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Abstract

Despite its potential to overcome the design and processing barriers of traditional subtractive
and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive
manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related
flaws, such as deformation, porosity and inconsistencies in the microstructure, are linked to the
spatiotemporal temperature distribution in the part during the process. The temperature
distribution, also called the thermal history, is a function of several factors encompassing material
properties, part geometry and orientation, processing parameters, placement of supports, among
others. These broad range of factors are difficult and expensive to optimize through empirical
testing alone. Consequently, fast and accurate models to predict the thermal history are valuable
for mitigating flaw formation in LPBF-processed parts. In our prior works, we developed a graph
theory-based approach for predicting the temperature distribution in LPBF parts. This mesh-free
approach was compared with both non-proprietary and commercial finite element packages, and
the thermal history predictions were experimentally validated with in-situ infrared thermal imaging
data. It was found that the graph theory-derived thermal history predictions converged within 30%
to 50% of the time of non-proprietary finite element analysis for a similar level of prediction error.
However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In
this paper, our objective was to scale the graph theory approach to predict the thermal history of
large volume, complex geometry LPBF parts. To realize this objective, we developed and applied
three computational strategies to predict the thermal history of a stainless steel (SAE 316L)
impeller having outside diameter 155 mm and vertical height 35 mm (700 layers). The impeller
was processed on a Renishaw AM250 LPBF system and required 16 hours to complete. During
the process, in-situ layer-by-layer steady state surface temperature measurements for the impeller
were obtained using a calibrated longwave infrared camera. As an example of the outcome, on
implementing one of the three strategies reported in this work, which did not reduce or simplify
the part geometry, the thermal history of the impeller was predicted with approximate mean
absolute error of 6% (standard deviation 0.8%) and root mean square error 23 K (standard
deviation 3.7 K). Moreover, the thermal history was simulated on a desktop computer within 40
minutes, which is considerably less than the 16 hours required to build the impeller part.

Keywords: Metal Additive Manufacturing, Thermal History, Mesh-free Simulation, Graph
Theory, Large Volume Parts.



1 Introduction

1.1 Motivation

In the laser powder bed fusion (LPBF) process thin layers of powder material are raked or
rolled on a platen (powder bed) and selectively melted layer-upon-layer using a laser to form a
three-dimensional part [1]. A key advantage of the LPBF process is that it can reduce multiple sub-
components to a single part due to its ability to create complex features, such as conformal cooling
channels, which are difficult, if not impossible, to achieve with traditional subtractive and
formative processes. The fewer number of parts leads to reduction in both weight and production
costs [1]. For example, General Electric developed a turboprop engine that consolidated 855
separate parts into just twelve LPBF-processed parts, which reduced the weight of the engine by

over 100 1b., and increased its power by 10% [2].

Despite these advantages, the LPBF process tends to create flaws, such as porosity and
deformation in geometry, which in turn can lead to inconsistencies in the functional properties of
the final part [3]. The large variation in part quality hinders the adoption of LPBF in safety-critical
applications, such as aerospace and biomedical industries. Flaw formation in LPBF is influenced
by the temperature distribution and cooling rate in the part as it is being built [4, 5]. This
spatiotemporal temperature distribution, often called the thermal history, is a complex function of

the part shape (design), processing conditions, and material properties [6].

The consequential effect of part design on the temperature distribution, and ultimately on part
quality, is exemplified in Figure 1, which shows a stainless steel knee implant built on a
commercial-grade LPBF machine. The knee implant has an overhang region, i.e., a part feature
where the underside is devoid of material and thus requires anchoring supports to prevent collapse.
Although the knee implant was processed under manufacturer-recommended settings, the
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overhang region was found to have a coarse-grained microstructure and poor surface quality.
These flaws are a result of the heat constrained in the overhang region due to the poor thermal

conductivity of the surrounding powder and narrow cross-section of the supports [7-9].

. r 3 3
Figure 1: An LPBF knee implant with a steep overhang feature shows poor surface finish, and
coarse microstructure.

To ensure part quality, AM practitioners currently resort to expensive, multi-stage empirical
tests to optimize processing parameters, finalize the part design, suggest the location and
orientation of parts on the build plate, and ascertain placement of anchoring supports [10]. For
example, the effect of parameters, such as the laser power and velocity on microstructure and
porosity have been quantified in the literature [11, 12]. These optimal parameter sets were
developed in the context of single-track scans, and simple shapes — typically prismatic coupons
and so-called dogbone geometries — due to their tractability for post-process materials
characterization and mechanical testing [13, 14]. However, prior research has showed that process
parameters optimized for one type of geometry may not lead to a flaw-free part when used for

different part geometries and orientations [5, 15].

Resorting to a purely empirical optimization approach is prohibitively expensive and time

consuming in LPBF given the cost of the powder, relative slow speed of the process, and limited



number of samples available for testing [16]. Accordingly, fast and accurate models to predict the

temperature distribution in LPBF parts are valuable in the following contexts [6, 17-19].

. Reduce empirical testing needed for optimization of processing parameters, part features,
placement of supports, and build conditions.
e  Augment in-situ sensor data for process monitoring and control.

. Predict residual stresses, microstructure evolved, and mechanical properties.

Despite the extensive research in computational thermal modeling in LPBF using finite
element analysis, two challenges are identified in the literature [20, 21]: (1) predicting the
temperature distribution in large volume, complex-shaped LPBF parts, and (2) validating the

model predictions with in-situ measurements [17]. These gaps are discussed in depth in Sec. 2.

Existing commercial packages such as Netfabb and Ansys Additive predominantly use finite
element (FE) analysis to predict the temperature distribution [20, 22]. While these commercial
packages can predict the temperature distribution well within the time to build the part, however,
the implementation and physical approximations incorporated within these commercial software
packages remain proprietary, and the accuracy of their predictions remain to be independently

validated [17, 23].

Although non-proprietary FE-based thermal models of the LPBF process have been published
and validated in the literature, a major gap in these efforts is that the thermal history predictions
are made in the context of simple prismatic shapes with low thermal mass [17, 23]. A second
drawback is that the non-proprietary simulations often require longer to converge than the actual
time to build the part, chiefly due to bottlenecks concerned with FE-mesh generation [22].

Therefore, a burgeoning need is to develop computationally efficient thermal models to predict the



temperature distribution in large volume, complex shaped LPBF parts, and subsequently, quantify

the prediction accuracy with in-situ measurements.
1.2 Objective

In our previous papers, we developed and validated a mesh-free, graph theory-based approach
for predicting the temperature distribution (thermal history) of LPBF parts [24-26]. In these prior
works we compared the graph theory approach to FE analysis and reported that the graph theory
predictions converged within 30% to 50% of the time required for non-proprietary FE analysis for
a similar level of prediction error [24-26]. However, a gap in our prior work is that the graph theory

approach was tested with simple prismatic, cylindrical, and cone-shaped geometries.

