
1 

 

Heterogeneous Sensing and Scientific Machine Learning for Quality Assurance in Laser 

Powder Bed Fusion – A Single-track Study. 

Aniruddha Gaikwad1,2, Brian Giera1*, Gabriel M. Guss1, Jean-Baptiste Forien1, Manyalibo J. 

Matthews1, Prahalada Rao2 

1Lawrence Livermore National Laboratory 

2 Mechanical and Materials Engineering, University of Nebraska-Lincoln 

Abstract 

Laser Powder Bed Fusion (LPBF) is the predominant metal additive manufacturing technique that 

benefits from a significant body of academic study and industrial investment given its ability to 

create complex geometry parts. Despite LPBF’s widespread use, there still exists a need for 

process monitoring to ensure reliable part production and reduce post-build quality assessments. 

Towards this end, we develop and evaluate machine learning-based predictive models using height 

map-derived quality metrics for single tracks and the accompanying pyrometer and high-speed 

video camera data collected under a wide range of laser power and laser velocity settings. We 

extract physically intuitive low-level features representative of the meltpool dynamics from these 

sensing modalities and explore how these vary with the linear energy density. We find our 

Sequential Decision Analysis Neural Network (SeDANN) model – a scientific machine learning 

model that incorporates physical process insights – outperforms other purely data-driven black box 

models in both accuracy and speed. The general approach to data curation and adaptable nature of 

SeDANN’s scientifically informed architecture should benefit LPBF systems with an evolving 

suite of sensing modalities and post-build quality measurements. 

Keywords: Laser powder bed fusion, in-situ quality monitoring, process-mapping, machine 

learning.  
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1 Introduction  

Despite the demonstrated potential of additive manufacturing (AM) to transcend the design 

and processing barriers of traditional manufacturing, the use of additive manufactured parts in 

mission-critical components is currently limited due to the tendency of the process to create flaws, 

owing to complex multi-scale physics governing the process [1]. Therefore, to ensure the 

functional integrity of additively manufactured parts, a critical need is to continually monitor the 

process using sensors built into the machine [2, 3], and subsequently, detect flaws through real-

time analysis of the streaming in-process sensor signatures before these flaws are sealed in by later 

layers [4, 5]. Accordingly, a reliable approach for sensor-based in-situ detection of flaws is vital 

towards establishing a smart additive manufacturing paradigm for the quality assurance of 

additively manufactured parts in which the functional properties of the part are assessed during the 

process, thus limiting expensive offline characterization of parts using X-ray computed 

tomography and post-process materials characterization [6, 7]. 

The goal of this work is to detect flaw formation in a specific type of AM process called laser 

powder bed fusion (LPBF) through data acquired from heterogenous in-process sensors in a 

manner that leverages physical insights from the process. In LPBF, metal in the form of powder is 

spread over a bed, and the material is selectively fused layer-upon-layer through the energy 

supplied by a laser. The laser scans a (typically) rectilinear path through the rapid movement of a 

pair of galvanometric mirrors, and the resulting interaction between the laser and the powder 

material creates a pool of molten material, called the meltpool. The material solidifies in the wake 

of the meltpool along the path scanned by the laser. This locus of solidified material along the laser 

path is called single-track or hatch. A layer of the part consists of several overlapping single tracks. 



3 

 

Once a layer is fused, the powder bed moves down by 50 to 100 μm (layer height), a new layer is 

raked on top, and the process continues until the part is completely built.  

Figure 1 shows quality differences via optical microscopy images of two stainless steel single 

tracks deposited at different laser power and laser velocity settings.  Figure 1(a) shows a single-

track with uniform edges, no discontinuities, and no satellite artifacts. These single-track 

characteristics are desirable while building LPBF additive manufactured parts. In contrast, Figure 

1(b) shows a single-track with inconsistent consolidation – the width of the track is not only less 

(compared to the track in Figure 1(a)),  but also shows prominent discontinuity and damage.  

 
Figure 1: Optical microscopy images of single tracks deposited at different laser power and laser 

velocity. (a) a single-track with uniform edges and no discernable faults – characteristics that are 

desirable while building LPBF AM parts. (b) a single-track with inconsistent width, 

discontinuities, and surface damage. These single tracks are not part of this work as they were 

deposited at different laser spot size, but the laser power and laser velocity settings were the same. 

We note that, the LPBF process falls under the general class of AM processes called powder 

bed fusion (PBF). In PBF various types of energy sources can be used to fuse the powder material. 

Apart from using a laser, energy sources include an electron beam (EPBF, with both thermionic 

and plasma beam), and infrared heating [8].  To further speed processing, LPBF systems with 

multiple lasers have been recently introduced by manufacturers [9]. A novel approach developed 
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by researchers at Lawrence Livermore National Laboratory (LLNL) enables scanning an entire 

layer at once by shaping an infrared beam with an array of optically addressable light valves akin 

to a photomask [10].  

The fast and accurate in-situ identification of LPBF flaws, such as those demarcated in Figure 

1(b), from in-process sensor data is predicated on fusing heterogeneous sensor data [2, 11]. Here 

we predict the integrity (build quality) of a single-track using a pyrometer and a high-speed optical 

video camera located coaxially to the laser path to capture meltpool-level phenomena. The 

rationale for emphasizing flaw detection at the single-track-level is that, since the single tracks 

form the basic building block of LPBF parts, identifying and correcting flaws at the single-track 

level is the key to prevent anomalies from being sealed in by subsequent layers, and cascading to 

the larger part-level.  

At present, process monitoring in additive manufacturing is largely based on analysis of in-

process sensor data with machine learning for detecting the occurrence of specific types of flaws. 

For instance, machine learning is used – in unsupervised [12-14], semi-supervised [15, 16] and 

supervised [17-20] modes – to recognize patterns from in-situ sensors, such as meltpool shape and 

size. Subsequently, these patterns are correlated with a defect, such as porosity.  

The prediction of the model is verified through on offline characterization of the part quality, 

typically with X-ray computed tomography  [21-26]. Machine learning in the context of flaw 

detection in LPBF can be stratified into three-levels, focused on, meltpool-, powder bed-, and part-

level sensing [27-30].  For instance, in previous works optical and thermal cameras, and 

spectrometers have been instrumented in both off-axis (staring) and coaxial to the laser 

arrangements to obtain meltpool images and spectral emissions in the meltpool plume region [31, 
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32]. The shape and spatter signatures subsequently derived from these sensors are analyzed and 

used to detect meltpool-level defects, e.g., lack-of-fusion porosity with machine learning 

techniques.  

In what follows, we evaluate several data-driven models for single-track quality prediction 

and find the scientific machine learning concept, which leverages physical process insights, 

performs better in terms of both prediction fidelity and computational efficiency than purely data-

driven (black-box) models [4]. Furthermore, given the physically motivated model development 

process, this approach can extend beyond our specific LPBF embodiment to other AM process, 

such as directed energy deposition and electron beam powder bed fusion.  

2 Methods 

Here we describe methodological details of data collection, labeling of single-track quality, 

feature extraction from sensor data and machine learning model development. While we execute 

these steps on our LPBF hardware, our approach is not limited to the sensing modalities we collect 

(e.g. high-speed video and pyrometry data) and our strategies can be implemented on other metal 

additive manufacturing (AM) systems [5]. Similarly, the labeling methodology and model 

development and validation approaches described in this work are generalizable. We label the 

quality of a single-track in terms of three quantitative metrics, namely the mean and standard 

deviation of its width (across its length), and its percent continuity (measure lack of discontinuity). 

