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Abstract

Parallel file systems (PFSes) and parallel I/O libraries have
been the backbone of high-performance computing (HPC)
infrastructures for decades. However, their crash consistency
bugs have not been extensively studied, and the corresponding
bug-finding or testing tools are lacking. In this paper, we first
conduct a thorough bug study on the popular PFSes, such as
BeeGFS and OrangeFS, with a cross-stack approach that cov-
ers HPC 1/O library, PFS, and interactions with local file sys-
tems. The study results drive our design of a scalable testing
framework, named PFSCHECK. PFSCHECK is easy to use
with low performance overhead, as it can automatically gener-
ate test cases for triggering potential crash-consistency bugs,
and trace essential file operations with low overhead. PF-
SCHECK is scalable for supporting large-scale HPC clusters,
as it can exploit the parallelism to facilitate the verification of
persistent storage states.

1 Introduction

Parallel file Systems are the standard I/O systems for large-
scale supercomputers. They aim at maximizing storage ca-
pacity as well as I/O bandwidth for files shared by parallel
programs. They scale to tens of thousands of disks accessed
by hundreds of thousands of processes.

To avoid data loss, various fault tolerance techniques have
been proposed for PFSes, including checkpointing [12, 15, 17]
and journaling [3, 14]. However, crash consistency bugs are
still happening and causing severe damages. For instance, a
severe data loss took place at Texas Tech HPCC after two
power outages in 2016, resulting in metadata inconsistencies
in its Lustre file system [1]; the most recent crash in Lustre
in the Stampede Supercomputer suspended its service for
six days. As supercomputing time is expensive, both long
recovery time and loss of data are expensive.

To understand crash consistency bugs, researchers have
conducted intensive studies on commodity file systems
[2,7,13,16]. Pillai et al. [16] investigated the characteristics of
crash vulnerabilities in Linux file systems, such as ext2, ext4,
and btrfs. To alleviate these bugs, recent studies have applied
verification techniques to develop bug-free file systems [6,21].
Prior researchers also exploited model checking [4,26] and
fuzzing [11,25] techniques to pinpoint crash-consistency bugs
with defined specifications. However, most of these prior stud-
ies focused on the regular file systems. Few of them can be

directly applied to PFSes, due to the unique architecture of
PFS, its workload characteristics, and the increased complex-
ity of HPC I/O stack. Specifically, files can be shared by all
processes in a parallel job, and I/O is performed through a
variety of parallel I/O libraries which may have their own
crash consistency implementation. A proper attribution of
application-level bugs to one layer or another in the I/O stack
depends on the "contract" between each layer.

To further understand crash consistency bugs in parallel I/O,
we conduct a study with popular PFSes, including BeeGFS
and OrangeFS. We manually create seven typical I/O work-
loads with the parallel I/O library HDFS5 [5], and investigate
crash-consistency bugs across the I/O stack. Our study re-
sults demonstrate that workloads on PFSes suffer from much
(2.6-3.8x) more from crash consistency bugs than local file
system (see Table 2). We also develop a study methodology
to distinguish bugs in the PFS from bugs in the parallel I/O
library, using a formal definition of the crash consistency con-
tract. We find that the number of crash-consistency bugs in
parallel I/O libraries is comparable to that in PFSes.

To identify crash-consistency bugs in various PFSes and
parallel I/O libraries, and facilitate their design and implemen-
tation, we propose to develop a scalable and generic testing
framework, named PFSCHECK, with four major goals: (1)
PFSCHECK should be easy to use, with as much automation
of testing as possible; (2) PESCHECK should be lightweight,
with minimal performance overhead; (3) PFSCHECK should
be scalable, with the increasing complexity of PFS configura-
tions; (4) PFSCHECK should be accurate, which can identify
the exact locations of crash-consistency bugs.

To achieve these aforementioned goals, we develop PF-
SCHECK with four major components: (1) a PFS-specific
automated test-case generator, which will automatically gen-
erate a limited number of effective test cases for crash consis-
tency testing. The generator follows POSIX APIs and hide the
underlying 1/O library details from upper-level developers;
(2) a lightweight logging mechanism, which will trace the
essential file operations on both client and storage server side
with low overhead; (3) a fast crash state exploration mecha-
nism, which will efficiently prune the large number of crash
states brought by parallel workloads and multiple servers;
(4) a bug classifier, which will properly attribute the reported
crash-consistency bugs to PFS or I/O library with the given
crash consistency model. We wish to develop PEFSCHECK
into an open-source testing platform that can facilitate the
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Figure 1: Crash-Vulnerability Examples in BeeGFS.

testing of developed and developing parallel file systems and
parallel I/O libraries.