The objective of this paper is to scale the graph theory approach to predict the thermal history
of large-volume and complex-shaped LPBF parts. To realize this objective, three computational

strategies to scale the graph theory approach were developed and tested.

The test part used in this work (Figure 2) was a stainless steel (SAE 316L) impeller. This part
was processed on a commercial LPBF system (Renishaw AM250). The impeller had an outside
diameter approximately 155 mm, vertical height 35 mm (250 cm® volume), and consisted of 700
layers (50 um layer thickness). The impeller in Figure 2 had a spiraling internal channel, and 15
thin-walled fin-like structures each of 4 mm width. The build time was close to 16 hours. The
steady state surface temperature for each layer of the impeller was recorded using an in-situ

thermal camera.

Using one of the computational approaches developed in this work, the thermal history of the
impeller was simulated within 40 minutes compared to 16 hours build time while maintaining the

prediction error ~ 6% (mean absolute percentage error) and within 25 K (root mean squared error)



of the experimental data. The part geometry was not scaled to make it simpler or smaller, and the
simulations were conducted on a desktop computer in the Matlab environment.

Section A-A

35

Build Direction

Figure 2. Schematic of the impeller-shaped geometry studied in this work (all dimensions are in
mm).

1.3 Prior Work in Graph Theory Thermal Modeling in AM

We briefly review our prior work in predicting the temperature distribution in LPBF using
graph theory [24-26]. Previously, in Ref. [25], we verified the graph theory approach with an FE-
based implementation of Goldak’s double ellipsoid thermal model, and qualitatively compared the

graph theory-derived predictions with a commercial package (Netfabb by Autodesk) [27].

In Ref. [26] the precision of the temperature trends predicted by graph theory approach was
verified with Green’s function-based exact analytical solutions, finite element and finite difference

methods for a variety of one- and three-dimensional benchmark heat transfer problems.

In Ref. [24] we experimentally validated the graph theory approach with surface temperature

measurements obtained using an in-situ longwave infrared thermal camera for two LPBF parts,
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specifically, a cylinder (® 10 mm x 60 mm vertical height) and a cone-shaped part (® 10 mm x
20 mm vertical height). Additionally, in Ref. [24] both the graph theory and finite element-derived
thermal history predictions were compared with experimental temperature measurements. As an
example, for the cylinder-shaped test part, the graph theory approach predicted the surface
temperature trends to within 10% mean absolute percentage error and 16 K root mean squared
error compared to experimental measurements. Furthermore, the graph theory-based temperature
predictions were made in less than 65 min, which was substantially faster than the actual time of
171 min required to build the cylinder. In comparison, for an identical level of resolution and

prediction error, the non-proprietary FE-based approach required over 175 min.

1.4 Scope of Paper

Since the graph theory approach was already benchmarked with non-proprietary FE-based
solutions in our prior works, the scope of the present paper is limited to development and testing
of computational strategies to scale the graph theory approach for predicting the thermal history
of the impeller shown in Figure 1 [24-26]. Based on our experience, we estimated that non-
proprietary FE models would require several multiples of the build time to converge for the
impeller. As an additional check, we have made a qualitative comparison of the graph theory

approach with the commercial Netfabb package.

The rest of this paper is structured as follows. In Section 2, we summarize the challenges in
thermal modeling and validation in LPBF. In Section 3, we describe the experimental
methodology, provided a brief background of the graph theory approach, and detail the three
computational strategies for scaling the graph theory. Results from implementing the graph theory
approach to the impeller part, along with comparison with Netfabb are reported Section 3. Lastly,

the conclusions are summarized in Section 4.



2 Literature Review

The complex thermal interactions specific to LPBF process are depicted in Figure 3. The
thermal phenomena in LPBF encompass conductive, convective and radiative heat transfer, across
three scales, namely, meltpool (~ 100 um), powder bed ( < 1 mm), and part-level (> 1 mm) [28,
29]. This work relates to the part-level thermal aspects which are in turn are influenced by the
material properties, part design, build plan, and processing parameters, such as laser power and
velocity settings [30] [31]. We summarize the recent research and challenges in the prediction and
subsequent experimental validation of the part temperature distribution for large volume

components.

Salient Thermal Phenomena in Metal AM.
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Figure 3: The complex thermal phenomena in LPBF encompass conductive, convective, and
radiative heat transfer at multiple scales.
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2.1 Part-scale Thermal Modeling in LPBF

Thermal modeling is the first in a chain of requirements in the metal additive manufacturing
industry. A key need is to extend thermal modeling for predicting microstructure, residual stresses
(deformation), and mechanical properties of LPBF parts [17, 32, 33]. This is a significant challenge

as the length-scale for the causal thermal phenomena range from tens of microns (microstructure-



level) to tens of millimeters (part-level). Hence inaccuracies in the prediction of the temperature

distribution will be magnified when used in other models.

Apart from accuracy, to be practically useful, thermal models must be computationally
efficient when scaled to practical-scale parts with complex geometry. An important measure of
computational efficiency is the simulation time, which must ideally be less than the time required
to print the part. In this context, a majority of thermal modeling efforts have focused on prismatic
geometries at the part-level with typical build height of 25 mm, and single-track and one-layer test
coupons at the microstructure and powder bed-levels, respectively [17, 34]. Studies that reveal the
fundamental relationship between the thermal distribution and the build quality for challenging
shapes, such as thin sections, internal channels, and overhangs, placement of supports are being

actively researched [7, 9].

Existing commercial thermal simulation packages in AM use the FE method without
exception [17, 20]. A main challenge in FE-based modeling of the LPBF process is that the shape
of the part continually changes as material is deposited, and therefore the part has to be repeatedly
re-meshed. In other words, the computation domain in LPBF is not static and changes at every
time step. The meshing of the part is the most time-consuming aspect of thermal modeling in AM.

Moreover, the computation time for meshing scales exponentially with the volume of the part.

Researchers use two approaches to reduce the computation burden from meshing, namely, the
quiet element, and element birth-and-death approaches; a hybrid of the both approaches is often
used in commercial software [13, 21]. To further speed computation, these meshing strategies are
combined with a dynamic technique called adaptive meshing [35, 36]. In adaptive meshing, the
element size is not fixed and changes continually during the simulation. As the simulation

progresses layer-by-layer, the element size is made larger (i.e., the mesh is made coarse) for



regions of the part that have a large cross-section, whereas regions near the boundary of the part
and those with intricate features tend to have a finer mesh. To speed computation, commercial

packages have devised proprietary techniques to implement adaptive meshing [37-42].