 Experimental Setup and In-process Sensing 

We use an open architecture LPBF system for this study, shown in Figure 2, and described in 

numerous previously published works [18, 33-39]. The laser source is an Ytterbium fiber 

continuous wave (CW) laser with single-mode propagation, 1070 nm wavelength, 20 µs rise time, 
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and spot size adjusted to 206 μm (1/𝑒2 width). We perform in-situ monitoring of single-track 

quality via two sensors in the laser path (co-axial), namely a high-speed video camera and a 

pyrometer.  

The high-speed video camera (10-bit Mikroton EOsens MC1362) acquires optical images of 

the meltpool at a rate of 1000 frames per second (1 kHz) to capture the fast-changing shape and 

intensity of the meltpool. Appropriate calibration of the camera ensured that there were no 

saturated meltpool images in the data set. A 60 W, continuous wave, 808 nm diode laser 

illuminates the high-speed video camera.  

The camera saves 256 × 256 pixels2 video frames with 14 μm/pixel resolution. Additionally, 

due to the varying laser velocity settings and constant single-track length of 5 mm, the number 

images acquired for a single-track varies from 12 to 50 images, e.g. videos collected at the fastest 

laser velocity of 400 mm/s have 12 frames and the slowest laser velocity of 100 mm/s have 50 

frames.  

The infrared pyrometer operates at a wavelength range of 1600 to 1800 nm with a sampling 

rate of 100 kHz.  The pyrometer captures signatures of the energy that is radiated during single-

track deposition at the laser-material interaction zone (meltpool) in the form of a temporal trace. 

While the pyrometer is not calibrated to the meltpool emissivity (and hence not converted to a 

temperature scale), it does provide an independent pathway to monitor the energy density (EL) at 

the meltpool for fusion. This is important because while the laser power and laser velocity may 

remain constant, the energy density may change due to change in laser focus height of the LPBF 

system [40, 41]. 
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Figure 2: Schematic of the experimental setup with the two in-situ sensors used in this work:  

pyrometer and high-speed video camera.  

 Design of Experiments 

A carbon fiber brush spreads stainless steel 316L powder with particle size ranging from 15 

µm to 45 µm, forming a ~50 μm layer on a 180 mm stainless steel 316L build plate. The 

experimental schema entails a full-factor design of experiments of 11 laser power (P, [W]) and 11 

laser velocity (V, [mm·s-1]) settings [18]. Table 1 reports the 121 distinct (P, V) combinations of 

laser power ranging 50 to 375 W in increments of 32.5 W and laser velocity ranging from 100 to 

400 mm/s in increments of 30 mm·s-1, along with the number of replicates. The numbers inside 

Table 1 are the number of single tracks produced under each combination of P and V.  

We chose these two laser parameters because when taken together they result in a linear 

energy density applied to melt powder material, EL = P·V-1
 [J·mm-1]. The energy density values 
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studied in this work range from EL = 0.25 to 3.75 J·mm-1. While previous works have studied the 

effect of process parameters on single tracks, the studies were conducted over a narrower 

parameter range followed by qualitative observations [42, 43]. 

Table 1: Number of single tracks deposited at each of the 121 laser power and laser velocity 

combinations, summing to a total of 1009 single tracks. 

 Laser Power P [W] 

L
as

er
 V

el
o
ci

ty
 V

 [
m

m
·s

-1
] 

 50 82.5 115 147.5 180 212.5 245 277.5 310 342.5 375 

100 10 7 8 7 9 9 7 10 7 6 10 

130 10 10 9 10 7 9 9 7 8 7 9 

160 8 5 7 8 9 8 9 8 8 9 10 

190 9 7 9 8 7 8 8 10 8 8 10 

220 6 8 7 8 10 8 10 8 10 8 10 

250 10 9 6 9 7 9 7 10 9 7 9 

280 9 8 9 8 10 9 8 6 8 8 7 

310 8 7 9 8 8 9 8 8 8 7 7 

340 9 9 7 7 9 9 10 9 10 9 8 

370 8 8 8 8 8 9 8 6 8 8 10 

400 9 8 10 8 6 8 9 10 9 10 9 

In commercial LPBF systems, the laser velocity can often exceed 1000 mm·s-1 . Although, the 

open architecture system used in this work can sustain such large laser velocity ranges, we have 

restricted the maximum laser velocity to 400 mm·s-1 due to the following two reasons.  

First, apart from the power and velocity of the laser, its spot size also effects the input energy 

density. The spot size of the laser used in a commercial system is typically in the range of 50 μm 

to 100 μm. The spot size of the laser used in this work is much larger at 206 μm. Due to the bigger 

spot size, the laser energy is spread over a larger area, therefore, using higher laser velocity values 

would reduce the input energy density in our system.  Furthermore, our offline studies with the 

open architecture system informs us that setting the laser velocity beyond the selected range would 

lead to highly discontinuous single tracks because of the extremely low energy density. 
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Second, there are sensing-related constraints under high laser velocity conditions. The number 

of images acquired by the high-speed video camera is inversely proportional to the laser velocity. 

For example, at 1000 frames per second (1 kHz frame rate) of the high-speed video camera used 

in this work, twelve meltpool images are acquired for the single tracks deposited at 400 mm·s-1. 

Hence, the high-speed video camera would be able to acquire two to three meltpool images at the 

most when single tracks are deposited at 1000 mm·s-1 leading to severe data deficiency.  

 Extracting Quality Metrics from Height Maps  

Following the deposition of single tracks, they were scanned with Keyence VR3000 non-

contact optical profilometer to characterize their morphology. This rapid measurement produces a 

height map with a resolution of 29.5 μm per pixel (in the X-Y plane) that we analyze to extract the 

following quality metrics: the mean of the width of the single-track (𝜇𝑤), the standard deviation 

of the width of the single-track over its length (𝜎𝑤), and  percent continuity (κ)  that ranges from 

100% for fully continuous single tracks to 0% for unformed single tracks. Thus, the combination 

of the foregoing three metrics derived from the height map images encompass important quality-

related aspects of the single tracks. Our aim is to predict the foregoing three single track quality 

metrics as a function of process signatures derived from in-situ sensor data.  

We acknowledge that including other materials characterization-related metrics, such as 

inclusion population, compositional variation, grain size, texture, precipitation and dislocation 

density will provide a fundamental insight into the microstructural evolution of single tracks [42, 

43]. This insight is indeed critical for understanding the causal thermal  and fluid-flow phenomena 

that govern part quality in LPBF [1]. The work is focused on using in-process sensor data to detect 

flaw formation related to the macro-scale consolidation characteristics of the single-track in terms 
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of its geometric integrity, such as track width and continuity.  In the same vein, we recognize other 

rigorous destructive and non-destructive measurement techniques, such as X-ray computed 

tomography, offer subsurface insights into LPBF process quality [44-46]. 

 
Figure 3: Representative height maps of single tracks deposited at different printing conditions. 

(a) Single-track deposited at P= 342.5 W and V= 130 mm/s shows the indices (𝐹𝑖 and 𝐿𝑖) used to 

extract single-track quality features, such as mean and standard deviation of the width (b) Single-

track deposited at P= 115 W and V= 370 mm/s highlights the length of discontinuity in the single-

track (blue dotted line). Color bar depicts the height of single tracks from the powder bed. 

