TABLE IV
SOLUTION: MODULE SELECTIONS

Course | Modules Selected
1 1,2,3
5,6,7
10,11,12
13,14,15
9,17,18
19,20,21
22,2324
28,29,30

0| | N | KW

Course reusability constraints:

T93+Tos <1
134 + 2136 <1
Ti54 +x157 < 1
T185 +T189 < 1

Module preference constraints:
Z29,9 + X30,9 = 2

Note that constraints for modules 18 and 28 do not need to
be added because these modules are already required.
Module preference constraints:

11,3 +T12,3 > 2

Note that constraints for modules 9 and 10 do not need to
be added because these modules are already required.
Total credit constraint:

? J

Objective function:

Minimize F(z) = Z Z M;x; ;
i g

Solution:

V. CONCLUSION

The primary contribution of this research was the creation of
a methodology that facilitates student advising by identifying a
course schedule conformant to curriculum requirements, with
consideration of a student’s background, interests, and desired
time-to-degree.

One avenue for expanding this work lies within personal-
izing course schedules for the students who do not specify
their interests. A CSA could consider previous students who
were similar to the target student in order to find opportunities
to personalize and reduce the number of decision variables.
For example, elective courses in which similar students did
especially well might be worth recommending to a target
student. What constitutes similarity is also an open question
though it requires a long time to measure. Different similarity
metrics could be compared in the short term if applied to
module selection instead. A final promising extension to this

work involves solving the course selection problem as a multi-
objective optimization problem. Multi-objective optimization
problems seem to be a far more natural representation of the
course selection problem since each AoE is really a competing
objective. This research handles this problem by breaking the
problem up into stages. However, exploring more sophisticated
solutions in evolutionary algorithms seems promising as it
would allow the simultaneously consideration of multiple
objective functions, such as those for expected performance (if
an appropriate prediction is used) and interests. Considering
multiple objective functions immediately allows the researcher
to effectively consider each AoE within the context of the
others, rather than intelligently, but one-at-a-time as presented
in this work. If the multi-objective optimization approach were
adopted, the number of AoEs could be expanded in exciting
ways to include accommodating deficiencies, preferred learn-
ing styles, and special needs. Moreover, constraint derivation
for the semester selection stage could be replaced with an
objective function and intelligent constraint derivation for the
prerequisite, corequisite, and consequisite relationships.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from
the US National Science Foundation and Department of Edu-
cation.

REFERENCES

[11 W. Murray, L. Blanc, and C. Rucks, “A decision support system for
prescriptive academic advising,” in Proceedings of the 1995 ACM
Symposium on Applied Computing. ACM, 1995, pp. 22-26.

W. Murray, L. LeBlanc, and C. Rucks, “A decision support system for
academic advising,” Journal of End User Computing, vol. 12, no. 3, pp.
38-49, Jul 2000.

R. Hashemi and J. Blondin, “SASSY: A Petri net based student-driven
advising support system,” in 2010 Seventh International Conference on
Information Technology: New Generations. 1EEE, 2010, pp. 150-155.
S. M. Ross, G. R. Morrison, and D. L. Lowther, “Educational technology
research past and present: Balancing rigor and relevance to impact school
learning,” Contemporary Educational Technology, vol. 1, no. 1, pp. 17—
35, 2010.

M. Erdt, A. Ferndndez, and C. Rensing, “Evaluating Recommender
Systems for Technology Enhanced Learning: A Quantitative Survey,”
IEEE Transactions on Learning Technologies, vol. 8, no. 4, pp. 326—
344, Oct. 2015.

A. Bozkurt and A. Hilbelink, “Paradigm Shifts in Global Higher
Education and e-learning: An ecological perspective,” eLearn, vol. 2019,
no. 5, p. 1, May 2019.

A. Hurson and S. Sedigh, “PERCEPOLIS: Pervasive Cyberinfrastruc-
ture for Personalized Learning and Instructional Support,” Intelligent
Information Management, vol. 2, no. 10, pp. 583-593, Oct. 2010.

T. Morrow, S. Sedigh Sarvestani, and A. Hurson, “Pervasive cyberinfras-
tructure for personalized education,” Handbook of Research on Applied
Learning Theory and Design in Modern Education, vol. 2, pp. 817-839,
2016.

V. Swaminathan and R. Sivakumar, “A comparative study of recent
ontology visualization tools with a case of diabetes,” International
Journal of Research in Computer Science, vol. 2, no. 3, p. 31, 2012.
A. Maedche and S. Staab, “Ontology learning for the semantic web,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 72-79, 2001.

M. Bright, A. R. Hurson, and S. Pakzad, “Automated resolution of se-
mantic heterogeneity in multidatabases,” ACM Transations on Database
Systems, vol. 19, no. 2, pp. 212-253, 1994.

R. Lougee-Heimer, “The common optimization interface for operations
research,” IBM Journal of Research and Development, vol. 47, no. 1,
pp. 57-66, 2003.