Besides proprietary meshing algorithms and opaque physical approximations, commercial
packages do not allow the export of node-level temperature data needed for independent validation
of the thermal distribution [42, 43]. Furthermore, because in adaptive meshing the node size is not
constant but changes layer-to-layer, there is likely to be an uncertainty in the temperature
distribution predicted by commercial software for a given region. This uncertainty in temperature
prediction is liable to cascade into other aspects, such as predicting the thermal-induced
deformation of LPBF parts. Lastly, while commercial software packages have succeeded in
reducing the computation time, researchers have identified the bourgeoning need for rigorous
quantification of the uncertainty in thermal distribution and residual stress predictions introduced

by adaptive meshing and physical approximations implemented therein [13].

While non-proprietary FE models have been validated, the computation time is excessive, it
takes days, if not hours to simulate the temperature distribution for a few layers [17, 29]. As an
example, Kundakcioglu ef al. report that using FE-based thermal model to simulate just 1 minute
of LPBF processing for a dia. 2 mm x 0.3 mm impeller required 20 hours of desktop computing
[44]. To overcome this impediment, researchers are actively developing mesh-free approaches to
predict the effect of thermal history on part quality. Recently, for example, Hoelzle and co-
workers, developed a thermal modeling approach based on the analogy of an electrical network to

reduce the computation burden [45].
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2.2 Measurement and Validation of Thermal Trends in LPBF

In the context of validation of thermal models in LPBF, research has been predominantly
focused on predicting the temperature distribution for few layers of simple prismatic and
cylindrical shapes using contact-based thermocouples [38, 46, 47]. The temperature distribution
is subsequently correlated with microstructure evolved and distortion due to residual stress [23,

34, 36, 48].

Temperature measurements in the literature were made using contact thermocouples
embedded in the build plate or touching the bottom of the part [38, 46, 47]. A key drawback is that
thermocouples embedded in the build plate or brazed to the bottom of the part could only track the
temperature for that specific point, and not the entire surface. Further, a thermocouple embedded
within the bottom of the part or the build plate would not sufficiently capture the temperature
distribution on the top surface as the layers are progressively deposited and the part grows in size.
While it is conceivable to embed thermocouples within the part after stopping the process, this

approach is time-consuming, and would inherently alter the build conditions.

Promoppatum et al. [49]. studied the effect temperature distribution in a large LPBF-
processed Inconel 718 test part measuring about 200 mm x 100 mm x 60 mm (build height) and
consisting of 1200 layers. During the build, temperature data for five points at the bottom of the
test part were acquired with thermocouples embedded within the build plate, such that the head of
thermocouple is exposed. The temperature readings acquired by the thermocouple plateaued to

200 °C within 25 layers.

An alternative approach to using thermocouples, is to measure the surface temperature of the
part using an infrared thermal camera, as demonstrated in our recent publications [5, 24]. The

concern with use of thermal imaging is that the surface temperature recorded by the thermal camera
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is not the absolute temperature but a relative trend. This is because the temperature measured by
the thermal camera depends on the moment-by-moment emissivity of the surface observed. The
emissivity is not constant but is a function of the temperature of the measured surface, its
roughness, and inclination of the thermal camera to the surface [50]. In other words, the thermal
camera must be calibrated to account for the emissivity of the part surface. Hyperspectral thermal
imaging and two-wavelength pyrometry are alternative approaches to obtaining the temperature

distribution without adjusting for emissivity [50-52].

3 Methods

3.1 Experiments

The stainless steel (SAE 316L) impeller shown in Figure 2 was processed on a Renishaw AM
250 LPBF system with the build plate pre-heated to about 450 K (180 ° C). The build parameters
are reported in Table 1. The experimental setup, shown in Figure 4, included an infrared thermal
camera (FLIR A35X) with wavelength in the 7 um to 13 pm range (i.e., the longwave infrared

spectrum). This setup is identical to the one used in our recent work [5, 24].

The thermal camera was inclined at an angle of 66° to the horizontal and sealed inside a
vacuum-tight box with a germanium window. Surface temperature data was acquired at the sampling
rate of 60 Hz. The response time is approximately 12 milliseconds. Thermal images were captured

at 320 x 256 pixels with a resolution of approximately 1 mm? per pixel.
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Figure 4: The picture and schematic diagram of the experimental setup used in this work. A long
wave infrared (LWIR) thermal camera was inclined at an angle of 66° to the horizontal.

Table 1: Summary of the material and processing parameters used for building the impeller.

Process Parameter

Values [units]

Laser type and wavelength.

200 W fiber laser, wavelength 1070 nm

Laser power, point distance, exposure time

200 W, 60 um, 80 us

Inner border parameters - power, point distance,
exposure time for the test part (center cylinder)

200 W, 40 um, 90 us

Outer border parameters - power, point | 110 W, 20 um, 100 us
distance, exposure time (center cylinder)

Hatch spacing 110 um

Layer thickness 50 um

Spot diameter of the laser 65 um

Scanning strategy for the bulk section of the
part

Meander-type scanning strategy with 45°
rotation of scan path between layers.

Build atmosphere

Argon

Build plate preheat temperature 180 °C (~450 K)
Material type 316L stainless steel
Powder size distribution 10-45 um
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3.2 Data Acquisition

3.2.1 Calibration of the thermal camera readings.

The detailed calibration procedure for the thermal camera, including measurement uncertainty
quantification, was described in two recent publications, Ref. [5, 24]. Here we provide a brief
summary. A thermocouple was inserted in a deep cavity of a LPBF-processed test artifact. The test
artifact was subsequently heated in a controlled manner. The thermocouple in the cavity of the test
artifact recorded the absolute temperature (of the test artifact), and its surface temperature was
acquired with the thermal camera. Subsequently, the surface temperature trends measured by the
thermal camera were mapped to the absolute temperature recorded by the thermocouple on fitting

a calibration function.

The calibration process is repeated with powder spread over the test artifact, and a separate
calibration function is developed. Calibration of the thermal camera with and without powder
ensures that the temperature readings account for the change in material emissivity in LPBF after
a layer of fresh powder is raked on top of a just-fused layer. To ascertain the measurement
uncertainty in the thermal camera readings the calibration procedure is repeated ten times. The
95% confidence interval in temperature readings in the 300 K to 800 K interval was in the range

0f 0.1% to 1% of the mean temperature reading [5, 24] .

3.2.2  Steady State Surface Temperature Measurement

The region of the impeller from where the temperature data was sampled is shown in Figure
5. This region was selected because it is the most contiguous solid volume cross-section within the
part boundary in the vertical direction. Sampling near the boundary of the part was avoided owing
to the limited spatial resolution of the thermal camera. A 9-pixel x 9-pixel sample (9 mm x 9 mm
area) in the main body of the part and a 2-pixel x 2-pixel sample (2 mm % 2 mm area) on the fin
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section were chosen for monitoring the surface temperature. The thin cross-section of the fin
prevented sampling of a larger area. The top-view cross sections of the part for select layers and
their corresponding infrared thermal images immediately after scanning the layers are shown

alongside in Figure 6.

_________________________________________

35

mperature

D127 mm
® 136 mm ——

P 155

Figure 5. Region where the surface temperature data is extracted for the impeller.