Figure 3 demonstrates our approach to obtain the pixel-level quality metrics of single tracks 

from the height map image. Figure 3 (a) shows how we obtain pixel-level widths by computing 

the difference in the index values of the first and last non-zero pixels: 𝐹𝑖 and 𝐿𝑖, respectively at 

height map coordinate i. We then convert the pixel-level width to micrometers from the 29.5 

µm/pixel height map resolution using Eqn. (1) 

 𝛼𝑤
𝑖 = (𝐿𝑖 − 𝐹𝑖) × 29.5 μm (1) 

where, 𝑖 ranges from 1 to 𝑁, with 𝑁 as the number (𝐹𝑖, 𝐿𝑖) pairs along each single-track. During 

this pixel-level evaluation, we exclude any potential height map artifacts (shown in Figure 3 (a)) 

from our measurements. From the set of 𝛼𝑤
𝑖  corresponding to each single-track, we compute the 

mean track width 
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𝜇𝑤 =  
1

𝑁
∑ 𝛼𝑤

𝑖

𝑁

𝑖=1

 

(2) 

and standard deviation 

𝜎𝑤 =  √
∑ (𝛼𝑤

𝑖 − 𝜇𝑤)2𝑁
𝑖=1

𝑁
 

(3) 

Percent continuity is computed via, 

 
κ =  

𝑁 − count(𝛼𝑤
𝑖 = 0)

𝑁
 

(4) 

where count(𝛼𝑤
𝑖 = 0) is the number of pixels (zero and non-zero) belonging to all discontinuities, 

as depicted by the blue dotted-line in Figure 3 (b).  

We clarify that a discontinuity in this context is intended to convey separation of a single-

track into discrete droplets, which results from a phenomenon called balling or droplet formation 

[1]. The single-track fails to fuse due to excessive laser velocity in relation to the laser power 

(explained in depth in Sec. 3.1). The severity of the discontinuity is captured in Eqn. (4), which 

quantifies the extent of continuity of a single-track. A value of κ = 100% means that there are no 

discontinuities in the single tracks, and κ → 0% for highly discontinuous single tracks; κ =  0% 

would imply a complete absence of a single track (no single-track is printed). In Sec. 3.1 we link 

the variation in these quality metrics to four distinctive processing regimes of the LPBF process.  

 Extracting Features from Sensor Data  

We leverage readily interpretable statistics-based features from pyrometer and high-speed 

video camera data of the meltpool as opposed to more complex signal processing techniques.  An 

intuitive and simple feature set facilitates the ease of monitoring the meltpool dynamics with 

varying process parameters. This in turn promotes a deeper understanding of the complex process 
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physics involved in LPBF AM. Consequently, this feature set helps integrate knowledge of the 

process physics into our machine learning-based model, consistent with the scientific machine 

learning paradigm.  

We acknowledge that complex signal processing techniques, such as wavelet-based signal 

decomposition and deep learning convolutional neural networks, are capable of extracting 

multifaceted process dynamics that are not readily apparent to the human intuition [47, 48]. In this 

work, we endeavor to integrate the pattern recognition and correlation ability of machine learning 

while retaining interpretability of the underlying physical phenomena through accessible input 

feature sets.  

2.4.1 Pyrometry signatures 

The pyrometer measures meltpool radiance that is proportional to the temperature. 

Accordingly, we posit that the temporal characteristics of the pyrometer signature offers an indirect 

measurement of the energy expended for melting the single-track. Taking this a step further, the 

pyrometer signature can be used to characterize the meltpool into different processing regimes. 

Using the 1D time series pyrometer signal for each single-track, we derive process signatures from 

the moments of its probability distribution, i.e. mean (𝜇𝑝), standard deviation (𝜎𝑝), skewness (𝜇3,𝑝) 

and kurtosis (𝜇4,𝑝).  We note that no a priori probability distribution has been assumed nor has 

any distribution been fitted to the data; we directly extract the statistical descriptors of the empirical 

sensor data. In our results (Sec. 3.2), we evaluate the change in statistical features of the pyrometer 

readings with respect to the four process LPBF regimes identified, viz. balling, lack-of-fusion, 

conduction, keyholing.  
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2.4.2 High-speed video signatures 

We hypothesize that the meltpool area and intensity correlate with the width of the single-

track since these relate to the temperature of the meltpool and ultimately the processing regime. 

Similarly, the shape of the meltpool is linked to stability. This is supported by experiments and 

simulations that show that the length-to-width ratio of the meltpool is indicative of meltpool 

instability  [49-51]. Typically, when the length of the meltpool is exceedingly large, it tends to 

segregate into discrete droplets – a phenomenon characterized by the balling regime. Hence, 

variation in the shape of the meltpool is intuitively correlated with the consistency of the single-

track edge which is given by the standard deviation of single-track width (𝜎𝑤)   [38, 52-54] .   

Using the high-speed video of the meltpool, we extract the meltpool area (𝐴𝑖), meltpool 

intensity (𝐼𝑖), and circularity (shape) of the meltpool as a function of the mean (𝜇𝑐
𝑖 ) and standard 

deviation (𝜎𝑐
𝑖) of its diameter. However, as discussed through a representative example in 

Appendix B, we first eliminate spatter and other artifacts surrounding the meltpool in the high-

speed video camera frames. Subsequently, we implement k-means image segmentation followed 

by adaptive thresholding-based binarization and edge detection for demarcating the meltpool from 

the background. These steps were implemented by executing scripts available in the image 

processing libraries in MATLAB 2019a.  

After performing these steps, we extract the four aforementioned features exclusively from 

the meltpool, as shown in Figure 4. From every frame j, we determine the meltpool area 

 𝐴𝑖 =  𝜋  𝐿𝑚𝑎𝑗𝑜𝑟
𝑗

𝐿𝑚𝑖𝑛𝑜𝑟
𝑗

 (5) 
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from an elliptical fit (using MATLAB 2019a) to the meltpool circumference with adjustable 

parameters for the major (𝐿𝑚𝑎𝑗𝑜𝑟
𝑗

) and minor axes (𝐿𝑚𝑖𝑛𝑜𝑟
𝑗

) as shown in Figure 4 (a).  The fitting 

parameters are adjusted once and remain fixed throughout the analysis process. Moreover, since 

the analysis is done for a single track of fused material, the laser direction does not change, and 

therefore the orientation of the meltpool does not vary (i.e., fitting parameters are not influenced 

by the position of the laser).     

 
Figure 4: Co-axial high-speed video camera frames captured while depositing a single-track (P= 

245 W, V= 100 mm/s). (a) We fit an ellipse using adjustable parameters for the major and minor 

axis, respectively. (b) We use the set of center-to-edge distance (dy) to define the circularity of a 

meltpool.  

