
applied
sciences

Article

Hierarchical Task Assignment and Path Finding with Limited
Communication for Robot Swarms

Dario Albani 1,2,3,* , Wolfgang Hönig 4,5 , Daniele Nardi 3, Nora Ayanian 4 and Vito Trianni 2

����������
�������

Citation: Albani, D.; Hönig, W.;

Nardi, D.; Ayanian, N.; Trianni, V.

Hierarchical Task Assignment and

Path Finding with Limited

Communication for Robot Swarms.

Appl. Sci. 2021, 11, 3115.

https://doi.org/10.3390/app11073115

Academic Editor: Álvaro Gutiérrez

Received: 28 February 2021

Accepted: 26 March 2021

Published: 31 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Autonomous Robotics Research Centre (ARRC), Technology Innovation Institute, Abu Dhabi,
United Arab Emirates

2 Institute of Cognitive Sciences and Technologies (ISTC), Italian National Research Council (CNR),
00185 Rome, Italy; vito.trianni@istc.cnr.it

3 Department of Computer, Control and Management Engineering , Sapienza University of Rome,
00185 Rome, Italy; nardi@diag.uniroma1.it

4 Department of Computer Science, Viterbi School of Engineering, University of Southern California,
Los Angeles, CA 90089, USA; whoenig@usc.edu (W.H.); ayanian@usc.edu (N.A.)

5 Bitcraze AB, 21222 Malmö, Sweden
* Correspondence: dario.albani@tii.ae

Abstract: Complex service robotics scenarios entail unpredictable task appearance both in space and
time. This requires robots to continuously relocate and imposes a trade-off between motion costs
and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots
can be exploited to service different areas in parallel. An efficient deployment needs to continuously
determine the best allocation according to the actual service needs, while also taking relocation
costs into account when such allocation must be modified. For large scale problems, centrally
predicting optimal allocations and movement paths for each robot quickly becomes infeasible.
Instead, decentralized solutions are needed that allow the robotic system to self-organize and
adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous
approach to simultaneous task assignment and path planning for robot swarms, which combines a
bio-inspired collective decision-making process for the allocation of robots to areas to be serviced,
and a search-based path planning approach for the actual routing of robots towards tasks to be
executed. Task allocation exploits a hierarchical representation of the workspace, supporting the
robot deployment to the areas that mostly require service. We investigate four realistic environments
of increasing complexity, where each task requires a robot to reach a location and work for a specific
amount of time. The proposed approach improves over two different baseline algorithms in specific
settings with statistical significance, while showing consistently good results overall. Moreover, the
proposed solution is robust to limited communication and robot failures.

Keywords: swarm robotics; decision-making; task allocation; path finding

1. Introduction

Several service scenarios are characterized by new tasks appearing at any time and
in any place, necessitating persistent operation [1]. As an example, consider a large
warehouse where orders arrive erratically and diverse items need to be collected from
different locations. In such context, besides retrieving goods, other services must be
continuously executed on pallets, such as tidying, sorting objects, and controlling and
refilling stocks [2,3]. Similarly, in a greenhouse, continuous and localized operation is
necessary for pruning plants, variable-rate spraying, and selective harvesting. Finally,
in a facility or office environment, cleaning or delivery tasks may be continuously and
unpredictably requested by users located in different areas [4]. Automation in such context
cannot always rely on centralized, fixed infrastructures, which may be costly or impractical.
Instead, wireless sensor networks, IoT, and mobile devices may be exploited to raise the
need for tasks to be serviced by a swarm of specialized robots [5,6].

Appl. Sci. 2021, 11, 3115. https://doi.org/10.3390/app11073115 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6692-4925
https://orcid.org/0000-0002-0773-028X
https://orcid.org/0000-0002-9114-8486
https://doi.org/10.3390/app11073115
https://doi.org/10.3390/app11073115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11073115
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11073115?type=check_update&version=1

Appl. Sci. 2021, 11, 3115 2 of 21

Addressing a persistent and unpredictable service demand with a multi-robot sys-
tem can provide higher efficiency, thanks to parallel operation, and larger flexibility by
modulating the operational costs in terms of robots employed, as well as by deploying
robots only where needed. At the same time, the robotic system must prove scalable,
fault-tolerant and robust, to ensure continuous and efficient operation despite the number
of units deployed, the occurrence of failures, and the variability in the task demands.
Concrete solutions can be obtained by addressing two concurrent problems. On the one
hand, it is necessary to find a suitable task assignment for each robot, so that costs are
minimized in terms of relocation, robot idle time, and task waiting time [3,7,8]. On the
other hand, a collision-free trajectory for the robot must be planned in order to safely reach
the destination without interfering with other robots’ plans [3,9]. This class of problems is
often split in Multi-Robot Task Allocation (MRTA) and Multi-Agent Path Finding (MAPF).
A common naïve approach consists in solving MRTA and MAPF separately. However,
in cluttered environments, such as indoor spaces, those two problems are tightly coupled:
the former provides a set of origin-destination pairs to the latter, which, in turns, returns
back actual costs and timings associated to the movements planned by the different robots.
For both MRTA and MAPF, many centralized and decentralized approaches exist in the
literature (see Section 2). Centralized solutions often rely on perfect intra-robot communi-
cation and suffer the well-known issues of scaling with group size—especially when the
task demand can rapidly change over time—and of fault-tolerance due to the existence of a
single point of failure. Decentralized approaches, on the other hand, potentially feature
high fault-tolerance and scalability, but few have been shown to operate in environments
with limited communication.

Here, we propose a decentralized algorithm for both task allocation and motion
planning that is robust to limited communication and robot failures, and scalable to
different environments and group size. Our method is referred to as Hierarchical Task
Assignment and Path Finding (HTAPF) because the task allocation problem is solved
exploiting a hierarchical representation of the locations where tasks must be executed. More
precisely, by partitioning the work-area in a quad-tree, our MRTA problem is efficiently
solved through the deployment of robots in areas of interest corresponding to the tree
leafs where tasks to be executed are available. To this end, we propose a non-trivial
extension of a collective decision-making process designed for robot swarms [10,11] to deal
with a hierarchy of sequential decisions, allowing a robot swarm to prioritize those areas
with highest demand, while minimizing movement costs. This task allocation approach
is tightly coupled with a search-based path planning approach, which plans the robot
movements and estimates the expected costs [12]. Thanks to this coupling, HTAPF is able
to dynamically adjust the robots’ density in different areas, granting consistently good
performance across different problem instances.

The main contributions of this paper are the following: (i) introduction of a decentral-
ized hierarchical approach to the task assignment problem; (ii) tight coupling of the task
assignment and path finding processes based on a novel utility function; (iii) validation of
the proposed approach in realistic settings; (iv) statistical analysis and comparison of the
performances of the system against two different baselines.

In the following, we first discuss the literature about coupled MRTA and MAPF
problems (see Section 2). Next, we provide a formal description of the analyzed problem
together with the proposed approach in all its constituent parts (see Section 3). Section 4.1
presents the results obtained from the experimental evaluation, and Section 5 concludes by
discussing the benefits and limitations of the proposed approach.

2. Related Work

Centralized approaches to coupled MRTA and MAPF have been proposed that, given a
fixed road-map, compute the shortest path first and then utilize integer linear programming
(ILP) to compute the optimal task assignment [13]. Other approaches use search-based
methods that can find optimal and bounded sub-optimal schedules with respect to the

Appl. Sci. 2021, 11, 3115 3 of 21

sum-of-cost [14] or optimal schedules with respect to make-span [15]. In obstacle-free
spaces, the concurrent assignment and planning of trajectories (CAPT) finds optimal mo-
tions plans for multiple robots by minimizing the squared velocity. This method has been
also proposed in a decentralized version, but with no optimality guarantees [16]. Other
decentralized solutions for the combined problem include controller synthesis to solve
the formation change problem in environments with obstacles and communication con-
straints [17]. However, this solution scales exponentially with the number of robots. In
Reference [18], a decentralized control approach is presented featuring good performance
for large robot teams, but—unlike our approach—it does not consider obstacles. Addi-
tionally, this approach considers pairwise task-swaps and, therefore, might not optimize
the objective over the whole team. Other approaches are based on the estimation of the
robot density [19]. The swarm distribution is estimated locally, followed by the distributed
solution of an optimal transport problem. However, also this method does not consider
obstacles posing constraints on motion and communication.