20 mm 25 mm 30 mm
Figure 6. CAD model and corresponding infrared thermal images of the part at different build
heights immediately after the laser has finished melting the layer. The scale bar on the right is in
Kelvin.
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The average raw surface temperature recorded for the regions sampled in Figure 5 are tracked
in Figure 7(a) as function of the layer (build height). Shown in Figure 7(b) is the raw surface
temperature signature for a zoomed in portion that depicts the presence of three large spikes. The

rationale for these temperature signatures is as follows.

(1) The large upward peak corresponds to the time when the laser was actively scanning the area
demarcated in Figure 5. The time elapsed between two upward spikes denotes the time between
melting of successive layers, and is termed the interlayer cooling time (ILCT).

(2) After the end of melting of a layer, the recoater returned to fetch fresh powder, and
momentarily blocked the IR camera field-of-view resulting in a large downward spike.

(3) As the recoater deposited a fresh layer of powder, it again momentarily blocked the field-of-
view of the IR camera, which caused a second downward spike in the temperature signal.

(4) Marked in Figure 7(b) is the steady state surface temperature for each layer just before the

laser starts scanning the next layer.

In Figure 8(a), the steady state temperature is tracked as a function of the build height for the
entire part. In Figure 8(b) the ILCT is plotted as a function of the build height. Since the area to be
scanned varies as a function of the build height, the ILCT changed continually throughout the
build. For example, the annular base had a larger area, and hence it took longer to scan compared
to the fin-shaped features near the top. As an example, the ILCT for the base was close to 105
seconds compared to 15 seconds for the fin. The smaller scan area and shorter ILCT of the fin-

shaped features leads to accumulation heat, which in turn will influence the microstructure evolved

[53].

In Figure 8 (a), the temperature in the base region was initially low, as the heat was conducted

away to the build plate and into the substrate owing to the large surface area of the base and
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relatively longer ILCT. The temperature increases as more layers are deposited because the
surrounding powder acts as an insulating medium. The internal cooling channel tends to
accumulate heat as the roof of the channel is unsupported (overhang), and there is unmelted powder
trapped inside the cavity of the channel. The temperature increase is rapid in the fin region due to

its small cross section, shorter ILCT, and overhanging geometry.
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Figure 7. (a) The raw surface temperature for the region sampled in Figure 5. (b) zoomed in region
from (a) showing the measurement of the steady state surface temperature just before the laser
fuses a new layer. (c) The rationale for the various signatures observed in the raw temperature
signature in (b).
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18



3.3 The graph theory approach for thermal modeling in LPBF.
3.3.1 Background — Solving the heat diffusion equation using graph theory.

To predict the temperature distribution in a LPBF part it is necessary to solve the continuum
heat diffusion equation, Eqn. (1) [40]; FE analysis is chiefly used to solve the heat diffusion

equation and obtain the thermal history of a part [19-22, 29, 40].

Material Shape of the Part Processing Parameters
Properties oT X,V 2zt 92 92 52 ,——'—P !
pcp M_ + + T(xlylzyt) = =EV ( )
ot d0x? 0y? 0z? vXhxt

Solving the heat diffusion equation results in the temperature T(x, y, z, t) for a location (x, y,
z) inside a part at a time instant t. The term E, on the right-hand side is called the energy density
[J-m], and represents the energy supplied by the laser to melt a unit volume of material. The
energy density Ey is a function of laser power (P [W]), distance between adjacent passes of the
laser (h) [m], translation velocity (v) [m-s'], and the layer thickness (t) [m]; these are the
controllable parameters of the LPBF process.

The material properties are density p [kg-m™], specific heat ¢, [J-kg"-K™)], and thermal
conductivity k [W-m™-K™!]. The effect of part shape is represented in the second derivative term
on the left hand side of Eqn. (1). The second derivative is called the continuous Laplacian. The
graph theory approach solves a discrete form of the heat diffusion equation for the temperature.
Then the temperature is adjusted to account for convective and radiative heat transfer phenomena
(not shown in Eqn. (1)). The following is the mathematical reasoning for the graph theory approach
to solve the heat diffusion equation; this reasoning is discussed in detail in Ref. [26].

As in existing FE approaches, the energy density E, in Eqn. (1) is replaced by an initial

temperature T(x,y,z,t = 0) = T,; where T, is the melting point of the material.
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Next, the heat diffusion equation is discretized over M nodes by substituting the second order
derivative (continuous Laplacian) with the discrete Laplacian Matrix (L),

0T(x,y,z,t)
Jt

+ a(L)T(x,y,2,t) = 0; 3)
The eigenvectors (¢) and eigenvalues (A) of the Laplacian matrix (L) are found by solving
the eigenvalue equation L = ¢A. The eigenvalues (A) are non-negative, and the eigenvectors
(¢d) are orthogonal [54, 55].
Because the transpose of an orthogonal matrix is the same as its inverse, hence, ¢! = ¢’
and ¢ ¢’ = 1, then the eigenvalue equation L = ¢pA may be post-multiplied by ¢’ to obtain L =
AP’
Using this relationship in Eqn. (3),

W +a(PAd) T(x,y,2,t) = 0; (4)

Eqn. (4) is a first order, ordinary linear differential equation, which is easily solved
as, T(x,y,z,t) = e~ ®(@AeNt T (5)
The term e ~*(®A) s simplified via a Taylor series expansion,

—a(oAd dAatd’  (dAatd)?  (dAatd’)?
e—a(dAd)t — 1 _ — > — = + o

PAatd’  (PpAatd’)(pAatd’)  (PpAatd’)(pAatdp’)(pAatd’)
T 2! B 3! e

substituting ¢ ¢’ = 1,
(6)

phaty’ | HNaD_ phay’ |

ema(®hr = ¢ ¢ - 1 21 3!

— (I)e_aAt(b,
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Substituting, e ~*(®APNt = he~*ALg’ into equation (5) gives,

T(x,y,2,t) = b~ T, @

Eqn. (7) entails that the heat diffusion equation is solved as a function of the eigenvalues (A)

and eigenvectors (¢) of the Laplacian Matrix (L), constructed on a discrete set of nodes. In Eqn.
(7) we introduced an adjustable coefficient g [m™] called the gain factor to calibrate the solution
and adjust the units. The gain factor needs to be calibrated once for a particular material, and would

thereafter remain constant.

Indeed, we used the same value of the gain factor from our previous works concerning the
validation of the graph theory approach with thermography data obtained during LPBF of stainless

steel parts [24].
3.3.2 Heat Loss due to Convection and Radiation

Thus, per Eqn. (7), the temperature of the nodes is estimated considering conductive heat
transfer only. Next, heat loss due to radiation and convection at the top boundary of the part is
included. For this purpose, we demarcate the nodes at the top boundary, and adjust the temperature

of the boundary nodes (T}) using lumped capacitive theory:

= 8
Tb = e_h(At) (Tbi - Too) + Too ( )

Where, T,, (=300 K) is the temperature of the surroundings, Tj; is the initial temperature of
the boundary nodes, T}, is the temperature of the boundary nodes after heat loss occurs, At is the
dimensionless time between laser scans, and h is the normalized combined coefficient of radiation
(via Stefan-Boltzmann law) and convection (via Newton’s law of cooling) from boundary to the

surroundings [56].
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3.3.3  Advantages and limiting assumptions of the graph theory approach.

