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Abstract— A critical challenge in using longitudinal neu-
roimaging data to study the progressions of Alzheimer’s
Disease (AD) is the varied number of missing records of
the patients during the course when AD develops. To tackle
this problem, in this paper we propose a novel formulation
to learn an enriched representation with fixed length for
imaging biomarkers, which aims to simultaneously capture
the information conveyed by both baseline neuroimaging
record and progressive variations characterized by varied
counts of available follow-up records over time. Because
the learned biomarker representations are a set of fixed-
length vectors, they can be readily used by traditional
machine learning models to study AD developments. Take
into account that the missing brain scans are not aligned
in terms of time in a studied cohort, we develop a new
objective that maximizes the ratio of the summations of
a number of �1-norm distances for improved robustness,
which, though, is difficult to efficiently solve in general.
Thus, we derive a new efficient and non-greedy itera-
tive solution algorithm and rigorously prove its conver-
gence. We have performed extensive experiments on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.
A clear performance gain has been achieved in predict-
ing ten different cognitive scores when we compare the
original baseline biomarker representations against the
learned representations with longitudinal enrichments. We
further observe that the top selected biomarkers by our
new method are in accordance with known knowledge in
AD studies. These promising results have demonstrated
improved performances of our new method that validate its
effectiveness.

Index Terms— Alzheimer’s disease, longitudinal, repre-
sentation enrichment, imaging biomarker.
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I. INTRODUCTION

AS ONE of the most prevalent and severe type of neu-
rodegenerative disorders [1], [2], Alzheimer’s Disease

(AD) has attracted growing attentions in research in recent
years. Over the past decade, phenotypic biomarkers extracted
from brain images have been widely studied to predict dis-
ease status and/or cognitive performance [3]–[5]. However,
these approaches routinely perform standard regression and/or
classification at each time points separately, which thereby
ignore the longitudinal variations of brain phenotypes. Since
AD is a progressive neurodegenerative disorder, it would
be beneficial to explore the temporal relations among the
longitudinal records of the brain imaging biomarkers.

In the study of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [6], participants return for follow-up scans at
varied time points, including the baseline (BL), the 6th Month
(M6), the 12th month (M12), the 18th month (M18), the 24th
month (M24), and the 36th month (M36), as illustrated in
Fig. 1, which provides the opportunity to use longitudinal data
from multiple time points to build more effective predictive
models. To explore the temporal structure of brain phenotypes,
longitudinal prediction models [5], [7], [8] have been recently
proposed. However, in these studies longitudinal information
has been modeled as tensors, which inevitably complicates the
problem in mathematics. As a result, it is not easy to extend
classical machine learning models, which can only work with
vector or matrix data, to study AD developments.

Another critical challenge in using longitudinal data is
the problem of missing data in the medical records. Higher
mortality risk and cognitive impairment hinder older adults
from staying in studies that require multiple visits and thus
result in incomplete data [9]. The missing imaging records at
different time points lead to samples with varied lengths for
different participants. To deal with this problem, many existing
longitudinal studies of AD only utilize data samples with
complete temporal records for analyses and ignore those with
fewer records over time [5], [7], [8]. Apparently, discarding
the samples with less temporal records could potentially ruin
the dataset. To address this, data imputation methods [9],
[10] have been proposed to handle the missing records in
longitudinal AD data. Using the imputed data with a consis-
tent sample size, regression and classification studies can be
conducted. However, whether these data completion methods
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Fig. 1. Overview of our proposed method to learn an enriched neuroimaging representation with a fixed length, which integrates the baseline
biomarker measurements and dynamic changes in available follow-up biomarker measurements. The blank plots in M18 and M36 denote the
absence of the scans of the currently studied participant in the 18th month and the 36th month.

can preserve the longitudinal structure of neuroimaging mea-
surements or not is still an under-explored topic in AD studies.
What’s worse, these missing data imputation methods could
possibly introduce undesirable artifacts that may worsen the
predictive power of the learned longitudinal models.

To tackle the above problems in longitudinal studies with
incomplete temporal inputs, in this paper we propose a novel
formulation to learn an enriched biomarker representation
which combines the baseline biomarker measurements and
the dynamic temporal imaging records across the follow-up
time points. In our learning framework, we learn a projec-
tion for each participant from her or his biomarker records
at all available follow-up time points (a subset of {M6,
M12, M18, M24, M36}), by which we project the baseline
record into a fixed-length vector, regardless of the inconsis-
tent number of brain scans of the participants in a dataset.
Armed with the fixed-length biomarker representations, we can
directly use conventional learning models to predict cognitive
outcomes.

As schematically illustrated in Fig. 1, the proposed method
first learns a projection from the available follow-up imaging
records, which we use to project the baseline neuroimag-
ing record to learn a fixed-length biomarker representation.
Through this procedure, the learned representation for a
participant simultaneously captures the information conveyed
by both the baseline neuroimaging record and a progres-
sive summary of all available follow-up records, such that
the baseline representation of the participant is enriched by
her or his follow-up longitudinal information. We further
develop our learning objective by replacing the traditional
squared �2-norm distances by the �1-norm distances in our
formulation, to improve the robustness of the learned enriched
representations against possible outlying samples and features
caused by the varied number of brain scans taken at different

time points by different participants in a studied cohort.
Despite its clear motivation, the developed objective ends up
being a non-smooth optimization problem that simultaneously
maximizes and minimizes the summations of a number of
�1-norm distances. To solve this challenging optimization
problem, we derive an efficient and non-greedy iterative
algorithm with theoretically guaranteed convergence. We have
performed extensive experiments on the ADNI cohort that
demonstrate the improved performance resulting from our
new approach. Moreover, we select the top 10 biomarkers
weighted by their predictive power in cognitive tests, which are
highly suggestive and strongly agree with the existing research
findings.

This paper is an extension of our recent work [11] originally
reported in the Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2020 (CVPR 2020).
In this extended journal manuscript, we provide the following
expansions over its conference version:

• We outline the mathematical details for deriving the algo-
rithm to solve our objective and show that it is non-greedy
in nature, where we expend a concrete effort to improve
the mathematical details to unambiguously communicate
the implementation of our algorithm. (Section IV)

• We rigorously prove the convergence of the solution
algorithm in mathematics. (Section IV-C)

• We significantly expand the experimental evaluations to
illustrate the benefits of using the enriched biomarker
representations learned by our new method. (Section V)

– We report new experimental results by using 1 addi-
tional type of imaging biomarkers (the FreeSurfer
biomarkers) as input and 6 additional cognitive
scores as predictive targets. (Section V-B)

– We compare the proposed method against three
recent longitudinal learning models using both
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Voxel-Based Morphometry (VBM) and FreeSurfer
biomarkers respectively. (Section V-C)

– We provide a thorough analysis of the identified
disease relevant biomarkers to justify the clinical
correctness of our new method. (Section V-E)

II. RELATED WORK

A. AD Studies Using Longitudinal Neuroimaging Data

To explore the temporal correlations of the variations of
the neuroimaging markers over AD progressions, longitudinal
features [12]–[14] were studied for predicting cognitive out-
comes. For example, in [12] a longitudinal feature estimation
method was proposed to capture temporal information that can
characterize the changes of specific brain regions over time;
in [13] landmark-based spatial and longitudinal features were
leveraged to identify AD subjects; in [14] a screening group
regularization was utilized to select top consistent and varying
imaging features.

