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Abstract—Recognition of group activities is critical for the
success of applications that depend on effective human-robot
teaming. Awareness of these group activities (also referred to team
behaviors in some literature), including the individual activities
of human teammates and the overall team intent, allows robotic
teammates to work alongside humans without explicit commands
and to offer proactive assistance towards the overall mission. In
this letter, we present a novel approach to robot recognition of team
activities, simultaneously learning a projection from multi-sensory
input data to a latent representation of individual activities and
a projection from this representation to the overall activities.
We introduce a smoothed iterative reweighted algorithm to solve
this formulated optimization problem, guaranteed to converge
to an optimal solution. We evaluate our approach extensively on
benchmark group and team activity datasets, showing that our
approach achieves state of the art performance while operating in
real-time on mobile robots.

Index Terms—Group activity recognition, real time recognition,
robot teaming.

I. INTRODUCTION

E FFECTIVE human-robot teaming is critical problem when
humans and robots must work alongside each other to

achieve common goals. In a large number of real world ap-
plications where time and safety are paramount, such as search
and rescue and disaster response, humans and robots must act
as a team, working towards a common goal while performing
their own individual tasks. Real-world environments where
these missions are performed are often hazardous, making it
dangerous and even impossible for commands and intents to
be expressed, requiring that these common goals must be un-
derstood without explicit communications. In addition, rescuers
and first responders may not be trained to interact with a robotic
teammate, which requires robots to be able to understand their
human teammates just as other humans would.

As autonomous robots are being increasingly integrated into
human teams to perform tasks in dangerous and hazardous
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environments [1], robots need to intelligently and automatically
recognize the activities of their human teammates (including
the overall team activities and individual activities) in order
to provide proactive support on an operation or directly assist
with the overall mission goal, without cognitively burdening
their human peers [2]. To achieve this, it is required that the
robots can effectively recognize team activities and identify
not just an individual’s activity but the overall activity of the
team.

Due to its importance, activity recognition has been exten-
sively studied, which, though, mostly focused on modeling and
recognizing the activities of individual humans [3], but not teams
as a whole. Other approaches have been developed to address
the problem of group activity recognition (also referred to team
behaviors in some literature), where a collection of individuals
perform the same action (e.g, dancing).

These have included hierarchical models [4], custom engi-
neered features [5], and deep learning based approaches utilizing
long short term memories [6] and recurrent neural networks [7].
While these approaches have had success at group activity
recognition, they fail to address the problem of team activity
recognition, where the overall shared goal may be distinct from
individual actions.

In this paper, we present a novel approach to address the
problem of team activity recognition, operating in real-time from
multisensory data. We formulate team activity recognition as
a regularized optimization problem, simultaneously learning a
projection from multisensory input data to a latent representation
of individual activities and learning a projection from this latent
representation to the overall team activity, where the individual
activities are modeled as latent variables, as illustrated in Fig. 1.
In addition, our proposed approach explore the relationship of
the members within a team globally and locally. While the
low-rank regularization is imposed to discover the common
task among different teammates, the Laplacian embedding is
leveraged to preserve pairwise relation between teammates.
Moreover, to better model the noisy environments of real-world
applications using robot teams, �p-norm (0 < p ≤ 2) is utilized
to substitute squared �2-norm for better robustness [8]–[11].
Additional regularization terms can also be integrated into our
approach to fuse multisensory inputs in the same unified formu-
lation. Despite its nice proprieties of our proposed model, it is
a non-smooth objective and difficult to solve in general. An ef-
ficient smoothed iteratively reweighed algorithm is proposed to
solve the optimization problem. Extensive experiment results on
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Fig. 1. In real-world scenarios, such as mine search and rescue, teammates perform individual tasks as they work towards a common goal. Our approach processes
multisensory observations, learning latent representations of individual activities in order to recognize the overall team intent.

two benchmark datasets have shown that our approach achieves
superior accuracy and real-time performance.

