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Abstract—The social and financial costs associated with
Alzheimer’s disease (AD) result in significant burdens on our
society. In order to understand the causes of this disease, public-
private partnerships such as the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) release data into the scientific community.
These data are organized into various modalities (genetic, brain-
imaging, cognitive scores, diagnoses, etc.) for analysis. Many
statistical learning approaches used in medical image analysis do
not explicitly take advantage of this multimodal data structure. In
this work we propose a novel objective function and optimization
algorithm that is designed to handle multimodal information for
the prediction and analysis of AD. Our approach relies on robust
matrix-factorization and row-wise sparsity provided by the �2,1-
norm in order to integrate multimodal data provided by the
ADNI. These techniques are jointly optimized with a classifi-
cation task to guide the feature selection in our proposed Task
Balanced Multimodal Feature Selection method. Our results, when
compared against some widely used machine learning algorithms,
show improved balanced accuracies, precision, and Matthew’s
correlation coefficients for identifying cognitive decline. In ad-
dition to the improved prediction performance, our method is
able to identify brain and genetic biomarkers that are of interest
to the clinical research community. Our experiments validate
existing brain biomarkers and single nucleotide polymorphisms
located on chromosome 11 and detail novel polymorphisms on
chromosome 10 that, to the best of the authors’ knowledge, have
not previously been reported. We anticipate that our method
will be of interest to the greater research community and have
released our method’s code online.1

Index Terms—Alzheimer’s disease, multimodal, classification,
alternating direction method of multipliers, biomarker identifi-
cation

I. INTRODUCTION

Alzheimer’s Disease (AD) is a chronic neurodegenerative

condition that has significant health impacts on affected pa-

tients and imparts significant financial burden on society. AD

1Code is provided at: https://github.com/minds-mines/TBMFS.jl

is a progressive disease characterized by loss of memory and

essential mental function. AD affects the neurons in the brain

involved in thinking, learning and memory. Cognitive decline

manifests itself in a patient when brain cells are damaged

or destroyed by AD. By 2030, according to the Alzheimer’s

Association [12], the number of people worldwide living with

AD is estimated to to rise to nearly 76 million people. Given

the massive social and financial costs associated with AD it is

critical that we develop strategies for the early-diagnosis and

treatment of the disease.

As of 2019, none of the pharmacological treatments are

able to stop or slow down the disease. The medications that

are currently available are designed to temporarily alleviate

symptoms associated with AD, not cure the disease. To address

this gap researchers are working towards the development of

AD treatments that are able to slow or stop the progression of

the disease. In order to make progress on this goal the research

community has tried to address two main issues; first, identify

the underlying mechanisms of the disease and second, develop

novel treatments that can halt progression of the disease.

The underlying mechanisms behind the development of the

disease are not well understood. In a recent study [14] it was

shown that damage to brain cells in the precuneus, a brain

region related to cognitive function, can occur 20 years before

any AD-related symptoms are observed. It is hypothesized

that the folding of amyloid-β and tau proteins leads to the

neurodegeneration that can lead to a future diagnosis although

it is unclear exactly what mechanism causes this folding. In

addition, many clinical AD trials have failed [26] to produce

significant results in slowing or halting the progression of

AD. It is possible, given that irreversible neural damage can

occur years before any symptoms are observed, that patients

included in these clinical studies had significant damage before

treatment began during the trial. Nonetheless, both of these
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issues has led to a concerted effort in identifying AD-relevant

biomarkers that are predictive of a future AD diagnosis.

Organizations [19] such as the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) provide clinical data to re-

searchers to analyze and understand the disease. These clinical

data sources are inherently multimodal, meaning that a single

patient may have data associated with multiple clinical tests

and tools. Recent works [6], [8], [21], [33], [38], [39] have

shown promise in diagnosing AD with machine learning ap-

proaches, although, many of these algorithms do not explicitly

take into account the multimodal structures associated with the

data provided. Recent multimodal deep learning approaches

[35], have used various neural architectures to extract latent

features from complex multimodal data. Once these latent

features are extracted, they are concatenated together for the

final classification task; this two-stage approach does not allow

for the available labeled data to be effectively utilized during

the multimodal combination.