Some traditional approaches to decentralized task assignment use auctions [20].
A great part of these methods rely on temporarily centralizing the decision-making on
a auctioneer that collects offers and defines the winning robot, to which the task gets
assigned. In swarm robotics contexts, similar techniques are often unpractical due to the
high communication load for large groups, and the limited communication abilities of
the individual robots. Instead, in swarm robotics, threshold-based approaches [21] or
stochastic task switching [22] are often preferred. These methods are inspired by biological
systems where a flexible and stochastic allocation of tasks is observed (e.g., in social insects,
individuals engage in tasks on the basis of the urgency of accomplishing it [23,24]). Robot
swarms employ similar strategies, which allow to achieve coordination in an implicit way,
relying on probabilistic rules that can be modulated by the individual ability to evaluate the
utility in engaging in a given task. These methods can be improved by enabling interaction
among individuals deciding collectively which tasks to execute or in which area to move,
and various task assignment dynamics have been observed from winner take all to a
balanced deployment [11,25]. These latter studies are inspired by the decision-making
abilities observed in ants [26,27] and honeybees [28]. The latter, when searching for a site
where to establish a new nest, engage in repeated interactions trying to recruit other scouts
for high-quality sites, at the same time discouraging other individuals to recruit for alter-
native sites. Theoretical studies revealed that the mechanisms involved in this collective
process can lead to optimal decisions in a relatively short time [28], also presenting striking
similarities with the neural dynamics observed in human decision-making [29,30].

Previous work deployed a decision-making algorithm based on the behavior of honey-
bees and tailored to collective decisions in decentralized systems [10], which proved useful
for the design of artificial systems in a variety of contexts, from robot swarms [11,25,31,32]
to cognitive radio networks [33]. Here, we extend this framework to a hierarchy of se-
quential decisions, largely increasing the complexity of the resulting collective dynamics.
In contrast to previous studies, we account for robot motion and collision costs, robot
failures, and limited communication. For path planning, we use a fully distributed version
of the priority-based planning paradigm [12] as described in Section 3.2.3. Priorities are
assigned implicitly by the order in which data is received from nearby robots. No token
passing procedure or specific schedule is in place ensuring robust execution also with
limited probabilistic communication and robot failures. Other decentralized path planning
methods—not considered here—include push-rotate-update [34] and a method where the
path is planned by a sensor network [35].

3. Hierarchical Task Assignment and Path Finding

We consider scenarios with several tasks to be serviced, e.g., an area needs cleaning or
human workers request supplies. We assume that there is no central authority coordinating
the task execution or sharing the list of available tasks to all the robots. Additionally, the task
distribution is not known in advance, and tasks may appear at any time in any place. Here,

Appl. Sci. 2021, 11, 3115 4 of 21

we first provide a formal description of the problem, and then discuss our approach to
address both MRTA and MAPF in a fully decentralized way.

3.1. Problem Description

We consider the class of problems characterized by tasks that can be executed by
a single robot at a time (SR), and robots that can execute only a single task at the time
(ST). We also consider instantaneous assignment (IA), as the arrival of further tasks is not
available and unpredictable [36,37].

Without loss of generality, the work area is defined as a square partitioned in a 4-
connected grid of size N × N, N ∈ N (see Figure 1, left), which can be configured to
represent spaces of different complexity, from an office to a warehouse. A grid cell ci ∈ C
is identified by its coordinates xi, yi ∈ {1, . . . , N}, and might represent free space where
robots can move and tasks might appear, or an obstacle (e.g., a wall). Each free cell can be
occupied by at most one robot and can contain at most one task at any time.

R4

R3

R2

R1

4

1

2

3

Tasks

Robots

LEGEND:

o

Motion Planner

Assignment

World Model

Plans

Interactions

Local Knowledge

updates

hierarchical
position

region
goal

cost

Figure 1. Left: example outcome of Hierarchical Task Assignment and Path Finding (HTAPF) with
four robots and four tasks in a 16× 16 grid world, here divided in 4 sub-areas. Robots move to
the closest cell with a Manhattan neighborhood, and share their plan with other robots within the
communication range. Conflicts are resolved by sequential planning, exploiting the knowledge
of others’ plans for task assignment and collision-free path planning. In the image, each robot is
identified by its unique color and number, i.e., r1 white, r2 green, r3 blue, r4 yellow. Grey regions are
walls. Right: Interaction scheme among the different components of HTAPF. The local knowledge of
robot r stores the world model, the estimated area utilities obtained upon interaction with other robots,
and the received plans from other robots. Both the area assignment process and the motion planner
exploit and update the local knowledge and interact with each other with local information passing.
Information received from other robots about area utilities (i.e., Ur0 (a) from robot r0 about area a and
the goal region ag) and individual motion plans are exploited to update the local knowledge.

A task Ti ∈ T is a tuple Ti = (xi, yi, ts
i , te

i , tw
i), which requires any robot to move to

the cell at location (xi, yi) and work at that location. Task Ti appears at time-step ts
i and

is accomplished by a robot at time-step te
i (where te

i = ∞ as long as the task has not been
finished). The work time tw

i is the time required from a robot to stay at the task location
and actually execute the task (e.g., cleaning, delivery, or maintenance). The task set T is
the disjoint union of the completed tasks T c = {Ti|Ti ∈ T , te

i 6= ∞} and the unfinished
tasks T u = {Ti|Ti ∈ T , te

i = ∞}. At any time t, we can define the set of available tasks
T a(t) = {Ti|Ti ∈ T u, ts

i < t}. In this study, the primary objective is to serve the highest
number of tasks (max |T c|).

We consider R identical holonomic robots starting in randomly assigned free cells.
A robot ri ∈ R is described by tuple ri = (i, xi, yi, si, ai) identified by its unique id i,
an associated position in the environment given by its coordinates (xi, yi) a discrete state
si indicating the current behavior (whether exploring or exploiting available knowledge,

Appl. Sci. 2021, 11, 3115 5 of 21

see below) and an area ai where the robot is currently deployed. At each time-step, a robot
can wait at its current position, move to an adjacent free cell, or work on a task located in the
cell it is occupying. We assume limited sensing capabilities: robots can only sense adjacent
neighbors, and use their sensing abilities to avoid moving in a cell that is already occupied.
Additionally, robots can communicate with each other wirelessly. Communication is
simulated by means of a realistic model for WiFi networks [38–40], whereby the received
power (in dBm) from robot rj when robot ri is transmitting can be computed as:

Pr(i, j) = P0 − 10η log(d(i, j))− nW(i, j) ·W +N (0, σ), (1)

where P0 is the signal strength at 1 m, η is the path loss, and d(i, j) computes the distance
in meters between the two robots. Moreover, nW(i, j) computes the number of walls in
the direct line between the two robots, W is the wall attenuation, and σ the noise variance.
Data is exchanged in packets (or frames), and the frame error rate is defined as:

FER(Pr(i, j)) = FERS · eγ(S−(Pr(i,j)−Nb)−Nth), (2)

where S is the receiver sensitivity, FERS and γ are hardware specific constants, Nb is
the background noise, and Nth the thermal noise. In this work, we exploit the receiver
sensitivity S as a parameter to determine local and realistic communication abilities.

The above communication model is relevant also for discovering tasks. Indeed, we con-
sider tasks as being issued by mobile devices equipped with the same WiFi communication
system as the robots (e.g., tablets or smartphones). Hence, robots might have limited
perception of the available tasks and the existence of a task is not known by all the robots at
the same time. We assume, unless otherwise stated, that robots do not share task-related in-
formation.

3.2. HTAPF: Principles and Methods

We now illustrate the details of HTAPF, our novel distributed approach that cou-
ples MRTA and MAPF. The overall approach includes three main components: (i) the
local knowledge available to each robot, (ii) the area assignment leveraging interaction with
other robots, and (iii) the motion planning and task assignment, which is performed by
exploiting the knowledge of other robots’ plans (see Figure 1, right).

The local knowledge is available to each robot and consists of a world model, area util-
ity estimations obtained via interaction with other robots, and motion plans of nearby
robots. The world model has a map of the environment—the only information known
a priori—and a hierarchical description of the work area, that is divided in sub-areas
(see Section 3.2.1). As time goes by, the world model is updated including information
about the available tasks and about the presence of other robots. Robots exchange two
types of information. First, they share their locally-estimated perceived utility of working in
the area they are currently located, which is exploited to support the area/task assignment
process. Second, they exchange their motion plans, which are useful for path finding.

The area assignment process generates goals for the motion planner in terms of a
goal area where the robot wants to service tasks. To determine the robot destination,
the area assignment exploits the world model, the information coming from other robots,
and knowledge from the motion planner about the costs of reaching a target area. In other
words, robots can choose to work in an area only if they are assigned to it, and their
motion plan is, therefore, influenced by the area to which they belong. For instance,
in Figure 1 (left), all robots can move and work within their current area but r4, the yellow
robot, which has no task available in its area and needs to get assigned to a different one
before selecting a task (in this case, T4).