To exploit the collective correlations of cognitive score
changes during the course when AD develops, many lon-
gitudinal multi-task methods were proposed [5], [7], [8],
[14]–[21]. Specifically, in [5] a high-order multi-task feature
learning framework was presented for identifying longitudinal
neuroimaging markers to predict cognitive scores across all
time points. In [15], [17] longitudinal models were designed
to associate genetic biomarkers with temporal imaging phe-
notypes. In [19], [20] a joint multi-modal longitudinal regres-
sion and classification model was proposed to simultaneously
predict the cognitive scores and diagnoses of AD. In [7],
[8] a auto-learning multi-task model was used to explore
the associations between genetic variations and longitudinal
imaging phenotypes, as well as interrelatedness that exists in
different prediction tasks. In [16] multi-relational smoothness
regularization was incorporated to capture the relationship
among different clinical scores. In [14] a multi-task dictionary
learning framework was devised to use both shared and
individual dictionaries to encode both consistent and varying
imaging features when AD develops. In [18] a multi-task
exclusive relationship learning model was recently proposed to
automatically capture the intrinsic relationship among tasks at
different time points for estimating clinical measures based on
longitudinal imaging data. In summary, a variety of sparsity-
induced norms were leveraged for identifying AD related
imaging biomarkers, including the trace-norm [5], Lasso [17],
group Lasso [15], the �2,1-norm [5], [17] and the Schatten
p-norm [7], [8], to name a few.

These longitudinal learning models were successfully
designed to make use of the longitudinal imaging and cognitive
data, which, however, can only deal with data samples with
complete temporal records over the disease progressions. As a
result, the samples that miss certain medical scans have to be
discarded, although they may contain crucial information for
diagnoses of AD.

B. Missing Data Imputation in AD Studies

To address the critical challenge of missing records in
AD studies, many multi-task learning methods [14], [22], [23]

were proposed to impute missing data by exploiting the
correlations among different prediction tasks. In [22] a flexible
feature selection method was developed to deal with missing
data, which formulates the original classification problem as a
multi-task learning problem to make full use of all available
data. In [23] block-wise missing data collected from multiple
sources were decomposed into the multiple completed sub-
matrices, where a two-layer multi-task learning model was
used for both feature-level and source-level analyses.

To utilize multi-modal data, recent studies [9], [24]–[27]
explored multi-view learning models for missing data impu-
tation. In [24], [27] a unified feature-level and source-level
model was developed to effectively integrate information from
multiple heterogeneous sources when block-wise missing data
are present. In [25], [26] a hypergraph learning method was
proposed to represent the high-order relationships among the
subjects by dividing them into groups according to modality
availabilities, with a hypergraph regularization applied to each
groups for making the final prediction. In [9] a sparse regres-
sion model was presented to explore the covariances from the
data in multiple modalities.

More recently, deep learning models were developed for
missing data imputation. In [28] a 3-dimensional (3D) con-
volutional neural network (CNN) was built to use a training
set of subjects with simultaneously available MRI and PET
records. The trained 3D CNN was then used to impute missing
PET scans using the MRI data for the subjects who only had
MRI scans. Besides, both adversarial neural networks [29] and
recurrent neural networks [30] were also used to tackle the
missing data problem for the ADNI dataset.

While these data imputation methods successfully solved
the problem caused by the inconsistent sample sizes in many
longitudinal datasets, the imputed data often have to be rep-
resented as tensors that may potentially complicate the sub-
sequent learning models in mathematics. In addition, artifacts
may be introduced into the imputed data due to the learning
biases cased by the statistical assumptions that underlie these
learning models.

III. OUR OBJECTIVE FOR REPRESENTATION LEARNING

In this section, we formalize the problem of learning an
enriched representation for neuroimaging biomarkers as a
fixed-length vector for every participant using longitudinal
data with missing medical records, with the goal to simultane-
ously capture the information conveyed by both the baseline
imaging record and the progressive changes characterized by
the follow-up records along the following time points.

A. Notations and the Problem Formalization

Throughout this paper, we write matrices as bold uppercase
letters and vectors as bold lowercase letters. Given a matrix
M = [

mij
]
, its trace is defined as tr(M) = ∑

i mi . Given
a vector v, its �1-norm is defined as ‖v‖1 = ∑

i |vi | and its

�2-norm is defined as ‖v‖2 =
√∑

i v2
i .

Given a longitudinal neoroimaging dataset, the temporal
information of a participant can be denoted as: X = {x, X},
where x ∈ �d represents the baseline brain scan by d extracted

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on March 02,2021 at 22:08:10 UTC from IEEE Xplore.  Restrictions apply. 



894 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 3, MARCH 2021

neuroimaging features (biomarkers), and X = [x1, . . . , xn] ∈
�d×n collects a total of n follow-up brain scans at later time
points. Here we highlight that n varies across the dataset,
because different participants in a studied cohort usually miss
different numbers of brain scans at different time points. In the
task of learning representations for neuroimaging biomarkers,
our goal is to learn a fixed-length vector for every participant
from the longitudinal records of X . In this paper, we propose
a general framework that uses the longitudinal data with
misaligned medical records to learn a fixed-length vector
enrichment for every participant. Specifically, first we learn a
projection W = g(X) from X to summarize the temporal vari-
ations of the neuroimaging biomarkers along the time points
after the baseline. Then by applying the learned projection W
onto the baseline neuroimaging record x, we obtain a single
fixed-length vector representation by computing y = f (X ) =
h(g(X), x) ∈ �r . Apparently, the projection could be learned
by different methods, such as Principal Component Analysis
(PCA) [31], Locality Preserving Projection (LPP) [32], etc.
In this paper, we propose a novel projection learning method
which can simultaneously captures the information conveyed
by both the baseline neuroimaging record and the dynamic
changes of the follow-up neuroimaging records. Because the
learned representations for all the participants in the entire
dataset are of the same length, they can be readily used by
traditional statistical and machine learning models in a variety
of tasks, such as predicting cognitive outcomes.