In this work, we develop a novel method to combine

multimodal neuroimaging and genetic data which is jointly
optimized with a classification task; namely, identifying the

cognitive status of patients in the ADNI cohort. Our approach,

optimized by the alternating direction method of multipli-

ers [5], works to balance multimodal feature selection with

classification to simultaneously identify which features are

important for an AD diagnosis. We present the following

scientific contributions:

- A novel objective function that balances feature selec-

tion and classification to fuse multimodal data available

through the ADNI.

- An algorithm derivation, using the multi-block alternating

direction method of multipliers framework, to optimize

the proposed Task Balanced Multimodal Feature Selec-
tion objective.

- Improved classification performance against an array of

machine learning algorithms that have been widely used

in AD classification and multimodal data integration.

- A validation of existing biomarkers reported in AD liter-

ature and an identification of a novel collection of genetic

single nucleotide polymorphism (SNPs), specifically on

chromosome 10, that warrant further investigation.

II. METHODS

In this section we present the justification behind our pro-

posed Task Balanced Multimodal Feature Selection method,

build an associated objective function and propose an opti-

mization algorithm. For the remainder of this manuscript we

represent the rows and columns of the matrix X as xi and xi

respectively.

A. Our Objective

The goal of our work is to design an algorithm that is able to

integrate multiple sources of data, reduce their feature space,

improve the classification accuracy, all while maintaining

model interpretability. We begin with the multi-task feature

learning objective motivated by Liu et al. [25]

min
W

‖Y −WX‖2F + γ ‖W‖2,1 , (1)

where X ∈ R
d×N ,W ∈ R

c×d and Y ∈ R
c×N are the

input, regression coefficient and output matrices, ‖X‖2,1 =∑n
i=1

∥∥xi
∥∥
2

is the �2,1-norm, and γ is a hyperparameter

designed to control the row-sparsity of W. The problem in

Eq. (1) aims to learn a multi-target regression model to jointly

predict c-related regression targets. It is worth noting that if c
equals one than Eq. (1) is equivalent to lasso [34] regression.

We aim to use the feature selection property of the �2,1-norm

to identify important features in the input data X via matrix-

factorization. Thus, we can rewrite the optimization in Eq. (1)

as

min
B,ZZT=I

‖X−BZ‖2F + γ ‖B‖2,1 , (2)

where B ∈ R
d×r, Z ∈ R

r×n, and r a hyperparameter. Note

that for any pair {B,Z} a corresponding pair {B/α, αZ} with

α > 1 has a smaller objective value of Eq. (2); this will

force α to go to infinity. To handle this issue we carefully

include an orthogonal constraint on ZZT . Equation (2), due

to the squared Frobenius norm in the first term, is known to

be sensitive to outliers in the input data X. Following many

existing works in statistical learning and data mining [11],

[36], [37], we replace the squared Frobenius norm with the

�2,1-norm to optimize

min
B,ZZT=I

‖X−BZ‖2,1 + γ ‖B‖2,1 . (3)

Then, inspired by recent work from Ghosal et al. [13], we

generalize the formulation in Eq. (3) to account for M
modalities by

min
Bm,ZZT=I

[
αm ‖Xm −BmZ‖2,1 + γm ‖Bm‖2,1

]
, (4)

where each αm and γm balance modality reconstruction and

feature selection. In Eq. (4) we aim to learn a latent space

representation, Z, constructed via the multimodal features

identified by each Bm ∈ R
dm×r. Finally, in order to iden-

tify features in each Xm that are predictive of a particular

diagnosis we balance the feature selection terms in Eq. (4)

with a classification task. To guide the latent space discovery

we incorporate a hinge-loss support vector machine (SVM)

into our objective

min
wk,bk,Bm,

ZZT=I

M∑
m=1

[
αm ‖Xm −BmZ‖2,1 + γm ‖Bm‖2,1

]