[2]

[3]

[4]

[5]

[6]

[71

[8]

191

[10]

(11]

[12]

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

B. Semester selection

With the first selection from Table II, the prioritized course
list is as shown in Figure 4. Every semester is restrained to
have a maximum of six credit hours. Semester 1 is treated as
the next semester while all courses are unavailable in semesters
3 and 6 (to represent summer course unavailability). The
previously taken course 3 is symbolically shown as having
been taken in semester 0.

The tables that follow show the results of execution after
each iteration.

Iteration 1:

Semesters
0| 12|34]|5|6]|7
3 1
Iteration 2:
Semesters
0| 1|2 |3, 4|5]|6]|7
301]2
Iteration 3:
All courses are unavailable — no change.
Iteration 4:
Semesters
0| 1|2[3[4]|5|6]|7
301]2 4
5
Iteration 5:
Semesters
01|23 |4 [5]|6]|7
301]2 419
506

Iteration 6:
All courses are unavailable — no change.

Iteration 7:

Note that if course 2 happened to have been taken previously,
then the time-to-degree for this student would have been
shortened by two semesters, but instead there is a smaller
workload in semester 2. Moreover, since the student was
explicitly interested in course 9 it was scheduled in semester
5 instead of semester 7.

Semesters
0| 1|23 [4]|5]|6]7
3 1 2 419 7
5 6

C. Module selection

Module selection is similar to course selection, it involves
the selection of course modules based the student’s interests
and prior knowledge. Table III shows the module options

TABLE IIT
COURSE MODULES.

Course 1 Needs three credit hours
Module Options 1,234

Course 2 Needs three credit hours
Module Options | 5,6,7,8

Course 3 Needs three credit hours
Module Options | 9,10,11,12

Course 4 Needs three credit hours
Module Options 13,14,15,16

Course 5 Needs three credit hours
Module Options | 9,17,18

Course 6 Needs three credit hours
Module Options | 13,19,20,21

Course 7 Needs three credit hours
Module Options 15,22,23,24

Course 8 Needs three credit hours
Module Options | 17,25,26,27

Course 9 Needs three credit hours
Module Options | 18,28,29,30

for each course, and subsequent subsections show how the
selection problem is modeled. Note that each module is
worth one credit, each course requires three credit hours, and
required modules are underlined.
Decision variables:
X = {lzg T1,1,L2,1,L3,15,L4,15T5,2,
T6,2, 7,2, 18,2, 29,3, 10,35
T11,3,%12,3,L13,45 L14,45 L15,4,
T16,45 29,5, %17,5,L18,5,L13,65
19,6, 20,65 L21,6, £15,7, 22,7,
23,7, 24,7, 18,9, 28,9, L29,9, 1'30,9}
where ¢ = module, j = course.
Required modules constraints:
1,1 + %21 + Ts2 + Te2 + T10,3 =5
Z1a.4 + 185 + T196 + T227 + Tas8 = 5
93+ Tos > 1
T134 +T136 > 1
T154 +T157 > 1
T175 +T17,8 > 1
Course credit constraints:
]\41%1,1 +]Wll'z’l +]\41I371 +]wll'4$1 >Ch
]V[gl‘572 + Mgl'sﬁg +]V[gl‘772 + MQJJ&Q > (Cy
M3zg 3 + M3x103 + M3z11,3 + M3r123 > C3
Myxi3.4 + Myxi44 + Myxi54 + Myxi64 > Cy
Mszg 5 + Msx175 + Msz185 > Cs
Mez13,6 + Me19,6 + Mex20,6 + Mex21,6 > Cé
Mrzi5,7 + Mrxog 7 + Mrxos 7 + Mrxos 7 > Cr
Myz18,9 + Mozog g + Moxag.g + Mox3g,9 > Co

where M, represents the credit value for module <.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SAMPLE CURRICULUM REQUIREMENTS

Needs three credit hours
Course Options | 1

Needs six credit hours
Course Options | 2,3,4

Needs six credit hours
Course Options | 3,4,5

Needs nine credit hours
2,5,6,7,8,9

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Course Options

IV. RESULTS

The results of this section are produced by selecting a set
of courses and modules for a target student, with the addi-
tional intentional constraints to achieve different degrees of
personalization. The sample student given serves to illustrate
both how the algorithm works, as well as the effect that prior
courses and known interests have on the selection process.

In this scenario, the goal is to find a course, semester, and
module selection for a student who has previously completed
course 3 and has a known interest in taking course 9 and all of
its modules. Each course is assumed to be thee credit hours.
The curriculum requirements for the given student is given in
Table I, while the prerequisite graph and prioritized course
list for the given student are shown in Figures 4 and 5,
respectively.

A. Course selection

As a reminder, curriculum requirement satisfaction deals
with making a course selection that fulfills all requirements
within a curriculum, includes courses of interest to the
student, minimizing the total number of credit hours taken in
order to reduce time-to-degree. What follows are the decision
variables, constraints, and objective function that describe the
course selection problem as an integer linear program.

Decision variables:

X =A{xij 11,022,232, 242,
T3,3,%4,3,25,3,T2,4,

T5.4,T6,4, T7,4, T8 4, L9 4}
where ¢ = course, j = requirement.
Requirement reusability constraints:

Too+ T4 <1
32 +x33 <1
Ty +x43<1
@53+ w54 <1

TABLE 11
SOLUTION: COURSE SELECTIONS.