2 Background and Motivation

2.1 Crash Consistency in in HPC I/O

PFSes, such as BeeGFS [10], OrangeFS [23], Lustre [19],
and GPFS [18], have been the main I/O infrastructure for
supercomputers. PESes were designed for different hardware
configurations, and different workloads than distributed file
systems (DFSes) like GFS [9] and HDFS [20, 22]. Specifi-
cally, the I/O stack of PFSes has three different properties.
First, while the "one file per process" use mode is common,
PFSes are optimized for shared access to a single file by all
processes in a large-scale parallel computing setting. A large
file may be stripped across all storage servers. This brings
challenges to enforce the ordering of filesystem operations
across large-scale server machines. Second, the metadata and
data blocks are managed separately. Their complicated coordi-
nation causes crash-consistency bugs, even if each server has
employed transactional mechanisms to enforce local atomic
storage operations. Third, PFSes have a deep software stack,
which often includes specific parallel I/O libraries. For exam-
ple, an application may use HDF5 [5] that invokes MPI-1O [8]
to execute POSIX I/O operations on the PFS.

The post-crash behaviors of an I/O system depend on what
has been persisted before failures. Typically, PESes rely on
local file systems to hold data on each storage server, and
the 1/0O library relies on the PFS. Thus, we need to conduct
data recovery from persisted data structures layer by layer:
the local file system first, followed by the PFS, and then the
parallel I/O library. Crash consistency specifies what condi-
tions should be satisfied by each one of these layers — what
is the contract it obeys. The upper layer will perform its own

recovery assuming that the layer below satisfied its contract.
However, POSIX APIs used by file systems do not specify
this contract [4], nor do PFSes clarify what they guarantee
after crash recovery.

In this paper, we assume that the proper contract, which we
call prefix crash consistency, is that the state of the file system
after recovery is that obtained by executing correctly a prefix
of the sequence of the I/O calls before the crash and none of
the operations following this prefix. This prefix includes all
fsync operations preceding the crash, the last operation in
this prefix may be only partially completed, if it is not atomic.
A similar definition can be provided for other I/O systems —
one needs to define which operations are atomic and which are
"persist" operations. If the I/O interface supports concurrent
calls, then the order between I/O calls is the partial causality
order, rather than a cut through a sequence.

Table 1: Test suites used in our study.

Test suite Initializer ‘Workload (s) Checking Items
file with old file renamed from a tmp atomicity of
ARVR .
content file with new content replacement
. . - update atomicity;
WAL file with old logging before updating otherwise check
content file, then remove log
log content
create; delete; rename; atomicity; readability
two groups and . . . -
HDF5 resize dimension; of existing datasets
two datasets .
hS5part write dataset and groups;

2.2 Motivating Examples

We present a crash-vulnerability scenario of PFS in Figure .
The application attempts to replace the content of a target
file by creating, modifying, and renaming a temporary file
in BeeGFS (see the detailed setting in § 3.1). The file op-
erations are issued by BeeGFS client, and forwarded to the
corresponding server machines. In this motivating scenario,
we reveal three crash inconsistency states. Two of them are
caused by cross-node persistence reordering, one is caused
by the intra-node persistence reordering.

(1) When the append to the file on storage node #1 is
persisted to the disk after the rename of directory entry on
the metadata node, a crash happens right before the append.
In this case, BeeGFS will suffer from data loss. This intro-
duces crash vulnerability to the application, since its assumed
atomicity is broken. (2) Similar inconsistency will happen if
reordering happens between rename on the metadata node
and unlink of the file on the storage node. Both of these
two inconsistencies cannot be resolved by beegfs-fsck. (3)
The third crash vulnerability is caused by the intra-node per-
sistence reordering on the metadata node between rename
and unlink. Two directory operations cannot be reordered
on ext4, but this may occur on btrfs. Remounting BeeGFS
upon such a crash will result in an inconsistency state — the
original file cannot be opened. Fortunately, this inconsistency
can be handled by beegfs-fsck.



Table 2: Distribution of crash vulnerabilities in the file system BeeGFS, OrangeFS, and ext4.