B. Representation Learning Through Projections

In this subsection, we develop a new objective to learn a
fixed-length vector to represent the neuroimaging biomarkers
that are directly extracted from brain scans. By integrating
the baseline neuroimaging record and the dynamic temporal
changes in follow-up neuroimaging records, we aim to pre-
serve the global and local consistencies among the neuroimag-
ing records in the subspace mapped by the learned projection.

First, although the neuroimaging measurements and cogni-
tive status of a participant in a studied cohort could experience
drastic changes over a long time, e.g., a Healthy Control (HC)
subject can be diagnosed with Mild Cognitive Impairments
(MCI) or even converted into an AD patient in a couple of
years, the changes of these quantities between nearby time
points still remain considerably small [33]. Namely, the mea-
surements of the biomarkers of the participants maintain the
local consistency in terms of data magnitude during the pro-
gression of AD. Thus, we need preserve this local consistency
by minimizing the local variance of the medical records
collected in nearby months in the projected subspace. Mathe-
matically, we denote the K -nearest neighbors of xi as Ni and
the local mean vector of xi as xi = 1

K+1

∑
x j∈{Ni∪{xi }} x j .

We can achieve the overall local consistency by minimizing
the following objective [34]:

J Local (W) = tr
(

WT SLW
)

, s.t. WT W = I, (1)

where we define SLi = ∑
x j ∈{Ni∪{xi }}

(
x j − xi

) (
x j − xi

)T

and SL = ∑n
i=1 SLi . Apparently, SLi is the local covari-

ance matrix of the data points around xi . Thus, minimizing

tr
(
WT SLi W

)
ensures the local consistency around xi and

minimizing JLocal in Eq. (1) ensures the overall local con-
sistency of a subject’s records across all the time points when
AD develops, which is in accordance with the broadly used
assumption in machine learning and data mining that data are
smooth on an inherent manifold, i.e., the observed data are
sampled from an underlying sub-manifold that are embedded
in a high-dimensional observation space [32], [35]. In Eq. (1),
we omit the constant factor 1

K+1 for notational brevity.
Second, apart from making use of the local consistency of

the available neuroimaging records in the follow-up months,
we further explore the global structure of all the neuroimaging
records of a participant. Via a global projection, we map X
that resides in the high d-dimensional space into a lower
r -dimensional subspace by computing yi = WT xi to preserve
as much information as possible, for which we maximize the
objective of the PCA [31]:

J Global (W) = tr
(

WT SG W
)

=
n∑

i=1

∥∥∥WT (xi − x)
∥∥∥2

2
,

s.t. WT W = I, (2)

where SG = ∑n
i=1 (xi − x) (xi − x)T is the covariance matrix

of X and x = 1
n

∑n
i=1 xi is the mean vector. Again, the con-

stant factor 1
n is omitted in Eq. (2) for notational brevity.

Now we integrate the global and local consistencies of
the neuroimaging records of a subject by combining the two
objectives in Eq. (1) and Eq. (2) to maximize the following
objective:

J�2
2
(W) =

∑n
i=1

∥∥WT (xi − x)
∥∥2

2∑n
i=1

∑
x j∈{Ni∪{xi }}

∥∥WT
(
x j − xi

)∥∥2
2

s.t. WT W = I. (3)

Finally, we notice that a critical challenge in using longitu-
dinal AD data is their inconsistent sample sizes, i.e., different
patients may take brain scans at different time points. For
example, one patient may take brain scans at the 12th month
and the 24th month. In contrast, another patient might differ
by taking brain scans in other months. That is, the brain scans
of one patient are generally not aligned to others, which can
potentially become outliers for one another when they are
used to train a learning model. As studied in many recent
papers [36]–[38], the squared �2-norm distance used in the
objective in Eq. (3) is notoriously known to be very sensitive to
outlying data samples and features. To address this, we choose
to replace the squared �2-norm distance used in the objective in
Eq. (3) by its �1-norm counterpart for promoting the robustness
of our model against potential outlying effects, which leads to
the following objective to maximize:

J�1(W) =
∑n

i=1

∥∥WT (xi − x)
∥∥

1∑n
i=1

∑
x j∈{Ni ∪{xi }}

∥∥WT
(
x j − xi

)∥∥
1

,

s.t. WT W = I. (4)

Upon solving the optimization problem in Eq. (4), we com-
pute y = WT x to obtain the new biomarker representation
for a subject, which enriches the baseline biomarker record
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x by the longitudinal AD developments of X. This learned
representation thereby not only preserves the global variance
of the biomarker measurements over the entire course of the
AD development of the subject, but also maintains the local
geometric data structure of the medical records taken in nearby
months in the projected subspace. Moreover, y is a fixed-length
single-vector representation and can be readily used by most
classical classification or regression models, which is the key
contribution of this paper.

IV. THE ALGORITHM TO SOLVE OUR OBJECTIVE

The proposed objective in Eq. (4) maximizes the ratio of two
summations of a number of �1-norm distances, which is non-
smooth thereby difficult to efficiently solve in general. Thus,
in this section we derive an efficient iterative solution algo-
rithm and rigorously prove its convergence. As an important
theoretical contribution, our solution algorithm is non-greedy
in nature.

A. Solving a General Ratio Maximization Problem

We first study the following general optimization problem
and derive an efficient iterative algorithm to solve it:

max
v∈�

h(v)

m(v)
, ∀v ∈ � s.t .

{
C2 ≥ m(v) ≥ C1 > 0,

C4 ≥ h(v) ≥ C3 > 0,
(5)

where � is the feasible domain of the optimization problem,
and C1, C2 C3 and C4 are four positive bounding constants.

Now we propose the following simple, yet efficient, iter-
ative algorithm, as summarized in Algorithm 1, to optimize
Eq. (5). The convergence of this algorithm is guaranteed by
Theorem 1.

Algorithm 1 The Algorithm to Solve Eq. (5)

1. Randomly initialize v0 ∈ � and set k = 1;
repeat

2. Calculate λk = h(vk−1)
m(vk−1)

;

3. Find a vk ∈ � satisfying h(vk) − λkm(vk) > 0;
4. k = k + 1;

until Convergence
Output: vk .

Theorem 1: In Algorithm 1, for each iteration (1) we have
h(vk)
m(vk)

≥ h(vk−1)
m(vk−1)

; and (2) ∀δ > 0, there exists a k̂ such that

∀k > k̂, h(vk)
m(vk)

− h(vk−1)
m(vk−1)

< δ.

