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ABSTRACT
Annotated IMU sensor data from smart devices and wearables are
essential for developing supervised models for fine-grained hu-
man activity recognition, albeit generating sufficient annotated
data for diverse human activities under different environments is
challenging. Existing approaches primarily use human-in-the-loop
based techniques, including active learning; however, they are te-
dious, costly, and time-consuming. Leveraging the availability of
acoustic data from embedded microphones over the data collection
devices, in this paper, we propose LASO, a multimodal approach
for automated data annotation from acoustic and locomotive in-
formation. LASO works over the edge device itself, ensuring that
only the annotated IMU data is collected, discarding the acoustic
data from the device itself, hence preserving the audio-privacy of
the user. In the absence of any pre-existing labeling information,
such an auto-annotation is challenging as the IMU data needs to
be sessionized for different time-scaled activities in a completely
unsupervised manner. We use a change-point detection technique
while synchronizing the locomotive information from the IMU data
with the acoustic data, and then use pre-trained audio-based activ-
ity recognition models for labeling the IMU data while handling the
acoustic noises. LASO efficiently annotates IMU data, without any
explicit human intervention, with a mean accuracy of 0.93 (±0.04)
and 0.78 (±0.05) for two different real-life datasets from workshop
and kitchen environments, respectively.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings; • Human-centered computing → Ubiquitous computing.
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1 INTRODUCTION
Over the last two decades, many research works and commercial
applications have used data from inertial motion units (IMU) for hu-
man activity recognition [25, 30, 37, 38]. These approaches mostly
use labeled data to train a model to capture the personalized traits
of individuals during various activities. Although more elaborate
models can be designed to capture more complex activities, the
major bottleneck becomes the availability of labeled IMU data from
individuals. The standard approach is to recruit human volunteers
who independently collect and annotate IMU data for different activ-
ities; however, such a human-in-the-loop approach has limitations
in terms of scalability [1], selection of proper annotators [29], time
and cost of annotation [19] and noisy and conflicting labeling [43].
In recent times, such problems have been tackled to some extent
by the use of Active Learning [11] that chooses the most uncertain
instances from the entire data and queries the annotators only for
those instances [19]. However, in this approach, (i) a seed set of
labels is essential, (ii) the problem of human-in-loop persists [43].

The automatic IMU data annotation process mostly relies on an
auxiliary data source, such as video, which needs to be uploaded
on a cloud/server for processing [8, 12, 32]. This may significantly
compromise with the information privacy along with the associated
network usage cost. Annotating the IMU data at the edge device
itself may substantially mitigate the issues mentioned above. In this
paper, we develop a multimodal approach to annotate IMU data at
the edge (devices near the data source) with the help of locomo-
tive and acoustic information. Notably, data collection devices like
smartphones and many smart wearables also embed a microphone
that can capture the sounds from the environment. Acoustic being
an extremely rich data-source has already been used widely for
identifying fine-grained human activities [7, 22, 23, 44]. Exploiting
this, we develop an opportunistic approach to label the IMU data
locally at the edge with the help of acoustic information. As only
the labeled IMU data gets generated from the edge-device while
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the acoustic data are discarded after processing, this approach does
not compromise the environment’s audio-privacy.

Opportunities and challenges: Although various human ac-
tivities generate distinct sounds [17, 23, 26], we still need a super-
vised model to identify the activity label from an input audio clip.
Incidentally, a rich source of labeled audio data and corresponding
pre-trained models are publicly available, such as YouTube-8M [2],
Urbansound [33], SoundNet [6], etc. which can identify human activ-
ities at different environments with a high accuracy (e.g. accuracy of
SoundNet is > 85%). However, the major challenge of labeling IMU
data with the acoustic information is that a microphone captures
sounds from different sources in the environment; therefore, the au-
dio data not only captures the sounds generated by target activities
but also contains other noises. Hence, existing audio-based activity
recognition models [17, 22, 23, 26, 42] cannot be applied directly in
our context. To alleviate this, we observe that human activities are
time-sequenced, and the activity duration helps us to resolve the
conflict. For example, if the acoustic information indicates three
overlapping activities, say, typing, operating microwave and pressing
doorbell, within the duration [t1, t2], [t3, t4] and [t5, t6] respectively,
and we infer that the target activity captured by the IMU data oc-
curred within [∼t3,∼t4], then with high confidence, we can label
those IMU instances with the activity label operating microwave. As
the unlabeled IMU data is the only source for inferring the activity
duration, the challenge here is to design an unsupervised approach
to extract the time instance when a subject changes the activity.