File system | ARVR WAL HS5-create HS5-delete HS-resize HS-rename HS5-write | Total
BeeGFS 2 2 0 2 2 5 2 15
OrangeFS 1 2 0 9 1 6 0 19
ext4 0 0 0 1 1 3 0 5

3 PFS Crash-Vulnerability Characterization

To further understand the crash consistency in parallel I/O
systems, we run real parallel I/O test cases and investigate the
causes and consequences of identified crash vulnerabilities.

3.1 Study Methodology

We run I/O workloads on two different PFSes: BeeGFS and
OrangeFS (formerly known as PVFS2). Both of the PFSes are
configured with one metadata server and two storage servers.
Each storage server runs ext4 locally with journaling enabled.
The file striping size of storage servers is 64KB. BeeGFS
stores its metadata with extended attributes by default. As for
OrangeFS, we use its default Berkeley DB to store metadata.

We show the test suites used in our study in Table 1. They
include the atomic-replace-via-rename (ARVR), write-ahead-
logging (WAL) [4] scenarios that have been used in prior
studies for testing file systems, and several workloads that use
HDFS5 library [5]. For each workload, we make every effort
to recover it after the crash. For those tests with ARVR and
WAL, we run the file system checker (fsck) of each PFS. For
HDFS5, we perform recovery with the official tool h5clear
in addition to £sck. We report the crash vulnerabilities that
cannot be fixed by existing recovery mechanisms.

3.2 Study Results

Crash vulnerability distribution. As both BeeGFS and Or-
angeFS are POSIX-compliant, we compare them with the
local file system ext4 under the same setting of test cases.
We show the results in Table 2. As we expected, the number
of crash vulnerabilities in parallel file systems is more (2.6—
3.8 %) than that in local file systems. These vulnerabilities can
be easily triggered by a simple file operation, such as delete,
resize, and rename. As most of the PFSes have the similar
system architecture, and crash consistency guarantees, we ob-
serve that the number of crash vulnerabilities in BeeGFS is
on a par with that of OrangeFS.

Crash vulnerability consequence. Similar to the conse-
quences of crash vulnerabilities reported in commodity file
systems [13], the crash vulnerabilities in PFSes will cause se-
vere consequences as well, including data loss and inability to
open/read files. Note that all the reported cases of crash incon-
sistency cannot be resolved with the existing recovery tools,
such as fsck tool provided by PFSes and h5clear. This

highly motivates us to develop new testing or bug-finding
tools for parallel file systems, which will be discussed in § 4.

Crash vulnerability causes. To further investigate the root
causes of these reported crash vulnerabilities in PFSes, we
log the file system operations in both client and back-end
metadata/storage servers when running each test case, and
check the consistency of storage states after replaying them
in different orders.

We categorize the crash states of PFSes into three types: (1)
atomicity-related issues (AR) due to the incomplete execution
of an PFS atomic operation, but persistence order obeys the
happens-before order; (2) intra-node reordering (INR), in
which the storage states are caused by the reordered storage
operations in the local file system; (3) cross-node reordering
(CNR), in which the storage states are caused by the reordered
storage operations across multiple storage servers.

When we check the crash states with the traced storage
operations, we begin with the checking of AR, then INR and
CNR. We only report unique crash states in the study. The
redundant crash states, for instance, an INR on a inconsistent
AR state, are not reported.

When testing the stack of PES+HDEFS, we distinguish the
reordering of the storage operations that satisfy the prefix
crash consistency requirement for the PFS from those that do
not. If the bug appears only for the reordering of the later cate-
gory, we attribute it to the PFS; if it appears for the reordering
in the first category, we attribute it to HDFS5.

We report the detailed study results in Table 3. We ob-
serve that (1) the number of crash vulnerabilities caused by
the CNR is larger than that caused by INR. This is due to
the difficulty of executing operations across multiple servers
in proper order. (2) AR vulnerabilities are a large portion
(58.8%) of the crashes, this is because most of PFSes today
do not provide transactional guarantees for user-level file op-
erations. (3) The crash vulnerabilities can be due to both PFS
(55.8%) and HDF5 (44.1%). HDF5 would introduce a large
number of crash vulnerabilities, even if the underlying PFS
fully enforced crash consistency.

To identify crash vulnerabilities, prior works have devel-
oped model checking, system verification, and testing tech-
niques in commodity file systems. However, they cannot be
directly applied to the PFS stack due to the unique design
and implementation of PFSes, motivating us to exploit an
alternative approach to address this challenge.