II. RELATED WORK

Human-robot teaming is most successful when robots have an
awareness of the human teammates’ workload [12] and cognitive
load [2]. Managing the cognitive load and building trust between
robot and human teammates is critical for successful team-
ing [13], as humans prefer to working along autonomous and
proactive robotic teammates [14]. As the key existing limitation
to enabling seamless interaction to build trust and limit excess
cognitive load is the ability of robots to understand the overall
behavior of the team [15], recognition of individual and group
activities is critical for team behavior understanding.

A. Individual Activity Recognition

Individual activity recognition approaches have often been
based on skeletal data or visual observations of the individual [3].
Low-level features have been used, from discrete local fea-
tures [16] to combinations of features [17]. Higher level features
have also been applied, from engineered ones such as repre-
senting the movements of joints through anatomical planes [18]
to learned features based on identifying discriminative joints
and sensing modalities through regularized optimization. Deep
learning has also been applied recently, particularly for activity
recognition from very noise input data, such as from wearable
sensors [19], [20]. While most individual activity recognition
approaches attempt to recognize the action of a single individual,
some methods have been adapted to analyzing multiple people
at once, while treating them as individuals. These include the
use of hierarchical models [21] and LSTMs [22] to analyze the
activities of individuals as they move.

Overall, the key limitation of individual activity recognition
methods lies in that they are not able to consider a combined
activity. That is, they consider individuals in isolation and fail
to merge the contexts into a larger and unified intent.

B. Group Activity Recognition

Group activity recognition extends the problem of recogniz-
ing activities from multiple individuals and combines them into a

single group activity. Methods have approached this from either
learning the group behavior from observed single person activi-
ties, or from learning group activities from observed features in
the scene.

Most commonly, approaches use a layered methodology,
separating individual activities and the overall group activity.
LSTMs that identified individual activities have been combined
in a second layer through additional LSTMs [6] or momentum-
based methods [23]. Hand crafted features based on Kalman
filters were combined through layers of random forests and
Markov fields [24], [25]. Layers have also been expressed
as graphs, representing humans and the connections between
them as separate graphs and combining them through neural
networks [26], [27].

Recent approaches have utilized end-to-end neural networks,
that process individual frames or videos and output an overall
group activity. These have included layers of RNNs that utilized
a graph-like node and edge structure [28], sets of RNNs that
identify key individuals in a scene [29], and convolutional neural
networks to learn interactions between individual activities and
identify the group activity from these [30].

Like individual activity recognition approaches, current group
activity approaches are not sufficient to identify team behaviors.
While they analyze multiple individuals and consider the con-
nections between them, they are limited to identifying behaviors
where individuals are all performing the same collective activity.
In real-world situations, such as those that occur in search and
rescue missions, an overall team intent such as patient recovery
will involve individuals performing disparate individual tasks
such as communication, patient movement, and treatment. A
team activity recognition approach must be able to analyze these
separate activities to infer the overall intent.

III. THE PROPOSED APPROACH

We will introduce the notations used in this paper. The �p-

norm (p > 0) of a vector v is defined as ‖v‖p = (
∑

i v
p
i )

1
p .

For a matrix M = [mij ], the trace of M is defined as
tr(M) =

∑
i mii. The �r,p-norm of M is defined as ‖M‖r,p =

(
∑n

i=1(
∑m

j=1 |mij |r) p
r )

1
p = (

∑n
i=1 ‖mi‖pr)

1
p , wheremi is the

i-th column vector of M. The Frobenius norm of M is defined
as ‖M‖F =

√∑n
i=1

∑m
j=1 |mi,j |2. The Schatten p-norm ofM
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is defined as ‖M‖Sp
= (

∑min{n,m}
i=1 σp

i )
1
p , where σi is the i-th

singular value of M.
Given m members within a team, the observations of the i-

th team is represented as: Xi = [x1
i , . . . ,x

m
i ] ∈ �d×m, where

xj
i ∈ �d represents the feature vector of the observation from the

j-th individual from the i-th team. We represent the team activity
label vector of the observation Xi as yi ∈ �c1 : if Xi belongs to
the l-th team intent category, the l-th element within the intent
label vector yi satisfies yi(l) = 1; otherwise yi(l) = 0, where
c1 is the number of team intents.