The graph theory approach has three inherent advantages over FE analysis.

(1) Elimination of mesh-based analysis. The graph theory approach represents the part as discrete
nodes, which entirely eliminates the tedious meshing steps of FE analysis.

(2) Elimination of matrix inversion steps. While FE analysis rests on matrix inversion at each
timestep for solving the heat diffusion equation, the graph theory approach is based on matrix
multiplication operations, T(x,y,z,t) = pe *'¢p’'T,, which greatly reduces the
computational burden.

(3) Simplifying time stepping. The time t for which the heat is diffused in the part in Eqn. (7) can
be set to one large time step without computing the temperature at intermediate discrete steps
as in FE analysis.

To facilitate computation, the graph theory approach makes the following assumptions.

o Heat transfer-related assumptions. Material properties, such as the specific heat are
considered to be constant, and do not change with temperature. Moreover, effect of the latent
heat aspects is not considered. In other words, the effect change of state of material from solid

to a liquid, and then back to a solid is not accounted in the graph theory approach.

o Energy source-related assumptions. The laser is considered a point heat source, i.¢e., the shape
of the meltpool is not considered in the graph theory approach. For example, in the literature,
Goldak’s model from thermal modeling in welding is often scaled to LPBF [40]. Goldak’s

model assumes the meltpool to have double ellipsoidal shape [27].

Furthermore, it was assumed that the topmost layer of the powder completely absorbed the
incident laser beam. Hence, the graph theory approach ignored the effect of reflectivity and

powder packing density.
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The main computational bottleneck of the graph is in constructing the network graph, and
obtaining the eigenvalues (A) and eigenvectors (¢) in Eqn. (7). In what follows, we describe three
strategies to represent the part geometry in the form of a discrete nodes, and subsequently, compute

the eigenvectors (¢) and eigenvalues (A) of the Laplacian Matrix (L).

Of these three strategies, Strategy 1 involves populating the entire part with nodes. Strategy 2
takes advantage of the radial symmetry of the impeller to simulate a representative section of the
geometry. Strategy 3 simulates large horizontal sub-sections of the part, one at a time, instead of

the entire part, as in Strategy 1.

3.4 Strategy 1 — Represent the entire part geometry as a network graph

3.4.1 Steps in the Approach

Strategy 1 is depicted in Figure 9, and was described in our previous publications [24, 25]. We

briefly reiterate the approach for the readers’ convenience.

Step 1- Obtaining the geometry of a part and Step 2- Constructing a network graph

converting it to a set of discrete nodes. from the sampled nodes

GZ 7L

Step 3- Depositing material layer-upon-layer,
and diffusion of the heat through the part.

Step 4- Repeat step 3 unti}
the part is completed

Figure 9. Graph theory thermal modeling procedure steps for strategy 1
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Step 1: Convert the entire part into a set of discrete number of nodes (n) that are randomly

allocated through the part.

The part is sliced into layers and a fixed number of 7 spatial locations (i.e., nodes) is randomly
sampled in each layer and hatch. The position of these nodes is recorded in terms of their spatial
coordinates (x,y,z). In the ensuing steps, the temperature at each time step is stored at these nodes.
The random sampling of the nodes bypasses the expensive meshing of FE analysis and is one of

the key reasons for the reduced computational burden of the graph theory approach.
Step 2: Construct a network graph among randomly sampled nodes.

Consider two nodes, 7r; and 7; whose spatial Cartesian coordinates are ¢; = (x;,¥;,2;) and ¢; =
(x},¥j, zj), respectively; m; and 7; are connected by an edge whose weight a;; is given by,

_(ci=c))?
a;=e o9 . ©)

The edge weight, a;; represents the normalized strength of the connection between the nodes m;
and 7; and has a value between 0 and 1; o” is the variation of the distance between all nodes. We

only connect a node to a certain number of its nearest neighboring nodes (n = 5 in this work).

The number of nearest neighbors () is calibrated from experiments from our previous work
[24]. From a physical perspective, the edge weight a;; embodies the Gaussian law — called heat
kernel — in the following manner. The closer a node 7; is to another 77, exponentially stronger is

the connection (a;) and hence proportionally greater is the heat transfer between them.

The matrix, formed by placing a;; in a row i and column j, is called the adjacency matrix, A =
[aij]. From the adjacency matrix (A), the discrete graph Laplacian matrix L will be obtained using
the following elementary matrix operations. The degree of node m; is computed by summing the

i row of the adjacency matrix A.
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di = Xvjay- (10)

From the degree of node d;, the Laplacian [;; at node i is defined as follows:
lij d:Efdl-—al-j. (11)

The diagonal degree matrix D is formed from d;’s as follows; where n is the number of nodes,

d - 0
D= [ P ] (12)
0 - d,

the discrete Laplacian L can be cast in matrix form as,

L & (D—-A). (13)
Finally, the Eigen spectra of the Laplacian L, computed using standard methods satisfy the
following relation:
Lo = PA. (14)
Step 3: Simulate the deposition of the entire layer and diffuse the heat throughout the network.
To aid computation, the simulation proceeds in the form of a superlayer (metalayer). In this
work, we used 10 actual layers each of height 50 um for one superlayer; the thickness of each

superlayer was therefore 0.5 mm. An entire superlayer is assumed to be deposited at the melting

point of the material T, (= 1600 K for SAE 316L).

The heat diffuses to the rest of the part below the current layer through the connections
between the nodes. If the temperature at each node is arranged in matrix form, the steady state
temperature T after time ¢ (where ¢ = interlayer cooling time) is obtained as a function of the
eigenvectors (¢) and eigenvalues (A) of the Laplacian matrix (L) of the network graph, viz., Eqn.

(7), repeated herewith: T(x,y,z,t) = pe~*8 L H'T,.
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After the temperature of each node is obtained, convective and radiative thermal losses are

included for the nodes on the top surface of each layer in Eqn. (8).

Step 4: Step 3 is repeated until the part is built.

3.4.2 Limitations of Strategy 1

Strategy 1 is well-suited for relatively small volumes and simple geometries such as cylinders
and cones, which were analyzed in our previous work [24]. There are two drawbacks with this so-
called naive approach which constrains its scalability for large volume parts with complex features.
First, in Strategy 1 a fixed number of nodes are distributed in the part and are allocated randomly
with uniform density. Consequently, certain features that have a thin cross section tend to have
fewer nodes. For instance, the cross-sectional area of the fin-like features near the top of the part
is considerably smaller than the rest of the part. Due to fewer nodes in the finer feature compared

to the rest of the part, temperature distribution estimated in a fine feature will lack accuracy.