Figure 4 (b) demonstrates the manner in which we use the center point of the fitted ellipse to 

determine the meltpool circularity. We compute the Euclidean distance between the center of the 

meltpool, 𝑑𝑦, for the total number of pixels that comprise the meltpool’s edge, 𝑁𝑒.  For each high-

speed video frame j, we use the set of 𝑑𝑦 to calculate the mean (𝜇𝑐
𝑗
) and standard deviation (𝜎𝑐

𝑗
) 

values  that account for the size and shape of the meltpool, respectively (Eqn. (6)). Smaller 𝜎𝑐
𝑖  

correspond to meltpool shapes that are more circular. 
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𝜇𝑐
𝑗

=  
1

𝑁𝑒
∑ 𝑑𝑦

𝑁𝑒

𝑦=1

 

𝜎𝑐
𝑗

=  √
∑ (𝑑𝑦 − 𝜇𝑐

𝑖 )
2𝑁𝑒

𝑦=1

𝑁𝑒
 

(6) 

Meltpool intensity is calculated by summing the non-zero-pixel values belonging to the meltpool 

as shown in Eqn. (7).  

 𝐼𝑗 =  ∑ 𝐼𝑥
𝑀
𝑥=1 , (7) 

where, 𝐼𝑥 is the intensity of a pixel in the meltpool and 𝑀 is the number of pixels in the meltpool.  

We use these sensor data features along with the single-track quality metrics (Sec. 0) as labels 

to evaluate the performance of various machine learning models (Sec. 3.3). The single tracks are 

split in the 80/20 manner, i.e. 80% of the single tracks are used for training a given machine 

learning model and 20% of the single tracks are used to test it. We discuss the architectural details 

of some of the models in Appendix A. The next section talks about development of the proposed 

SeDANN machine learning model. 

 Sequential Decision Analysis Neural Network (SeDANN) 

2.5.1 Model architecture 

The machine learning model that is hallmark of this work is our sequential decision analysis 

neural network (SeDANN), which is motivated by the idea of scientific machine learning and grey-

box modeling, wherein we incorporate the knowledge of the complex process physics in a machine 

learning framework. Here we leverage the versatility and adaptability of shallow artificial neural 

networks (ANNs) and arrange their inputs/outputs in a sequential manner as depicted in Figure 5. 
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SeDANN is comprised of three echelons in which each echelon predicts a certain process regime 

or quality metric and passes it to subsequent echelons to boost their predictive accuracy.  

This model architecture of the SeDANN  relies on a statistical factor analysis (see Sec. 3.1 for 

detailed ANOVA table), which shows that single-track width is predicted with a higher degree of 

accuracy as a function of only the process parameters laser power and laser velocity, unlike percent 

continuity. The pyrometer is linked to the deposition energy EL, and therefore captures the process 

regime, thus is placed in the first echelon. The meltpool features encapsulate the shape and 

intensity of the meltpool, and hence are intuitively linked to the morphology of the single-track 

width. In essence, this statistically informed approach to machine learning model design ensures 

sensors are used efficiently for single-track quality classification, i.e. quality metric(s) are 

identified using the appropriate sensor(s). 

In Figure 5, the first echelon ANN in the SeDANN is trained to predict the deposition laser 

power and laser velocity of a single-track segment as a function of the first four statistical moments 

of the pyrometer signal, i.e. mean (𝜇𝑝), standard deviation (𝜎𝑝), skewness (𝜇3,𝑝) and kurtosis (𝜇4,𝑝) 

of the pyrometer signature. In the second echelon, the P and V values for a single-track segment 

which were predicted from the first echelon are used alongside meltpool image features extracted 

from the high-speed video camera images as inputs to a shallow ANN trained to predict the width 

of the single-track segment (𝜇𝑤). Additionally, in the second echelon, the standard deviation of 

the single-track width (𝜎𝑤) is derived by estimating the mean width over three segments of the 

single-track. The third echelon is dedicated for prediction of percentage continuity (κ), as a 

function of meltpool features, and mean and standard deviation of single-track width predicted in 

the second echelon.  
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Figure 5: A schematic of the sequential decision analysis neural network (SeDANN). The sensor 

data and height map shown above belong to a single-track deposited at linear energy density (EL) 

of 0.33, i.e. balling regime. The statistical probability distribution features extracted from the 

pyrometer are used in the first echelon artificial neural network (ANN) to predict the laser process 

parameters (P and V) followed by meltpool features derived from the high-speed video camera to 

predict the mean width and standard deviation and single-track continuity at higher echelon.  
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2.5.2 Training and testing  

We train and test the SeDANN (and other machine learning models) using 914 single tracks 

out of the total 1009 single tracks; sensor data from 95 single tracks were omitted due to 

inconsistencies in data acquisition. All the machine learning models studied in this work were 

implemented using scripts from the MATLAB 2019a machine learning library. The models were 

executed on a desktop computer with 16 GB RAM and threaded through a single core processor 

(Intel Core i7-7700HQ CPU @2.80 GHz). The training and validation dataset comprised of 657 

and 73 tracks, respectively for a total of 730 single tracks (~80% of the entire dataset).  

The remaining 184 single tracks (20%) are reserved for testing after the model is developed 

and validated; in other words, none of the machine learning approaches tested in this work have 

seen the testing data until after they are trained and validated. The training data does not change 

and remains static for the entire study, and network performance results are reported on this 

separate testing data. The testing data set and input features is therefore uniform and identical for 

all models bar the convolutional neural network tested in this work. 

The training processes proceeds as follows. Each 5 mm track is divided into three segments 

of the length of ≈ 1.7 mm. To ensure synchronization, the sensor data is also divided into three 

segments to correspond to the three sections. The division of every single-track into three segments 

results in a total of 2190 segmented single tracks for training. Ten-fold cross-validation was 

performed for training the shallow ANNs, i.e. the data was randomly divided into 10 equal parts, 

out of which 1/10th of it was used for validation and the rest for training. This strategy of 

randomized training-and-validation is repeated 10 times to obtain an unbiased estimate of the 

network efficiency over the entire dataset. The evaluation of SeDANN along with other machine 
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learning algorithms is given in Sec. 3.3. The advantage of the sequential process monitoring 

approach embodied by the SeDANN are three-fold:   

1. Encapsulates the physical insight from the process to make predictions. Compared to deep 

learning techniques which use multi-resolution filters at the expense of interpretability, the 

SeDANN approach uses rudimentary statistical features derived based on the physical 

reasoning of the process regimes, which in turn facilitates interpretability.  

2. Can accommodate heterogenous data sources, such as 1D time series from a pyrometer, and 

2D streaming images from the high-speed video camera in a physically intuitive manner taking 

advantage of the capabilities of each type of sensor. 

3.  Chaining shallow ANNs to make sequential decisions with a sparse set of features in each 

input layer is more computationally efficient and resistant to overfitting than using one large 

network with several features in the input layer.  

3 Results and Discussions 

This section establishes the vital link between process parameters, in-situ sensor signatures 

and build quality. In Sec. 3.1, we quantify the variation in single tracks quality metrics (mean and 

standard deviation of single-track widths, and percent continuity) as a function of the four EL 

regimes commonly used to characterize LPBF, viz. balling, lack-of-fusion, conduction, and 

keyholing. In Sec. 3.2, we demonstrate the transitional behavior of the high-speed video camera 

data and pyrometer signals with respect to these EL regimes. We evaluate the SeDANN and 

compare it against several other machine learning models for accuracy and computational 

efficiency in Sec 3.3.   
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 Effect of Process Parameters on Single-track Quality 

3.1.1 Destructive characterization  

In this section we show that the range of energy density values, EL = 0.25 to 3.75 J·mm-1, 

encompassed by our dataset spans four key regimes for single-track formation: balling, lack-of-

fusion, conduction, and keyholing. We cross-sectioned and conducted an offline metallographic 

analysis of a few single tracks created in each EL regime. Figure 6 is adapted from previous work 

and shows the cross-sectioned single tracks produced at a decreased beam width of 100 μm [5].  

