own in [7], the values of A\, and A, are numerically very
other. If A < A4, the expression of () is explicit and given by

1—2

et 2 )

(p_onp (e 1)




(I O
L1

Inequalities with Aharonov—Bohm magnetic potentials

y the equivalence of (4.3) a@(4.4), we prove that the magnetic
v inequali 4.5) is equivalent to an interpolation inequality of
in—Nirenberg type in the presence of the Aharonov-Bohm magnetic

1 (Magnetic Caffarelli-Kohn—Nirenberg inequality). Let p €
A as in (1.1) for some a € [0,1/2] and a < 0. With p as in Theo-
ny v < a2 + a?, we have that

/p (|
Sk ER 2 o\
|23 e = 7 /]1{2 |37|26+2 ot ‘LL(ET ’Y) R2 |3J|ap+2 e 7

V¢ € D(R%C)

\ = a? — v is the optimal constant.

of symmetry and symmetry breaking in Theorem 4.1 have their exact
 Corollary 4.1. Details are left tom reader.

s consider the function ¢(x) = |z|* ¢ (z) and observe that

\V4 2 2
/ | A;:| dx :/ [Va 1/J|2d9:+a2/ 5 dz
R2 |.’L'| R2 Rr2 |T |:

by applying (4.5) to 1 with A = a% — . |

etic Hardy inequality in R?

equence of Theorem 4.1 is the following magnetic Keller—Lieb—
wality, which can be found in [7, Theorem 1]. Let ¢ = p/(p — 2). The
nergy A; of the magnetic Schrodinger operator —Aa — ¢ on R? is

]
1/
Aa—)>—A() Whereu< / |¢|Q|a:|2<q';c'zx) " )
]R2

1) is a convex monotone increasing function on RT such that
= —a?, defined as the inverse of A — pu()\) of Theorem 4.1. Again
al in (4.6) and the cases of symmetry and symmetry breaking are in
e with the ones of Theorem 4.1.

oly, let us consider a function ¢ on R%. We can estimate an associated
odinger energy from below by

| ¢
AP =7t W) dr > /R Va o do
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requality, with ¢ = p/(p — 2), for an arbitrary parameter 7 > 0. For
e choice of 7, we obtain the following result.

2 (A Magnetic Hardy Inequality). Let ¢ € (1,2) and A as
me a € [0,1/2]. Then for any function ¢ € L (R? ||~ dz) , we have

.\
oz o) ([ L) T [ Sta ve e @)

the best constant in (4.5). Finally, when a® < 4/(12 + p?), we know
(0) explicitly:

v—Bohm Magnetic Hardy Inequalities in R3

1 we address the issue of improved magnetic Hardy inequalities with
—Bohm nia_g-netic potential in dimension d = 3 as defined by (1.2).
iprove upon [19, Sec. V.B], including the case of a constant magnetic

yroved Hardy inequality with radial symmetry

.B], it is proved that for all a > 0, thﬁzs a constant C(a) such that
€[0,1/2] and
2 1 [l 1 (3
\Vaw?de> (= +C(a) dz, Y1 e H4(R?). (5.1)
; 4 ws [z

r an angular dependence, we have the following result.

L
1. Let A as in (1.2), a € [0,1/2] and ¢ € (1,+00). Thep—for all

2 l Ma,p(o) ) |’¢}|2 1 3
Y|*dr > /}R3 (4 + 7||¢||LQ(S2) P(w) T2 dr, V1 € Hy(R).

c| and pa,p is defined as in Proposition 2.2.

e a € [0,1/2], according to Proposition 2.2, we find in the limit case
hat 14,2(0) > Ay = a(a + 1) and improve the estimate (5.1) to
1) if ¢ = 1.

s use spherical coordinates (r,w) € [0, +00) x S?. The result follows
1sion of the square and an integration by parts in
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part of the Didichlet integral, and from Corollary 2.2 for the angular
O

roved Hardy inequality with cylindrical symmetry

. Hardy inequality (without angular kinetic energy) of Lemma 3.7
e combined into the following improved Hardy inequality in presence
potential.

. Let A asin (1.2),a € [0,1/2],p > 2, ¢=p/(p—2) and ¢ € LI(S').
[} (R3), we have

|¢|2 ,Ufap /// ) 2
o> g [ U des (0,6, ) dp.
4 Jgs [2? [PllLasty JAr+xpo,2m)xr P2

t the inequality is a strict improvement upon the Hardy inequality
enetic potential combined with the diamagnetic inequality. A sim-
1 is particularly illuminating is ¢ = 1 with a®? < 1/(p + 2) so that
ccording to Proposition 2.1, in which case we obtain that

2 2
AYPdr > = / |¢|2 dz +a / le2 dr, Y € Hy(R?).
4 Jrs |z ®s |pl
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