Task assignment in the target area and motion planning are performed concurrently.
The motion planner is fully distributed and does not require synchronization among
robots. Given a goal area, it assign tasks and generates collision free paths according to the
information previously received and stored in the local knowledge, including the plans

Appl. Sci. 2021, 11, 3115 6 of 21

of other robots. The current plan is also used internally to enhance the area assignment
process and is also broadcast to other robots to support concurrent planning. For instance,
in Figure 1, the green robot r2 first plans its path toward task T2, and r3, the blue robot,
later decides to move to task T3 even if farther away to avoid interference with r2.

From this high-level description, it is evident that there is a very tight coupling
between the different components, which constantly share information to increase perfor-
mance both at the level of the individual robot and of the group (also see Algorithm 1).
In the following, we provide a detailed description, starting from the world model and
then moving to the main contributions of this study, that is, the task assignment and path
finding, giving particular attention to the coupling between the two.

Algorithm 1 HTAPF

1: procedure STEP(an
i , D, Pa, Pd)

2: for τ in range 1 . . . D do
3: γn+1

m , ρn+1
m , αn

i , βn
i,i′ , ψn

i ← 0 . Reset transition probabilities
4: ro ← SelectNeighbour() . Random choice of a known robot
5: si ← NextState(Pa, Pd) . Selection of next transition type
6: if si = sa then
7: αn

i , βn
i,i′ , ψn

i ← AscendingTransitions(an
i , ro) . Equations (6)–(8)

8: else
9: γr

i , ρr
i ← DescendingTransitions(an

i , ro) . Equations (4) and (5)

10: ag ← RandomTransition(γr
i , ρr

i αn
i , βn

i,i′ , ψn
i) . New hierarchical area

11: UpdateTree(ag) . Update all ancestors

12: cost, plan← PlanMotion(an
i , ag) . Collision Free Path

13: Broadcast(ag, Ur(ag), cost, plan)
14: UpdateUtility(ag, cost) . Ur(ag) in Equation (3)
15: ExecuteNextAction(plan)

3.2.1. World Model

As previously stated, we employ a world model that consists of a hierarchical descrip-
tion of the discretized space, which is represented by a generic k-d tree. Such a hierarchical
description is general enough to be automatically constructed, without requiring knowl-
edge about the structure of the work area in terms of rooms, corridors, and connecting
spaces. In the following, we consider k = 4, that is, a quad-tree where each leaf node
relates to a small area where task may require execution, and the root node corresponds
to a region representing the whole N × N environment. Leaf and non-root nodes are
assigned following the classical quad-tree generation as illustrated in Figure 2 (left and
center panels). Every node in the tree is associated with an area an

j characterized by the
level in the hierarchy n and an index j ∈ {1, 2, 3, 4}, so that the area is fully described by
the tuple an

j = (xn
j , yn

j , ln), where (xn
j , yn

j) are the coordinates of the top-left corner of the
considered region and ln = N/2n is its length (i.e., nodes closer to the root have greater
length). The root node a0 is identified by the tuple (0, 0, N), while a single cell cj can be
identified as am

j = (xm
j , ym

j , 1), where m = log2 N.
At the beginning, a robot r is provided with the size of the environment N and the

depth of the desired quadtree M ≤ log2 N, which is sufficient to build its own world model.
At any time t, each area an

j of any size can contain a set of tasks T a
an

j
(t) that are available and

need to be executed. The corresponding node in the world model of robot r is, therefore,
updated with the local knowledge available, and a utility is computed that reflects the
expected number of tasks that r can execute in the corresponding area an

j :

Ur(an
j , t) = ∑

T∈T a
an

j
(t)

1− Cr(T)
∑

ro 6=r
1− HFW(ro, T)

, (3)

Appl. Sci. 2021, 11, 3115 7 of 21

where the term Cr(T)→ [0, 1] is the normalized cost for robot r to reach task T, as estimated
by the motion planner, computed as the number of actions needed to move from the robots’
current location to its target location, normalized by the maximum lower bound cost for the
given environment. The term HFW(ro, T)→ [0, 1] is a heuristic function that estimates the
normalized lower bound cost for any other robot ro to reach task T or its associated area,
computed using the Floyd–Warshall algorithm (also see Section 3.2.3). If, for any reason,
Equation (3) is not defined, we set Ur(an

j) = 0. In other words, the utility of an area an
j is

higher the more tasks are present, the lower the cost for reaching them (as estimated by the
motion planner), and the lower the number of other robots that can potentially execute the
same tasks. In case of non-perfect communication, r might not have knowledge of the full
range of tasks and other robots, in which case the utility function only considers the set of
known robots and tasks.
(0,0) (8,0)

(0,8) (8,8)

0, 0, 8

4, 0, 2
6, 0, 2

6, 2, 2
4, 2, 2

4, 6, 2
6, 6, 2

6, 4, 2
4, 4, 2

0, 0, 4 4, 0, 4 4, 4, 4 4, 4, 0

4, 2, 1 5, 2, 1 5, 3, 1 4, 3, 1

ani |sa

an+1
m

an−1
j

αni

γn+1
m

ρn+1
m

βni,i′�
descending

ascending

ani |sd
Pa

Pd

ψni

Figure 2. Left: Graphical representation of the considered hierarchical model. In this figure, the en-
vironment is discretized in a 8× 8 matrix (i.e., N = 8) and the corresponding quad-tree is built
upon it, where only certain areas are partitioned, for the sake of brevity. Center: The quad-tree has a
maximum depth of log2(N) = 3. Each node of the quadtree contains the identifying tuple (x, y, l),
with the x and y coordinates and size l of the corresponding area. For instance, a robot residing in
area (4, 2, 2) has the possibility to descend to any of the four corresponding leaf-nodes, such as the cell
(5, 3, 1), exploiting its current knowledge of the sub-tree, or to ascend the quad-tree to area (4, 0, 4) for
wider exploration of the environment. Right: probabilistic transitions between possible states, where
a robot committed to an

i can either move up to the parent node (area an−1
j) when in the ascending state

sa, or move down to one of the children nodes (area an+1
m) when in the descending state sd. Robots

first decide whether to switch state sa → sd (sd → sa) with probability Pd (Pa). Then, transitions
can take place that allow a robot to move in the quad-tree, either spontaneous (commitment γn+1

m ,
abandonment αn

i) or interactive (recruitment ρn+1
m , cross-inhibition βn

i,i′ and self-inhibition ψn
i).

3.2.2. Decentralized Area Assignment

The world model is constantly updated upon receipt of information about new tasks
or about the presence of other robots in a certain area. In this way, each robot can compute
the utility of each area from its own perspective, which is then used to select a goal
area. The decision ultimately corresponds to the assignment of the robot to a node of the
hierarchical world model. Here, the selection of a non-leaf node corresponds to the robot
deciding to move to and remain in a certain area, while the assignment to a leaf node
corresponds to the robot deciding to move to the corresponding area and possibly execute
one of the available tasks. To determine the assignment to the nodes of the hierarchical
word model, we exploit a decentralized algorithm inspired by the collective decision-
making abilities of honeybees [10,28], which was used in different contexts [25,32,33] and
also extended for MRTA [11]. Here, we improve over previous studies by extending the
algorithm to a hierarchical representation of the world, and by considering the constraints
imposed by both the need for collision-free movements and limited communication.

At any time, a robot ri is considered committed to a node in the quad-tree, i.e., an area
ai = an

j in the environment wherein its movements are constrained. Initially, robots start

committed to the root node ai = a0 representing the whole environment. Robots committed

Appl. Sci. 2021, 11, 3115 8 of 21

to non-leaf nodes in the quad-tree are not assigned to any specific task and are free to
explore the corresponding area performing a random walk [41]. Robots committed to
leaf nodes are considered allocated for task execution, whenever tasks become available.
At each decision step, a robot can either descend the quad-tree towards leaf nodes or move
up the hierarchy towards the root node (see Figure 2). When descending the quad-tree,
a robot exploits its current knowledge about the children nodes in the quad-tree to choose
the area with higher utility (3) for task execution. When ascending the quad-tree, the robot
gets committed to the parent node, hence accessing a larger area to explore for servicing
tasks elsewhere. Switching between the ascending state sa and the descending state sd
is performed according to a probabilistic threshold-based decision, which can be tuned
to balance the exploration-exploitation trade-off (see Figure 2, right). Specifically, a robot
changes its state si from ascending (sa) to descending (sd) with probability Pd per time-step,
while it switches from descending to ascending with probability Pa per time-step. Overall,
the probability that a robot at any time is found in the ascending (descending) state is

Pa
Pa+Pd

(Pd
Pa+Pd

). In this work, we use equal probabilities Pa = Pd = 0.5 to obtain a fair
exploration-exploitation trade-off.