The cross-sectioning and metallographic analysis has three critical functions:  

(1) The cross-sectional images provide deeper understanding and physical rationale for 

demarcating the four proposed energy density regimes, viz. keyhole, conduction, lack-of-

fusion, and balling. In the absence of the cross-sectional data, these process regime 

demarcations would lack a clear physical justification. 

(2) The cross-sectional images show that single tracks deposited under the four energy density 

regimes have distinctive weld bead characteristics which is indicative of their morphological 

quality.  

(3) Cross-sectional images corroborate the veracity of the optical height map-derived energy 

density regimes. In other words, the cross-sectional images provide valuable cross-validation 

of the optical height map measurements used in this work. 

Figure 6 (a) shows the cross-section of a single-track deposited in the keyholing regime under 

the following conditions: (P, V) = (375 W , V = 130 m m·s-1) with EL = 2.88 J·mm-1. The cross-

section shows high depth of penetration (reinforcement depth) and height above the substrate 

(reinforcement height) relative to the width, which is attributable to the high EL.  The single-track 

has pores trapped deep inside the cavity made by the meltpool characteristic of keyhole formation. 
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King et al. have observed similar nature of the single-track cross-section when deposited under 

the keyholing regime of process parameters [49].  

 
Figure 6: Micrographs of cross-sectioned single tracks reveals subsurface information useful for 

demarcating the process regime. This data is adapted from the following reference [5]. 

Figure 6 (c), (d), and (g) shows the cross-section of single tracks that exhibit the lack-of-fusion 

phenomenon. Compared to Figure 6(a), these single tracks are characterized by lower depth of 

penetration relative to their width, smaller reinforcement height, and have insufficiently fused 

material.  Single tracks in Figure 6 (e), (h), (i) and (j) depict the balling effect due to low laser 

power relative its velocity, i.e., low energy density (EL < 0.5 J·mm-1). The balling effect observed 

in these single tracks results in high reinforcement height of the single-track relative to its depth 

of penetration and width. Indeed, in Figure 6 (h) the single-track depicts negligible penetration 

into the substrate, symptomatic of discontinuity.  

Lastly, Figure 6(b) and (f) show the cross-section of a single-track deposited in the conduction 

regime deposited in the conduction zone, i.e. 1 < E𝐿 < 2. It is observed that the reinforcement 

height and depth of penetration are almost equal in these weld beads, and the bead width is 
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approximately equal to the laser beam width.  These cross-sectional micrographs of single tracks 

help to categorize them according to the four process parameter regimes. They inform of the 

presence of keyhole porosity and the degree to which a single-track is fused to the preceding layer 

(substrate in this case).  

We exclusively use the height map data, as detailed in the next section, as it provides us with 

information regarding the overall thickness of a single-track and its edge uniformity.  Furthermore, 

the height maps tell us about the presence of discontinuities in a single-track. These vital 

morphological traits of a single-track are not conveyed by the cross-sectional micrographs. 

Additionally, the cross-sectional evaluation of numerous single tracks is expensive, laborious, and 

time-consuming. This makes it far more difficult to amass large labeled datasets required for 

machine learning when compared to surface-based height maps. Nevertheless, we can employ the 

physical insights gained from these detailed measurements (prior published work [5]) for 

analyzing sensing data and designing suitable machine learning architectures. 

3.1.2 Demarcation of process regimes from height maps 

Figure 7 shows top view examples of single-track height maps arranged according to laser 

power (P) and laser velocity (V) set points and grouped by the linear energy density (EL) regimes. 

The single-track morphology varies distinctly with EL. Single tracks in the balling (metal droplet 

formation) regime have low widths and variable continuity. Under the low P, high V (EL < 0.5 

J·mm-1) these single tracks exhibit prominent discontinuities because the meltpool segregates into 

separate droplets, prohibiting long segments of continuous single tracks. We measure typical 

values for the percent continuity to range from ~ 8 % to ~ 100%.  These observations are consistent 

with other works that characterize the consistency of single-tracks at low energy densities with 

experiments [34] [50] and simulation [55] [54].  
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A second LPBF phenomena termed lack-of-fusion falls within 0.5 < EL < 1 J·mm-1. Although 

these single tracks appear to be continuous, their edges are not uniform, i.e. the standard deviation 

of the width is high (measured typically in the range of 20 µm – 40 µm). The single tracks poorly 

fuse to the substrate (or prior layers in multilayer fabrication) because the energy supplied by the 

laser is insufficient leading to formation of lack-of-fusion porosity [56, 57].  Single tracks 

deposited at the upper threshold of this regime (EL → 1 J/mm at the magenta-green boundary in 

Figure 7) exhibit high single-track continuity and low standard deviation of width, as opposed to 

those deposited at lower EL.  

Conduction mode of single tracks is observed in a third regime ranging from 1 to 2 J.mm-1. In 

the conduction regime, continuous single tracks fully fuse to the substrate and exhibit single-track 

mean width ranging from 160 µm to 240 µm. Figure 7 shows that single tracks in the conduction 

regime are characterized by high percent continuity and low standard deviation of width (or high 

edge uniformity). Given these single-track quality attributes, this operating regime produces fewer 

defects in overall part build quality. However, the quality of single tracks may decline at higher 

energy densities (EL → 2 J·mm-1 at green-red boundary in Figure 7). 

The keyholing regime characterizes single tracks formed at the highest energy of the regimes, 

i.e. EL > 2 J·mm-1. In the keyholing regime, the combination of high laser power and the low laser 

velocity results in large energy deposition. This high energy density causes the laser to penetrate 

deeper into the layers (substrate in the case of a single track), hence, the depth of the meltpool is 

substantially longer compared to its width [58]. The collapse of the material in the deep cavity 

made by the laser, followed by rapid solidification of the meltpool often leaves behind  pores, 

which is called keyhole porosity [54] [49]. These pores are detrimental to the mechanical 

properties of finished  LPBF AM parts as they are initiation sites for crack formation [59]. 
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Figure 7: Examples of height maps for single tracks deposited at various laser power and laser velocity settings colored-coded according 

to four distinct processing linear energy density (EL) regimes: Balling, Lack-of-Fusion, Conduction, and Keyholing.  

Single tracks formed in the balling regime (blue) are highly discontinuous and relatively thinner. Single tracks within the lack-of-fusion 

regime (pink) exhibit uneven (high standard deviation) widths with a low mean width and few discontinuities. The ideal conduction 

regime (green) produces uniform single tracks with mean width within ± 20% of the laser spot size and no discernable discontinuity. In 

the keyholing regime (red), single tracks exhibit continuous widths that are over 20% larger than the laser spot size and relatively high 

standard deviation and may also contain porosity that cannot be verified with surface measurements alone. The color bar shown 

represents the height of single tracks from the powder bed.  
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3.1.3 Statistical analysis quantifying effect of process parameters  

We analyze the height maps of single tracks at every (P, V) combination to measure three 

quality metrics of the single-track, namely, mean (𝜇𝑤, [μm]), standard deviation (𝜎𝑤, [μm]) of 

single-track width and percent continuity (κ) (representative values provided in Appendix C). We 

perform statistical analysis (ANOVA) to relate P and V to these quality metrics as reported in 

Table 2.  