Our contributions: Owing to the above challenges, in this pa-
per, we propose LASO, a multimodal approach that couples the
locomotive information, obtained from the IMUs, with the acoustic
information to extract the specific time segment when a target
activity has occurred and use that segmenting information to map
the acoustic label with the IMU label. LASO leverages the idea that
the distribution of the accelerometer readings change significantly
when the subject changes from one activity, say handling utensils,
to another, say operating blender in a kitchen environment. Ac-
cordingly, we develop a fully unsupervised mechanism based on
the computation of change-point scores from the accelerometer
readings and using a k-means clustering mechanism to determine
which change-point scores correspond to a change in the activities.
We segment the IMU data based on the detected change-points, and
the corresponding audio segments within the same time duration
is used to map the activity labels to the IMU data instances.

However, for a few activities having similar locomotive infor-
mation, the above approach fails to work, and we get confounded
activities where LASO returns multiple activity labels (say, opening
drawer and picking up a fork) for the same segment of the IMU
data. In order to address this issue, LASO implements a feedback
mechanism where an explicit unsupervised segmentation over the
audio data is used to identify & resolve confounded activities to
the single correct activity. Finally, we evaluate (Section 5) LASO
on two real-life datasets over workshop and kitchen environments.
Experimental results show that LASO can efficiently label a good
volume of data with an appreciable accuracy for both the datasets.
Further, we develop a proof of concept (PoC) implementation using
Raspberry Pi 3 (Model B) to show that LASO works perfectly over
an edge setup. In summary, the major contributions in this paper
are as follows. a) We develop a fully unsupervised mechanism based

on the locomotive information to segment the IMU data for deter-
mining a change in the activity labels, which is used to map the
label from the audio data. b) To overcome the problem when more
than one consecutive activities exhibit similar locomotive informa-
tion, we develop a feedback mechanism based on the unsupervised
segmentation of the audio. c) Resource consumption of LASO has
been analyzed thoroughly over an edge testbed.

2 RELATEDWORK
In the context of detecting complex activities using IMU sensors, the
problem of unlabeled data has been a well-studied topic where the
majority of the works use human annotators to label the data. How-
ever, various recent researches have pointed out the problems with
human annotations, such as – (a) time and cost of annotation [29]
and (b) noisy labeling [43, 45]. One of the most accepted solutions
to tackle all these problems has been to choose annotators based on
interactions between the users and the annotators [29]. However,
one of the major bottlenecks in this scheme is its dependence on the
social relationship with the annotators. Besides, other techniques
like Experience Sampling [13, 24], have also tried to mitigate these
concerns by allowing the system to probe the subject for providing
labels on the fly. However, in this case, a critical requirement is
that the subjects involved in the process must be capable enough
to provide such inputs, which can be a concern when we deal with
smart-environments for the elderly assistance [16].

In the past, several works have tried to solve this in differentways.
Out of these, the most successful ones are implemented using Active
Learning [11, 18, 19], which helps reduce the volume of labeling
tasks by choosing the most informative samples for annotation.
Although this reduces the volume by a significant amount, it lacks
in two aspects – (a) it usually demands partially labeled set and
(b) human intervention is still required for annotating the chosen
samples. In many cases, obtaining partially labeled data is also very
challenging because of constraints like privacy concerns [16, 19].
Besides this, a few other works have also looked into approaches
that may allow automatic annotations of sensor data. One of the
earliest approaches in this domain is through the application of
Abductive Reasoning [4] for annotating medical monitoring sensors
using public repositories of knowledge. Although this approach
might not be handy for any general-purpose sensors, it was one of
the very initial ideas that tried to automatically label sensor data.

Subsequent works, like [8], developed techniques to extract hu-
man key points from [9] and use deep neural networks to annotate
physical activities like walking, standing, etc. using videos as an
auxiliary information source. However, one of the main limitations
of this work is that it is restricted to simpler activities. Similar works
like [32] have developed schemes using regression models that can
be trained using the video data from YouTube and subsequently
use monocular RGB videos to obtain the activity label for more
straightforward fitness activities. We pose a brief comparison of all
these works with our proposed framework, LASO, in the Table 1.

3 PROBLEM STATEMENT AND DATASETS
Let T be the entire duration of the data collection session of a
subject. Let It be an unlabeled IMU data collected from device D
at time instance t ∈ [0,T ], and Xt be the respective audio data
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Table 1: Summary of Related Work on Automatic Annotation of Sensor Modalities

Paper
Primary
Modalities

Auxiliary
Modalities

External Labeling
Source Brief Methodology

Label General-
Purpose Activities?

Alirezaie et. al. [4]
Medical

Monitoring
Sensors

NA Open-Linked
Knowledge Sources 1. Use Abductive reasoning. No

Benndorf et. al. [8] IMU Sensors Video OpenPose [9]
1. Key-points extraction.
2. Annotate sensors from
videos.