Proof 1: Step 3 of Algorithm 1 states that h(vk) −
λkm(vk) > 0. Because ∀v ∈ � m(v) > 0 as in the
problem definition, we can derive h(vk)

m(vk)
> λk = h(vk−1)

m(vk−1)
,

which completes the proof of the first statement of Theorem 1.
Suppose that for the k-th iteration, there exists a ck such

that h(vk) − λkm(vk) = ck > 0. Then using the definition of
λk in Step 2 of Algorithm 1, we have:

h(vk)

m(vk)
= h(vk−1)

m(vk−1)
+ ck

m(vk)
= h(v0)

m(v0)
+

k∑
i=1

ci

m(v i )
. (6)

Because of the upper and lower bounds of m(v) as defined
in Eq. (5), from Eq. (6) we can derive:

h(v0)

m(v0)
+ 1

C2

k∑
i=1

ci ≤ h(vk)

m(vk)
≤ h(v0)

m(v0)
+ 1

C1

k∑
i=1

ci . (7)

Now we suppose that there exists a positive constant C
such that limk→∞

∑k
i=1 ci = C . If this is not true, we have

limk→∞
∑k

i=1 ci = ∞, by which, together with Eq. (6),

we can derive limk→∞
∑k

i=1
h(vk)
m(vk)

= ∞. This, however,

contradicts the fact that h(vk)
m(vk)

is bounded as defined in Eq. (5),

which means that limk→∞
∑k

i=1 ci = C must hold. Thus,
we have limk→∞ ck = 0 and limk→∞ ck

m(vk)
= 0, which

indicates that ∀δ > 0, there must exist a k̂ such that:

∀k > k̂,
ck

m(vk)
< δ. (8)

Putting Eq. (6) and Eq. (8) together, we can derive:

∀k > k̂,
h(vk)

m(vk)
− h(vk−1)

m(vk−1)
< δ, (9)

which proves the second statement of Theorem 1 and indicates
that Algorithm 1 converges to a local optimum. �

B. The Algorithm to Solve the Proposed
Objective in Eq. (4)

Apparently, the proposed objective in Eq. (4) is a spe-
cial case of the general ratio maximization problem in
Eq. (5). Thus, to solve our objective, according to Step 3 of
Algorithm 1, we need find a solution that satisfies the follow-
ing inequality:

F(W) = H (W) − λk M(W) > 0, s.t. WT W = I, (10)

where

λk = H (Wk−1)

M(Wk−1)
, (11)

and Wk−1 denotes the projection matrix computed in the
(k − 1)-th iteration, which is already known in the k-th itera-
tion. Here, for notational brevity, we define:

H (W) =
n∑

i=1

∥∥∥WT (xi − x̄)
∥∥∥

1
, (12)

M(W) =
n∑

i=1

∑
x j∈{Ni∪{xi }}

∥∥∥WT (
x j − x̄i)

)∥∥∥
1
. (13)

To find a W that satisfies the inequality in Eq. (10), we need
the following two lemmas.

Lemma 1: [39, Theorem 1] For any vector ξ =
[ξ1, · · · , ξm ]T ∈ �m , we have ‖ξ‖1 = maxη∈�m (sign(η))T ξ .
The maximum value is attained if and only if η = a×ξ , where
a > 0 is a scalar.

Lemma 2: [40, Lemma 3.1] For any vector ξ =
[ξ1, · · · , ξm ]T ∈ �m , we have ‖ξ‖1 = min

η∈�m+

1

2

m∑
i=1

ξ2
i

ηi
+ 1

2
‖η‖1,
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where the minimum value is attained if and only if η j =
|ξ j |, j ∈ {1, 2, · · · , m}.

To use Lemmas 1–2, we construct the following function:

L
(

W, Wk−1
)

= K (W) − λk N (W) , (14)

where K (W) and N (W) are defined as:

K (W) =
r∑

g=1

wT
g B sign

(
BT wk−1

g

)
, (15)

N (W) = 1

2

r∑
g=1

wT
g Agwg +

(
wk−1

g

)T
Agwk−1

g . (16)

Here sign(x) is the sign function, and wg and wk−1
g denote

the g-th columns of W and Wk−1 respectively. We also define
B and Ag as follows:

B = [x1 − x, x2 − x, · · · , xn − x] , (17)

Ag =
n∑

i=1

∑
x j∈Ni∪{xi }

(
x j − xi

) (
x j − xi

)T∣∣∣∣(wk−1
g

)T (
x j − xi

)∣∣∣∣
. (18)

Theorem 2: For any W ∈ �d×r , we have

L
(

W, Wk−1
)

≤ F (W) , (19)

where the equality holds if and only if W = Wk−1.
Proof 2: According to Lemma 1, we can derive:

H (W) =
n∑

i=1

∥∥∥WT (xi − x)
∥∥∥

1

=
n∑

i=1

r∑
g=1

∥∥∥WT
g (xi − x)

∥∥∥
1

≥
r∑

g=1

n∑
i=1

sign

[(
wk−1

g

)T
(xi −x)

] [(
wk

g

)T
(xi − x)

]

=
r∑

g=1

wT
g B sign

(
BT wk−1

g

)
= K (W) . (20)

According to Lemma 2, we can derive:

n∑
i=1

∑
x j ∈Ni∪{xi }

1

2

ξT (
x j − xi

) (
x j − xi

)T
ξ

ξT (
x j − xi

)
+ 1

2

∥∥∥ξT (
x j − xi

)∥∥∥
1

≤
n∑

i=1

∑
x j∈Ni∪{xi }

1

2

ξT (
x j − xi

) (
x j − xi

)T
ξ

ηT
(
x j − xi

)
+ 1

2

∥∥∥ηT (
x j − xi

)∥∥∥
1
, (21)

which indicates that:

M (W) =
n∑

i=1

∑
x j ∈Ni∪{xi }

∥∥∥WT (
x j − xi

)∥∥∥
1

=
r∑

g=1

n∑
i=1

∑
x j∈Ni∪{xi }

wT
g

(
x j − xi

) (
x j − xi

)T wg

2
∥∥∥wT

g

(
x j − xi

)∥∥∥
1

+ 1

2

∥∥∥wT
g

(
x j − xi

)∥∥∥
1

≤
r∑

g=1

n∑
i=1

∑
x j∈Ni∪{xi }

wT
g

(
x j − xi

) (
x j − xi

)T wg

2

∥∥∥∥(
wk−1

g

)T (
x j − xi

)∥∥∥∥
1

+ 1

2

∥∥∥∥(
wk−1

g

)T (
x j − xi

)∥∥∥∥
1

= 1

2

r∑
g=1

wT
g Agwg +

(
wk−1

g

)T
Agwk−1

g = N (W) .