+
1

2

K∑
k=1

‖wk‖22 + C
N∑
i=1

K∑
k=1

[(
1− (

wT
k zi + bk

)
yik

)
+

]
,

(5)

where C > 0 is a regularization parameter, yik ∈ {−1, 1}
are the multi-class labels associated with the i-th patient

and (·)+ is defined as (a)+ = max(0, a). Note that the

classification takes as input the latent space Z instead of
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Fig. 1: Visualization of the Task Balanced Multimodal Feature Selection method. Our model takes as input M modalities,

X1,X2, . . .XM ∈ R
dm×N , and discovers a latent representation Z ∈ R

r×N (in purple) by way of simultaneous matrix

factorization with B1,B2, . . .BM ∈ R
dm×r (in blue, red, ..., and green). The M factorizations are jointly optimized with a

classifier, specifically a support vector machine. Note that the N -th column of Z is shared across the M factorizations and is

jointly dependent on the classification task. This work incorporates robust matrix-factorization and row-wise sparsity on each

Bm by way of the �2,1-norm to improve the joint classification task and identify biomarkers that are predictive of Alzheimer’s

disease. (Viewed best in color)

the raw multimodal data Xm; this introduces an additional

coupling between the first and last terms. We call Eq. (5)

the Task Balanced Multimodal Feature Selection objective. A

visual representation of our proposed method is provided in

Figure 1. While the objective of our new method in Eq. (5) is

clearly and reasonably motivated, the terms are dependent on

one another, making it difficult to optimize this objective in

general. To solve the proposed objective we derive an efficient

iterative algorithm using the multi-block extension [16] of the

alternating direction method of multipliers (ADMM).

B. Alternating Direction Method of Multipliers

The ADMM has been widely used to solve problems in

bioinformatics, signal processing, and many other application

areas across statistical learning [5]. The ADMM aims to

decouple a larger and more difficult problem into a series of

smaller sub-problems that are easier to solve. An extension to

the ADMM, known as the multi-block ADMM [16], is de-

signed to extend the ADMM framework to optimize functions

of the following form:

min
xi

f1(x1) + f2(x2) + · · ·+ fK(xK) ,

subject to E1x1 +E2x2 + · · ·+EKxK = c .
(6)

Equation. (6) can be solved by minimizing the following

unconstrained objective:

L(x1, . . . ,xk, λ) =

K∑
k=1

f(xk) +
μ

2

∥∥∥∥∥
K∑

k=1

Ekxk − c+
1

μ
λ

∥∥∥∥∥
2

2

,
(7)

where λ is a Lagrangian multiplier and μ > 0 is a penalty

parameter. The objective in Eq. (7) can be solved by the

following iterative procedure that updates each xk (primal)

and the Lagrangian variable λ (dual):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt+1
1 ← argminx1

L(xt
1, x

t
2, ··, xt

K , λt) ,

xt+1
2 ← argminx2

L(xt+1
1 , xt

2, ··, xt
K , λt) ,

· · ·
xt+1
K ← argminxK

L(xt+1
1 , xt+1

2 , . . . , xt
K , λt) ,

λt+1 = λt + μ
(∑K

k=1 Ekxk − c
)

,

μt+1 = ρμt ,

(8)

where ρ > 1 is a constant. The process described above in

Eq. (8) is repeated until the algorithm converges.

C. Algorithm Derivation

Since the terms in Eq. (5) are coupled across the pre-

dictors Z, Bm, and W and includes the non-smooth �2,1-

norm, it is difficult to optimize in general. To decouple the
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objective we introduce four sets of constraints Ẑ = Z,

Fm = Xm−BmZ, B̂m = Bm, and eik = yik−
(
wT

k zi + bk
)
.