Since team intent is an abstract concept that is collaboratively
reflected by the activities of all individual members in the team,
to model the behavioral hierarchy of the team, we introduce
a latent variable Zi = [z1i , . . . , z

m
i ] ∈ �c2×m to represent in-

dividual activities from i-th team, where zji ∈ �c2 denotes the
individual activity of the j-th team member from i-th team. If xj

i

belongs to the l-th individual activity category, the l-th element
of the vector zji satisfies zji (l) = 1; otherwise zji (l) = 0, where
c2 is the number of individual activities. This latent activity
vector enable us to model concurrent individual activities, and
to model diverse activities for different individuals.

Then, given a collection of n training data instances
{(Xi,yi)}ni=1, we define the individual activity matrix for each
data instance i as Zi. Thus, we formulate robot recognition of
team activity by minimizing the following loss function:

min
W,U,Zi,b,p

n∑
i=1

(
∥∥W�Xi + b1�

m − Zi

∥∥2
F

+
∥∥U�Zi + p1�

m − yi1
�
m

∥∥2
F
), (1)

where U = [u1, . . . ,uc1 ] ∈ �c2×c1 and W = [w1, . . . ,wc2 ] ∈
�d×c2 represent the coefficient matrices as the parameters to
be learned for team and individual activity estimation respec-
tively. b ∈ �c2×1 and p ∈ �c1×1 are intercept vectors, and
1m ∈ �m×1 is the constant vector consisting of all 1’s. The
first term in Eq. (1) denotes the loss function that is designed to
project from the observation data instance Xi to the individual
activity categories Zi for each individual. The second term in
Eq. (1) denotes the loss function that is designed to project from
latent individual activity categories Zi (i = 1, . . . ,m) to the
team intent yi.

Apart from exploration of individual activities separately
with latent variable vector zi, we further propose to uncover
the relationship of individual activities among team members.
Firstly, to capture the global correlations among different team
members, we impose Schatten p-norm regularization to discover
the common goal shared by all team members. Secondly, to
preserve the local relations among teammates, we keep the local
pairwise patterns in the latent subspace. To achieve this, Lapla-
cian embedding is the right tool to leverage [31]. Specifically,
we first construct a similarity matrix Si ∈ �m×m. Each element
of Si is denoted with Si(j, k), where Si(j, k) measures the
Euclidean distance of HoG features between j-th individual xj

i

and k-th individual xj
i from i-th team. Laplacian embedding

preserves the local relationships and maximizes the smoothness

of the manifold of the data in the embedding space by minimiz-
ing

∑
j,k=1,...,m Si(j, k)‖zji − zki ‖22. Combined with teammate

relationship modeling, we develop our objective function as:

min
W,U,Zi,b,p,Z�

i Zi=I

n∑
i=1

(∥∥W�Xi + b1�
m − Zi

∥∥2
F

+
∥∥U�Zi + p1�

m − yi1
�
m

∥∥2
F

)

+ γ1

n∑
i=1

⎛
⎝‖Zi‖pSp

+
∑

j,k=1,...,m

Si(j, k)
∥∥∥zji − zki

∥∥∥
2

2

⎞
⎠

+ γ2‖W‖2F + γ3‖U‖2F , (2)

where γl (l = 1, 2, 3) denotes trade-off hyperparameters, and
‖W‖2F , ‖U‖2F are leveraged to avoid overfitting.