(22)

Using the inequalities in Eq. (20) and Eq. (22), together
with the definition of F (W) in Eq. (10) and the definition of
L

(
W, Wk−1

)
in Eq. (14), we can derive the following:

L
(

W, Wk−1
)

= K (W) − λk N (W)

≤ H (W) − λk M (W) = F (W) . (23)

According to Lemma 1 and Lemma 2, it is easy to verify that
the equalities in Eq. (20) and Eq. (22) hold if and only if
W = Wk−1. Thus, the equality in Eq. (23) holds if and only
if W = Wk−1, which completes the proof of Theorem 2. �

According to Theorem 2 and the definition of λk in Eq. (11),
we can derive:

F (W) ≥ L
(

W, Wk−1
)

≥ L
(

Wk−1, Wk−1
)

= F
(

Wk−1
)

= H (Wk−1) − λk M(Wk−1)

= 0, (24)

which indicates that finding the solution to satisfy Eq. (10)
can be transformed into finding a solution W to satisfy
L

(
W, Wk−1

) ≥ 0. This can be solved by the projected
subgradient method with Armigo line search [41], for which
we need compute the subgradient of L

(
W, Wk−1

)
at W:

∂L(W, Wk−1) = B sign
(

BT Wk−1
)

− λk [A1w1, A2w2, · · · , Ar wr ] , (25)

and use the following operator:

P (W) = W
(

WT W
)− 1

2
, (26)

which projects W onto an orthogonal cone, thereby guarantees
the orthonormal constraint of WT W = I.

Putting all above together, we summarize our algorithm to
solve the proposed objective in Eq. (4) in Algorithm 2, whose
convergence is guaranteed by Theorem 3 and Theorem 4.
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Algorithm 2 The Algorithm to Solve Our Objective

1. Randomly initialize W0 that satisfies
(
W0

)T
W0 = I;

2. Set k = 1 and set the parameter 0 < β < 1;
repeat

3. Calculate λk by Eq. (11);
4. Calculate Gk−1 = ∂L

(
Wk−1, Wk−1

)
by Eq. (25);

5. Set m = 1;
repeat

6. Calculate Wk = P
(
Wk−1 + βmGk−1

)
;

7. Calculate F
(
Wk

)
by Eq. (10);

8. m = m + 1.
until F

(
Wk

)
> F

(
Wk−1

) = 0
until Convergence
Output: Wk

C. Convergence Analysis of Our Algorithm

Theorem 3: If Wk satisfies the inequality in Eq. (10), we
have J�1(W

k) ≥ J�1(W
k−1).

Proof 3: Because Wk satisfies the inequality in Eq. (10),
we have:

F(Wk) =
n∑

i=1

∥∥∥∥(
Wk

)T
(xi − x̄)

∥∥∥∥
1

− λk
n∑

i=1

∑
x j ∈Ni∪{xi }

∥∥∥∥(
Wk

)T (
x j − x̄i )

)∥∥∥∥
1

≥ 0. (27)

By a simple mathematical derivation and using the definition
of λk in Eq. (11), we can rewrite Eq. (27) as following:

J�1(W
k) =

n∑
i=1

∥∥∥(
Wk

)T
(xi − x̄)

∥∥∥
1

n∑
i=1

∑
x j ∈Ni∪{xi }

∥∥∥(
Wk

)T (
x j − x̄i )

)∥∥∥
1

≥ λk

=

n∑
i=1

∥∥(Wk−1)T (xi − x̄)
∥∥

1

n∑
i=1

∑
x j ∈Ni∪{xi }

∥∥(Wk−1)T
(
x j − x̄i )

)∥∥
1

= J�1(W
k−1), (28)

which completes the proof of Theorem 3. �
Theorem 4: The objective in Eq. (4) is upper bounded.
Proof 4: First, using the Cauchy-Schwarz inequality we get

the following for the numerator of our objective in Eq. (4):

n∑
i=1

∥∥∥WT (xi − x̄)
∥∥∥

1

=
n∑

i=1

r∑
j=1

∥∥∥WT
j (xi − x̄)

∥∥∥
1

≤
n∑

i=1

r∑
j=1

∥∥∥WT
j

∥∥∥
2
‖(xi − x̄)‖2 =

n∑
i=1

r ‖(xi − x̄)‖2 . (29)

Given an input dataset,
∑n

i=1 r ‖(xi − x̄)‖2 is a constant,
which indicates that the numerator of our objective in Eq. (4)
is upper bounded for a given dataset.

Second, because it can be easily verified that
√∑n

i=1 v2
i ≤∑n

i=1 |vi |, i.e., ∀v ∈ �n, ‖v‖2 ≤ ‖v‖1, we can derive the
following for the denominator of our objective in Eq. (4):

n∑
i=1

∑
x j ∈Ni∪{xi }

∥∥W
(
x j − x̄i )

)∥∥
1

≥
n∑

i=1

∑
x j ∈Ni∪{xi }

√∥∥W
(
x j − x̄i )

)∥∥2
2

≥
√√√√ n∑

i=1

∑
x j∈Ni∪{xi }

∥∥W
(
x j − x̄i )

)∥∥2
2

=
√

tr(WT SLW) ≥
√√√√ r∑

i=1

λi , (30)

where λi (i = 1, . . . , r), ordered by λ1 ≤ · · · ≤ λr , are
the eigenvalues of SL . The last inequality in Eq. (30) is
obtained by the Ky Fan’s inequality [42], which states that
tr(WT SLW) ≥ ∑r

i=1 λi . Again, given an input dataset, SL is
an constant matrix, which means that

∑r
i=1 λi is a constant.

Thus, the denominator of our objective in Eq. (4) is lower
bounded. The two bounds in Eq. (29) and Eq. (30) together
indicate that our objective in Eq. (4) is upper bounded. �

Theorem 3 indicates that our proposed Algorithm 2
monotonically increases the value of the objective function in
Eq. (4) in each iteration. Theorem 4 indicates that the objective
function is upper bounded, which, together with Theorem 3,
indicates that Algorithm 2 converges to a local optimum.