Since yik ∈ {−1, 1}, it follows that 1 − (
wT

k zi + bk
)
yik =

yikyik − (
wT

k zi + bk
)
yik = yik

(
yik − (

wT
k zi + bk

))
[27].

This allows us to derive the SVM updates in the primal

instead of the dual. Then, following the multi-block ADMM

framework described above, we systematically incorporate

these constraints into the objective

min
eik,wk,bk,Z,

Ẑ,Fm,Bm,B̂m

L =

M∑
m=1

[
αm ‖Fm‖2,1 +

μ

2
‖Fm − Lm‖2F

+ γm

∥∥∥B̂m

∥∥∥
2,1

+
μ

2

∥∥∥∥Bm − B̂m +
1

μ
Λm

∥∥∥∥
2

F

]

+
1

2

K∑
k=1

‖wk‖22 + C
N∑
i=1

K∑
k=1

(yikeik)+

+
μ

2

N∑
i=1

K∑
k=1

(
eik − (

yik − (
wT

k zi + bk
))

+
1

μ
ηik

)2

+
μ

2

∥∥∥∥Z− Ẑ+
1

μ
Ω

∥∥∥∥
2

F

subject to ẐẐT = I ,

(9)

where Lm = (Xm −BmZ) − 1
μΘm, Θm, Λm, Ω, and ηik

are Lagrange multipliers and μ > 0 is a penalty parameter.

For the remainder of this section, we derive the multi-block

ADMM update steps for minimizing Eq. (9).

wk Update: Removing terms not dependent on wk from

Eq. (9) gives

min
wk

1

2
‖wk‖22 +

μ

2

N∑
i=1

(
eik − yik +wT

k zi + bk +
1

μ
ηik

)2

.

(10)

Taking the derivative of Eq. (10) with respect to wk, setting

the result equal to zero, and solving for wk gives

wT
k =

N∑
i=1

[(
yik − eik − bk − 1

μ
ηik

)
zTi

]
∗

(
N∑
i=1

ziz
T
i +

1

μ
I

)−1

,

(11)

bk Update: Taking the derivative of Eq. (10) with respect

to bk, setting the result equal to zero, and solving for bk gives

bk =

∑N
i=1

(
yik − eik −wT

k zi − 1
μηik

)
N

.
(12)

eik Update: Removing terms not dependent on eik from

Eq. (9) gives

min
eik

C (yikeik)+ +
μ

2
(eik − sik)

2
, (13)

Algorithm 1 ADMM algorithm to optimize Eq. (9)

1: Data: Multimodal data Xm for m ∈ [1,M ] and the N×K
class labels yik ∈ Y.

2: Hyperparameters: C > 0, αm > 0, γm > 0, μ > 0,

ρ > 1 and r ∈ Z≥1.

3: Initialize: eik,wk, bk,Z, Ẑ,Fm,Bm, B̂m, Θm, Λm and

Ω.

4: while the objective in Eq. (9) not converged do
5: for k ∈ K do
6: Update wk by Eq. (11).

7: Update bk by Eq. (12).

8: for i ∈ N do
9: Update eik by Eq. (14).

10: Update ηik = ηik +μ(eik − yik +wT
k zi + bk).

11: end for
12: end for
13: Update zi ∈ Z by Eq. (16)

14: Update Ẑ by Eq. (18)

15: for m ∈ M do
16: Update f i ∈ Fm by Eq. (20).

17: Update b̂i ∈ B̂m by Eq. (22).

18: Update Bm by Eq. (24).