A key result is that P and V and their interaction term P·V have a statistically significant 

influence (p-value < 1%) on the three single-track quality metrics. This is an intuitive result that 

we expect for LPBF. In Table 2, the R2 value – which typically ranges from 0 to 1 – represents the 

prediction fidelity for each of the output variables as a function of P and V, and their interaction P 

× V.  The percentage contribution of P and V is estimated as a ratio of the sum of squares of the 

factor (signal) to the total sum of squares (noise). The R2 is akin to the signal-to-noise ratio and 

represents the uncertainty in explaining the behavior of given single-track quality metric using the 

two process parameters and their interaction. A relatively low R2 signifies inability of the process 

parameters and their interaction to explain the variation in the given quality metric.   

Although the process parameters P and V are statistically significant determinants of the 

single-track quality, the low R2  (< 65%) for the standard deviation and percent continuity reinforce 

that process parameters are not sufficient to monitor single-track quality.  

Table 2: Results of analysis of variance (ANOVA) performed on the mean of single-track width, 

the standard deviation of single-track width, and the percent continuity of 914 single tracks. 

Highlighted values depict the most significant variables (p-value < 10%). 
Percentage of the total 

sum of squares 

variation 

Mean of single-

track width (𝝁𝒘) 

Standard deviation of 

single-track width (𝝈𝒘) 

Percent continuity of 

single-track (𝛋) 

Laser power (P) 59.86% 19.97% 61.62% 

Laser velocity (V) 26.01% 22.34% 2.77% 

Interaction (P × V) 3.01% 9.05% 4.05% 

Regression 𝑅2  0.8853 0.5420 0.6444 
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Figure 8  maps these quality metrics using complementary plots in (P, V) contours (column 

1) and along linear energy density (EL) (column 2). All plots highlight each of the four regimes 

with regions and markers, per the legends. Figure 8 reiterates  the ANOVA analysis in Table 2 in 

that considering only the process parameters (P, V) will yield insufficient predictions of the single-

track quality metrics 𝜇𝑤, 𝜎𝑤, and  κ. Thus, this motivates the need to derive process signatures 

from in-situ sensors to understand and encapsulate the complex process phenomena in LPBF AM 

(Sec. 3.2). 

Consistent with our analysis so far, we group our findings according to the four LPBF regimes 

to highlight the dependency of the single-track quality metrices on EL.  The contour plots map each 

quality metric onto the (P, V) plane with regimes denoted by shaded regions. The corresponding 

scatter plots show these single-track quality metrics as a function of EL. Collectively, these plots 

map out the relationship between the process parameters and build quality in LPBF AM. We 

discuss the pairs of plots in each row in to give a quantitative overview of each metric within our 

labeled dataset. 

The mean width of the single tracks is most significantly influenced by the laser power with 

approximately 60% of the variation in the mean of single-track width attributable to a change in 

laser power. This result is consistent with the work by Yadroistev et al., wherein the authors study 

the effect of various process parameters on geometric characteristics of SS 904L single tracks [60]. 

The R2 value indicates that ~88% of the variation in mean of single-track width is explained 

by the process parameters alone. Conversely, ANOVA suggests that only ~54% of the variation 

observed in the standard deviation of single-track width is explained by the process parameters 

and their interaction. In other words, merely the process parameters are insufficient to predict the 

standard deviation of the single tracks. In case of the percent continuity of single tracks, the 
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ANOVA analysis indicates that laser power has a high influence on variability. Furthermore, the 

relatively low R2 value suggests that process parameters and their interaction do not wholly explain 

the variability in percent continuity of single tracks.  

 
Figure 8: Contour (left) and scatter (right) plots of the effect of laser parameters on single-track 

width (a), standard deviation of width (b), and percent continuity (c) with demarcated boundaries 

of the four LPBF regimes.  

Figure 8 (a1) and (a2) show the measured thickness using (P, V) contours and scatter plots, 

respectively. Single tracks characterized by the balling regime fall within ~42 to 119 µm, with an 

average value of 75 µm. The widths of these single tracks are ~40% of the nominal laser spot size 

of 206 µm. The significant deviation from the nominal beam diameter results in the balling 
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phenomena which may lead to poor mechanical properties of the overall part. The mean width of 

single tracks in the lack-of-fusion regime is 138 µm and all data falls within 93 – 181 µm. By 

contrast, single tracks in the conduction regime have an average mean width of 188 µm and overall 

range of 130 – 255 µm that lies within ±30% of the nominal laser spot size. Since the width and 

nominal beam diameter are comparable in the conduction regime, this set of conduction process 

parameters (P, V) in Fig. 9(a1) produce desirable single tracks.  

In the keyholing regime, the mean width of single tracks is 210 µm with bounds of 130 – 323 

µm. Here, the single-track widths are 20 – 50% larger than the nominal beam diameter. 

Laohapropanon et al. have observed similar over melting of single-tracks made using stainless 

steel 316L when deposited at similar conditions [61]. The increase in width is attributable to the 

higher energy density, which can also cause keyhole collapse porosity. As with pores resulting 

from lack-of-fusion, pores from keyhole-melting are detrimental to the functional quality of LPBF 

parts. The (P, V) process mapping in Figure 8 (a1) reveals the ideal process parameter range. 

Figure 8 (a2) confirms the mean of single-track width increases linearly with the EL with a clear 

distinction is observed between the four regimes. 

Figure 8 (b1 and b2) represent the effect of laser parameters on the standard deviation (𝜎𝑤) of 

the single-track width. Unlike with the mean, the standard deviation of single-track width does not 

exhibit a clear trend across the process parameters. This is shown in the Figure 8 (b1) where non-

uniform trends in data produce contours with data clusters and also non-distinct boundaries that 

poorly map onto the four regimes. Similarly, a prominent trend in the standard deviation of single-

track width as a function of EL is not perceivable in the scatter plot in Figure 8 (b2). Hence, to 

accurately predict the standard deviation in width of a single-track, the process parameters must 
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be supplemented with signatures derived from the in-process sensor data. For example, the high-

speed video camera captures the variation in the meltpool shape and spatter which are indicative 

of the process stability. Also, the meltpool shape captured by the high-speed video camera can be 

intuitively related to the single tracks’ morphological characteristics. Further, the pyrometer helps 

capture the energy density distribution over the entire length of the single-track, which is valuable 

in determining the process regime under which a single-track was deposited. 

The contour plot of percent continuity shown in Figure 8 (c1) suggest that laser power has a 

substantial effect on the percent continuity of single tracks. Thus, for any given laser velocity 

setting, the entire range of κ is similar across all power settings. Most of the single tracks deposited 

in this work are observed to be continuous, apart from the portion of discontinuous single tracks 

deposited at low laser power and high laser velocity in the balling regime. As such, Figure 8 (c2) 

shows that the range of κ is widest in balling regime, with most of the data exhibiting low percent 

continuity. We observed that about 59% of the single tracks in this regime had percent continuity 

less than 80%. Hence, we can conclude that the presence of discontinuities decreases with the 

increasing energy density.  