A second limitation from Strategy 1 is also caused by sparse distribution of nodes in fine
features, such as the overhang section of the cooling channel and fins. Since the number of nodes
in fine features is low, and a fixed number of nodes (n = 5) are connected to each other, the nodes
in the fine feature regions tend to become connected to the nodes in the rest of the part across the

boundary of the part and powder.

In other words, the edge connecting nodes may cross the boundary of the part, an occurrence
termed as short-circuiting. Examples of short-circuiting are shown in Figure 10. For instance, the
edge connecting nodes should not cross the boundaries of the part or across the internal voids. An
approach to avoid short-circuiting in Strategy 1 is to increase the node density, which will increase

the computation time.
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Node connections
cross part
boundaries i
Shont-circuiting

Node connectionsg
cross powder
ragions
Short-circuiting

Cooling
Channel

Node connections are
within part boundaries
Ne Shor-circuiting

Figure 10. Short-circuiting due to edges crossing the part boundaries and reaching across powder.

The third limitation of Strategy 1 is that it is computationally intensive. In Strategy 1, a large
number of nodes for the entire part must be stored in the RAM memory of the desktop computer.
The Laplacian matrix (L) grows in size with the part. Consequently, the computation time

increases as layers are added.

Moreover, at every time step it is necessary to keep track of the location and connectivity of every
node over the entire part, as well as the Laplacian matrix (L), both of which scale as O?(n) of the
number of nodes (n). The number of eigenvalues (A) and eigenvectors (¢) also increases with the
number of nodes. Consequently, the computation time for Strategy 1 scales exponentially with the

number of nodes.
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3.5 Strategy 2 - Simulation a representative section of the part (Part Scaling).

In strategy 2, instead of simulating the entire part, a radial section, or a sector, of the part is
chosen for layer-by-layer analysis which is shown in Figure 11. The graph thermal modeling steps

are identical to the previous Strategy 1 which were described in Sec. 3.4.

The drawback with Strategy 2 is that it is best applied to symmetrical parts. However,
simulating a section of a bigger part is a common practice in AM modeling to reduce the

computational burden [36, 57]. In our case, we chose a 24° sector as a representative section.

tan 1o Taki ko Step 2- Converting the saciorio a set of notes and
Sigp 1 Taking & sector of the whole gecimety cunstructing & network graph from the sampled nodes

Step 3 Depositing material layerupon-layer, N
and diffusion of the heat through the part, Siep 4- Obtaining the result

Figure 11. Graph theory thermal modeling procedure steps for Strategy 2 involving simulation of
a representative cross section of the part.
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3.6 Strategy 3 — Simulate the part in progressive horizontal subsections, and eliminate

nodes in preceding subsections.

Strategy 3 is designed to be a generalized approach to simulate any geometry. It overcomes
the limitations of Strategy 1 by dividing the part into horizontal subsections and simulating each
subsection in a progressive, piece-wise manner. As opposed to the naive approach in Strategy 1,
which populates the entire part with nodes, and stores the connections in large adjacency and
Laplacian matrices, in Strategy 3, the key idea is to remove nodes in previous layers that lie far

below the current layer being processed.

The rationale for removing nodes in previous layers is that the temperature cycles would be
substantially attenuated by the time they reach deeper into the prior layers. This removal of nodes
from previous layers not only overcomes the computational burden of Strategy 1, but also reduces
inaccuracy as each sub-section can be populated with a large number of nodes. The following

steps, also depicted in Figure 12, summarize Strategy 3.

3.6.1 Steps in the approach

Step 1 — Use Strategy 1 with sparse nodes to obtain a coarse estimate of the thermal history.

A coarse estimate of the temperature trends for the whole part is obtained using Strategy 1 with
reduced node density. The purpose of this step is to provide a rough estimate of each layer’s

thermal history at each time step which will be used at later Step 4.

Step 2 — The part is divided into smaller horizontal subsections (layerwise partitioning).

The part is divided into horizontal subsections, and each subsection is populated with discrete
nodes and a network graph is created over each subsection. Each subsection has its own network

graph, hence, there are no edges connecting the two adjacent subsections. The height of the sub-
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section is dictated by the maximum size of the Laplacian matrix that can be stored in the memory
of the computer. In our case, the maximum size of the Laplacian matrix that could be stored at any

time in memory corresponded to a height of 10 mm of the part.

Step 3 — Simulate the deposition of material layer by layer for the first subsection.

The layers were deposited to reach the maximum size of the Laplacian matrix (10 mm height).
Step 4 — Remove nodes in previous subsections

After the simulation of the first subsection is finished (10 mm), the computer memory is cleared
(nodes must be erased), and the temperature of nodes with severed connections is estimated based

on Step 1. This is done in two sub-steps.

Step 4.1: Nodes representing the first few layers of the previous subsection are removed. The
removal of nodes reduces the size of the Laplacian matrix, and the number of nodes stored in
memory. For example, the first 4 mm of the previous sub-section are removed, and thus there is
now space in the computer memory to accommodate 4 mm of new layers to be deposited. The

height of the erased nodes is termed as moving distance.

Step 4.2: The removal of nodes causes edge connections to be severed, which changes the topology
of the network. One effect of removing nodes is that heat tends to accumulate in the nodes with
edges connected to the erased nodes due to disconnection of the network graph. The available
initial layers nodes with severed edges are termed interface nodes. The temperature of the interface
nodes is reinitiated at each time step based on the coarse estimates from Step 1. In this work the

interface nodes were 3 superlayer thickness (1.5 mm).
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Step 5 — Simulate the deposition of a new subsection.

Fresh layers in the next sub-section are added until the maximum number of layers that can be
stored in memory is reached. In this work fresh layers corresponding to an added 4 mm in height
(80 actual layers, 8 superlayers) were deposited until an incremental height of 10 mm was reached

(200 actual layers).
Step 6 - Step 4 and Step 5 are cycled until the part is completely built.
3.6.2 Limitations of Strategy 3.