19: Update Θm = Θm + μ (Fm − (Xm −BmZ)).
20: Update Λm = Λm + μ(Bm − B̂m).
21: end for
22: Update Ω = Ω+ μ(Z− Ẑ).
23: Update μ = ρμ
24: end while

where sik =
(
yik − (

wT
k zi + bk

))− 1
μηik. Taking the deriva-

tive of Eq. (13) with respect to eik, setting the result equal to

zero, and solving for each eik gives the closed-form updates

eik =

⎧⎪⎨
⎪⎩
sik − C

μ yik when yiksik > C
μ ,

0 when 0 ≤ yiksik ≤ C
μ ,

sik when yiksik < 0 .

(14)

Z Update: Removing terms not dependent on Z from

Eq. (9) and optimizing each column of Z individually gives

the following N minimizations

min
zi

M∑
m=1

‖Bmzi − tim‖22 +
K∑

k=1

(
wT

k zi − uik

)2

+

∥∥∥∥zi − ẑi +
1

μ
ωi

∥∥∥∥
2

2

,

(15)

where ωi are the columns of Ω, tim = xim− fim− 1
μθim and

uik = yik − eik − bk − 1
μηik. Taking the derivative of Eq. (15)

with respect to zi, setting it equal to zero, and solving for zi
gives the closed-form update

zi =

(
M∑

m=1

BT
mBm +

K∑
k=1

wkw
T
k + I

)−1

∗
[

M∑
m=1

BT
mtim +

K∑
k=1

wkuik + ẑi − 1

μ
ωi

]
.

(16)
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Ẑ Update: Removing terms not dependent on Ẑ from

Eq. (9) gives

min
Ẑ

∥∥∥∥Z− Ẑ+
1

μ
Ω

∥∥∥∥
2

F

subject to ẐẐT = I , (17)

which is an instance of the orthogonal Procustes problem [31]:

Ẑ = UVT where
{
U,Σ,VT

}
= svd(Z+

1

μ
Ω) . (18)

Fm Update: Removing all terms from Eq. (9) that do

not include Fm gives

min
Fm

αm ‖Fm‖2,1 +
μ

2
‖Fm − Lm‖2F . (19)

We can decouple Eq. (19) by row and use the results derived

in [23] to update each row of f i in a give Fm by

f i = li
(
1− αm/(μ

∥∥li∥∥
2
)
)
+

, (20)

where (x)+ = max(0, x). This procedure is repeated for m ∈
[1,M ].

B̂m Update: Dropping all terms without a B̂m in Eq. (9)

gives

min
B̂m

γm

∥∥∥B̂m

∥∥∥
2,1

+
μ

2

∥∥∥O− B̂m

∥∥∥2
F

, (21)

where Om = Bm + 1
μΛm. Similar to the update for Fm, we

can decouple Eq. (21) by row-by-row and derive an update

for each b̂i ∈ Bm by

b̂i = oi
(
1− γm/(μ

∥∥oi
∥∥
2
)
)
+

. (22)

Bm Update: Keeping all terms from Eq. (9) that contain

Bm gives

min
Bm

‖BmZ+Mm‖2F + ‖Bm +Nm‖2F , (23)

where Mm = Fm −Xm + 1
μΘm and Nm = −B̂m + 1

μΛm.
Taking the derivative of Eq. (23), setting the result equal to

zero, and solving for Bm gives

Bm =
(−MmZT −Nm

) (
ZZT + I

)−1
. (24)

The final sequence of primal and dual updates designed to

minimize Eq. (9) are summarized in Algorithm 1.

III. EXPERIMENTS

A. Experimental Data
The baseline magnetic resonance imaging (MRI) scans, sin-

gle nucleotide polymorphism (SNP) arrays, and demographic

information for 821 ADNI-1 participants were obtained from

the ADNI website. We performed FreeSurfer automated par-

cellation on the MRI data and extracted voxel-based mor-

phometry (VBM) measures for 90 target regions of interest by

following steps detailed in Risacher et al. [29]. For the SNP

data the quality control steps discussed in Shen et al. [32]

were followed. The labels, Alzheimer’s disease (AD), mild

cognitive impairment (MCI), and healthy control (HC), were

used as diagnostic classification groups. Participants with no

missing MRI, SNP, or diagnostic information were included,

providing a set of 723 subjects (170 AD, 352 MCI, 201 HC)

across the FreeSurfer, VBM, and SNP modalities.