In both the descending and ascending states, a robot decides whether or not to change
the current area on the basis of its local knowledge. The proposed decentralized algorithm
exploits both the world model and the knowledge from other robots to determine if
neighboring areas are worth being considered. The idea is that areas with high utility
should be preferred over areas of low utility, following a proven decision-making design
pattern [10,28]. At the same time, overcrowding should be avoided, hence balancing
exploitation among different areas. To this end, robots interact with each other to determine
the best possible allocation. Note that, to move towards areas at the same hierarchical level,
a transition through the parent node is required.

The selection of a destination node in the quad-tree is performed according to four
stochastic processes: (i) commitment to an area at a lower hierarchical level, (ii) recruitment
by a peer robot committed to an area at a lower hierarchical level, (iii) abandonment of the
current area to move up the hierarchy, and (iv) inhibition determined by a peer robot—either
committed to the same (self-inhibition) or to a same-level area (cross-inhibition)—leading
to a move up in the hierarchy (see Figure 2, right panel).

Hence, commitment and recruitment represent the possible descending transitions
available when the robot is in sd, allowing a robot to move down the hierarchy towards
the leaf nodes. Abandonment and inhibition represent the possible ascending transitions—
available when the robot is in sa—allowing a robot to move up the hierarchy towards the
root node. Specifically, self-inhibition avoids overcrowding, pushing robots to explore
other areas when the current one has too many robots working around, while cross-
inhibition favors the selection of better areas of the same hierarchical levels by promoting
exploration at the higher level [10,28]. We refer to commitment and abandonment as
spontaneous processes, as they are determined by individual knowledge, while recruitment
and inhibition are interactive processes that take place upon interaction with a different robot.
All transitions between nodes are stochastic, and the transition probability is computed on
the basis of the utility associated to the quad-tree nodes, as defined in Equation (3) (see
Figure 2, right). Note that, at any time, there may be a non-null probability of remaining in
the current area, depending on the probabilities of the available transitions.

Descending Transitions

The robot r located in area an
i and in state sd can change node by means of commitment

or recruitment (see Figure 2, right). Commitment represents the spontaneous decision of r
to move to one of the four children nodes an+1

m according to the perceived utility. For each
area an+1

m , the transition probability is computed proportionally to its utility as follows:

γn+1
m = k ·Ur(an+1

m), (4)

Appl. Sci. 2021, 11, 3115 9 of 21

where k is a control parameter for spontaneous processes. Conversely, recruitment allows
a robot r to get recruited by another robot. At any time, a robot ro is randomly chosen
among the robots known by r, and—if it belongs to the sub-tree of a child node an+1

m —
a transition probability is computed according to the utility shared by ro, based on the
assumption that Uro provides a better estimation for area an+1

m since ro is located in that
region. Moreover, thanks to the coupling with the motion planner, Uro embeds the motion
costs as estimated by ro, which serve as an indication of the perceived ease of motion within
that area. Additionally, recruitment provides a means to tune the assignment process to the
density of robots in a given area, as the probability of selecting a robot assigned to a certain
area is proportional to the robot density of that area. Hence, the recruitment transition
probability is computed as follows:

ρn+1
m = h ·Uro (an+1

m), (5)

where h is a control parameter for interactive processes. Note that, at any time, only a
single neighboring robot ro is considered, and recruitment takes place only if it belongs to a
sub-tree of the children nodes of an

i . In all other cases, no recruitment is considered. In this
way, the overall recruitment rate of robots to a given area is proportional to the population
of robots already committed to that area [10].

Ascending Transitions

When in state sa and in area an
i , robot r may decide to move to the parent node an−1

j
through abandonment, self-inhibition or cross-inhibition (see Figure 2, right). Spontaneous
abandonment is the more probable the lower is the utility of the current area:

αn
i = k(1−Ur(an

i)). (6)

On the other hand, a robot r residing in area an
i can be inhibited by another robot ro

belonging to the sub-tree either from the same area (self-inhibition) or from a different area
an

i′ at the same hierarchical level n (i.e., an
i and an

i′ share the same parent node, that is, they
are sibling nodes). Self-inhibition is used to cope with overcrowding, where several robots
share the same region, hence impairing robot motion. It is defined as:

ψn
i = h ·Uro (an

i) · H(R(an
i)− θψC(an

i)), (7)

where R(an
i) represents the number of robots in area ai, and H is the Heaviside step

function, which enables the process only if the population in the area exceeds a fraction
θψ = 3/4 of its capacity C(an

i), defined as the number of cells that do not contain an obstacle.
Overall, self-inhibition balances recruitment to an area when the population density is too
high (also see Reference [11]). Conversely, Cross-inhibition forces a robot i to abandon a
region with low utility in favor of a region i′ with higher utility. It is used to focus the
assignment to areas of high utility, allowing the robots to abandon their current area (i.e.,
getting assigned to the parent node) to explore one of the sibling areas. The purpose of
this process is to balance poor commitments that might arise from the probabilistic nature
of the system and outdated/limited knowledge. Hence, given a robot ro residing in the
sub-tree of area an

i′ , i′ 6= i, the probability of cross-inhibition is proportional to the utility
Uro (an

i′), as defined in the following:

βn
i,i′ = h ·Uro (an

i′) · H(θβC(an
i)− R(an

i′)), i 6= i′, (8)

where the Heaviside functionH enables the process only if the population in area i′ does
not exceed one fourth of the capacity, i.e., θβ = 0.25, again to limit potential overcrowding.
Similar to recruitment, also in this case inhibition happens only if ro belongs to areas at the
same hierarchical level or below, otherwise the transition probability is null.

Appl. Sci. 2021, 11, 3115 10 of 21

Overall Algorithm and Control Parameters

A pseudo-code of the steps followed by the robot during the area assignment process
is provided in Algorithm 1. The robot moves in the hierarchical tree one node at the time
based on ascending and descending transition, respectively, selected according to two
a-priori fixed probabilities Pa and Pd (i.e., probabilistic selection of the robot state si and
hence the next transition type, ascending or descending). Next, transitions probabilities are
computed according to the currently selected neighboring robot and the considered areas
(see Algorithm 1, lines 7 and 9) and are, respectively, associated to the locally computed
interactive and spontaneous processes values as in Equation (4) to (8). The assignment
process randomly extract a new hierarchical area (line 10) on the basis of computed transi-
tion probabilities and propagate this decision up, to all its ancestors in its local quad-tree.
We assume the assignment process to be faster than robot motion, so that D decisions are
performed while a robot is moving between two adjacent cells. In this study, we heuris-
tically set D to be equal to the depth of the quad-tree M. Increasing or decreasing D can
improve or diminish the tree exploration. Last, a new motion plan is made (line 12) only if
the assignment process changes the current area after D steps, hence requiring to determine
a new destination (either a chosen task or a randomly determined cell).

As originally proposed by Reina et al. [28], we have weighted interactive and spon-
taneous processes by two free parameters, respectively, h and k, used to define the ratio
h/k between interactive and spontaneous processes. As shown by Albani et al. [11], in
the simple non-hierarchical case, changing this ratio allows switching between a utility-
proportional deployment where robots are allocated to areas proportionally to their utility
when the ratio is low, to a utility-responsive collective decision where the optimal number
of robots is allocated to the area that currently has the highest utility (higher values for
h/k). Indeed, when h = 0, there is no recruitment or inhibition, and only commitment
or abandonment are considered, which are driven directly by knowledge of the area util-
ity. Relying more on interactive transitions allows to make a collective decision towards
areas of higher utility, while balancing the deployment to avoid overcrowding, thanks
to self-inhibition. In this study, we consider h/k = 0.25 (h = 0.2, k = 0.8), which favors
spontaneous transitions while still exploiting interactions to collectively choose the best
area where to service tasks.

3.2.3. Decentralized Task Assignment and Motion Planning

Task assignment and motion planning are performed concurrently by exploiting a
priority-based scheme that assumes robots are ordered and plan sequentially, treating the
plans of previous robots as known dynamic obstacles. Such an approach is in general not
complete, but scales linearly with the number of robots. We implement this approach in a
distributed way, similar to previous work [12], as outlined below.

At the beginning, we pre-compute the all-pair shortest paths in a pre-processing step
using the Floyd–Warshall algorithm. This can be computed in a decentralized way by each
robot or pre-computed and given to each robot as part of the environment description.
We use the all-pair shortest paths in two ways. First, we normalize the all-pair shortest
paths and use the resulting values for our heuristic function HFW(·, ·), which informs our
utility function (see Equation (3)). Second, the knowledge of the all-pair shortest paths
is an admissible heuristic that is used within the path planning algorithm to speed up
the computations.