While the objective in Eq. (2) nicely defined team intent
inference problem, it uses the squared Frobenius norm that is
notoriously known to be very sensitive to outliers in the dataset,
which may result in inferior learning performance. To improve
the robustness of our model [8]–[11], we substitute squared
�2-norm with �2,p-norm and �p,p-norm (0 < p ≤ 2) as follows:

min
W,U,Zi,b,p,Z�

i Zi=I

n∑
i=1

(∥∥W�Xi + b1�
m − Zi

∥∥p
2,p

+
∥∥U�Zi + p1�

m − yi1
�
m

∥∥p
2,p

)

+ γ1

n∑
i=1

⎛
⎝‖Zi‖pSp

+
∑

j,k=1,...,m

Si(j, k)
∥∥∥zji − zki

∥∥∥
p

2

⎞
⎠

+ γ2‖W‖2F + γ3‖U‖2F , (3)

Upon solving the regularized optimization problem in Eq. (3)
and obtaining the optimal parameters, we can use the learned
model for robots to recognize the team intent in an online
fashion. The team intent is computed as follows:

Team intent = argmaxyo(l), l = 1, 2, . . . , c1, (4)

where yo(l) =
1
mU�Zo1m + p and Zo = W�Xo + b1�

m, Z
and U denote the optimal coefficient matrices learned in the
training process and Xo is the query observation.

IV. OPTIMIZATION ALGORITHM

Although the motivation of the formulation of our new method
in Eq. (3) is clear and justifiable, it is a non-smooth objective,
which is difficult to efficiently solve in general. Motivated by our
earlier works that use the iterative reweighted method [8], [10],
[32] to solve non-smooth objectives and taking into account of
the issues of its numerical stability [11], we rewrite the objective
in Eq. (3) as follows:

min
W,U,Zi,b,p,Z�

i Zi=I

n∑
i=1

tr(
(
W�Xi + b1�

m − Zi

)�
D̃i

(
W�Xi + b1�

m − Zi

)
) +

n∑
i=1

tr(
(
U�Zi + p1�

m − yi1
�
m

)�
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D̂i

(
U�Zi + p1�

m − yi1
�
m

)
) + γ1

n∑
i=1

(
tr
(
Z�

i D̄iZi

)

+
∑

j,k=1,...,m

Si(j, k)Θi(j, k)
∥∥∥zji − zki

∥∥∥
2

2

⎞
⎠+ γ2‖W‖2F

+ γ3‖U‖2F , (5)

where D̃i is a diagonal matrix whose k-th element
is p

2 (‖ẽki ‖22 + δ)
p−2
2 , ẽki is k-th column vector of Ẽi =

W�Xi + b1�
m − Zi. D̂i is also a diagonal matrix whose

k-th element p
2 (‖êki ‖22 + δ)

p−2
2 , êki is k-th column vector

of Êi = U�Zi + p1�
m − yi1

�
m. D̄i =

p
2 (Z

�
i Zi + σI)

p−2
2 and

Θi(j, k) =
p
2 (‖zji − zki ‖22 + δ)

p−2
2 .

Before giving the solution algorithm to optimize Eq. (5),
we will first introduce the Alternating Direction Method of
Multipliers (ADMM), which was proposed in [33], [34] to solve
convex optimization problems by breaking them into smaller
pieces that are easier to handle.

Specifically, given the following objective with the equality
constraint:

min
x,z

f(x) + g(z), s.t. h(x, z) = 0, (6)

Algorithm 1 solves the problem by decoupling it into subprob-
lems and optimizing each variable while fixing others [33], [34],
where y is the Lagrangian multiplier to the constraint h. It is
worth noting that Algorithm 1 was proved to converge Q-linearly
to the optimal solution [33].