B. Experimental Settings

In the following experiments we take, as input, the mul-

timodal data described above and perform the binary clas-

sification task to predict AD vs. HC/MCI. The performance

results from the binary classification experiments are reported

from a repeated-k-fold cross validation scheme where the input

and output data are shuffled in-between each k-fold cross

validation experiment. The hyperparameter settings for our

method are C = 1, α1 = 100, α2 = 100, α3 = 0.01, γ1 =
100, γ2 = 100, γ3 = 0.1, r = 5, μ = 0.01, ρ = 1.1 where

FreeSurfer, VBM, and SNP are the first, second, and third

modalities.

We compare the proposed Task Balanced Multimodal Fea-
ture Selection method (Ours) against k-nearest neighbors (k-
NN), support vector machines (SVM) via the LIBSVM library

[9], �1-regularized logistic regression (Logistic), a multi-layer

perceptron neural network (MLP), and two gradient boosted

decision trees using the XGBoost [10] and LightGBM [22]

libraries. The XGBoost [33], support vector machine [8],

variants on logistic regression [21], and multi-layer perceptron

neural network [38] methods have all been used in the past

to identify AD vs. HC/MCI. The LightGBM method has

been used [1] as the final classifier from the output of a

deep neural architecture applied to multimodal data. For each

of the compared algorithms, we concatenate features along

the vertical dimension for each modality to construct the

input matrix X ∈ R
(d1+d2+d3)×n. We test the performance

of each compared method against the following metrics:

Balanced Accuracy (BACC) [7], precision, recall, F1-score

= 2 × precision×recall
precision+recall

, and Matthews Correlation Coefficient

(MCC) [4]. Each of the compared methods have undergone

extensive hyperparameter tuning to ensure a fair compari-

son. The logistic regression, k-nearest neighbors, multi-layer

perceptron neural network algorithms, and all repeated-k-

fold cross validation/hyperparameter-search results were im-

plemented using the Flux [18] and MLJ [3] libraries.

C. Classification Performance

In Table I, we report the average performance and stan-

dard deviation results of our method compared against the

aforementioned algorithms. The results presented in Table I

show that our proposed algorithm outperforms the compared

methods in terms of BACC, precision, and MCC. Our algo-

rithm, within a standard deviation, is competitive against the

other algorithm’s F1-scores. Our approach does not perform

as well with regards to recall. Nonetheless, a high precision

value indicates that our method produces fewer false positives

when predicting an AD classification when compared to the

other methods. This is likely due to the strong biomarker

identification properties provided by the �2,1-norm. This robust

feature selection property may cause our approach to ignore

features that contain subtle variations that may be important

for a higher recall score.
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Model BACC Precision Recall F1-score MCC

k-NN 0.515±0.031 0.508±0.016 0.972±0.026 0.885±0.022 0.070±0.136

SVM 0.598±0.060 0.566±0.044 0.876±0.050 0.859±0.036 0.213±0.128

Logistic 0.629±0.071 0.589±0.056 0.894±0.035 0.873±0.028 0.276±0.143

MLP 0.593±0.078 0.643±0.146 0.591±0.219 0.672±0.185 0.158±0.125

XGBoost 0.618±0.062 0.576±0.044 0.930±0.032 0.886±0.031 0.288±0.138

LightGBM 0.607±0.064 0.566±0.045 0.950±0.031 0.893±0.031 0.287±0.161

Ours 0.728±0.074 0.751±0.096 0.721±0.094 0.805±0.050 0.372±0.129

TABLE I: Ten repeated six-fold cross-validations and their standard deviations for identifying ADNI cohort participants with

AD vs. HC/MCI. Each of the compared methods have undergone extensive hyperparameter tuning.