Limited

Rey et. al. [32] IMU Sensors Monocular
RGB videos YouTube Videos

1. Extracting 2D poses from
Video Frames
2. Based on a regression
model

Limited

LASO IMU Sensors Audio
Information YouTube-8M [2]

1. Change-point detection
2. Unsupervised audio
segmentation
3. Audio-based activity
recognition.

Yes

Table 2: Activity Labels used in LASO

Activity Labels Context
Using Drill Workshop
Chopping Kitchen
Door-In-Use General
Water-Running Kitchen/Bathroom
Knocking General
Operating Microwave Oven Kitchen
Using Shaver Bathroom
Using Toothbrush Bathroom
Operating Blenders Kitchen
Pressing Doorbell Entrance
Flushing Toilet Bathroom
Using Hair-Dryer Bathroom
Typing Office
Hammering Workshop
Using Saw Workshop
Cooking or Handling Utensils Kitchen

obtained from the microphone within time duration [t , t + 1] over
the device D ′. D and D ′ are either the same device or paired
through Bluetooth orWiFi, while synchronizing the time using NTP
or RTC [16, 35]. We consider a label space L = {L1,L2, . . . ,Lm }

wherem is the total number of available unique labels. The objective
of this paper is to develop a framework LASO to annotate the
collected IMU data stream It with the activity label Li ∈ L. Our
implementation of LASO uses the label space L given in Table 2,
which we fix from the audio-based activity detection framework
adopted in [23]. We consider the following two scenarios. (a) The
IMU and the microphone data are collected from the same device,
say a smartphone; in this case, LASO may run on the smartphone
to process and label It . (b) The subject performs an activity, say
cooking, in a smart home, where the IMU data is collected from
a wrist-worn smartwatch, and the microphone data is recorded
over a smartphone in her pocket. In such a scenario, typically, the
smartwatch is paired with the smartphone, and the IMU data from
the smartwatch is collected through the smartphone. Here, LASO
can either run on the smartphone or an edge device within the
smart home, like the data gateway, to label It .

3.1 Key Idea and Challenges
The broad idea behind the design of LASO is as follows. Considering
highly-accurate pre-trained models available publicly for recogniz-
ing activities from acoustic signatures, like YouTube-8M [2] and
Soundnet [6], we obtain the label of the audio data segment Xt , say
Li ∈ L, from such a model M and assign Li to It . However, a
microphone not only captures the sound generated from the target
activity but also captures other environmental sounds. For example,
when the subject is operating a microwave, another person might
knock the kitchen door ; in this case, the microphone captures both
the sounds. Therefore, model M may return multiple labels for an
input Xt , and hence we fail to assign any of those labels reliably
and uniquely to It .

Importantly, activity duration plays a key role here. If we can
somehow figure out that the target activity has been performed
in the interval [∼τ ,∼τ + ∆t], then among the various overlapping
activities detected by the microphone data Xt , we can uniquely
identify the activity whose time duration is [∼τ ,∼τ +∆t] and assign
that label to It with high confidence. However, as IMU is the pri-
mary data source that has to be labeled, such target activity interval

needs to be extracted fromIt itself. Hence the challenge is,without
having any explicit labeling information associated with It ,
how do we determine that {It |t ∈ [τ ,τ + ∆t]} indicates a sin-
gle activity instance performed by the subject? We develop,
explain, and evaluate our methodology based on the observations
from two different datasets from two different environments, as
follows.

3.2 Dataset Details
Following is the summary of the dataset.

3.2.1 In-House Dataset: Workshop Environment. We collected an
in-house dataset for a workshop environment with two significant
activities – (a) using a saw and (b) using a hammer. We involved
5 participants and asked them to perform activities like (i) cutting
a wood brick or an aluminum pipe with a saw and (ii) hammer
nails or metal sheets over a wooden plank. No explicit constraints
were posed on the participants except that they have to repeat each
activity at least 2 times, and the overall time spent performing all
the activities should be at least 6 minutes.

For collecting the data, we used Moto 360 smartwatches, worn by
the participants on the wrist (either left or right depending on the
handedness of the participants) to capture the IMU data (sampled at
50Hz) and used an OnePlus 3 smartphone for capturing the audio
data (sampled at 44.1kHz). These two devices were paired with each
other over Bluetooth to ensure time synchronization between the
two modalities. For collecting the ground-truth label, we captured
videos (with a frame rate of 30 fps) with a watermarked timestamp
(in order of milliseconds). Subsequently, we engaged an annotator,
who independently labeled those videos from the aforementioned
two activities, as the performed activities were straightforward.

3.2.2 CMU-MMAC Dataset: Kitchen Environment. In addition to
the in-house dataset, we further evaluate the performance of the
framework on real-life smart-home datasets from the CMU-MMAC
kitchen dataset 1. In this setup, each subject wears 5 wired and
wireless IMU devices in different parts of the body (elbow, knees,
and other anchor points). We extract a subset of the entire dataset
(only Brownie recipe) with 10 subjects for which multiple IMU sen-
sor data and the microphone data along with the ground-truth
activity annotations are available. Notably, the data also contains

1http://kitchen.cs.cmu.edu/ Last Accessed: September 6, 2020
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Figure 1: LASO Framework; CA ∼ Confounded Activities

videos from 3 high resolution, 2 low resolution, and 1 wearable
cameras for ground truth annotation. We choose the IMU data
from the 5 IMU sensors (sampled at 125Hz), and for the audio data
(sampled at 44.1kHz), we consider the data captured by 5 balanced
microphones placed in the environment. All the modalities in the
CMU-MMAC kitchen setup are time-synchronized using NTP; al-
though, the polling of different IMU sensors is asynchronous.