This inference is reflected in the work done by Childs et al. on continuity of single tracks built 

under varying laser power and laser velocity [62]. They conclude that single tracks made of 

materials with narrow melting temperature range (e.g. SS 314S and 316L) display high continuity 

when built at relatively low laser velocity and high laser power.  This statistical analysis motivates 

our use of sensor-derived signatures to better represent the intricacies of the process physics and 

consequently facilitate the estimation of hard-to-predict single-track qualities like standard 
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deviation of width and percent continuity. Additionally, ANOVA results play a vital role in the 

design of the proposed SeDANN architecture. 

 Correlation of Single-Track Quality, Process Regimes, and Sensor Signatures 

Having presented the single-track quality metrics measured via height maps, we now discuss 

sensor data, e.g. high-speed video camera and pyrometer readings, collected during fabrication. 

We systematically register the sensor data to these quality metrics, again using the same four 

processing regimes of LPBF to guide the discussion. This approach reveals the underlying physics 

and the efficacy of various process signatures to relate to 𝜇𝑤, 𝜎𝑤, and 𝜅. In this way, we incorporate 

these physical insights while constructing the SeDANN architecture that we compare against other 

purely data-driven black box machine learning methods.   

3.2.1 Correlating single-track quality with sensor data 

Figure 9 shows spatiotemporal high-speed video camera frames and spatial pyrometer 

readings for a characteristic single-track from each of the four regimes. It is observed that the mean 

amplitude of the pyrometer signal and meltpool size (extracted from high-speed video camera 

frames) are directly proportional to the linear energy density (EL).  

We subdivide the single-track height map images and corresponding heterogenous sensor data 

into three segments of equal length that indicate the start, middle, and end of melting. Since single-

track are 5 mm long, each segment length is ~1.7 mm. For each segment, the first, second and last 

high-speed video camera frame is shown. This is done to maintain consistency in the number of 

high-speed video camera frames shown per height map image, since the number of video frames 

vary according to the laser velocity the single-track setting. 
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Figure 9: Sensor data for single tracks representing the four regimes (all single-tracks deposited 

at V= 130 mm/s: (a) Keyholing:  P = 375 W; (b) Conduction: P = 180 W;   (c) Lack-of-fusion:  P 

= 115 W; (d)  Balling: P = 50 W. The scanning direction is left to right in the plane of the page. 

Refer to Figure 7 for color bar of single-track height maps. 
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We start by comparing single tracks in two regimes: keyholing  (EL = 2.8 J·mm-1) and 

conduction  (EL = 1.3 J·mm-1) in Figure 9 (a) and (b), respectively.  The conduction single-track 

has a smaller meltpool for every high-speed video camera frame, and correspondingly less 

prominent width along the entire single-track. Also, the amplitude of the pyrometer signals is 

generally higher at the higher energy density setting, which is confirmed in a subsequent histogram 

analysis of these pyrometer readings. Further, high-speed video camera frames in Figure 9 (a) 

display trailing intensity, i.e. behind the meltpool, in the keyholing regime that is consequent of 

high P, low V, and thus high EL at which the single-track is deposited. This phenomenon is less 

prominent in high-speed video camera frames for the other regimes.  

Comparing single tracks deposited in the lack-of-fusion (Figure 9 (c), EL = 0.88 J/mm) against 

the conduction regime reveals that there is a slight decrease in the meltpool size as shown in the 

high-speed camera video frames and amplitude of the pyrometer reading. High-speed video 

camera frames in the lack-of-fusion regime show more spatter formation that the conduction 

region. These differences in the sensor data are evident in the morphology of the two single tracks, 

i.e. the single-track deposited at lower lack-of-fusion EL is thinner that in the conduction regime, 

which is consistent with Fig. 9(a2).  

The trends in the pyrometer signal and illuminated meltpool in the high-speed camera 

continue in the balling (Figure 9 (d), EL = 0.38) regime. The lowest EL that corresponds to the 

balling single-track that produced the smallest meltpool size and correspondingly the lowest 

pyrometer signal amplitude. The high-speed video camera frames of the single-track deposited 

under the balling regime display a drastic increase in the spatter formation, thus highlighting the 

instability of the LPBF process under those process parameters. Further, it is evident that the 
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pyrometer signal drops to nearly zero amplitude at the locations where discontinuities appear in 

the height map.  The low amplitude, and absence of a signal corresponding to discontinuities in 

the single-track skews the probability distribution of the pyrometer data to the right.  

The meltpool in the high-speed video camera frames in has an irregular shape, which is 

indicative of Plateau-Rayleigh instability and manifests substantial spatter compared to the rest of 

the regimes. Spatter formation and smaller meltpool size in the high-speed video camera data are 

also more noticeable with the largest number of discontinuities that appear in the balling regime. 

The contrast in meltpool characteristics, i.e. shape, size, intensity, is most apparent when 

comparing EL from the keyholing through balling regimes. Also, the pyrometer signals for the 

range of single-track morphologies suggests the variable thermal distribution expected for the EL 

regimes.  

These observations justify the utility in estimating the meltpool circularity (shape), area (size) 

and intensity features from the high-speed camera frames and that they should serve as meaningful 

indicators of single-track quality. Similarly, we hypothesize shape parameters of the pyrometer 

signal distribution are representative of the single-track’s thermal distribution, and thus also should 

yield enhanced predictions of the single-track quality. We use these observations to develop the 

architecture of SeDANN, i.e. the input and output for each artificial neural network in the echelons 

leverages these insights from the sensor signatures, e.g. predicting (P, V) settings from pyrometer 

signals, under different process parameter regimes. For these reasons, we explore these process 

signatures in greater detail in Figure 10 and Figure 11. 

 



34 

 

3.2.2 Correlation of process regime with pyrometer data 

Figure 10 show histograms of pyrometer (frequency versus intensity) readings for 

representative single tracks from each of the four processing regimes. The pyrometer readings 

along the x-axis indicate the radiance of the meltpool. It is evident that the distribution of the 

pyrometer signatures become increasingly positively (right) skewed and taller with decreasing 

energy density. In other words, the number of readings with low amplitude increase as EL 

decreases, highlighting the first four moments of the pyrometer signature can indicate the process 

regime. The amplitude decreases from the highest values in keyholing to the lowest values in the 

balling regime. These observations are in close agreement with recently published results in Ref 

[5].   

 
Figure 10: Histogram of pyrometer readings of single tracks deposited under the four process 

parameter regimes using the same example tracks as in Figure 9: all deposited at V= 130 mm/s 

with (a) Keyholing at P = 375 W; (b) Conduction at P = 180 W; (c) Lack-of-fusion at P = 115 W; 

(d) Balling at P = 50 W.  
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3.2.3 Correlation of process regime with high-speed video camera data. 

Figure 11 displays a single representative high-speed video camera frame for each set of laser 

conditions (P, V) and indicates the EL regime. For demonstration purposes, we center-cropped and 

foreground enhanced each frame. In the lowest energy balling regime, the spatter surrounding the 

meltpool is pronounced, and the meltpool shape is irregular and smaller than regimes with EL > 

0.5 J·mm-1. These high-speed camera frames are most noticeable at the lowest laser power setting 

(P = 50 W), irrespective of the laser velocity.  

At higher P, the meltpool shape irregularity decreases and size increases, but the spatter 

formation is always present. In the lack-of -fusion regime (0.5 ≤ EL < 1 J·mm-1), the meltpool shape 

becomes more regular, meltpool size increases, and the spatter formation reduces relative to frames 

collected in the balling regime. As the laser velocity increases in this regime, the meltpool develops 

a tail of trailing intensity. The undesirable meltpool characteristics observed in these regimes 

translates to insufficient fusion of single tracks that instigates the formation of irregular-shaped 

lack-of-fusion pores that are detrimental to the overall part quality.  