Requirement

B W=

Requirement credit constraints:

Ciz1n > B =1

Cozo o+ C3x32 + Cyzap > Ro =6

Csxg 3+ Cyzy 3+ Csx53 > Rz =6
Cozxo g4+ Csx54 + CsT 4

+C7274 4+ Coxg g + Coxga > Ry =9

where C; represents the credit value for course i.
Prerequisite constraints:

21,1 — T2,2 — T24 >0
r11 —x32 — 33 >0
Too + X4 — Ta2 — 243 >0
Too +To24 —T53—T54 >0
32 +233—T53 —T54 >0
53+ X54 — x84 >0
T53+ X554 — Tgq >0
T4+ T3 —T74 >0
T4+ T43 — 184 >0
T4+ T3 — Te4 >0

Course preference constraint:
Tgg =1
Prior course constraint:
32+ w33 > 1

Total credit constraint:
)
Objective function:

Minimize F'(z) = Z Z Cixi j
i J

Solutions: The selections are presented in Table II, and for the
remainder of the next stages of semester and module selection,
the first course selection shown in Table II will be used.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

[Explicit Interest No Explicit or Implicit Interest Shown

Course 6
[o

Course 5
2]

Course 4
[3

Course 2 | | Course 3

7 3

Course 9 Course 1

0 12

Fig. 4. Prioritized course list

satisfaction stage is a set of courses, C, which is guaranteed
to satisfy the student’s curriculum requirements.

2) Availability satisfaction: Availability satisfaction re-
quires placing each course into the earliest semester possible,
in an attempt to shorten the time-to-degree. This is done by
iterating over each future semester and assigning a course
to the semester if possible. For each semester, the CSA will
iterate down a prioritized list of courses and place the courses
which are available and have all of their prerequisites met.

The additional properties are added so that the CSA can
keep track of which courses have been added to the schedule,
preventing courses from being scheduled more than once.
The list of courses, Cs, obtained in the previous stage are
first grouped by the level of interest the student has in
them. Priority is first given to courses of explicit interest,
then implicit interest, and finally low interest. Low interest
simply represents that the student has not displayed any direct
interest. Each interest group is then sorted in descending order
of opportunity value represented as c.opportunity, where
¢ € (. To establish opportunity value, a directed acyclic
graph is created where the vertices are courses and arcs are
established by the prerequisite relationships between courses.
Figure 4 depicts the prioritized course list resulting from the
prerequisite graph given in Figure 5.

When a student completes a course, the student unlocks the
opportunity to take any subsequent courses in future semesters.
Each course can be weighted naturally in terms of the number
of courses to which it provides access, whether the access be
immediate or not. A course is therefore weighted for its direct
and indirect post-requisites. In order to ensure higher priority
and earlier placement, a course’s opportunity value should be
greater than the opportunity value of any of its post-requisites.
Courses are given their opportunity value by simple graph
traversal. An artificial root node could be added to connect
the entire graph and serve as a starting point, but that is an
implementation decision of little concern here.

The definition of opportunity value for a course is the
number of post-requisites plus the sum of opportunity values
of the post-requisites. More formally, let the function O(c)
representing the opportunity value of course ¢ be defined as:

cpl +

>

d€c.postrequisites

O(d), ifepl >0
®)

0, otherwise

where cpl = c.postrequisites.length.

Note that the longest path in the prerequisite graph repre-
sents the shortest possible number of semesters to graduation,
a fact which can serve for validation purposes if desired. Once

149

|i<f Credit Value

<course>

0

3]

Course 9

o]

— Opportunity Value

[3] B/ 3]
Course 3 Course 5 Course 8
3] 2] o]
u/ u/ u/ 3
Course 1 Course 2 Course 4 Course 7
[12] 7] 3] \ﬂ

3]

Course 6

o]

Fig. 5. Prerequisite graph with opportunity values

every course has an opportunity value, the prioritized list of
courses can be formed. The result O(c) is shown in Figure 5.

With a prioritized list of courses for the target student,
Cp, every course ¢ € C), must be placed in some semester
t € T. However, before a course can be added to a semester,
the CSA must know that it is allowed to do so. First, the
number of credit hours earned thus far, a, is compared against
the course’s creditsRequired to see if enough credit hours
have been earned in previous semesters. If not, the function
returns false. Secondly, the function verifies that all of the
course’s prerequisites have been taken in prior semesters.
Thirdly, the function checks to see if adding the course and
its co-requisites will exceed the maximum allowable credit
hours for the semester. Finally, if the course is known to be
unavailable in the given semester, then it cannot be added.

For each semester and for each course in the prioritized
course list, the CSA determines whether or not the course can
be added to the semester. If so, the course is added along with
all of its co-requisites. Once a course is added, it is locked into
that position until all courses are place or there are no more
semesters left. The semester limit can be determined by the
student or institution, but lower limits can reduce the chance
of finding a suitable result.