4 METHODOLOGY
Figure 1 shows the overall framework of LASO. After preprocess-
ing the collected data, we use a two-step approach to find out
the time duration [τ ,τ + ∆t] for segmenting the IMU data, such
that {It |t ∈ [τ ,τ + ∆t]} indicates a single activity instance (based
on the label space L). First, we compute change-point scores from
{It |t ∈ [0,T ]} over consecutive time windows of length ω, which
indicates probable changes in the user activities. In the second step,
we use an unsupervised clustering-based approach to obtain the
change-point scores which indicate a change in the activity label;
thus, we obtain the time duration [τ ,τ + ∆t] for IMU segmenta-
tion. We then segment the acoustic data based on [τ ,τ + ∆t] and
determine the label from the input audio clip {Xt |t ∈ [τ ,τ + ∆t]};
this label is tagged with the corresponding IMU segment. At this
stage, we observe some confounded activities (activities having sim-
ilar locomotive signatures) which we resolve based on a feedback
mechanism. The details follow.

4.1 Data Preprocessing
The first task is to preprocess the acoustic and the IMU data for
noise removal. The audio signal contains various types of noise
generated by non-human sources such as air conditioning system
or computers which can collude the acoustic signature. As shown
in [23], audio signals in between 50Hz to 16kHz typically contains
the acoustic signatures generated from human activities; therefore,
we apply a Butterworth bandpass filter (order = 5) to extract the
signals in between above frequencies. In addition, we also perform
a noise-profiling using Audacity audio processing toolbox [27] to
remove complex background noises from the audio data.

A noise filtering over the IMU data may result in a loss of
other useful information [3]; therefore, we process the raw data
directly. However, many complex activity detection techniques rely
on more than one IMUs attached with different anchors (like el-
bows, knees, etc.) [21, 35]. Even though these IMUs are usually
time-synchronized, they might not get polled at the same time in-
stance, which is essential for detecting an activity change. In LASO,
we resolve this issue by first obtaining the earliest time, say t0 at

Figure 2: Locomotive Signature Indicating Activity Changes

which one of the IMUs is polled and then subsequently use t0 to
create a fixed-duration window δ over the entire data, collected
from all the IMU sensors. If a sensor is polled within [t0, t0 + δ ],
we map that data point with the time instance t0 and construct a
combined IMU data {I1

t0 ,I
2
t0 , ...,I

N
t0 } where N is the number of

such sensor instances.

4.2 Segmenting IMU Data
Our objective is to divide the IMU data {It |t ∈ [0,T ]} into mul-

tiple segments
{
{It |t ∈ [τ ,τ + ∆t]} |

∑
∀τ
[τ ,τ + ∆t] = [0,T ]

}
, such

that {It |t ∈ [τ ,τ + ∆t]} contains the IMU instances corresponding
to a single activity instance from the label space L. To perform this
segmentation in a complete unsupervised way, we observe that the
locomotive information (obtained from the accelerometer) changes
as the subject migrates from one activity to another (Figure 2). Ac-
cordingly, we use the concept of change-point scores to extract the
change-points where the previous activity ends and a new activity
(or no activity) commences.

4.2.1 Computing Change-point Scores. Formally, a change-point is
defined as the instance where a stochastic process or time-series
changes its probability distribution [3]. In order to compute the
change-point scores, we consider the 3-axis accelerometer data s(t)
at time instance t obtained from the IMU sensor stream It . For a
window of size ω, the matrix S(t) = [s(t), s(t + 1), . . . , s(t +ω − 1)]
forms the corresponding Hankel matrix [20]. Here ω is one of the
most important hyper-parameters in the design of LASO; whose
impact is analyzed in Section 5. The change point score c(t) is
computed by measuring the dissimilarity between two consecutive
windows of It . For measuring this dissimilarity, we use Pearson
Divergence Estimation (PE) [31] represented as follows.