Following the framework of ADMM, we further rewrite the
objective in Eq. (5) as follows:

min
W,U,Zi,b,p,

n∑
i=1

tr(
(
W�Xi + b1�

m − Zi

)�
D̃i

(
W�Xi + b1�

m − Zi

)
) +

n∑
i=1

tr(
(
U�Zi + p1�

m − yi1
�
m

)�

D̂i

(
U�Zi + p1�

m − yi1
�
m

)
) + γ1

n∑
i=1

(tr
(
Z�

i D̄iEi

)

+ tr
(
Z�

i L̄iEi

)
) + γ2‖W‖2F + γ3‖U‖2F

+
n∑

i=1

μ

2

∥∥∥∥Zi −Ei +
Λi

μ

∥∥∥∥
2

F

, s.t. E�
i Ei = I, (7)

where S̃i ∈ �m×m is the reconstructed similarity matrix whose
element value S̃i(j, k) = Θi(j, k)Si(j, k) and Li = Di − S̃i

where Di is a diagonal matrix whose entries are column (or
row) sum of S̃i. The j-th diagonal element of Di is

∑
j S̃i(j, k).

Λi is the Lagrangian multiplier for the constraint of Zi = Ei.
For brevity, we define Fi = W�Xi + b1�

m and Pi = yi1
�
m −

p1�
m. The solution for Eq. (7) is summarized in Algorithm 2.
The general ADMM method has been proved to converge

to the optimal solution [33]. Given iterations k = 0, 1, . . . ,K,
convergence requires that 0 < μk < μk+1 for all k, μk → ∞.
Under this assumption, the current solutionXk will approach the

optimal solution X∗. Since Algorithm 2 defines that 0 < ρ < 2
and updates μ by μ = ρμ, this condition always holds for our
solution.

Additionally, the computational complexity of the algorithm
derived using the ADMM depends on the objective function
f(X), which is J (Z) defined in Eq. (7). The complexity of
J (Z) thereby is

O(i(mc2(d+ 1 + c1 + c2 +m) +mc1 +m)), (8)

where i is the number of training instances, m is the number of
team members, c2 is the number of individual activities, c1 is
the number of team intents, and d is the dimensionality of the
representation for each team member. This complexity is linear
with respect to any individual model parameter. For recognizing
team intents with a trained model, the formulation is again linear
with respect to any single model parameter. The complexity of
a single team intent recognition thereby is

O(mc2(d+ c1)). (9)

V. EXPERIMENTS

In this section, we empirically evaluate the performance of
our proposed approach over team behaviors recognition using
two benchmark datasets. In addition, ablation study is conducted
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TABLE I
RESULTS OF ACCURACY AND REAL-TIME PERFORMANCE ON THE CAD

DATASET, AND COMPARISONS WITH OTHER STATE-OF-THE-ART AND

BASELINE METHODS

to validate our approach, executing our approach on the limited
computing power available on that platform. These experiments
demonstrate that our approach can perform well in a challenging
teaming scenarios, compares favorably with the current state-of-
the-art, and can be used in real-time on a mobile robot platform.

A. Collective Activity Dataset

The Collective Activity Dataset (CAD) [5] is a benchmark
group activity dataset used in the computer vision community
to evaluate group activity recognition approaches. CAD consists
of videos of varying size, resolution, and length of variously
sized groups performing different activities (crossing, talking,
dancing and jogging). The group activity label for a frame is
defined by the activity in which most people participant. For each
individual in the team, we extract histogram of oriented gradients
(HoG) [35] from each modality (rgb, depth, and thermal) for
each actor with provided ground truth bounding boxes. To eval-
uate our approach on CAD, we conduct a 5-fold cross-validation
approach and compute accuracy of our prediction of the group
activity. We iterate each five-fold experiment 10 times and
randomly shuffle training and testing groups in between each
iteration. The average performance for a given model with fixed
hyperparameters are used for comparison. The hyperparameters
γl (l = 1, 2, 3) in our model are fined tuned by a search on
{10−4, 10−3, . . . , 104} and hyperparameters p are fined tuned
by a search on {0.3, 0.5, 0.8, 1.0, 1.5, 2.0}.

Table I compares results of our new method against other
state-of-the-art group activity recognition methods on the
dataset, including:

1) VGG-16 [36], a deep convolutional neural network;
2) LRCN [37], Long-term Recurrent Convolutional Net-

works;
3) VGG-16-Person, a deep convolutional neural network for

person recognition and
4) LRCN-Person [23], a Long-term Recurrent Convolutional

Networks for person recognition.