The advantage of Strategy 3 is that the computation time is significantly reduced compared to
Strategy 1, and the approach can be generalized to any shape. However, a trade-off is that the

temperature history of the eliminated nodes cannot be tracked for the entire process.
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Step 1- Use Strategy 1 to obtain a Step 2- Divide the whole part to several smaller sub-sections. Then divide each subsection into a

coarse estimate of the temperature et of discrete nodes and build several small network graph (adjacency matrix)
distribution in the part. - 0

Maximum number of
nodes that can be
stored in memory

10 mm

g Step 3- Deposition of material layer-upon-layer to build a subsection (maximum size of first adjacency matrix)
= g ) »New deposited layer
= @ Layer  with v _
%3 8 severed o T =
5 5 edge £
% G>J ,connectclio?sd g

e EEH=
3% 2
Strategy 1 at

= i e each  time

= el n s ik step

< Eliminated nodes Sten 6 Steps 4 and 5

Step 4.1 Erase (eliminate) nodes  Step 4.2 Temperature of the severed Step 5: Fresh layers are repezae # un?i??he ?)grt isakgsi "

from the bottommost layers (gray)  nodes are updated from Strategy 1 deposited

Figure 12. Graph theory procedure steps for Strategy 3

32



3.7 Simulation Parameters

The graph theory approach requires tuning of three parameters — namely, the number of
nodes in the volume simulated (), the number of nodes to which each node is connected (1), and
the gain factor (g) in Eq. (7) which controls the rate of heat diffusion through the nodes. In this
work, we set =5 and g = 1.5 x 10*. The number of nearest neighbors j and gain factor g were
obtained from our previous work [24]. We did not change these already calibrated parameters from
our previous work in LPBF of stainless steel parts (cylinder and cone) which substantiates that the
graph theory approach only needs to be calibrated once via pilot experiments for a specific material

[24].

The graph theory simulation parameters and material properties are described in Table 2. Also
included in Table 2 is a term called characteristic length (/, mm). In our previous works, the
characteristic length (/) was defined as the distance beyond which there should not be any physical
connection between nodes to avoid short-circuiting, and was estimated by measuring the minimum
dimension of various features in the part. In this work, the thickness of the fin (~ 3 mm) was one

of the smallest dimensions, albeit, certain sections of the cooling channels were thinner.

Hence, as a rule of thumb we maintained / =3 mm. The characteristic length (/) also facilitates
estimation of the minimum number of nodes (), as a function of the number of neighbors (n = 5)

and volume (V) of the geometry simulated via the following relationship:

_mxV_ 5V (15)

=TT 7

Two metrics were used to assess the accuracy and precision of the graph theory approach, namely,
the mean absolute percentage error (MAPE) and root mean square error (RMSE), shown in Eqns.

(16)(a) and (b), respectively.
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(16)(a)

(16)(b)

where k is the number of instances in time that were compared over the duration of the deposition,

i is the current instant of time, T; is the measured temperature, and T is the predicted temperature.

Table 2: Summary of the simulation parameters used in this work.

Simulation Parameters Values
Heat loss coefficient from part to surroundings, A [W-m?- K] | 1 x 107 (Ref. [24])
Heat loss coefficient from part to substrate (sink), h [W-m?2-K] | 1x102 (Ref. [24])
Thermal diffusivity (o), [m*/s] 3x10°
Density, p [kg/m’] 8,440
Melting Point (To) [K] 1,600
Ambient temperature, T, [K] 300
Characteristic length [mm] 3
Number of neighbors which is connected to each node (1) 5
Superlayer thickness [mm] 0.5 (10 actual layers)
Gain factor (g) 1.5 x 10*
Computational hardware %124]7) (I;}_’IZ:SVL}IH 16 ; élg[];ple{rA?al?ZOX,
Computation Software MATLAB2020a

4 Results and Discussion

4.1 Strategy 1

Figure 13 and Table 3 report results for Strategy 1 in terms of mean absolute percentage error
(MAPE), root mean square error (RMSE, [K]), and computational time as a function of number
of nodes. The volume of the whole part V was ~ 250,000 mm?, which requires a minimum of n =
46,000 nodes based on Eqn. (15). From a computational standpoint, the Laplacian and adjacency
matrix will each consist of over 2 x 10° elements (46,000 rows x 46,000 columns). Furthermore,
46,000 eigenvalues and eigenvectors will have to be computed.
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Strategy 1 resulted in ~14% MAPE and 47 K RMSE with 64,000 nodes, and required 10.5

hours of computation time. The desktop computer used in this work had 128 gigabytes of memory

with maximum capacity of ~70,000 nodes. Therefore, increasing the number of nodes beyond

64,000 overwhelmed the memory of the desktop computer.

While Strategy 1 captures the overall trend in steady state temperature distribution, the

prediction error is large for sections with the internal channel and fins. The main reason for this

large error is due to short-circuiting of edges across the cooling channel and between the fin and

bulk part as depicted in Figure 10. Accordingly, a large number of nodes are need for Strategy 1,

an alternative is to thread the computation through a GPU using a compiled language, such as C++.
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Figure 13. Comparison of the predicted top surface temperature from Strategy 1 with

experimentally observed temperature distribution as a function of number of nodes (n)
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Table 3. Comparison of strategy 1 accuracy and computational time for different node densities. The
number in the parenthesis indicates the uncertainty (standard deviation) over three independent

replications.

Number of | MAPE (Std. Dev. Over RMSE (Std. Dev. Over three repetitions) Time

Nodes (n) three repetitions) [K] (minutes)
3,200 55.2 (4.7) 170.4 (19.8) 2
6,400 36.1 (2.6) 110.8 (12.7) 6
9,600 26.7 (2.3) 91.2 (10.2) 16
19,200 25.4(1.9) 89.6 (8.6) 39
25,600 22.8 (2.1) 68.4 (8,2) 53
34,000 14.7 (1.9) 53.7(7.5) 236
64,000 13.6 (1.8) 46.2 (7.4) 634

4.2 Strategy 2

In Strategy 2, a representative radial slice of the part is simulated. The results for Strategy 2
are shown in Figure 14 and Table 4. Since the volume of the sector chosen (31,000 mm®) is a
fraction of the entire part volume (250,000 mm?), the sector can be more densely populated with

nodes compared to Strategy 1, providing more accurate results with fewer number of nodes.

For Strategy 2, from Eqn. (15), it was estimated that » = 5,800 and above would be needed to
capture the trends. Indeed, with 6000 nodes, the thermal trends were predicted with MAPE ~10%,
RMSE 33 K in less than 5 minutes. There is a diminishing return on the accuracy with increase in
number of nodes. With 24,000 nodes, the graph theory approach required about 40 minutes to
converge to a MAPE and RMSE of 3.5% and 11.8 K, respectively. A middle ground is found at
11,200 nodes, for which the simulation converges to 8.6% (MAPE) and 29K (RMSE) in less than

18 minutes.
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Figure 14. Results from using strategy 2 to simulate a sector of the part layer by layer as a function
of the number of nodes. With n = 24,000, the graph theory predictions converge to within 3.5%
(MAPE) and 12 K (RMSE) of the experimental measurements within 41 minutes.

Table 4. Comparison of strategy 2 accuracy and computational time for different node densities.
The number in the parenthesis indicates the uncertainty (standard deviation) over three
independent replications.