To this end, as the path planning algorithm, we use Safe Interval Path Planning
(SIPP) [42], a variant of A* that can plan efficiently in the space-time domain if the trajec-
tories of dynamic obstacles are known a-priori. We make an adjustment to the algorithm
to better cooperate with the assignment algorithm. We let the decision-making algorithm
reason on goal regions rather than single cells: when a goal region is selected as the next
assignment by the decision-making algorithm, we consider any cell in the goal region
ag as a possible goal, therefore solving a task assignment and path planning problem
simultaneously. Specifically, each cell containing a task within a leaf node of the quad-tree

Appl. Sci. 2021, 11, 3115 11 of 21

is evaluated and the one with lowest cost is selected as destination. This allows the assign-
ment process to reason about the expected number of tasks in the goal region rather than
having to consider low-level congestion information of the path planner. We note that there
is no explicit synchronization and that our approach is fully distributed and asynchronous.

We then broadcast our current plan to neighboring robots, that update their local
knowledge accordingly using received costs to update their local utility (also see Algorithm 1).
Our approach does not rely on a fixed priority (e.g., Reference [12]), or implicit synchroniza-
tion using tokens (e.g., Reference [43]). However, a disadvantage is that safety can only be
guaranteed with the assumed sensing capabilities of neighboring robots. Reactive obstacle
avoidance prevents collisions that might be caused by our probabilistic communication
model or dynamic ordering of the robots: a movement is performed only if the target cell
is free, otherwise re-planning is triggered.

4. Experimental Evaluation

We evaluate our approach empirically by exploiting a custom 2D simulation environ-
ment written in C++ implementing a grid world (Section 4.1). On this setup, we compare
results for the proposed algorithm against two baselines: (i) a greedy task selection with
task swapping, and (ii) an auction-based mechanism relying on the Contract Net Protocol
(CNP) framework [44] (see Section 4.2). To ensure a fair comparison, all algorithms rely on
the same motion planner and have access to the same information. The experimental setup
is detailed in Section 4.3, and the obtained results are analyzed in Section 4.4.

4.1. Service Robotics Simulation

Figure 3 shows the four different environments used in the experiments, featuring
different size, i.e., different number of cells: (i) a small two rooms environment, where the
total area (N = 16) is split in half by a wall with a 2-cells opening in the center (split16);
(ii) an empty environment of size N = 32 (empty32); (iii) a facility-like environment of
size N = 32, with several rooms connected by hallways and one big room that serves
as a warehouse (facility); and (iv) a rough reproduction of the floor of the Automatic
Coordination of Teams Lab (Robotics and Autonomous Systems Center, University of
South California) of size N = 64 (lab). For the purpose of the experiments, we consider
each cell cj in the grid world to be either free or occupied. A free cell represents empty space
where a robot can move and a task appear. For the empty32 environment, task locations are
uniformly distributed. In the split16, facility and lab scenarios, potential task locations
are specified such that they do not block narrow passages or corridors and only appear
inside rooms (see Figure 3). An occupied cell is either an empty cell already taken by a
robot—and does not allow the presence of a second robot—or represents a wall or any
obstacle not allowing the presence of robots and tasks. Walls and obstacles have an impact
on the communication range, following the model introduced in Equations (1) and (2).
Figure 4 shows how the environment configuration impacts on the communication range
for the facility and lab environments.

As already introduced in Section 3.2.1, we consider R identical holonomic robots.
At each time-step the set of robots is randomly shuffled to remove any bias introduced
by ordered sequential decisions. This allows to avoid ties since we use the reshuffled
sequential order of robots to prioritize the decisions. At each step, a robot is asked to
perform one of the available actions: wait at its current position, move to an adjacent free
cell, or work on a task located in the cell it is occupying. Robot actions are performed after
the decision phase that constitutes the main contribution of this work and is summarized
in Algorithm 1.

Appl. Sci. 2021, 11, 3115 12 of 21

Split16 Empty32 Facility Lab

Figure 3. The four environments used in the experimental setup. From left to right: the split16 environment of size
16× 16, the empty32 environment of size 32× 32, the facility environment of size 32× 32, and last the lab environment
of size 64× 64. Black represent walls, white and grey areas are free cells where robots can move, but tasks can appear only
in the gray shadowed areas.

Figure 4. Example of communication range reduction in the facility (left) and the lab (right) envi-
ronments. With respect to the position marked in red, the plot highlights areas within communication
range (with probability 99%) for S = −80 (blue), for S = −100 (green), and for S = −120 (yellow).

4.2. Greedy and Auction-Based Strategies

For MRTA, a greedy approach is suitable because “anecdotal evidence suggests that
the greedy algorithm works extremely well” [36]. Indeed, with high robot density and
low task generation rate, the greedy approach performs close to the optimal solution
due to its intrinsic reactive property, provided that conflicts in task assignment can be
easily resolved. Similarly, with few robots but many tasks, the robotic system is often
fully occupied all the time, resulting in the maximum possible efficiency. For our baseline,
each robot r chooses the closest available task Ti. We propose a variation of the trivial
greedy approach by including a task swapping procedure. If a robot rp committed to task
Ti receives information related to the commitment of a second robot rq to the same task, a
conflict resolution procedure begins. Robot rp compares its utility against rq’s utility and
drops its current assignment only if Urp(Ti) < Urq(Ti) =⇒ HFW(rp, Ti) < HFW(rq, Ti).
Such greedy variant does not require the concept of areas (see Section 3.2.1); thus, the utility
reduces to the heuristic h.

Our proposed auction-based baseline relies on the Contract Net Protocol scheme
(CNP) [44], upon which several other systems have been built (e.g., Reference [45]). Our
implementation models self-interested robots without the possibility of subcontracts and
transfers [37]. During every selection step, if not assigned with any task, a robot starts the
announcement phase and becomes the manager for the closest task distance-wise. During

Appl. Sci. 2021, 11, 3115 13 of 21

the submission phase, any other non-committed robot within the communication range
answers with its current bid, equals to the heuristic HFW as defined in above. The selection
and contract phases proceed as normal giving priority to lower bids, i.e., robots with a
shorter path to the task, and we break ties by following a FIFO selection. Note that, due to
the announcement phase, task-related information might be propagated farther than the
original task range, potentially increasing the number of robots involved in the transaction.
In obstacle-free areas and, in particular, in absence of environmental bottlenecks one can
imagine the CNP baseline to act as a improved variation of the greedy approach, but in
complex scenarios it has several differences. The assignment process is synchronous and
considers all the robots with related utilities at once, thus locally centralizing the system
for a small time-frame and generating a bigger communication overhead than the other
two proposed approaches.

4.3. Experimental Setup

To model our service robot domain, tasks are generated within two macro-areas
at a time, chosen from 16 areas that cut the environment in identically-sized regions.
Chosen areas generate tasks at a fixed task generation rate, set to 1 task per time-step
in all environments, unless the area is completely full. Additionally, the enabled macro-
areas change during the simulation eight times, resulting in a dynamic demand across
the environment. Tasks do not disappear after a region change and can still be served by
the robots in the area. We believe this to be an effective and realistic approximation of the
service robot problem, in which a region—once served—does not require further attention
for a certain amount of time.

Unless otherwise specified, the settings for the experiments are as follows. The work
time tw

i for all tasks is constant and fixed to 5 steps, i.e., the number of steps a robot has
to remain over a task to consider it accomplished. The number of robots involved in the
simulations is related to the number of free-cells in the considered environment: 25 for
split16 and facility, 50 for empty32, and 150 for lab. We consider nodes associated to
areas of size 2 (i.e., am

i = (xi, yi, 2), with m = log2 N− 1) as leaves. The number of decisions
per time-step (i.e., movements in the hierarchical tree) is set to D = M = log2(N)− 1,
that is, the depth of the quad-tree, and the probability to switch from the ascending to the
descending state, and vice versa, are set to Pa = Pd = 0.5. Each simulation was executed
for 300 time-steps. All the parameter values have been determined on the basis of previous
work or empirical evaluations and are not specifically tuned based on the environment to
be tested (for a discussion about this choice, see Section 5).