3) Course Satisfaction: Up to this point, the CSA has
dealt with courses, but the final stage involves selecting the
modules (or topics) with the selected courses that student
will take. This process is a reimagining of the curriculum
requirement satisfaction stage where courses are now the
entities that must be satisfied. Consequently, decision variables
represent the binary decision to use a module for a course.
The course credit constraints, prior module constraints, interest
constraints, and total credit constraint are all used. However,
modules are sometimes marked as required which produces
additional constraints ensuring that their respective decision
variables are selected. The objective function, minimizing the
sum of credit hours, remains the same.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

B. Schedule Creation

As shown in Figure 2 the schedule creation process within
the CSA consists of the following:

1) Curriculum/Requirement Satisfaction (Course Selection)
2) Course Availability Satisfaction (Semester Selection)
3) Course Satisfaction (Module Selection)

Schedule creation is broken down into a series of three
stages, each of which seeks to find an optimal or valid solution
to one or more ILPs before passing the results to the next
stage. The way in which each ILP is modeled (most notably
in constraint derivation for requirements) is what differentiates
the CSA from similar works. Refer to figure 2, satisfaction
stages 1 and 2 represent ILPs, however, stage 2 is solved using
proprietary algorithms.

1) Curriculum requirement satisfaction: Curriculum re-
quirement satisfaction requires finding a selection of courses
that satisfy all of the curriculum requirement credit thresholds.
A requirement entity consists of the courses which can satisfy
it and a credit hour threshold to which those courses can
be applied. An optimal solution for curriculum requirement
satisfaction is a set of courses which minimizes the total
number of credit hours taken, while simultaneously adhering
to all constraints. To formulate an optimization problem,
decision variables, constraints, and an objective function must
be created from the data.

Decision variables are created to represent the decision to
use a particular course ¢ to satisfy a particular requirement
j. Formally, the set of all decision variables for curriculum
requirement satisfaction is defined as:

X ={z;; :2;; €{0,1},j € R,i € j.courses} (6)

where R is the set of the target student’s requirements and
j.courses is the set of all courses which can satisfy j. The
entire set X is produced directly from the requirements R that
must have been previously provided by institutions.

It is certainly possible that a single course may satisfy more
than one requirement. The general rule is that a course can
only be used towards one requirement within any given cur-
riculum. To enforce this rule, constraints must be created such
that decision variables representing the same course within a
curriculum are not selected more than once. Therefore, the
sum of the decision variables for course 7+ must not exceed 1.
Figure 3 is intended to highlight this issue.

A requirement’s course list can sometimes include a course
as well as one or more of its prerequisites. As such, up to this
point, it would be possible to select a course without selecting
all of its prerequisites, this is obviously not valid. This is a
problem that arises within elective requirements where many
options are available. Moreover, it must be the case that if a
student is interested in a course, all of the prerequisites for the
course must also be added. Therefore, it is entirely possible
that too many constraints can lead to solutions which do not
minimize the number of credit hours. Similarly, a co-requisite
relationship can be ensured in the same way as a prerequisite

148

Requirement1 (lﬂ)
Requires : 3 Credits
Options {Ci1}
Requirement2 (RZ)
Requires: 6 Credits
Options {C,, C5, C4}
Requirement3 (R3)
Requires : 6 Credits
Options {C;, Cy, G5}
Requirement4 (R 4)

Ry
Ry

{Ce, G5, G, Go}

Requires 9 Credits

Options {Cq, C;, Cg, Co}

Course Credits

Ci=3fori=1,2,....9
C

Fig. 3. Overlapping constraints.

relationship since both are, in essence, the constraint that one
course cannot be selected without another.

Additionally, a constraint must be created for every re-
quirement’s credit hour threshold. For a given requirement,
its decision variables are multiplied by their respective course
credit and then summed. This sum must be greater than or
equal to the requirement’s credit hour threshold. The greater
than aspect of the inequality creates flexibility in the event that
requirement credit thresholds are not perfectly divisible by the
requirement’s courses.

If one or more courses are implicit or explicit interest of the
target student, then a constraint is added for each course such
that the sum of all of the decision variables for that course
are greater than or equal to 1. It is assumed that there is
a requirement » € R for each course of personal interest.
However, if the student is interested in a large number of
courses, it is very likely that his/her total number of credit
hours will not be minimal.

The CSA also adds constraints to ensure the use of every
prior course or module taken by the student. Previously created
constraints for reusability will ensure that courses are not
improperly chosen more than once, while modules do not
currently have reusability constraints applied to them. By
doing this, previously taken courses and modules are used
wherever possible to work towards a goal of shortening the
time-to-degree while satisfying curriculum requirements.

A final constraint is also added for the sum of requirement
thresholds which provides a lower bound for the eventual
objective function, F'(x) (to be minimized):

zi;€X

)

where u; is the credit value for course . With the objective
function, decision variables, and constraints all collected,
the ILP is formed and can now be solved. As an ILP, an
established method such as COIN-OR branch and cut can
be used to find an optimal solution [12]. The result of this

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

the Euclidean distance between them can be found as follows:

(Zl’m— JW)

However, other distance metrics such Minkowski, Maha-
lanobis, City Block, etc. also exist, and even similarity mea-
sures such as cosine similarity can be modified to produce a
measure of distance. The results of using any particular metric
on real data remain to be explored.