Nodes MAPE (Std. ]?e.v. Over RMSE (Std: Dev. Over Tirpe
three repetitions) three repetitions) [K] (min)
38,000 3.4(0.3) 11.6 (2.0) 106
24,000 3.5(0.3) 11.8 (2.4) 41
12,800 7.9 (0.6) 27.5 (3.6) 21
11,200 8.6 (0.9) 28.1 (3.2) 17
9,600 9.1 (0.9) 30.0 (4.1) 14
6,400 10.1 (1.1) 33.2 (4.9) 5
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4.3 Strategy 3

The results for Strategy 3 are reported in Table 5 and Figure 15. In Table 5 we summarize
results from varying the moving distance (height of nodes eliminated), and different number of
nodes used for the coarse estimation of temperature at the interface nodes in in Step 1 of the

approach.

The minimum number of nodes per subsection of 10 mm was estimated from Eqn. (15) as
follows. The finest feature, prone to short-circuiting are the fin-shaped features, whose total
volume amounted to V = 26,500 mm®. with characteristic length / = 3 mm, and the number of
neighboring nodes n = 5, the number of nodes to avoid short-circuiting in the fin section of the

part was estimated as n = 5,000.

With n = 5000, and moving distance set at 2 mm and lesser, Strategy 3 predicted the top
surface temperature with error within 10% (MAPE) and 35 K (RMSE) in approximately 20
minutes. Doubling the number of nodes in each subsection to » = 10,000, and maintaining the

same moving distance resulted in reduction of MAPE to ~8%, and RMSE less than 25 K.

Figure 15 shows that Strategy 3 captured the subtle temperature trends characteristic of the
internal cooling channel and fins. The moving distance impacts the prediction error; a shorter
moving distance entails that fewer nodes are removed, and hence there is a smoother transition
between each subsection. A smaller moving distance, however, increases the computational time
as more nodes are needed to be stored in memory. The total computation time reported in Table 5

includes the time required for coarse estimation using Strategy 1.
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Figure 15. Comparing the experimental top surface temperature with the predicted top surface
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temperature for Strategy 3 at a constant number of nodes, n= 10000.

Table 5. Results from applying strategy 3 with different node densities and window size. The
number in the parenthesis indicates the uncertainty (standard deviation) over three independent

replications.
Number . Computation
of Nodes Nodes in MAPE RMSE (Std. time for Computation
. each Dev. Over . Total
Moving (n) for (Std. Dev. coarse time for .
. sub- three . Time
Distance | coarse . Over three . estimation | Steps 4 and 5 .
N section . repetitions) . (min)
estimation in Step 2 repetitions) (K] (Step 1) (min)
(Step 1) P (min)
8 mm 43.5(4.1) | 117.2 (16.8) 5 11
5 mm 5000 16.9 (3.5 | 64.2(7.7) 7 13
2 mm 9.5(0.8) 30.5 (4.8) 11 17
1 mm 6400 8.1(0.9) 25.7 (3.8) 6 16 22
8 mm 41.8 (3.7) | 109.3 (13.5) 9 15
5 mm 10000 153(2.8) | 60.4(7.2) 15 21
2 mm 7.9 (0.8) 23.8 (4.0) 21 27
1 mm 6.1 (0.8) 22.7(3.7) 33 39
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4.4 Qualitative Comparison with Netfabb

Here we provide a qualitative comparison of the graph theory results with a commercial AM
simulation software Autodesk Netfabb. As described in Sec. 2.1, commercial simulation packages,
including Netfabb, use a proprietary approach for adaptive meshing. The user cannot control the
number of elements in Netfabb except to choose between three simulation modes labeled fastest,
medium, and accurate. Accordingly, it is not possible to interrogate the temperature at specific
locations. Therefore, a one-to-one quantitative comparison of Netfabb and graph theory
predictions cannot be made. Hence, the following comparison of the Netfabb solution with the
graph theory is intended to be only qualitative in nature. We have carried out such a comparison
with non-proprietary FE, finite difference, and exact analytical solutions in our prior publications

[24-26].

Results from Strategy 1 (n = 19,200) and Strategy 2 (n = 12,800) are qualitatively compared
with graph theory at specific build heights in Figure 16. The graph theory results and Netfabb
simulations both predicted heat accumulation in the fin region, and fast diffusion in the annulus.

For both scenarios, the Netfabb simulation was set on the fastest mode.

Strategy 1 Strategy 2

35 mm

25 mm

15 mm

5mm

MNetFabb Graph Theory MetFabb Graph Theary

Figure 16: Qualitative comparison of the graph theory approach with Netfabb shows that heat tends to
accumulate in the fin region.
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5 Conclusions and Future Work

This work scales the graph theory approach for predicting the thermal history of a large
stainless steel impeller part made using the laser powder bed fusion process (LPBF). The impeller
had an outside diameter of 155 mm and a vertical height of 35 mm (250,000 mm?*). The part was
built on a Renishaw AM250 commercial LPBF system, and required the melting of 700 layers
over 16 hours of build time. During the build, temperature readings of the top surface of the part
were acquired using an infrared thermal camera operating in the longwave infrared range (7 um to
13 um). This work validated three computational strategies to scale the graph theory approach,

with the aim of reducing the prediction time to less than the actual time to print the part.

Strategy 1 involved populating the entire part with nodes and constructing a network graph
over these nodes. This strategy was used in our previous works for small parts and is found to be
computationally intensive for large parts as many graph nodes have to be stored in memory. For
simulating the impeller part using Strategy 1, the best result was obtained in 10.5 hours and
required 64,000 nodes; the mean absolute percentage error (MAPE) and root mean square error

(RMSE) were ~14% and 47 K, respectively.

Strategy 2 scaled the part geometry by simulating a small representative radial cross section
of the impeller. With 6,400 nodes, the Strategy 2 resulted in a MAPE ~10% and RMSE 32 K
within 5 minutes of computation. However, this approach is suitable for symmetrical parts.
Doubling the number of nodes to 12,800 reduces the MAPE and RMSE to ~8% and 27.5 K, at the

cost of computation time, which increases to ~22 minutes.

Strategy 3 used a moving window approach to simulate the thermal history in horizontal
subsections. Instead of discretizing the entire part into nodes and building a large network graph

to cover all the nodes in the part as in Strategy 1, the part in Strategy 3 was divided into horizontal
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subsections. The thermal history of the part was progressively predicted subsection-by-subsection,
and to keep the computation tractable and avoid overwhelming the memory of the computer, the
nodes in prior subsections were removed. With number of nodes set at 5000 per section, this
strategy resulted in a MAPE less than 10% and RMSE less than 30 K within 25 minutes of
simulation. The MAPE and RMSE decreased slightly to ~ 8% and 25 K when the number of nodes

was doubled to 10,000, at the cost of computation time, which increased from 30 to 40 minutes.

This work thus succeeds in instituting an efficient approach to deploy the graph theory-based
thermal modeling for predicting the temperature distribution in large volume and complex-shaped
LPBF parts designed for practical applications. The future work is to make the graph theory
approach more efficient through code parallelization and optimization. Further work is to use the

graph theory approach for predicting build failures.
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