4.4. Results

The evaluation of performance of the proposed HTAPF approach is compared against
the greedy and CNP approaches in different experimental settings. For each setting,
we performed 50 independent simulations with different random seeds and random initial
robot positions. In each simulation, we measure the number of completed tasks looking
for the approach that maximizes the demand satisfaction. For each tested environment
and experimental condition, a one-way non-parametric ANOVA (Kruskal–Wallis) test was
conducted to examine the differences in the completed tasks according to the different
strategies considered (greedy, CNP, and HTAPF). Moreover, the post-hoc Dunn’s test was
employed to examine the significance of all possible pairwise comparisons (p < 0.05).

Figure 5 provides the results obtained in all environments in ideal conditions, that is,
when communication among robots is perfect and there is no failure. The former aspect
implies that every robot can receive without error the information about (i) tasks available
and (ii) motion plans from other robots. This condition is clearly unrealistic for practical
scenarios but is useful as a baseline on which to evaluate the impact of limitations, like
local communication and possible failures.

Appl. Sci. 2021, 11, 3115 14 of 21

split16 empty32 facility lab
Environment

0

50

100

150

200

250

300

350

400

A
cc

o
m

p
lis

h
e
d
 T

a
sk

s

Greedy

CNP

HTAPF

Figure 5. Number of accomplished tasks by the different approaches (greedy, Contract Net Protocol
(CNP), and HTAPF) across the different environments, obtained with unlimited communication
and no robot failures. For each condition, 50 independent simulations are performed and the data
displayed by a box-and-whiskers plot. Each box represents the inter-quartile range of the data, and
the median is displayed as a line cutting the box in two parts. Whiskers extend to 1.5 times the top
and bottom quartiles. Dots represent outliers.

Generally speaking, we observe good results from HTAPF, which performs on par
or better than the greedy and CNP approaches (see Figure 5 and Table 1 for the outcome
of statistical tests). Specifically, in split16 HTAPF performs significantly better than both
greedy and CNP. Here, the bottleneck constituted by the small opening between the two
rooms may produce congestion when the task assignment to different areas is not properly
managed, which is something that neither CNP nor the greedy approach properly do.
In empty32, instead, CNP is properly assigning tasks to the robots and performs slightly
better than HTAPF, while the greedy approach presents a significantly lower performance,
due to the inability to quickly adapt to changes in the areas where tasks are spawned. It is
not surprising that CNP performs well in this environment, considering that there is no
limitation in motion from walls or obstacles, and, therefore, the bidding estimates closely
correspond to the actual costs incurred, as motion planning has ample freedom to select a
collision-free route. This is not the case for the facility environment, where the motion
constraints in relocating from one area to another have a similar impact on all approaches
due to the narrow corridors that in some cases force the passage of a single robot at the
time. Finally, the most challenging environment in terms of size and structure is lab, where
HTAPF again outperforms all other approaches.

Note that, thanks to the perfect communication, CNP is close to a centralized approach
for task assignment, as all robots can participate to the bidding process. In addition, the
greedy approach can take advantage of the perfect information available, making task
switching very efficient. Hence, the competitor strategies for HTAPF are working in the
best possible conditions for their characteristics. HTAPF also exploits all the available
information well, but the stochastic task assignment maintains some randomness that
best suites for scenarios with limited knowledge, as we show later. Additionally, the
communication requirements for HTAPF are minimal, while CNP imposes a consider-
able communication load. Hence, the advantage presented by HTAPF in these baseline
experiments is commendable.

Appl. Sci. 2021, 11, 3115 15 of 21

Table 1. Results of the statistical tests on the simulations performed with unlimited communication
and no robot failures.

split16 empty32

greedy CNP HTAPF greedy CNP HTAPF

median 150 172 189.5 239 287 283.5
Kruskal–Wallis H = 47.7, p = 1.1 × 10−4 H = 43.8, p = 7.0 × 10−4

p-value greedy – 9.1 × 10−4 6.7 × 10−8 – 5.8 × 10−9 2.1 × 10−4

CNP – – 3.6 × 10−2 – – 3.6 × 10−2

facility lab

greedy CNP HTAPF greedy CNP HTAPF

median 204 211 208 225 262 275
Kruskal–Wallis H = 4.7, p = 0.31 H = 62.0, p = 1.1× 10−12

p-value greedy – × × – 4.3× 10−5 1.4× 10−12

CNP – – × – – 2.6× 10−3

A more realistic setting is when communication is limited in range, due to limited
emission power and imperfect receiver sensitivity (We use the following parameters for
the communication model for Equations (1) and (2): P0 = −20, η = 5.6, W = 10, σ = 3.1,
FERS = 0.08, γ = 1, Nb = −100, and Nth = −100). We study the influence of limited
communication by using three different sensitivities, S ∈ {−120,−100,−80} which sub-
stantially limit the range at which broadcast messages can be received (see Figure 4 for
some examples). Note that both robots and tasks rely on the same communication model,
meaning that tasks are known to a robot only when within range. Figure 6 shows the
results for all environments and all approaches considered, while Table 2 reports the results
of the statistical tests. Additionally, we also considered failures in robots happening at
different rates (0.05 and 0.1 expected failures per time-step, corresponding to an average of
15 and 30 failing robots per simulation, respectively), which turn robots into static obstacles
that need to be avoided, therefore influencing the overall task execution abilities of the
system (see Figure 7 and Table 3 for the results of the statistical tests).

Greedy

CNP

HTAPF

-120 -100 -8050

100

150

200

250

300

350
Empty 32

-120 -100 -80
Communication Range

50

100

150

200

250

300

350
Lab

-120 -100 -80
Communication Range

50

100

150

200

250

300

350

A
cc

o
m

p
lis

h
e
d

 T
a
sk

s

Facility

-120 -100 -8050

100

150

200

250

300

350

A
cc

o
m

p
lis

h
e
d

 T
a
sk

s

Split 16

Figure 6. Number of accomplished tasks by the different approaches (greedy, CNP, and HTAPF)
across the different environments, obtained with limited communication and no robot failures.

Appl. Sci. 2021, 11, 3115 16 of 21

Table 2. Results of the statistical tests on the simulations performed with different limited communi-
cation range.

split16 empty32

S
=
−

12
0

greedy CNP HTAPF greedy CNP HTAPF

median 145.5 174 183 240 287 281.5
Kruskal–Wallis H = 58.5, p = 5.9× 10−12 H = 34.4, p = 6.0× 10−7

greedy – 1.7× 10−4 1.9× 10−7 – 8.8× 10−7 4.6× 10−5

CNP – – 1.5× 10−1 – – 4.0× 10−1

S
=
−

10
0

greedy CNP HTAPF greedy CNP HTAPF

median 139 165.5 191 241.5 277 280.5
Kruskal–Wallis H = 72.86, p = 5.6× 10−15 H = 21.67, p = 2.3× 10−4

greedy – 1.2× 10−2 3.7× 10−9 – 6.6× 10−3 2.1× 10−5

CNP – – 7.3× 10−4 – – 1.2× 10−1

S
=
−

80

greedy CNP HTAPF greedy CNP HTAPF

median 145.5 150 177 244 285.5 268.5
Kruskal–Wallis H = 35.5, p = 3.7× 10−7 H = 13.7, p = 8.3× 10−3

greedy – 2.6× 10−1 3.8× 10−5 – 1.1× 10−3 2.5× 10−1

CNP – – 2.7× 10−3 – – 3.3× 10−2

facility lab

S
=
−

12
0

greedy CNP HTAPF greedy CNP HTAPF

median 203 208.5 191 224 273.5 252.5
Kruskal–Wallis H = 8.2, p = 8.3× 10−2 H = 60.5, p = 2.3× 10−12

greedy – × × – 3.2× 10−12 3.7× 10−8

CNP – – × – – 1.4× 10−1

S
=
−

10
0

greedy CNP HTAPF greedy CNP HTAPF

median 196.5 195 175 227 271.5 271
Kruskal–Wallis H = 17.2, p = 1.8× 10−3 H = 43.1, p = 1.0× 10−8

greedy – 1.2× 10−1 8.5× 10−4 – 7.4× 10−8 1.5× 10−7

CNP – – 7.4× 10−2 – – 8.9× 10−1

S
=
−

80

greedy CNP HTAPF greedy CNP HTAPF

median 194 171.5 158.5 227 256.5 273.5
Kruskal–Wallis H = 38.4, p = 9.1× 10−8 H = 35.8, p = 3.2× 10−7

greedy – 3.8× 10−3 2.0× 10−6 – 2.0× 10−2 6.0× 10−5

CNP – – 6.4× 10−2 – – 2.8× 10−2

Generally speaking, the value of HTAPF is confirmed practically everywhere. In the
split16 environment, HTAPF proves robust against communication limitations, and al-
ways performs significantly better than both greedy and CNP, apart when a sensitivity
of S = −120 is considered where no significant difference was found between HTAPF
and CNP (see Figure 6, top-left panel, and Table 2). The small dimensions and the limited
number of walls entail that limitations in communication are not too evident, substantially
confirming the baselines results. In addition, in case of failures, HTAPF presents a robust
behavior, only marginally affected by the unavailable robots, but still outperforming the
competitor approaches (Figure 7 top-left and Table 3).