D(Pt |Pt+ω ) =
1
2

∫
p′(S)

(
p(S)

p′(S)
− 1)

)
× dS (1)

Here Pt and Pt+ω are the probability distributions corresponding to
the samples in S(t) and S(t+ω) respectively. In this context,p(S) and
p′(S) form the probability densities. The values of p(S) and p′(S) are
unknown in real-time; however, computing the relative density ratio
is considered to be simpler than estimating the true densities [36].
For estimating the relative density ratio, we use the existing relative
density-ratio estimator (RuLSIF) algorithm [41], and thus the α-
relative PE-Divergence for the distributions is represented as,

Dα (Pt |Pt+ω ) =
1
2

∫
p′α (S)

(
p(S)

p′(S)
− 1)

)
× dS,α ∈ (0, 1) (2)
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(a) (b)

Figure 3: (a) Clustering of Change Points, (b) Impact of Noise
on Clustering of Change-Points. Blue Diamonds – Activity
Changes and Red Dots – within an Activity
Finally, the change-point score c(t)2 is obtained using the following
equation,

c(t) = Dα (Pt |Pt+ω ) + Dα (Pt+ω |Pt ) (3)
The change-point scores indicate the relative change in the data
points within consecutive windows in the time-series distribution
of It . However, the value of the accelerometer changes even within
a single activity (Figure 2), so we typically get a non-zero change-
point scores between each consecutive windows. Therefore, the
important question here is –Which values of the change-point
scores actually indicate a change between two activities?

To find out the actual change-points from the change-point
scores, existing approaches like [3] primarily used a supervised
model by recruiting volunteers who perform the activities from the
label spaceL. This ground-truth data is used to train the supervised
model to find out the change-point scores corresponding to the
actual activity changes. Consequently, the methodology becomes
applicable only for a pre-defined L. Further, as LASO does not want
to involve any human annotators, we cannot use such supervised
approach to determine the change-point scores corresponding to
the activity changes.

4.2.2 Detection of Activity Change-points. Although we cannot
use a supervised approach as adopted in the existing studies, we
observe that LASO does not require the change-point scores for
detecting a change between each individual activities. Rather, it
needs a threshold in the change-point scores, which can separate
the change-points from “within an activity” to “activity changes”.
To find out this threshold dynamically in an automated way, we
first cluster the change-point scores using k-means clustering with
k = 2. Once the clustering is done, we analyze the statistical sig-
nificance of these clusters by performing Welch’s t-Test [39] with a
confidence interval of 95%. Subsequently, if the clusters are found
to be statistically significant (when p-value < 0.05), we compute
the means of the individual clusters for comparison. As change-
point scores are meant to measure the changes in the time-series,
we assume that the higher change-point scores correspond to the
actual changes in the activity; hence, we mark the cluster with
higher mean as the cluster with the change-point scores specifying
an actual change in the activity pattern.

A typical analysis of the clusters for a randomly chosen user
from CMU-MMAC dataset is shown in Figure 3a. From the figure,
we can see that the medians of both the clusters are appreciably

2only absolute values are considered for the Dα

Figure 4: Unsupervised Audio Segmentation

separated, thus proving the clustering to be significant in separating
the change-point scores. We can also observe that the means of
both the clusters coincide with their respective medians signifying
the symmetrical distribution of the clusters. We use these means as
thresholds in the change-point score to segment It .

4.3 Audio-based Activity Recognition
Once these change-points are clustered into separate clusters mark-
ing “within an activity” and “activity changes”, we check the cor-
responding time windows [τ ,τ + ∆t] to segment the audio data
Xt [15]. For smart-environments, like the one described in [35],
where there is more than one source (also defined as tracks) of audio
information placed in different strategic positions, there is a need
to identify which audio track captures the activity information,
corresponding to an IMU window, in the best possible way. We
determine this by segmenting all the tracks at the same instance
and then subsequently checking the Power Spectral Density (PSD) 3
for each of the audio segments. Finally, we choose the audio seg-
ment with the highest PSD and mark it as the audio source for
that particular IMU window. Once the audio data Xt is segmented
as {Xt |t ∈ [τ ,τ + ∆t]}, LASO borrows a concept from [22, 23]to
use pre-trained models from a large corpus of labeled sound files
provided by sources like Youtube-8M [2] and SoundNet [6] to find
out the label of {Xt |t ∈ [τ ,τ + ∆t]} eliminating the need of any
external human annotators. For this purpose, we use the approach
discussed in [23] which, in an ideal scenario, outputs either one
of the labels from the label space L or, if the audio clip does not
contain any relevant activity information or has no audio infor-
mation, then this module returns a label ‘Invalid’ to mark such
instances. However, for some cases, it returns more than one label
for an input audio segment, where we use a feedback mechanism
to resolve such multi-label instances, as discussed next.

4.4 The Feedback Mechanism
As the IMU data is segmented based on a complete unsupervised
technique, there is a high probability that there can be multiple
activities that stay confounded within the same segment because
of the noise in the data [5]. For example, an analysis of a user
from CMU-MMAC dataset, as shown in Figure 3b 4, reveals the
noise in the IMU data coupled with the unsupervised clustering can
lead to marking an “activity change” as “within an activity” when
the locomotive signatures of two consecutive activities are almost
similar (for example, opening a drawer followed by picking up a fork).