The criteria by which clusters of students are merged must
also be defined since the metric defined previously is only
for computing the distance between two particular students,
not clusters of students. This is known as the “linkage crite-
ria.” There are many types of linkage criteria, however, our
recommended approach is group average linkage. As a point
of information, this technically turns the clustering method
into what is known as an Unweighted Pair Group Method
with Arithmetic Mean (UPGMA). In UPGMA, the distance
between two clusters is the average distance between the
vectors in each cluster. Given two clusters of student vectors
(7 and (s, the distance between them would be defined as:

Z Z distance(a, b)

aECL beCy

Euclidean(h;, hj) (D)

2
\01 @

where (||) represents the length of a vector and
distance(a,b) is the chosen distance metric. The results of
different linkage criteria should be compared on real data in
order to determine the more appropriate method. Nevertheless,
we chose the UPGMA approach primarily because it tends to
join clusters with small variances first, this can be interpreted
as leading the target student to a cluster in which the students
are less dispersed and therefore slightly more similar. When
the size of the target student’s cluster becomes sufficiently
large, the peer students in the cluster are extracted. Note
that when the vectors were formed, only the courses that
were taken by the target student were used. In other words,
the clusters were not formed using the entire history of
peer students, but rather only the portion of their history
which was the same as the target student. With similar peer
students obtained, the mean grade for each of the courses not
shared with the target student is calculated. The calculated
mean grades will be used to eliminate courses with low
average grades for curriculum requirements with many course
options. The threshold for such removal yet another open
question. However, if the target student is a high performer,
the threshold should be removed to allow the target student
to take courses perceived as more difficult. This prevents the
objectionable scenario where harder courses are never selected.
Consequently, the aforementioned scenario would only apply
to underperforming students by disallowing the selection of
courses where the difficulty is perceived to be abnormally
high. Future work may consider investigating whether or not
clustering can be improved by deriving distance with different
measures. Moreover, incorporating consideration for the order
in which courses are taken may lead to a more accurate

147

measurement. A starting point for considering the order in
which courses were taken would be an edit distance calculation
that finds the best global alignment and then subsequently
considering grades [49, 48]. It would also be worthwhile to
expand this approach to the module level as it would offer a
higher level of detail with respect to a student’s behavior and
performance.

4) Desired Time-to-Degree: The final AoE relates to the
amount of time the student would prefer to spend pursuing
a degree. Schedule height, or the number of credit hours per
semester, is initially set by the target student’s institution as
follows:

1) minCry: the minimum number of credit hours for
semester ¢ € 1T, where T is the time-ordered set of all
semesters

2) maxCry: the maximum number of credit hours in

semester ¢
Student provided parameters are defined as follows:
1) minCr,,: the minimum number of credit hours for
student s € S where S is the unordered set of all
students, and for semester ¢t € T" where T is the time-
ordered set of all semesters
maxCrs,: the maximum number of credit hours for
student s in semester ¢
maxSemestersg: the maximum number of semesters
preferred by student s

The CSA always tries to make the schedule as short
as possible independent of the value of maxSemesters;.
mazxSemesters, is used by the CSA to determine whether
or not a created schedule adheres to the target student’s
preference. If no value for maxSemesters, is provided, the
CSA will set maxSemesterss to scheduleLength which
is the resultant length of the created schedule, ensuring the
schedule is valid with respect to length. Since students cannot
override institution limits, the following must hold:

2)

3)

minCry < minCrsy < maxCrs; < maxCry

3

Let totalCredits, be the total credit hours placed in
semester ¢ for the target student, and note that its value must
fall within the minimum and maximum institution and student
parameters. In order for a schedule to be institutionally valid,
the following must hold:

0 < minCry < totalCredits; < maxCry,Vt € T (4)

In order for a schedule to be preferentially valid, the
following must also hold:

0 < minCrs; < totalCredits; < maxCrsy,Vt €T (5)

Since the bounds do not have to be uniform for all
semesters, a target student could adjust his/her minC'r, ; and
maxCrs, such that the workload would change semester-
by-semester rather than being uniform. However, if the gap
between a minimum and maximum is too small, the CSA
could fail to find a preferentially valid solution.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

« Module

id: a unique identifier

name: a label describing the nature of the curriculum
credits: a numeric value that can applied to a course’s
creditThreshold

prerequisites: a list of prerequisite modules
postrequisites: a list of postrequisite modules

« Semester

id: a unique identifier

name: a label describing the nature of the curriculum
beginsOn: a real-world beginning date/time

endsOn: a real-world end date/times

maxzCredits: a maximum number of credit hours allow-
able

minCredits: a minimum number of credit hours allow-
able

1) Institutional Requirements: For students enrolled in a
traditional college or university, institutional requirements are
somewhat rigid. In order to produce a valid course schedule,
the CSA needs to know what courses are available at a
given institution, credit requirements, how those courses relate
(prerequisites, corequisites, consequisites), and what courses
must be taken in order to complete a given curriculum. If only
institutional requirements and student transcripts are known,
the CSA produces valid schedules. It is assumed that the
CSA’s database has up-to-date student transcript information
about what courses they have taken. This gives the CSA the
ability to use previously taken courses towards curriculum
requirements. Previously taken modules can be applied to
multiple courses, consequently shortening the amount of time
it takes to complete the course. Alternatively, completing a
module shared between courses enables the possibility of
substituting that time with a more interesting module or more
challenging one.