In the empty32 environment, limitations in communication have practically no impact,
and we observe again that CNP and HTAPF are performing on par and significantly better

Appl. Sci. 2021, 11, 3115 17 of 21

than the greedy approach, although a higher variability for CNP is observed when the
communication sensitivity is worse (S = −100 and S = −80). In the latter case, CNP
performs slightly better, thanks to the ease of motion granted to the robots (see Figure 6,
top-right, and Table 2). When robot failures are introduced, instead, HTAPF performs
better than the other approaches for the highest failure rate, as it proves to be more robust
in re-allocating the residual robots when needed. Indeed, there is no significant drop in
performance with increasing failure rates (see Figure 7, top-right, and Table 3).

0.0 0.05 0.1
Failures Rate

50

100

150

200

250

300

350
Lab

0.0 0.05 0.1
Failures Rate

50

100

150

200

250

300

350

A
cc

o
m

p
lis

h
e
d
 T

a
sk

s

Facility

0.0 0.05 0.150

100

150

200

250

300

350
Empty 32

0.0 0.05 0.150

100

150

200

250

300

350

A
cc

o
m

p
lis

h
e
d
 T

a
sk

s

Split 16

Greedy

CNP

HTAPF

Figure 7. Number of accomplished tasks by the different approaches (greedy, CNP, and HTAPF)
across the different environments, obtained with unlimited communication and variable robot
failures rate.

The facility environment is the one that presents the harshest communication limita-
tions, with thick walls preventing a proper exchange of information. In such conditions, the
performance of CNP and HTAPF gets worse and the greedy approach proves more robust
as it does not rely much on communication. Significant differences are observed when
S ≥ −100, where the greedy approach outperforms both CNP and HTAPF (see Figure 6,
bottom-left, and Table 2). In case of failures, all approaches show a similar drop in per-
formance, due to failed robots blocking corridors or doorways, and no algorithm is more
robust than the others (see Figure 7, bottom-left, and Table 3).

Finally, the lab environment confirms the robustness of HTAPF both with respect
to limited communication and robot failures. In the former case (Figure 6 bottom-right
and Table 2), HTAPF always outperforms the greedy approach and is significantly better
than CNP when S = −80. In the latter case, HTAPF is significantly better than both
approaches but for the maximum failure rate, where the advantage is marginal (Figure 7
bottom-right and Table 3). It is worth noting that the performance of HTAPF is rather
constant despite the complexity of the environment and the introduced limitations and
failures, which suggests that the algorithm properly exploits the available robots, flexibly
deploying them to the areas that mostly need work to be performed, quickly adapting to
variations in the service demands.

Appl. Sci. 2021, 11, 3115 18 of 21

Table 3. Results of the statistical tests on the simulations performed with different rates of robot fail-
ures.

split16 empty32

ra
te

0.
05

greedy CNP HTAPF greedy CNP HTAPF

median 141 154.5 193 240.5 279.5 280.5
Kruskal–Wallis H = 30.9, p = 1.9 × 10−7 H = 5.4, p = 6.6 × 10−2

greedy – 2.2× 10−1 6.4 × 10−9 – × ×
CNP – – 4.5 × 10−6 – – ×

ra
te

0.
1

greedy CNP HTAPF greedy CNP HTAPF

median 131 147 174.5 263 269 279.5
Kruskal–Wallis H = 22.5, p = 1.2× 10−5 H = 6.25, p = 4.4× 10−2

greedy – 3.7× 10−2 3.1× 10−9 – 6.4× 10−1 5.3× 10−3

CNP – – 1.2× 10−4 – – 2.0× 10−2

facility lab

ra
te

0.
05

greedy CNP HTAPF greedy CNP HTAPF

median 173.5 187.5 191 226 260 276
Kruskal–Wallis H = 0.2, p = 9.1× 10−1 H = 11.3, p = 3.4× 10−3

greedy – × × – 5.0× 10−6 2.0× 10−15

CNP – – × – – 7.7× 10−4

ra
te

0.
1

greedy CNP HTAPF greedy CNP HTAPF

median 139.5 148.5 152.5 226 262 265.5
Kruskal–Wallis H = 2.2, p = 3.4× 10−1 H = 2.3, p = 3.2× 10−1

greedy – × × – × ×
CNP – – × – – ×

5. Conclusions

We presented HTAPF, a novel fully decentralized algorithm that couples a bio-inspired
task allocation algorithm with a distributed motion planner for persistent robotic service
tasks. The task allocation component significantly extends our prior work by supporting
multiple hierarchical decision levels and a utility function that directly considers the (esti-
mated) cost of robot motions. The motion planning component is based on a distributed
prioritized planning scheme with goal assignment within a specified region. Both ap-
proaches are tightly coupled because the motion planner’s cost estimates are directly
considered for area/task assignment. Tests on different environments show that the pro-
posed solution performs well in all tested cases, validated by statistical tests and compared
to two baseline algorithms. We also demonstrate that HTAPF is robust with respect to
limited communication and induced robot failures.

Although the HTAPF algorithm is characterized by several free parameters, no specific
tuning has been performed for the experiments presented here. Proposed values are
chosen according to previous work and reasonable heuristics, and have been kept fixed
across different problem instances to demonstrate the wide applicability of the proposed
approach. While improvements in performance are possible with a detailed tuning of
all the parameters for specific experimental settings, these results demonstrate that the
system properly generalizes to different conditions, different number of robots and different
introduced limitations. Indeed, we have shown that performance is satisfactory also in
those cases where the nature of the environment (e.g., robot failures or communication
limitation) is not known in advance. We believe that the proposed solution is a good fit
for many realistic service task scenarios or situations where robots with limited power,
reliability, or communication are taken into account. Examples of the latter are unstructured

Appl. Sci. 2021, 11, 3115 19 of 21

environments that lack a central entity, a distributed network that covers the entire area,
or scenarios where the system can be deployed without specific infrastructures, such as
search and rescue scenarios and delivery systems for large industrial settings.

Future work includes the study of the macroscopic dynamics of the system and the
adaptive tuning of the tree exploration. A deep analysis of a macroscopic model repre-
senting the decision dynamics over the quad-tree can provide a better understanding of
the dynamics characterizing the assignment process, leading to the identification of pa-
rameterizations that provide optimal performance and desired system properties, possibly
including different parameters for different hierarchical levels in the quad-tree. Adaptive
solutions to the tuning of some key parameters are important to dynamically respond to
problem requirements. For instance, the possibility of online tuning the probability of
descending the quad-tree can provide an important means to optimize the exploration-
exploitation trade-off.

Author Contributions: Conceptualization D.A., W.H., V.T., N.A. and D.N.; methodology D.A., W.H.
and V.T.; software D.A., W.H. and V.T.; writing–review and editing, D.A., W.H., V.T., N.A. and D.N.;
funding acquisition V.T. and N.A. All authors have read and agreed to the published version of
the manuscript.

Funding: V.T. and D.A. acknowledge support from the Office of Naval Research Global (ONRG)
for the project “Collective Decisions in Dynamic Environments” (Award N62909-18-1-2093). V.T.
acknowledges support from the project “TAILOR” (H2020-ICT-48 GA: 952215). N.A. and W.H.
acknowledge support from NSF under grant IIS-1724392.

Institutional Review Board Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garcia, E.; Jimenez, M.A.; De Santos, P.G.; Armada, M. The evolution of robotics research. IEEE Robot. Autom. Mag. 2007,

14, 90–103. doi:10.1109/MRA.2007.339608.
2. D’Andrea, R. Guest Editorial: A Revolution in the Warehouse: A Retrospective on Kiva Systems and the Grand Challenges

Ahead. IEEE Trans. Autom. Sci. Eng. 2012, 9, 638–639.
3. Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.W.; Ayanian, N. Persistent and Robust Execution of MAPF Schedules in Warehouses.