Though motivated by previous work [36], our new algorithm
to solve the proposed objective in Eq. (4) for minimizing the
ratio of the summations of the �1-norm distances is more
computationally efficient than that in [36]. The most computa-
tionally intensive step of the algorithm presented in [36] is to
solve a system linear equations, whose complexity is O (

n3
)

if
the Gaussian elimination method is used. In contrast, the most
computationally intensive step of our algorithm is to perform a
line search. Based upon the selection of optimization package,
the complexity of our algorithm can be O

(
n
√

k
)

where k is
the iteration number. We perform our experiments on a Dell
OptiPlex 7040 desktop, with Core i7-6700 CPU processors at
3.4 GHz and 32G bytes memory. Our algorithm takes about
75 seconds to run the experiments while the algorithm in [36]
takes about 231 seconds. In addition, our algorithm usually
converges in no more than 30 iterations, while the algorithm
in [36] usually converges in about 60 iterations.

V. EXPERIMENTS

In this section, we empirically evaluate a variety of aspects
of the proposed method by applying it to the ADNI cohort.

A. Description of the Experimental Dataset

Data used in the preparation of all our experiments were
obtained from the ADNI (adni.loni.usc.eduadni.loni.usc.edu).

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on March 02,2021 at 22:08:10 UTC from IEEE Xplore.  Restrictions apply. 



898 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 3, MARCH 2021

We downloaded 1.5 T MRI scans and demographic infor-
mation for 821 ADNI-1 participants. Two high resolution
T1-weighted MRI scans were collected for each participant
using a sagittal 3D MP-RAGE sequence with an approximate
TR=2400ms, minimum full TE, approximate TI=1000ms,
and approximate flip angle of 8 degrees (scan parameters
vary between sites, scanner platforms, and software versions).
Scans were collected with a 24cm field of view and an
acquisition matrix of 192 × 192 × 166 (x, y, z dimensions),
to yield a standard voxel size of 1.25×1.25×1.2 mm. Images
were then reconstructed to give a 256 × 256 × 166 matrix and
voxel size of approximately 1 × 1 × 1.2mm. Additional scans
included prescan and scout sequences as indicated by scanner
manufacturer, axial proton density T2 dual contrast FSE/TSE,
and sagittal B1-calibration scans as needed [43]–[45].

The analysis of of VBM was performed using
previously described methods [46]–[48], as implemented in
SPM5 (https://www.fil.ion.ucl.ac.uk/spm/https://www.fil.ion.
ucl.ac.uk/spm/, London, UK). The scans were converted
from DICOM to NIfTI format, co-registered to a standard
T1 template image, bias corrected, and segmented into
GM, WM, and CSF compartments using standard SPM5
templates [43]. GM maps were then normalized to MNI atlas
space as 1 × 1 × 1 mm voxels and smoothed using a 10 mm
FWHM Gaussian kernel. In cases where the first MP-RAGE
scan could not be successfully segmented we attempted to
use the second MP-RAGE. This was successful for only 1 of
8 cases.

A hippocampal regions of interest (ROI) template was
created by manual tracing of the left and right hippocampi
in an independent sample of 40 HC participants enrolled
in study of brain aging and MCI at Dartmouth Medical
School [49], [50]. These ROIs were used to extract GM
density values from smoothed, unmodulated normalized and
modulated normalized GM maps for the ADNI cohort. The
volume of interest (VOI) including bilateral hippocampi
and amygdalar nuclei, were extracted using FreeSurfer
(version 4, http://surfer.nmr.mgh.harvard.edu/http://surfer.nmr.
mgh.harvard.edu/, Boston, MA). FreeSurfer was also used
to extract cortical thickness values from the left and right
entorhinal cortex, inferior, middle, and superior temporal gyri,
inferior parietal gyrus, and precuneus.

We also downloaded the longitudinal scores of the partic-
ipants in five independent cognitive assessments, including
Alzheimer’s Disease Assessment Scale (ADAS), Mini-Mental
State Examination (MMSE), Fluency test (FLU), Rey’s Audi-
tory Verbal Learning Test (RAVLT), and Trail making test
(TRAILS). The time points examined in this study for both
imaging records and cognitive assessments includes BL, M6,
M12, M18, M24 and M36. In our experiments, all the partici-
pants’ data used in to learn enriched neuroimaging representa-
tions are required to have a baseline measurement, a baseline
cognitive score, and at least two available records from
M6/M12/M18/M24/M36. A total of 544 subjects are involved
in our experiments, among which we have 92 subjects with
AD, 205 subjects with MCI samples, and 247 HC subjects. Ten
cognitive scores are included: (1) ADAS TOTAL scores from
ADAS cognitive assessment; (2) FLU ANIM and (3) FLU

VEG scores from Fluency cognitive assessment; (4) MMSE
score from MMSE cognitive assessment; (5) RAVLT TOTAL,
(6) RAVLT 30, and (7) RAVLT 30 RECOG scores from
RAVLT cognitive assessment; (8) TRAIL A, (9) TRAIL B,
and (10) TRAIL B-A scores from Trail making test.

B. Evaluating the Learned Biomarker Representations
With Longitudinal Enrichments in Clinical Scores

Because the main goal of this study is to learn a set of fixed-
length vector representations for the imaging biomarkers using
longitudinal enrichments for all the subject samples in an AD
dataset, we first experimentally evaluate the proposed method
by applying it to the ADNI cohort, where we compare the
predictive power of the learned biomarker representations with
longitudinal enrichments against the BL MRI measurements
using both VBM and FreeSurfer biomarkers respectively.

1) Experiment Settings: To validate the effectiveness of our
proposed method, we compare the performance to predict
cognitive outcomes using two types of the neuroimaging
inputs – the learned enriched representations and the original
biomarker measurements at the BL time point. We implement
two versions of our new method to evaluate our hypothesis
that learning a robust model by using the �1-norm distance
can better address the missing record problem when using
longitudinal data, i.e., we learn the temporally enriched repre-
sentations by using the objective in Eq. (3) and that in Eq. (4)
respectively, and compare their predictive capabilities.

In our experiments, five regression methods proven to
generalize well, including Linear Regression (LR), Ridge
Regression (RR), Lasso, Support Vector Regression (SVR),
and Convolutional Neural Network (CNN), are compared.
LR is the simplest and most broadly used regression model
in statistical learning and brain image analyses. RR is a
regularized version of LR to account for over-fitting. Lasso
regression performs both variable selection and regularization
for better generalization. SVR is the regression version of the
Support Vector Machine (SVM), which has been widely used
to solve many real-world problems. CNN can be used for
regression and has demonstrated the superior performance.