These are all approaches based on large deep learning net-
works. We also compared to two baseline machine learning
methods that also run in real-time, a multiclass Gaussian kernel
Support Vector Machine (SVM), a nearest neighbor approach
and a logistic regression model.

In terms of accuracy, we can see that proposed hierarchical
team behavior recognition approach achieves a better perfor-
mance comparing the traditional machine learning models SVM
and nearest neighbors. It can be attributed to the following
reasons. Due to the introduction of latent variable Z, our hierar-
chical model could capture the team member activities, which is
beneficial for team intent recognition. Moreover, via the leverage
of Schatten p-norm and Laplacian embedding, we could explore
the teammates structure globally and locally. The interacting
among team members are obtained to facilitate the recognition of
team intent. Our approach performs comparably well to the state-
of-the-art complex deep learning based approaches. In addition,
our model is interpretable compare to learning based approaches.
The weights learned from our model indicates the importance of
features or individuals in our model. The regularization terms are
also leveraged to discover the relationship between individuals.
Moreover, in our hierarchy team behaviour recognition, value
of p is an important hyperparameter. When the value of p
is high, our model will be sensitive to the outlier and these
few outliers dominate our model, which lead in a recognition
accuracy drop. When the value of p is low, the training sample
will contribute equally to our model which also degrade for our
team behaviour recognition performance. From our extensive
experiments our approach achieves its peak performance when
the hyperparameter p is set to be 0.8.

In terms of real-time performance, we consider a processing
speed of more than ten frames as real-time, which is similar to
the processing speed of a human visual system. With fixed hyper
parameters p, it takes 209.94 s for training on 500 CAD samples,
ending in 175 iterations, and takes 2.26 s for inference of 257
CAD samples. The existing deep learning approaches require
days for training and have poor run time on board robots, which
make them unsuitable for robotics applications.

Besides the overall the prediction accuracy reported in Table I,
The accuracy by behavior category of our approach under differ-
ent value p is illustrated in Fig. 2. From Fig. 2, we can see that
our model achieves a stable predictive capability by behavior
category under different p.

B. Effect of Teammate Relationship Term

Apart from the performance compassion between our ap-
proach with the state of art, we also study the degenerate version
of our approach without leveraging the latent variable term Z,
whose loss function can be rewritten as follows:

min
W,U,b

n∑
i=1

∥∥W�Xi + b1�
m − yi1

�
m

∥∥p
2,p

+ γ1‖W‖2F . (10)

The team intent is computed as follows:

Team intent = argmaxyo(l), l = 1, 2, . . . , c1, (11)
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Fig. 2. Confusion matrix illustrating accuracy by behavior category of our approach (under different p) on the Collective Activity Dataset.

Fig. 3. Graph showing the effect of γ1, the hyperparameter controlling the
effect of teammate relationship modeling.

where yo(l) =
1
mW�Xo1m + b, W and b denote the optimal

coefficient matrices learned in the training process and Xo

is the query observation. From Table I, we can see that our
approach consistently achieves a better performance compared
to its degenerate version, which demonstrates the effectiveness
of latent variables Z in our model.

In addition, we explore the effect of teammate relationship
term utilized in our model. Fig. 3 illustrates the performance
accuracy w.r.t to γ1, the hyperparameter weighting the Z regu-
larization that uncovers the teammate correlations. This graph
demonstrates the importance of γ1 to the team intent recog-
nition task in CAD. It demonstrates that, with a fixed γ2 =
10−3, γ3 = 10−2 and p = 0.8, intent recognition accuracy is
at its lowest point when γ1 = 0, when teammates correlation

regularization is not used. As the value of γ1 increases along
the log scale with γ1 = 10−2, our approach achieves higher
accuracy, peaking at 74.60%.