IEEE Robot. Autom. Lett. 2019, 4, 1125–1131. doi:10.1109/LRA.2019.2894217.
4. van Henten, E.; Bac, C.; Hemming, J.; Edan, Y. Robotics in protected cultivation. IFAC Proc. Vol. 2013, 46, 170–177.
5. Ferrer, A.J.; Marquès, J.M.; Jorba, J. Towards the Decentralised Cloud: Survey on Approaches and Challenges for Mobile, Ad Hoc,

and Edge Computing. ACM Comput. Surv. 2019, 51, 1–36. doi:10.1145/3243929.
6. Dorigo, M.; Theraulaz, G.; Trianni, V. Reflections on the future of swarm robotics. Sci. Robot. 2020, 5, eabe4385.
7. Farinelli, A.; Iocchi, L.; Nardi, D. Distributed on-line dynamic task assignment for multi-robot patrolling. Auton. Robot. 2017,

41, 1321–1345.
8. de Lope, J.; Maravall, D.; Quiñonez, Y. Self-organizing techniques to improve the decentralized multi-task distribution in

multi-robot systems. Neurocomputing 2015, 163, 47–55.
9. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015,

219, 40–66.
10. Reina, A.; Valentini, G.; Fernández-Oto, C.; Dorigo, M.; Trianni, V. A Design Pattern for Decentralised Decision Making. PLoS

ONE 2015, 10, e0140950-18.
11. Albani, D.; Manoni, T.; Nardi, D.; Trianni, V. Dynamic UAV Swarm Deployment for Non-Uniform Coverage. In Proceedings of

the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Stockholm, Sweden, 10–15 July
2018; pp. 523–531.

12. Velagapudi, P.; Sycara, K.P.; Scerri, P. Decentralized prioritized planning in large multirobot teams. In Proceedings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4603–4609.

13. Sabattini, L.; Digani, V.; Secchi, C.; Fantuzzi, C. Optimized simultaneous conflict-free task assignment and path planning for
multi-AGV systems. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 1083–1088.

https://doi.org/10.1109/MRA.2007.339608
https://doi.org/10.1109/LRA.2019.2894217

Appl. Sci. 2021, 11, 3115 20 of 21

14. Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.W.; Ayanian, N. Conflict-Based Search with Optimal Task Assignment. In Proceedings
of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Stockholm, Sweden, 10–15 July
2018; pp. 757–765.

15. Ma, H.; Koenig, S. Optimal Target Assignment and Path Finding for Teams of Agents. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), Singapore, 9–13 May 2016; pp. 1144–1152.

16. Turpin, M.; Michael, N.; Kumar, V. CAPT: Concurrent assignment and planning of trajectories for multiple robots. Int. J. Robot.
Res. 2014, 33, 98–112.

17. Ayanian, N.; Kumar, V. Decentralized Feedback Controllers for Multiagent Teams in Environments With Obstacles. IEEE Trans.
Robot. 2010, 26, 878–887.

18. Panagou, D.; Turpin, M.; Kumar, V. Decentralized goal assignment and trajectory generation in multi-robot networks: A multiple
Lyapunov functions approach. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 31 May–7 June 2014; pp. 6757–6762.

19. Bandyopadhyay, S.; Chung, S.; Hadaegh, F.Y. Probabilistic swarm guidance using optimal transport. In Proceedings of the 2014
IEEE Conference on Control Applications (CCA), Juan Les Antibes, France, 8–10 October 2014; pp. 498–505.

20. Dias, M.B.; Stentz, A. Opportunistic optimization for market-based multirobot control. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; pp. 2714–2720.

21. Castello, E.; Yamamoto, T.; Libera, F.D.; Liu, W.; Winfield, A.F.T.; Nakamura, Y.; Ishiguro, H. Adaptive foraging for simulated and
real robotic swarms: the dynamical response threshold approach. Swarm Intell. 2016, 10, 1–31.

22. Napp, N.; Klavins, E. A compositional framework for programming stochastically interacting robots. Int. J. Robot. Res. 2011,
30, 713–729.

23. Theraulaz, G.; Bonabeau, E.; Denuebourg, J.N. Response threshold reinforcements and division of labour in insect societies. Proc.
R. Soc. London Ser. B Biol. Sci. 1998, 265, 327–332.

24. Beshers, S.N.; Fewell, J.H. Models of Division of Labor in Social Insects. Annu. Rev. Entomol. 2001, 46, 413–440.
25. Miletitch, R.; Dorigo, M.; Trianni, V. Balancing exploitation of renewable resources by a robot swarm. Swarm Intell. 2018,

86, 307–326.
26. Stroeymeyt, N.; Robinson, E.J.H.; Hogan, P.M.; Marshall, J.A.R.; Giurfa, M.; Franks, N.R. Experience-dependent flexibility in

collective decision making by house-hunting ants. Behav. Ecol. 2011, 22, 535–542.
27. Franks, N.R.; Richardson, T.O.; Stroeymeyt, N.; Kirby, R.W.; Amos, W.M.D.; Hogan, P.M.; Marshall, J.A.R.; Schlegel, T. Speed-

cohesion trade-offs in collective decision making in ants and the concept of precision in animal behaviour. Anim. Behav. 2013,
85, 1233–1244.

28. Reina, A.; Marshall, J.; Trianni, V.; Bose, T. Model of the best-of-N nest-site selection process in honeybees. Phys. Rev. E 2017,
95, 052411.

29. Marshall, J.A.R.; Bogacz, R.; Dornhaus, A.; Planqué, R.; Kovacs, T.; Franks, N.R. On optimal decision-making in brains and social
insect colonies. J. R. Soc. Interface 2009, 6, 1065–1074.

30. Reina, A.; Bose, T.; Trianni, V.; Marshall, J.A.R. Psychophysical Laws and the Superorganism. Sci. Rep. 2018, 8, 4387–4388.
31. Reina, A.; Bose, T.; Trianni, V.; Marshall, J.A.R. Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms.

In Distributed Autonomous Robotic Systems (DARS); Springer: Berlin/Heidelberg, Germany, 2018; pp. 461–473.
32. Fleming, C.; Adams, J.A. Recruitment-Based Robotic Colony Allocation. In Distributed Autonomous Robotic Systems (DARS);

Springer: Berlin/Heidelberg, Germany, 2019; pp. 79–94.
33. Caleffi, M.; Trianni, V.; Cacciapuoti, A.S. Self-Organizing Strategy Design for Heterogeneous Coexistence in the Sub-6 GHz. IEEE

Trans. Wirel. Commun. 2018, 17, 7128–7143.
34. De Wilde, B.; Ter Mors, A.W.; Witteveen, C. Push and rotate: a complete multi-agent pathfinding algorithm. J. Artif. Intell. Res.

2014, 51, 443–492.
35. Luna, R.; Bekris, K.E. Network-guided multi-robot path planning in discrete representations. In Proceedings of the 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4596–4602.
36. Gerkey, B.P.; Matarić, M.J. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 2004,

23, 939–954.
37. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. Coop. Robot. Sens. Netw. 2015,

2015, 31–51.
38. Faria, D.B. Modeling Signal Attenuation in IEEE 802.11 Wireless LANs; Technical Report TR-KP06-0118; Stanford University:

Stanford, CA, USA, 2005; Volume 1.
39. Beuran, R.; Nakata, J.; Okada, T.; Nguyen, L.T.; Tan, Y.; Shinoda, Y. A Multi-Purpose Wireless Network Emulator: QOMET.

In Proceedings of the 22nd International Conference on Advanced Information Networking and Applications-Workshops (AINA
Workshops 2008), Gino-wan, Japan, 25–28 March 2008; pp. 223–228.

40. Wang, S.; Krishnamachari, B.; Ayanian, N. The optimism principle: A unified framework for optimal robotic network deployment
in an unknown obstructed environment. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2578–2584.

41. Dimidov, C.; Oriolo, G.; Trianni, V. Random Walks in Swarm Robotics: An Experiment with Kilobots. In Proceedings of the
International Conference on Swarm Intelligence (ANTS), Brussels, Belgium, 7–9 September 2016; Volume 9882, pp. 185–196.

Appl. Sci. 2021, 11, 3115 21 of 21

42. Phillips, M.; Likhachev, M. SIPP: Safe interval path planning for dynamic environments. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5628–5635.

43. Ma, H.; Li, J.; Kumar, T.K.S.; Koenig, S. Lifelong Multi-Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), São Paulo, Brazil, 8–12 May 2017;
pp. 837–845.

44. Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Trans.
Comput. 1980, 29, 1104–1113.

45. Sandholm, T. An implementation of the contract net protocol based on marginal cost calculations. In Proceedings of the AAAI,
Washington, DC, USA, 11–15 July 1993; Volume 93, pp. 256–262.

	Introduction
	Related Work
	Hierarchical Task Assignment and Path Finding
	Problem Description
	HTAPF: Principles and Methods
	World Model
	Decentralized Area Assignment
	Decentralized Task Assignment and Motion Planning

	Experimental Evaluation
	Service Robotics Simulation
	Greedy and Auction-Based Strategies
	Experimental Setup
	Results

	Conclusions
	References