For LR, RR, Lasso and SVR, we conduct a standard 5-fold
cross-validation and evaluate their performance by computing
the Root Mean Square Error (RMSE) between the predicted
values and ground truth values of the cognitive scores on the
testing data only. Specifically, in the standard 5-fold cross-
validation, the data are equally and randomly divided into
5 groups. In every trial, one group is treated as testing data and
the other four groups are used as training data. This process
repeats five times in turn, such that every data sample is used
as testing data by exactly one time. We iterate each five-fold
experiment 10 times and randomly shuffle training and testing
groups in between each iteration. The average performance for
a given model with fixed hyperparameters are used for com-
parison. The standard deviations for each performance metric
during the five-fold experiments iterated over 10 trials are
reported with our prediction results. In RR and Lasso regres-
sions, the regularization parameters are fine tuned by search-
ing {10−10, . . . , 10−1, 1, 10, · · · , 1010}. In the SVR model,
the Gaussian kernel is used and the box constraint parameter
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Fig. 2. Comparisons of the predictive performances of the original representations at the baseline time point (blue), the enriched representations
learned by the objective in Eq. (3) that uses the squared �2-norm distances (cyan), and the enriched representations learned by the objective in
Eq. (4) that uses the �1-norm distances (yellow), when VBM biomarkers are used to predict the 10 different baseline cognitive outcomes using the
5 different regression models (LR, RR, Lasso, SVR, and CNN). The RMSEs (smaller is better) for predicting each cognitive outcome by each type
of representations are shown for comparison, where the vertical bars show the standard deviations in the 5-fold cross-validations.

is fine tuned by a search on {10−5, . . . , 10−1, 1, 10, · · · , 105}.
There is a slight difference in the settings for the experiments
using CNNs. For CNN regression, we randomly select 70%
of the data samples as the training set, 20% of the data
samples as the validation set, and we use the remaining 10%
of the data samples as the testing set. The validation set
used in the experiments is designed to provide an unbiased
evaluation on how the CNN model fits the training dataset.
We report the performance of the predictive results of the
testing data. We construct a two-layer convolution architecture
for predicting cognitive outcomes: (1) 16 1 × 5 convolutions
(unpadded convolutions), followed by a rectified linear unit
(ReLU) and a 1 × 2 max pooling operation; (2) 32 1 × 10
convolutions (unpadded convolutions) with ReLU and a 1 × 2
max pooling operation. The dropout technique is leveraged to
reduce overfitting in the CNN models and prevent complex
co-adaptations on training data. The dropout probability is
set to be 0.3 and the batch size is set to be 16 in all our
experiments. The hyperparameter r is fine tuned by searching
{20, 25, . . . , 50}.

2) Experiment Results: To evaluate the predictive power of
the enriched biomarker representations learned by our new
method, we use them as input to predict the 10 cognitive scores
by the 5 regression models as mentioned above. As a result,
for each type of input neuroimaging biomarkers, VBM and

FreeSurfer, we end up with 50 prediction tasks. The prediction
performance comparisons between the enriched biomarker
representations and the BL ones in these prediction tasks are
reported in Fig. 2 for the VBM imaging markers and in Fig. 3
for the FreeSurfer imaging makers, respectively. From the two
figures we can see that the enriched biomarker representations
learned by our new method are consistently better than the BL
ones in all 100 prediction tasks, which we attribute to the fol-
lowing two reasons. Firstly, the baseline representations only
characterize the brain status of the participants at one single
time point, therefore they cannot benefit from the longitudinal
correlations during the course when AD develops. In contrast,
the enriched biomarker representations learned by our new
method can integrate the baseline neuroimaging record and
the temporal variations in the dynamic follow-up records.
Because AD is characterized by progressive degenerations
of the patients’ cognitive capabilities, incorporating temporal
information over time could assist in predictions. Secondly,
the original baseline neuroimaging measurements reside in a
high-dimensional space, which could be redundant and noisy.
Thus directly using traditional regression methods could suffer
from “the curse of dimensionality”. Via the projection learned
by our objectives in Eq. (3) and Eq. (4), we map the baseline
cognitive measurements into a low-dimensional subspace that
can mitigate the problem of high dimensionality. Thus, from
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Fig. 3. Comparisons of the predictive performances of the original representations at the baseline time point (blue), the enriched representations
learned by the objective in Eq. (3) that uses the squared �2-norm distances (cyan), and the enriched representations learned by the objective in
Eq. (4) that uses the �1-norm distances (yellow), when FreeSurfer biomarkers are used to predict the 10 different baseline cognitive outcomes using
the 5 different regression models (LR, RR, Lasso, SVR, and CNN). The RMSEs (smaller is better) for predicting each cognitive outcome by each
type of representations are shown for comparison, where the vertical bars show the standard deviations in the 5-fold cross-validations.

Fig. 2 and Fig. 3 we can see that, compared to the original
high-dimensional baseline representations, the enriched rep-
resentations learned by our new method have achieved clear
improvements for predicting cognitive outcomes.

Overall, by incorporating the global and local consistencies
of the neuroimaging records of each participant, we learn
a low-dimensional enriched biomarker representation with a
consistent length, which can clearly improve the predictive
performances when we use the five regression models to
predict cognitive outcomes by both VBM and FreeSurfer
biomarkers. This certifies the usefulness of the enriched bio-
marker representations learned by our new method.

Finally, as we expected, we also observe that the predic-
tive performances of the enriched biomarker representations
learned by our objective using the �1-norm distance are always
better than the objective that uses the traditional squared-
�2-norm distance, sometimes very significantly. For example,
when we use the VBM biomarkers to predict the RAVLT
TOTAL score, the enriched representations learned by the
objective using the �1-norm distance improve the performance
by 105% compared to their counterparts that use the squared
�2-norm distance. These observations firmly confirm the cor-
rectness of our hypothesis that using a robust learning model
is appropriate for representation learning due to the misaligned
missing records of the participants across a studied cohort.

C. Comparing the Capability of Our New Method to
Predict Cognitive Outcomes Against Other
Longitudinal Models

In the previous experiments, we have compared the enriched
biomarker representations learned by our new method against
their BL counterparts. The latter, however, are static measure-
ments that only characterize the brain status at the baseline
time point, but do not utilize the information at any follow-up
time points. To further demonstrate the advantage of the our
new method, we compare its predictive performance against
longitudinal enrichments learned from Locality Persevering
Projection (LPP) [32] where SVR and CNN are used for
regression, respectively. We also compare our methods against
two very recent longitudinal learning models, including (1)
the Temporal Group Feature (TGF) method [12], (2) the
Longitudinal Spatial Features (LSF) method [13]; and three
different multi-task based longitudinal methods, including (1)
the Multi-Task Exclusive Relationship (MTER) method [18],
(2) Robust Multi-Task Feature Learning (RMTFL) [51], (3)
Joint Multi-Modal Longitudinal Regression and Classification
for Alzheimer’s Disease Prediction (JMMLRC) [20]. Differ-
ent from the five regression models used before, these five
methods are designed to take advantage of longitudinal data
over all the examined time points. In our experiments, after
we learn the enriched biomarker representations by our new
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TABLE I
PERFORMANCE COMPARISONS MEASURED BY RMSE (SMALLER IS BETTER ↓) BETWEEN OUR METHOD AND OTHER LONGITUDINAL METHODS

method, we use RR for the regression analyses. For the three
compared methods, we fine tune their parameters following
the procedures described in the respective papers. We report
the comparison results in Table I and it shows that our new
method achieves the best performance when we predict all
clinical scores using both VBM and FreeSurfer biomark-
ers, which again demonstrates the effectiveness of our new
method.