Less formal courses, bear no time restrictions, do not fall
under a curriculum in the traditional sense. Online courses,
for example, are often available on-demand, so with respect
to the CSA this means they can be started at any particular
time. Regardless, the CSA requires that time steps be defined
for any entity on which availability selection is eventually
carried out, for traditional setting, the time steps are obviously
semesters or quarters. Discretizing the time within semesters
to do availability selection on modules makes little sense, since
if a course is offered, the modules within are assumed to be
available.

2) Interest: The CSA will try to personalize schedules
based on the explicit and implicit interests of the target student.
Students may explicitly specify courses and modules they want
to take, or if they are unsure, they can provide keywords for
topics they want to learn. The CSA will incorporate these
words or phrases into the final schedule by attempting to
match them to existing courses and modules. Unfortunately, a
semantic gap typically exists between the keywords provided
by the student and the information available for courses and
modules, which may be limited to simply a name. To address
this semantic gap, the CSA makes use of the Word2Vec
algorithm developed by Google. The Word2Vec algorithm
is first trained on a quality, English-text corpus in order to

146

produce meaningful vector representations of words in the
language. Numerous corpora for any desired language can
be found with a simple Google search. Once all of the word
vectors have been generated as a binary file, cosine similarity
can be used to find the words which are most similar to some
target word.

3) Promoting Improved Performance: The third AoE in-
volves increasing the target student’s likelihood of higher
performance in a manner which is balanced with the other
AoEs. This might be done by eliminating certain courses
(where performance is abnormally low) from consideration
prior to the course selection stage. Estimating how a target
student will do in a course is a delicate and multi-faceted
problem. The number of factors which result in a particular
grade for any given student are numerous, while the data for
most of these factors is difficult to obtain and/or nonexistent.
Therefore an approach is proposed that both relies on data
which is surely available (course grades) and attempts to
reduce some of the noise introduced by unknown factors.

If performance data was available, the PERCEPOLIS would
identify a cluster of students to which the target is most
similar, where similarity is determined by factors such as; the
grades received in mutual courses, having the same major(s),
etc. Another requirement for this is that the peer students
must be further along in their academic career than the target
student, which includes both former and current students of the
institution. If a clustering method such as k-means were used,
the value of k£ would need to be set based on the analysis
of a real dataset. To avoid this, agglomerative hierarchical
clustering is used which starts with all students in their own
cluster and iteratively merges clusters which are the closest.
Whenever, the target student’s cluster is sufficiently large, the
clustering can stop and the peer students present in the cluster
can provide the basis for estimation. New students with no
prior courses present a special case that requires alternative
sources of information for comparison including, but not
limited to, high school performance and ACT/SAT score.
Course recommendations made for improving performance are
more important early on in a student’s academic career in
order to promote retention, and as such, properly making use
of alternative information remains an important open issue.

Before clustering, metrics for the distance between students
and between clusters must be defined. Since course history is
the focus, each student is represented as a vector of all the
courses taken by the target student. Let the total number of
students in the target’s major(s), including the target, be m,
and let n be the number of courses taken by the target student.
Also let h; be the vector of length n for the i-th student, and
let H be the set of course history vectors containing h;Vi €
[1,m]. Lastly, let h; , denote the grade received by student ¢
for course g where g € [1,n]. Deriving a distance measure
is pretty easy with this representation, the most common of
which would be Euclidean distance. For two student vectors,

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

Student Sets
Parameter

|

Identi:
and Report
Issues

I

Course
Requirement

Course
Availability

Curriculum
equirement

Semester
Selection

Module
Selection

Course
Selection

Optimal
Solution
Quality
Infeasible or
Suboptimal

Solution
Found

Solution
Quality,

Infeasible or Suboptimal

Fig. 2. Flow of operations.

the guarantee of eventual graduation by the student if they
are successful. Once validity is established, a course selection
and the CSA from which it came can be further judged in
numerous ways, such as: level of personalization, time to
graduation, difficulty, and probability of student success.

The PERCEPOLIS course selection algorithm addresses the
following areas of emphasis (AoEs) for a target student:

1) Requirements (including, but not limited to, those set by
an institution);

2) Personal interests;

3) Time restrictions; and

4) Increased likelihood of higher performance.