D. Biomarker Identification

In addition to the improved predictive performance reported

in Table I, the Task Balanced Multimodal Feature Selection
method can be analyzed to identify which biomarkers are

most important for prediction. The key insight that reveals

the interpretability of our model is that each learned Bm in

Eq. (5) determines the construction of the latent representation

Z. Since the construction of Z is balanced via the classification

task we expect that the features identified by each Bm can

provide novel insight into AD-related biomarkers. In Figs. 2,

3 and 4, we analyze, rank, and plot each row-sum (reduced

over r) of Bm for the FreeSurfer, VBM, and SNP modalities.

In Fig. 2 we provide the FreeSurfer and VBM biomarkers

identified by our method. The top-5 areas of the brain identi-

fied by our method generally match up with the literature.

For instance, atrophy of the precuneus [28] and inferior

temporal gyrus [30] have been discovered in patients with AD-

related dementias; these biomarkers are both ranked highly

by our approach. Furthermore, Jacobs et al. [20] identified

that increased connectivity in the parietal lobe is frequently

observed in patients suffering from mild forms of AD. They

argue that increased connectivity in the parietal lobe, an area

ranked-highly by our method in the FreeSurfer modality, is

a compensation mechanism designed to counteract mild AD

symptoms; further study of these compensation mechanisms

may be a promising path forward for future AD treatment.

The SNP results reported in Fig. 3 and Fig. 4 provide addi-

tional validation of our method’s biomarker identification ca-

pacity. The ranked SNPs from rs2511175 through rs10899496

are associated with the GRB-2-associated-binding protein 2

(GAB2) which has been shown in multiple works [15], [17],

to be associated with both early and late-onset AD. Hibar et
al. [15] proposed that the polymorphisms associated with the

GAB2 protein manifest themselves in observable changes to

brain morphology. The other SNPs in the top-twenty occur on

chromosome 10 and, to the best of the authors’ knowledge, are

not currently published in the literature. Nonetheless, we do

see evidence, specifically in Bertram et al. [2] and Lendon

et al. [24], that chromosome 10 could play a role in the

pathology of AD. The collection of biomarkers identified in

the FreeSurfer, VBM, and SNP modalities, provides substan-

Top-5, FreeSurfer Top-5, VBM
left superior parietal lobule left inferior temporal gyrus
right superior parietal lobule right inferior temporal gyrus
left precuneus right gyrus rectus
right precuneus left gyrus rectus
right caudal middle frontal gyrus right medial superior frontal gyrus

Fig. 2: FreeSurfer and VBM biomarkers identified by our

method in the experiment reported in Table I. The top-5

identified brain biomarkers are listed for each modality.

tial evidence that our approach is able identify biomarkers

associated with cognitive decline.

IV. CONCLUSION

In this work we present the Task Balanced Multimodal
Feature Selection method to identify cognitive decline in the

ADNI cohort. The proposed algorithm incorporates robust

matrix-factorization and feature selection balanced with a clas-

sification task and shows promising performance when applied

to predict AD when compared to other popular statistical

learning methods. Our approach discovers existing, as well

as novel, brain and genetic biomarkers associated with AD.

In addition, we release the code associated with this method

to the wider research community. In the future, we plan to

extend this method to other multimodal AD datasets and

design novel mechanisms for incorporating longitudinal and

missing clinical data.
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Fig. 3: SNP biomarkers identified by our method. Intensities, calculated via the absolute row-sum from the SNP feature

selection matrix, color-coded by chromosome. The �2,1-norm in the Task Balanced Multimodal Feature Selection objective

clearly identifies a sparse set of SNPs located on chromosome 10 (orange) and chromosome 11 (blue). (Viewed best in color)
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Fig. 4: Top-20 SNPs (sorted and named) identified by our method. The identified SNPs in this panel are colored by the

chromosome on which they occur in Fig. 3.
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