3https://www.cygres.com/OcnPageE/Glosry/SpecE.html Last Accessed: September 6,
2020
4Calculated using the logs from eWatch [34] attached to the active hand
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This can lead to confounding of activities where a IMU segment
{Xt |t ∈ [τ ,τ + ∆t]} actually contains two different activities from
L. This problem gets further escalated for IMU data obtained from
multiple units of IMU sensors; because, in that case, we need an
additional level of windowing to synchronize the data.

To resolve the above concern, we introduce a feedback mech-
anism where we revisit those instances only where more than
one labels are obtained from the audio segment. Borrowing the
idea from [14, 40], we first segment the entire audio clip {Xt |t ∈
[τ ,τ + ∆t]} into multiple 1 sec segments and compute the Mel Fre-
quency Cepstral Coefficients (MFCC) vectors for each of these seg-
ments. We then compute the cosine similarity of the MFCC vectors
(with the number of coefficients = 20) obtained from two consecu-
tive segments {Xt |t ∈ [τ + j−1,τ + j]} and {Xt |t ∈ [τ + j,τ + j+1]}.
If the similarity score is high (≥ cos 15◦), we conclude that the sub-
ject continues to perform the same activity as there is no significant
change in the audio components. If not, we split the audio at that
time instance τ + j and create two new segments (see Figure 4)
{Xt |t ∈ [τ ,τ + j]} and {Xt |t ∈ [τ + j,τ + ∆t]}. The labels of these
two audio segments are assigned as the label of the corresponding
IMU segments {It |t ∈ [τ ,τ + j]} and {It |t ∈ [τ + j,τ + ∆t]}.

Through this scheme, we eliminate most of the multi-label in-
stances, albeit a few activities with very similar audio signatures
may remain. In this context, if any intermediate segment is silent,
then also the algorithm may find it different from its previous seg-
ment (which may contain some valid audio). In such cases, we
ignore the intermediate silent audio segments as neither the audio
nor the corresponding IMU segment points to a relevant change.

5 EVALUATION
As LASO sometime returns multiple labels while encountering con-
founded activities, we compute the accuracy of LASO over the two
datasets (details in Section 3) in terms of Dice Similarity Coefficient
score (D) which measures the similarity between two sets as fol-
lows. Let A and B be the sets of activities in the ground-truth and
the ones detected by LASO, respectively. Then D =

2×|A∩B |

|A |+ |B |
. We

compute the average Dice-Coefficient across all the instances.

5.1 Preparation of the Ground-Truth
For the in-house dataset, we directly obtain the ground-truth an-
notations from the video data. On the other hand, although the
CMU-MMAC dataset provides activity labels annotated by human
annotators, we cannot use those as the ground truths because of
the following reason. The activity label space in CMU-MMAC is
unrestricted; therefore, the annotators have used very granular la-
bels where multiple similar labels may indicate a single activity. For
example, both the labels ‘take-fork’ and ‘take-scissors’ have been
used in CMU-MMAC, but even the IMU data may not be able to
detect activities at this granularity; so we use a single activity label,
for example, ‘handling utensils’ replacing both the above labels.
Therefore, we obtain the ground-truth, by re-annotating as follows.

We start with the 45 unique labels provided by the CMU-MMAC
dataset annotators across the 10 subjects. Corresponding to each of
these 45 unique labels, we look into the individual video instances
(available with the dataset, see Subsection 3.2) of different activi-
ties. As the videos are multi-angled, to reduce the cognitive load of

(a) (b)

Figure 5: Accuracy: (a) CMU-MMACand (b) In-houseDataset

the annotators, we clip these videos and create a set of 27 unique
animated images based on the primary view-port for individual
activities. We pose the annotation task as an online survey where
we ask the annotators to annotate these images with the activity
labels from Table 2 with the context ‘Kitchen’ and ‘General’ with
an additional label ‘None-of-the-Above’. From the survey, we have
received the annotations from 15 independent annotators. We first
start by assessing the quality of the annotations by evaluating Co-
hen’s κ statistics [28]. We observe a fair inter-annotator agreement
with an average of κ-statistics ≈ 0.40. This is further comforting for
us to know that after taking the majority agreement, we find only
15% of the activities mapped to ‘None-of-the-Above’. Once these
annotations are obtained, we prepare the ground-truth for all the 10
subjects, taking the majority consensus for each activity annotation.
We also filter out the activities marked as ‘none’ in the CMU-MMAC
annotations and consider only the activities of interest.

5.2 Labeling Performance
From the results shown in Figures 5a and 5b, we see that for most
of the users, LASO performs with an average Dice-Coefficient of
∼ 0.78 (±0.05) for the CMU-MMAC dataset and ∼ 0.93 (±0.04) for
the in-house dataset. We get a little low accuracy over the CMU-
MMAC dataset compared to the in-house dataset, as CMU-MMAC
uses 6 different labels in contrast to the 3 different labels used in the
in-house dataset. We also investigate the drop in the accuracy for
some subjects and find that in a few cases, the audio-based activity
recognitionmodel gets confused between the labels where the audio
frequencies of the generated sound are similar. For example, cutting
a metal pipe rapidly using a saw generates audio signals similar
to those generated by a drill (the activity ‘using drill’ is also there
in the label space, see Table 2); therefore an error gets introduced
when the subject cuts the pipe rapidly.