No claim is made that an optimal solution that addresses
all AoEs will be generated. This stems from the nature of
some AoEs for which satisfaction can only be shown after the
fact by feedback, and even then measures can be interpreted
subjectively. For example, consider the objective of increasing
the likelihood of higher performance. A practical approach
is to use heuristics derived from the known performance
of similar students. With this information, courses could be
selected in such a manner that students having all backgrounds
are more likely to have a higher GPA. The focus is therefore
on selections which are optimal in some ways while “good
enough” in others as determined by certain thresholds for
AoE satisfaction. A selection can be optimal in terms of
time-to-degree by not allowing the student take any more
than the minimum number of courses needed to graduate,
as determined from the institution’s rules. A selection can
also be optimal in terms of personal interests by catering to
all of the student’s interests. However, a selection does not
completely guarantee that selecting one course over another
will result in a higher GPA for the target student, and so it
is this probability which introduces partial sub-optimality. The
CSA sets conditions of satisfaction for each AoE, based on the
information provided and then attempts to create a schedule
that satisfies all of them.

The next subsection addresses the types of the data on which
the CSA operates. This data is then analyzed to derive the
decision variables, constraints, and objective function to treat
this problem as an ILP.

A. Data

The PERCEPOLIS CSA generates recommended course
schedules with consideration of four AoEs: degree require-
ments, interests, increased likelihood of higher performance,

145

and desired time-to-degree. The following list outlines all of
entities and their properties in order to perform the algorithms
needed to carry out course selection.

o Student
id: unique identifier
name: the student’s first and last name
interests: a list of keyword interests
curricula: a list of curriculum entities
completedCourses: a list of completed courses with
known grade and semester
explicitCourses: alist of explicitly desired course entities
provided by the student
implicitCourses: a list of implicitly desired course enti-
ties inferred from
interests '
explicit Modules: a list of explicitly desired module en-
tities provided by the student
implicit Modules: a list of implicitly desired module
entities inferred from interests >
completedM odules: a list of completed modules with
known grade

o Curriculum

— 4d: a unique identifier
name: a label describing the nature of the curriculum
requirements: a list of requirement entities needed to

complete the curriculum
o Requirement
id: a unique identifier
name: a label describing the nature of the curriculum
creditThreshold: a numeric threshold towards which
courses are applied and above which the requirement is
considered fulfilled
courses: a list of courses that can be used to complete the
requirement
o Course

id: a unique identifier

name: a label describing the nature of the curriculum
credits: a numeric value that can applied towards one or
more requirement credit thresholds

creditThreshold: a numeric threshold towards which
modules are applied and above which the course is con-
sidered fulfilled

creditsRequired: a numeric threshold representing the
number of credit hours a student must have completed in
previous semesters before taking this course

modules: a list of modules that can be used to complete
the course

prerequisites: a list of prerequisite courses
postrequisites: a list of postrequisite courses
corequisites: a list of corequisite courses
consequisites: a list of consequisite courses *
availabilities: a list of semesters in which the course is
known to be available

unvailabilities: a list of semesters in which the course is
known to be unavailable

opportunity: the number of courses to which this course
leads

'Note that interest keywords are assumed to have already been used to
populate the sets of implicitly desired courses and modules.

2See footnote 1

3Courses for which this course is a prerequisite

4Courses that have to be taken consecutively

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

PERCEPOLIS

Course Selection Algorithm

))
I
o y
T
LJ = | D
.
Course
Availability —
Database
Courses
Availability
Curriculum Satisfaction
\\ Requirements
Interests —
Ure,
(Performance nt@l‘/’
2 e,
Schedule

Size

Model as Optimization Problem

Fig. 1. Recommendation of a personalized course trajectory.

Data heterogeneity is a fundamental challenge associated
with merging data from different institutions. An increase in
the number of institutions using learning technology results
in a wealth of institution-specific data that is distributed and
heterogeneous in nature. Each institution maintains its own
database(s) of student records, courses, instructors, etc., the
autonomy of which must be preserved. At this stage, students
and their institutions must provide PERCEPOLIS with their
information. Connecting to and retrieving data from the propri-
etary schemas of institution databases, while technologically
possible and vastly more convenient, is not within the current
scope of this work. Such information reveals that the same
course at different institutions may have slightly dissimilar
names and content, which presents a challenge when compar-
ing students at different institutions based on their enrollment
behavior. The closely associated challenges of resolving data
heterogeneity and identifying semantic similarity are the topic
of decades of research [11].

A linear program (LP) involves the minimization or max-
imization of a linear function with respect to a set of linear
equalities or linear inequalities. Given a set of real numbers
ai,as,...,a, and aset of variables x1, xs, . . ., x,, the general
LP has a linear objective function of the following form:

n
flxy, 2o, ...) = a1y + agxo + -+ + apxz, = Zajacj.
j=1
It is the objective function for which the minimum or
maximum value is sought, and in practice constraints are
applied which limit possible values. These constraints are
represented as linear equalities or inequalities depending on
the form being used. The problem becomes an integer linear

144

@ @
- = = — | Requirement
® ™ Satisfaction
= L =
°) o
® ® Personalized Course Schedules
@
- e |
? @
Course Semester
program (ILP) when the variables z1,xs,...,2, may take

only integer values. The most common methods used to solve
linear programs are simplex-based. ILPs can be solved with
tools such as those provided in the Computational Infrastruc-
ture for Operations Research (COIN-OR) [12]. This research
considers course selection to consist of several different linear
programming problems, examples of which are requirement
satisfaction and semester satisfaction. In the case of require-
ment satisfaction, the goal is to minimize the number of credit
hours while ensuring that the right courses are used. For
semester satisfaction, the goal is to keeping credit hours within
some range while preserving requisite constraints.