C. Real-World Search and Rescue Dataset

We then evaluate our approach of prediction of team intent
on the multisensory underground search and rescue teamwork
dataset, which is collected at our own lab. This team behavior
dataset is unique in that it is collected underground, with team
intents chosen to correspond to real-world search and rescue
tasks. The five team intents defined are donning, patient care,
team stop, timbering and Traversing. The team was recorded
by a Husky robot.1 equipped with an RGB-D camera, a thermal
camera, and LiDAR, simultaneously resulting in color images,
depth images, point clouds, and thermal images. Fig. 4 illustrates
this multisensory data as the team performed donning, patient
care, timbering, and traversing, respectively. Each team behav-
ior was performed 20 times in different team configurations (i.e.,
roles in the team were reconfigured for each execution, in order to
record instances where different body scales and motion patterns
would be used). Ground truth data was labeled manually. In our
evaluation, we utilized the color sensory data and extracted HoG
features each individual from these multi-sensor observations to
create a bag-of-words representation for each team member. We
conduct a 5-fold cross validation approach to obtain the optimal
model parameters. Then, Eq. (4) is applied to the remaining data
instances to recognize the team intent occurring in each scene.

1Husky Unmanned Ground Vehicle: www.clearpathrobotics.com/husky-
unmanned-ground-vehicle-robot
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Fig. 4. Example data instances from our own dataset, consisting of multimodal
perception data captured in the dark side of the Edgar Mine by RGB-D camera,
LiDAR, and thermal camera simultaneously. Each column shows different team
intents. Left to right: donning, patient care, timbering, and traversing.

TABLE II
RESULTS ON OUR OWN DATASET. FOR THIS DATASET,

WE COMPARED ONLY TO REAL-TIME METHODS

By applying our proposed approach, we achieved an accuracy
rate of 96.47%. In term of real time performance, it takes 0.92 s
for training on 85 real world mining samples, ending in 21
iterations, and takes 0.11 s for inference of 25 real world mining
samples.

In the real-world search and rescue scenarios where these mis-
sions performed are often hazardous, it is required that the robots
can recognize team activities in real time. Thus, in our collected
real-world dataset, we only compared to two baseline methods,
both able to operate in real-time, using the same bag-of-words
representation. A multi-class Gaussian kernel Support Vector
Machine identified only 75.29% of the team intents correctly.
A nearest neighbors based approach performed slightly better,
correctly recognizing 81.18% of the team intents. A logistic
regression model achieved a better performance with 89.42%
recognition accuracy. From Table II, we can see that our ap-
proach achieve its best performance when p = 1.5with fixed pa-
rameters γ1 = 1, γ2 = 10−3 and γ3 = 10−1. This demonstrates
the superior performance of our approach.

VI. CONCLUSION

We propose a novel, real-time approach for recognition of
team behaviors from multisensory data. We formulate team
behavior recognition as a joint learning problem, learning a pro-
jection from multisensory observations to individual activities

and learning a projection from individual activities to an overall
team intent simultaneously in the same model. We model these
learned individual activity labels as a latent variable. We also
introduce an explicit representation of the relationships among
members of the team. This is represented by a teammate interac-
tion graph, which is then projected using graph embedding into
a vector representation. This vector representation, encoding
teammate relationships, is used to learn the latent individual
activity labels. We formulate our method in a unified optimiza-
tion framework, and introduce a new optimization algorithm that
theoretically converges to the optimal solution.

To evaluate our approach, extensive experiments are per-
formed. We show that our approach performs competitively
on a benchmark group activity dataset, while still running in
real-time. Apart from the recognition performance and running
time, the effect of teammate interaction graph is studied. We
then introduce the multisensory real-word search and rescue
dataset, consisting of observations made by a Husky mobile
robot in an underground mine, and show that our approach out-
performs baseline real-time methods, and that our introduction
of the graph embedded teammate interaction graph increases our
methods performance. Finally, we perform an ablation study of
our method to explore the effects of hyperparameters. These
results show that our approach achieves superior accuracy and
real-time performance, making it the ideal method for team
intent recognition on mobile robot platforms.
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