5.3 Eliminating Multi-label Instances
Next, we observe the volume of multi-labeled instances as a result
of confounded activities after the first pass (before feedback) and
the second pass (after feedback) of LASO. Figure 6a shows the
percentage of multi-labeled instances after the first pass and the
second pass over the CMU-MMAC dataset. Similarly, Figure 6b
plots the same after the first pass over the in-house dataset; notably,
almost all the multi-label instances have been resolved after the
second pass. From both the figures, we observe that the proposed
feedback mechanism over LASO can eliminate the majority of the
multi-label instances by resolving the confounding of activities.
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(a) (b)

Figure 6: Percentage of Multi-labeled Instances in (a) CMU-
MMAC Dataset, (b) In-house Dataset

Notably, these results have been generated using ω = 10; we next
analyze the impact of ω over LASO design.

5.4 Impact of ω: Annotated Data Volume vs
Amount of Multi-labeled Instances

ω defines the window size based on which we compute the change-
point scores (Subsection 4.2). In Figure 7a, we show the amount
of labeled IMU instances (in terms of percentage of the total avail-
able data) with different ω values for the 5 users over the in-house
dataset. Figure 7b plots the percentage of multi-labeled instances
over the in-house dataset after the first pass of LASO. We observe
that the volume of labeled data increases with the increase in the
ω value, whereas the amount of multi-label instances due to the
confounded activities also increases. Although we have not shown
the result for the CMU-MMAC dataset explicitly due to space limita-
tion, we observe similar trends in that dataset as well. A large value
ofω may cause a miss in the actual activity change-points, resulting
in confounded activities and multi-labeled instances. Notably, an
increasing number of multi-labeled instances after the first pass of
LASO increases the feedback processing overhead (Subsection 4.4)
over the edge-device. However, a small value of ω may produce fre-
quent activity change-points. As the IMU and thereafter the audio
segmentation are done at the detected change-points, the generated
audio segments are likely to be too small to detect any meaningful
activity label, thus resulting in an increased number of unlabeled
IMU instances. Besides this, the audio signal’s background noise
also affects, which is likely to be more prominent over a small
segment of the audio clip. For example, many times, the audio-
based model returns an activity like ‘person talking’; consequently,
we have to ignore such segments for IMU labeling. Therefore, we
observe that a large window size is more suitable; although, it esca-
lates multi-label instances. Thus, a suitable choice of ω depends on
the processing capability of the edge-device.

Interestingly, we observe that even though for most of the users,
LASO can label 55–60% of the data when the ω value is large;
however, an appreciable portion is still left unlabeled. Investigating
this, we find that at times, the human annotators labeled the data in
a stretch, causing a good number of irrelevant activities to creep in
within the valid labels. For example, when the subject is hammering
a wooden plank with nails, for which he often picks the nails. As these
intermediate activities (like picking a nail) is less than a few seconds,
the annotators usually skip these and include them in the correct
ground truth time with appropriate labels like ’using a hammer’. We

(a) (b)

Figure 7: Impact ofω over In-house Dataset: (a) Data Volume
Labeled and (b) Percentage of Confounded Instances

(a) (b)

Figure 8: (a) Classification Accuracy on the Labeled Data and
(b) Time Required for Labeling at the Edge

observe the same behavior for the CMU-MMAC dataset, where the
annotators annotate the entire activities of ‘putting the pan in the
baking oven’ and ‘switching on the oven’ as ‘put-baking_pan-into-
oven’ (we discuss this in Section 6). However, most of these small
intermediate activities contain no relevant acoustic signatures, thus
providing no valid labels. Therefore, a significant portion of the
unlabeled data that LASO skips in labeling are actually due to such
noises in the dataset itself. Thus, we observe that LASO firmly
ensures that the labels are provided only for those instances where
the framework is confident that the target activities have occurred
with appreciable acoustic signatures.

5.5 Classification Quality Analysis
As the labeled data generated by LASO is likely to be used sub-
sequently for supervised learning, we check the classification ac-
curacy using the LASO-generated labeled IMU data. As there is a
certain amount of imbalance in the duration of each activity being
performed by the users, we first balance the dataset by oversampling
it using Synthetic Minority Oversampling Technique (SMOTE) [10].
We then perform a 5-fold cross-validation with stratified random
sampling on this balanced data for evaluating the labeling accuracy
using a Random Forest-based model (number of estimators = 10).
From Figure 8a, we observe that the labeling accuracy is quite high
(for in-house dataset), albeit with a high variance because of the
restricted volume of the overall dataset.