Table 3: Causes and consequences of crash vulnerabilities in PFSes. We show the vulnerability distribution among dif-
ferent type of root causes in the 4-6th column (Left:OrangeFS/Right:BeeGFS), the vulnerability location in 7-8th column
(Left:OrangeFS/Right:BeeGFS), and the consequence in 9th column.

Workloads # of vulnerabilities Crash State Root Cause Consequences
OrangeFS | BeeGFS | INR | CNR | AR PFS | HDF5
ARVR 1 2 - 1/2 - 1/2 - data loss
WAL 2 2 1/0 | 1/2 - 2/2 - removed or uncreated log
H5-create 0 0 - - - - - n/a
H5-delete 9 2 - 2/1 7/1 8/0 1/2 OrangeFS unavailable; dataset unreadable
HS5-resize 1 2 - 0/1 1/1 - 1/2 unable to read resized dataset
H5-rename 6 5 - 1/1 5/4 1/1 5/4 atomicity violation; link info error
HS5-write - 2 - -/1 -/1 -/2 - unable to access data group
Total 19 15 1/0| 5/8 | 13/7 | 12/7 | 7/8

4 PFSCHECK Design

In this section, we present PESCHECK, which aims to effi-
ciently test PFSes for identifying the crash vulnerabilities in
their design and implementation. PESCHECK will automati-
cally generate parallel I/O test cases, check crash consistency
of storage states after running each test, and pinpoint the root
cause in the storage stack.
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Figure 2: The system architecture of PFSCHECK.

4.1 PFSCHECK Overview

We demonstrate the system architecture of PFSCHECK in
Figure 2. PFSCHECK takes five steps to check crash vulnera-
bility for each benchmark. In the first phase (D), PEFSCHECK
will trace both I/0 and network operations when running each
test case. The trace includes both server-side and client-side
operations. PESCHECK will perform correlation analysis to
associate each client request to the corresponding storage
operations on PFS storage servers. In the second phase (2),
PFSCHECK will generate all possible crash states, based on
the recorded execution. We will apply pruning algorithm to
avoid redundancy of crash states in the search space. In the
third phase (3), PFSCHECK will recover the system from
crash states, and then test its consistency with multiple check-
ers (e.g., fsck, h5Scheck). To further identify the root cause

of the reported crash vulnerability, PESCHECK will perform
legal replay in the fourth phase (@), it will produce legal
crash states where PFS obeys given crash consistency models.
PFSCHECK will utilize these legal crash states to classify
whether the reported crash vulnerability happens in parallel
1/0 library or not (®). We will further discuss each of these
phases as follows, respectively.

4.2 Generating Test Cases Automatically

Generating test cases in a manual manner will not be suffi-
cient to systematically reveal crash consistency bugs in PFSes.
In PFSCHECK, we develop an automatic test-case generation
mechanism by minimizing the efforts required from develop-
ers and testers. To achieve this, we take two essential steps
to generate test cases. First, we use the popular POSIX APIs
to hide the diversity of parallel I/O libraries. Given a specific
parallel I/O library in our test setting, PFSCHECK will trans-
fer the POSIX-based I/O programs to the lower-level parallel
I/O programs. This will not only ease the programmability
of generating new test cases, but also enable the code reuse
for different PFSes and parallel I/O libraries. Second, PF-
SCHECK will adjust the parameters (e.g., access granularity)
used in the test cases based on the PFS configurations, such
that we can explore corner cases in our testing.

4.3 Recording I/0 Operations

After we generate essential test cases, PFSCHECK will trace
the I/O operations to explore crash states in the follow-up
analysis. It will trace at least two types of I/O operations for
PFS services: storage operations that modified the storage
state, and the network operations for the communications be-
tween metadata and data servers. This is because they will
determine the happens-before order of these I/O operations.
The order we observe on the server side will reflect one pos-
sible interleaving of client-side parallel I/O operations. In
order to explore all possible interleavings, PESCHECK uses
the Recorder tracing tool [24] to trace all relevant client-side



I/0O operations (including HDF5, MPI-IO and POSIX), and
then build a mapping between each client-side operation and
server-side operations.