D. Evaluating the Learned Biomarker Representations
With Longitudinal Enrichments in Behavior Assessment

Besides the prediction of cognitive declines of AD patients,
we also evaluation of new method by predicting Clinical
Dementia Rating (CDR) [52] and Functional Assessment

Questionnaire (FAQ) [53]. The CDR and FAQ scales are
highly recommended for clinical and severity assessment of
dementia. The CDR is derived from the scores in each of the
six categories (“box score”) – Memory, Orientation, Judgment
and Problem Solving, Community Affairs, Home and Hobbies
and Personal Care. Memory (M) is considered the primary
category and all others are secondary. With a semi-structured
interview with the patient and an appropriate rates, each of
the six cognitive categories is scored on a five-point scale in
which none = 0, questionable = 0 5, mild = 1, moderate
2 and severe = 3. Sum of Boxes of CDR (CDR-SB) sums
up the scores of all the six categories. The FAQ measures
activities of daily living and is administered at baseline and at
every subsequent in clinic visit. FAQ is a bounded outcome
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TABLE II
PERFORMANCE COMPARISONS MEASURED BY RMSE (SMALLER IS

BETTER ↓) BETWEEN ORIGINAL REPRESENTATION, SQUARED

�2-NORM ENRICHED REPRESENTATION AND �1 -NORM

ENRICHED REPRESENTATION. WE COMPARE FIVE WE

COMPARE FIVE DIFFERENT GENERAL REGRESSION

METHODS FOR BEHAVIOR ASSESSMENT– LR, RR,
LASSO SVR AND CNN

(ranging from 0 to 30), with 0 scored as “no impairment” and
30 as “severely impaired” [54].

Because both CDR and FAQ assessments are quantified
by numerical numbers, we can consider the tasks of pre-
dicting them as regression tasks. To evaluate the predictive
capability of our proposed methods, we use the original data
representation, the enriched representations learned by the
proposed objectives that use the squared �2-norm distances and
the �1-norm distances as inputs to predict the two behavior
assessments by five regression models, same what we did
for predicting cognitive declines as in Section V-C. From the
Table II, we can see that our proposed �1-norm enriched rep-
resentation achieves the best performance when predicting the
behavior assessment, which provides one concrete evidence to
support the effectiveness of our proposed method.

E. Identifying Disease Relevant Imaging Biomarkers

Besides predicting cognitive outcomes, another important
goal of our regression analyses is to identify a subset of
imaging biomarkers that are highly correlated to AD devel-
opments. Therefore, we examine the biomarkers identified by
the proposed methods. As can be seen in Eq. (4), we learn
a projection matrix W for every participant in the ADNI
dataset. To explore the association between the prediction
targets and imaging markers, we use the regression model of
minU ||F − UT Y||2F , where Y ∈ �r×n contains the enriched
representations for the n subjects of the studied cohort and
F ∈ �c×n is the matrix to encode the c cognitive scores for the
n subjects. Then, WU indicates the outcome relevant weights

Fig. 4. Top panel: Top 10 selected VBM biomarker mapped
onto the brain: LAmygdala, RAmygdala [56], LFusiform, RFusiform
[58], LHippocampus, RHippocampus [55], LPallidum, RPallidum [57],
LPutamen, RPutamen [58]. Bottom panel: Top 10 selected FreeSurfer
biomarker mapped onto the brain: LCerebWM, RCerebWM [59],
LCerebCtx, RCerebCtx [60], LLatVent, RLatVent [61], LInfLatVent,
RInfLatVent [61], LCerebellCtx, RCerebellCtx [60].

for each subject. The top 10 imaging biomarkers of the studied
subjects are selected to determine a frequency map.

We visualize the top 10 VBM biomarkers in the frequency
map in the association studies between the MMSE score
and the VBM biomarkers in the top panel of Fig. 4 and
the top 10 FreeSurfer biomarkers in the bottom panel of
Fig. 4. We observe that the bilateral hippocampus is among
the top selected biomarkers, which is in accordance with
the existing clinical evidence showing that the hippocampus
is mainly associated with memory, in particular long-term
memory [55]. In addition, the bilateral amygdala is also among
the top selected biomarkers, which agrees with the fact that
the amygdala performs a primary role in the processing of
memory, decision-making and emotional response and it is an
important subcortical region that is severely and consistently
affected by pathology in AD [56]. Furthermore, the bilateral
pallidum is also listed as a top relevant biomarker, which
is known to be responsible for slowly progressive dementia,
cortical atrophy and local amyloidosis in the atrophic form of
chronic bacterial infections [57].

In summary, the identified imaging biomarkers are highly
suggestive and strongly agree with existing medical research
findings with regards to AD. These findings concretely sup-
port the correctness of the discovered associations between
cognitive developments and progressive variations of imaging
biomarkers from the clinical perspective.

VI. CONCLUSION

In this paper, we proposed a novel formulation to learn
an enriched representation for neuroimaging biomarkers using
the longitudinal data. Our enriched biomarker representation is
learned by solving a new objective that aims to maintain both
global and local consistencies of the neuroimaging measure-
ments of each participant in the projected subspace, where
the global consistency is designed to preserve similar dis-
tributions of neuroimaging measurements of each participant
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during the projection, and the local consistency is designed to
preserve the pairwise relationship of neuroimaging measure-
ments at different time points. The objective simultaneously
maximizes and minimizes the summations of a number of
�1-norm distances, which is non-smooth thereby difficult to
solve in general. Thus, we developed an efficient and non-
greedy iterative solution algorithm with theoretically proved
convergence. We conducted experiments on two types of bio-
markers, VBM and FreeSurfer. Via the enriched neuroimaging
representations, we can achieve a clear performance gain in
predicting ten different cognitive outcomes using five standard
regression models and three recent longitudinal prediction
models. Moreover, the key imaging biomarkers identified for
both VBM and FreeSurfer measurements nicely agree with
the existing findings in clinical researches, which warrants
the correctness of the enriched neuroimaging representations
learned by our new method.
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