5.6 Resource Consumption over the Edge
In LASO, we chose audio over other modalities like the video to
ensure that the processing overhead is less enough for executing the
framework over an edge-device. Here, we benchmark the resource
consumption behavior of LASO over a Raspberry Pi 3 Model B
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(a) (b)

Figure 9: Resource Consumption over the Edge – (a) CPU
Consumption and (b) Memory Consumption

development board (running RaspbianOSwith Linux kernel version
4.19.75-v7+). The device runs on an ARMv7 processor with primary
memory of 1GB. Here we show the results for the in-house dataset
only due to the space limitation; we observe a similar resource
consumption behavior for the CMU-MMAC dataset.

We start by analyzing the total execution time of LASO. For
this, we record the execution time for two subjects with the max-
imum volume of IMU data. Furthermore, to get a clear idea, we
compare this time with the total execution time of LASO on a stan-
dard Dell Inspiron laptop with Intel Core i7 processor and 16GB
primary memory (running Ubuntu 18.04 with Linux kernel version
4.15.0−99−generic). From Figure 8b, we see that LASO takes higher
execution time on Raspberry Pi in comparison to the laptop. How-
ever, in both cases, we observe that the execution time increases
with an increase in the data volume. Therefore, we can understand
that there is a trade-off between the execution time, periodicity of
labeling activity, and the specification of the edge device, which
can be exploited judiciously depending on available infrastructure.

To delve deeper, we also observe the CPU consumption (from
/proc/stat) and primary memory consumption (using free) by
LASO. From Figures 9a and 9b, we see that LASO consumes more
resources both in terms of computing and memory while execut-
ing the feedback mechanism. This is mostly because the feedback
mechanism involves more computation, including complex signal
processing tasks to obtain MFCC vectors corresponding to the au-
dio segments. However, in none of the cases, LASO chokes the
resources on the edge-device and can successfully label the data.

6 DISCUSSION
Here we summarize some interesting observations as experienced
during the development of LASO.

6.1 Granularity of Labeling
One of the primary advantages of human-in-the-loop based annota-
tion is that it allows fine-grained activity labels to be tagged to the
sensor data. However, as LASO depends on the acoustic context, it
is restricted to the granularity of labeling. Nevertheless, as LASO
leverages the open pre-trained models which tend to get richer
with the increasing availability of new acoustic signatures, LASO
is expected to improve over time in terms of the granularity of
the activities. Albeit these labels might not be as fine-grained as
annotated by a human annotator; however, at times, it may put
forward more accurate labels as well. For example, during exper-
imentation on the CMU-MMAC dataset, we observe that for the

activities “putting the baking pan into the oven” and subsequently
“switching it on”, the corresponding human-annotated label (pro-
vided by CMU-MMAC annotators) is ‘put-baking-pan-into-oven’. In
contrast, the framework detected two activities ‘Handling Utensils’
and ‘Microwave-in-Use’. This is because the IMU change-points
recorded the changes in activities, and subsequently, (a) the noise
of the baking pan and (b) the beeping sounds caused by pressing
the oven-switches further confirmed two separate labels.

6.2 Labeling Silent Activities
As LASO depends on the availability of audio signatures, one sce-
nario that the framework does not explicitly tackle is regarding
the labeling of ‘silent activities’ that do not generate significant
audio. For example, we observe in the CMU-MMAC kitchen dataset
that there are instances where the subject is ‘walking-to-the-fridge’,
and the corresponding audio segment does not capture anything
relevant to infer this activity. Despite this limitation, this frame-
work can efficiently detect change-points in the IMU data stream
through the variations in the change-point scores. This opportunity
can be utilized to obtain the activity labels only for these instances
by applying schemes similar to [13], where we can directly probe
the user after a specific change in activity is observed, although
no significant audio signature is recorded. Moreover, we also find
that the number of such instances is usually not that huge in vol-
ume; thus, involving some “human-in-the-loop" might not be too
expensive.

7 CONCLUSION
Data annotation for human activity recognition is a significant
challenge, where myriads of sensors continuously generate data,
albeit a majority of the data remains unlabeled. Existing frame-
works like active learning try to reduce human interventions by
selectively probing the human annotators for labeling the ambigu-
ous data points; however, such frameworks involve tedious and
time-consuming “human-in-the-loop" approaches. In contrast to
this, in this paper, we have developed an edge-based framework
to fully automate the data annotation process with the help of lo-
comotive and audio data, both of which are widely available in
various smart-home environments. Being edge-based, the frame-
work allows the entire process to be non-intrusive in terms of user’s
audio privacy. Rigorous experimentation of LASO over two real-life
datasets shows that LASO can label significant portions of the IMU
data without involving any human annotator while maintaining
appreciable accuracy. Also, a PoC implementation over a resource-
constrained edge-device shows that the framework is capable of
successfully performing these annotations over the edge.
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