4.4 Emulating Crash States

As discussed in § 4.3, PESCHECK will record the I/O opera-
tions involved in each test case. However, different persistence
ordering of those I/O operations may expose different crash
vulnerabilities across the PFS stack. In order to cover all po-
tential crash vulnerabilities, a straightforward way is to use
the brute-force approach to explore all possible crash states of
these I/0O operations. However, this will produce a large explo-
ration space, and is time consuming. To address this challenge,
we will determine which I/O operations can be reordered by
studying the history of executed test cases. Specifically, PF-
SCHECK will replay the collected I/O operation trace, and
reorder these I/O operations during the replay. PESCHECK
will maintain a list to track the reordered cases that have
been executed, such that we can avoid redundant emulations.
Additionally, in order to avoid frequent PES restart, we also
propose to provide an incremental crash state reconstruction
mechanism to reduce the number of restart operations. In the
reconstruction, PEFSCHECK will also be careful with server-
side cache coherence to its disk state, it will invalidate the
cache when necessary.

4.5 Verifying Storage States

After we finish the emulation of crash states, PESCHECK will
check their data consistency. It performs necessary recovery
for each crash state by running multiple recovery tools (e.g.,
fsck, h5clear) after remounting the PFS. PFSCHECK al-
lows developers to use library-specific data recovery tools to
test the crash consistency for different parallel I/O libraries.
If these tools fail to recover the PFS or access the user data,
we assume that crash vulnerabilities happen.

4.6 Pinpointing the Root Cause

As discussed, crash vulnerabilities could happen across the
entire PFS stack. Their root causes may lie in parallel I/O
libraries, or the PFS, or the local file system running on each
storage server. To help PFESCHECK pinpoint the root cause
of these crash vulnerabilities, we propose the legal replay
technique, in which it produces legal storage states where
PFS exactly follows the prefix crash consistency model. For
each legal storage state, PFS will also satisfy its contract
with the upper-level parallel I/O library. In this case, if a
vulnerable crash state matches with any of those legal states,
PFSCHECK believes that the vulnerability is located in the
parallel I/O library. This is because the legal storage state has
indicated that there is no crash inconsistency happening in the
PFS. If a vulnerable crash state does not match with any of

those legal states, PESCHECK believes that the vulnerability
is located in the PFS. Therefore, legal replay performs as
a classifier in PEFSCHECK to pinpoint the location of the
crash vulnerabilities. With all these proposed components,
PFSCHECK is able to detect PFS crash vulnerabilities in an
automatic, efficient, and accurate way.

5 Discussion and Future Work

The work described in this paper suggests many future direc-
tions to strengthen the the development of PFSCHECK.

PFSCHECK Implementation. We plan to fully imple-
ment its key components with increased automation. We will
enable PEFSCHECK to support more parallel I/O libraries,
such as NetCDF and MPI-IO, as well as more parallel file
systems like Lustre and GPFS. Our ultimate goal is to develop
PFSCHECK into a general testing framework, such that the
community can use it to conduct crash-vulnerability tests for
the existing and newly developed PFSes. We also plan to open
source our PFSCHECK framework, such that developers can
extend it to support other I/O libraries and file systems.

PFSCHECK Evaluation. We plan to evaluate the effi-
ciency of PFSCHECK at different aspects. They include (1)
the performance that indicates how much time it will take to
finish each test case; (2) the accuracy that indicates whether
PFSCHECK can identify the root cause of reported crash
vulnerabilities; (3) the completeness that indicates whether
PFSCHECK can identify all the potential crash vulnerabili-
ties; (4) the scalability that indicates whether PESCHECK can
scale, as we increase the number of storage servers or update
the configuration of PFS and I/O libraries.

Extend PFSCHECK to Other Consistency Models. In
this paper, we mainly focus on the crash consistency, we
would like to extend PFSCHECK to support other crash con-
sistency models enabled in parallel file systems. Accordingly,
we will update those algorithms used in our current crash state
emulation and storage state verification.

6 Conclusion

In this paper, we explored crash consistency issues in par-
allel file systems. We conducted a characterization study of
the crash vulnerabilities in popular parallel file systems. As
expected, PFSes and I/O libraries suffer from more crash con-
sistency bugs than regular file systems, due to the scale and
complexity of the I/O stack. To this end, we propose to de-
velop a generic testing framework for identifying these crash
vulnerabilities. We outlined the design of PFSCHECK for
the systematic testing of parallel I/O systems and the proper
attribution of issues to different layers of the I/O stack.
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