III. METHODOLOGY

This section is intended to address and discuss key concep-
tual underpinnings of the course selection algorithm (CSA)
used by PERCEPOLIS to generate personalized schedules for
a given student. The CSA consists of four stages, as depicted
in Figure 2:

1) Data Collection

2) Schedule Creation

a) Course Selection
b) Semester Selection
¢) Module Selection

3) Schedule Enumeration
4) Schedule Presentation

A course selection algorithm (CSA) finds a set of courses for
a particular student, grouped and ordered by time, which sat-
isfy the student’s curricular requirements. The total adherence
to institution constraints is mandatory because with it comes

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

Algorithmic Support for Personalized Course
Selection and Scheduling

Tyler Morrow
Sandia National Laboratories
Albuquerque, USA
Email: tmorrow @sandia.gov

Abstract—The work presented in this paper demonstrates
the use of context-aware recommendation to facilitate per-
sonalized education, by assisting students in selecting courses
and course content and mapping a trajectory to graduation.
The recommendation algorithm considers a student’s profile
and their program’s curricular requirements in generating a
schedule of courses, while aiming to reduce attributes such
as cost and time-to-degree. The resulting optimization problem
is solved using integer linear programming and graph-based
heuristics. The course selection algorithm has been developed
for the Pervasive Cyberinfrastructure for Personalized eLearning
and Instructional Support (PERCEPOLIS), which can assist or
supplement the degree planning actions of an academic advisor,
with assurance that recommended selections are always valid.

Index Terms—personalized education, context-aware recom-
mendation, integer linear programming, PERCEPOLIS

I. INTRODUCTION

The past decades have witnessed efforts towards leveraging
technology, in particular databases, pervasive computing, and
computational intelligence towards enhancing educational ex-
periences and improving learning outcomes [1], [2], [3], [4],
[51, [6].

This paper presents the schedule recommendation aspect of
the Pervasive Cyberinfrastructure for Personalized eLearning
and Instructional Support (PERCEPOLIS), an educational
platform that leverages technological advances - in particular
pervasive computing - to facilitate personalized learning, while
supporting a networked curricular model [7], [8]. It is cyber-
infrastructure in the form of middleware that links databases
and learning management systems currently in use at academic
institutions to facilitate incremental adoption of the networked
and modular curricular model at low cost. The ability to
connect tools already in use, without requiring customized
computing resources, enables instructors at different academic
institutions to collaborate on research and education.

The first step toward the development of PERCEPOLIS has
been to understand entities within the educational space; i.e.,
students, instructors, courses, and technology, and interaction
among these entities. To this end, this research has developed
an ontology denoted as the modular course hierarchy (MCH),
which defines and classifies entities, e.g., institutions, curric-
ula, courses, according to their attributes and relationships
with other entities. By arranging these entities into layers
based on their classification, a hierarchical structure is formed.

Ali R. Hurson and Sahra Sedigh Sarvestani

Missouri University of Science and Technology

143

Rolla, USA
Email: {hurson,sedighs} @mst.edu

A curriculum is comprised of many courses; and courses
are comprised of many topics, hence the curriculum can be
observed as an entity exhibiting modularity and hierarchical
attributes. Modularity is applied to nearly all levels within
the MCH and is the primary concept used to define the
relationships between entities. The ontology serves as the
foundation of the database that underlies PERCEPOLIS and
provides the course selection and scheduling algorithms with
a meaningful vessel from which to obtain data. PERCEPOLIS
can be used to represent curricula (managing entities and
relationships) and make context-base recommendations to both
students and instructors, who are identified as users within the
application. The most recent implementation of PERCEPOLIS
is a web-based application that utilizes the MCH in relational
database form.

The work described in this article is centered specifically on
the recommendation aspect of PERCEPOLIS, which allows
identification of a personalized course trajectory based on the
individual profile of a student and curricular requirements of
their degree program. Figure 1 illustrates this aspect. Section
I discusses foundational concepts. PERCEPOLIS’s course
selection algorithm is presented in Section III and illustrated
through an example in Section IV. The article concludes with
some final thoughts and ideas for future research.

II. BACKGROUND

Development and implementation of the proposed course
selection methodology, and more broadly, PERCEPOLIS, is
founded on knowledge from several areas including: ontolo-
gies, data heterogeneity, and semantic similarity. The proposed
approach formulates course scheduling as an optimization
problem that is solved with linear programming.

An ontology, which can be considered a meta-data schema
[9], establishes the essential components of that which is
being modeled, and its semantics are explicitly defined and
machine-processable. By defining shared and common domain
theories, ontologies help people and machines to communicate
concisely, supporting exchange of semantics, not just syntax
[10]. In PERCEPOLIS, ontologies enable the unification of
entities and relationships within the educational space into
one formal definition and ultimately, allow the course selec-
tion algorithm (CSA) presented in this article to operate on
educational entities from multiple institutions.

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00027

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 01,2021 at 07:43:16 UTC from IEEE Xplore. Restrictions apply.