At the two higher EL regimes, the meltpool is highly circular and there is minimal-to-no spatter 

as opposed to frames collected under EL < 1 J·mm-1. The meltpools exhibit tails of trailing 

intensity, but they are not as pronounced as in the case of lack-of-fusion regime. Looking across 

the top row (lowest V, increasing P), these trends hold as EL increases. In the keyholing regime, 

the intensity of the trailing tail and overall size of the meltpool increases. Overly large meltpools 

under these conditions produce thick single-tracks and uneven edges and underlying keyhole 

collapse-related pores that cannot be observed with this sensing modality. 
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The conclusions we draw from Figure 8 – Figure 11 are consistent in that the that the 

observable behavior of the meltpool changes with varying process parameters (P, V; and EL) as 

the sensor signatures change correspondingly. Therefore, it is crucial to extract information in the 

form of features from the sensor signatures to completely understand and capture the process 

physics.  

 
Figure 11: Effect of processing parameters on the meltpool. In the balling region, meltpool shape 

is highly variable and the amount of spatter increases with the laser velocity. The radius of the 

meltpool is approximately 113.63 µm. Similar behavior arises in the lack-of-fusion regime, but the 

meltpool size is larger than in balling, i.e. average meltpool radius is 127.25 µm. At EL > 1 J/mm, 
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in the conduction zone the meltpool characteristics are less variable and exhibit minimal spatter. 

The radius of the meltpool in this regime is approximately 148.57 µm. In keyholing EL>2 J/mm, 

the meltpool is largest with the average radius being approximately 173.63 µm. 

3.2.4 Correlation between sensor signatures and process regimes 

Figure 12 depicts the correlations between the different features extracted from sensors and 

their capacity to differentiate between the four process regimes. Figure 12 (a1) shows a prominent 

correlation between the intensity (I) and area (A) of the meltpool. Moreover, the data segregates 

into four clusters per the processing regimes. The area and intensity of the meltpool are the highest 

in the keyhole regime, albeit overlapping with the conduction region. The overlap is highest in the 

balling and lack-of-fusion regime. The correlation between the two feature representing the 

meltpool circularity (𝜇𝑐, 𝜎𝑐) is shown in Figure 12 (a2); whilst less prominent than the correlation 

between intensity and area of the meltpool, it shows pronounced clustering concerning the four 

process regimes.  

In contrast to the meltpool signatures, the relationships between the pyrometer signal features 

in Figure 12 (b1) and (b2) a complex trend, and a considerable overlap is evident between the four 

process regimes. Figure 12 (b1) portrays the relationship between mean (𝜇𝑝) and standard 

deviation (𝜎𝑝) of pyrometer readings of single tracks deposited under various process parameter 

regimes. The curve flattens in the conduction and keyholing regimes. Figure 12 (b2) describes the 

correlation between the skewness (𝜇3,𝑝) and kurtosis (𝜇4,𝑝) of pyrometer readings belonging to 

single tracks deposited at varying process parameters.  

The pyrometer readings of single tracks deposited under the balling regime are positively 

skewed and leptokurtic. In the conduction regime, the pyrometer readings have a skewness of 

about zero and kurtosis approximately around 3 which points towards normal distribution of the 
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pyrometer readings. Lastly, the pyrometer readings in the keyholing regime and partly the 

conduction regime are negatively skewed and platykurtic. The overlap between clusters and 

complex interaction between features induces the need for machine learning algorithms that 

capture the nonlinear relationship between the features to predict the single-track quality. These 

observations from Figure 12 thus demonstrates the efficacy of the meltpool shape features and 

statistical moments of the meltpool and pyrometer sensor, respectively in capturing the change in 

the quality of the single tracks under varying process regimes. 

 
Figure 12: Correlations between features extracted from high-speed video camera frames and the 

pyrometer signals denoted by parameter regimes (legend). The four regimes can be demarcated 

based on these features, but some overlap and nonlinearity are evident necessitating the use of 

machine learning models. 
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It is evident that the process parameter EL regime, as determined by (P, V), dictate the single-

track morphology via to 𝜇𝑤, 𝜎𝑤, and 𝜅. Secondly, an ANOVA (Table 2) study of process 

parameters alone is insufficient to understand the change in single-track morphology. As a 

supplement, we propose the use of sensor signatures to understand and encapsulate the process 

intricacies inherent to LPBF AM. We establish that machine learning models are essential to 

coalesce the process parameters and sensor derived features to predict single-track morphology 

with good statistical fidelity. For this purpose, we propose the SeDANN machine learning model 

(Sec. 2.5) to predict hitherto discussed single-track morphological characteristics.  

 Evaluation of Machine Learning Algorithms 

Here we implement and evaluate a variety of data-driven modeling approaches in terms of 

performance accuracy – quantified in terms of regression R2 and F1-score metrics, and 

computation time (seconds) [22, 31, 32]. We compare the prediction fidelity of the SeDANN with 

six approaches, namely, Convolutional Neural Network (CNN), Recurrent Neural Network 

(RNN), Support Vector Machine (SVM), K-nearest Neighbor (KNN), Regression Trees (CART), 

and General Linear Model (GLM).   

The results, reported Table 3, are based on the 20% of the testing data consisting of 184 single 

tracks. We evaluate in terms of the R2 for each of the three single-track quality-related metrics: 

mean (μw) and standard deviation (σw) of single-track width and the percent continuity of the single-

track (κ). Additionally, we performed binary classification on single-track continuity, i.e. perfectly 

continuous κ = 100% versus discontinuous κ < 100%, where discontinuous single tracks represent 

defective quality. Since most single tracks are discontinuous in our imbalanced dataset, we 

compare binary classification via the F1-score (or harmonic mean of precision and recall). Also 
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reported are the standard deviation of the prediction R2 (𝜎𝑅2) and F1-score (𝜎𝐹1) over 10 

replications of the training and testing process. 

Table 3: Performance matrix of the various machine learning approaches used in this work. The 

performance metric provided in each column header with error computed from the standard 

deviation of repeating the training and testing procedure 10 times (n =10). Best performing 

approach is shown in bold. Except for SeDANN, the other approaches do not use the physical 

knowledge of the process regimes.  

 

Machine learning 

approach 

Energy 

density  

[𝑹𝟐 ± 𝝈𝑹𝟐] 

Mean of 

single-

track 

width 

[𝑹𝟐 ± 𝝈𝑹𝟐] 

Standard 

deviation of 

single-track 

width 

[𝑹𝟐 ± 𝝈𝑹𝟐] 

Percentage 

Continuity 

[𝑹𝟐 ± 𝝈𝑹𝟐] 

Binary 

Continuity 

Classification 

(Continuous vs 

Discontinuous) 

[𝑭𝟏 ± 𝝈𝑭𝟏] 

SeDANN 0.95±0.0006 0.87±0.023 0.81±0.016 0.73±0.110 0.82±0.026 

Convolutional 

Neural Network 

(CNN)  

0.90±0.021 0.82±0.033 0.33±0.023 0.4688±0.090 0.71±0.103 

Long short-term 

memory (LSTM) 

Recurrent neural 

network (RNN)  

0.96±0.022 0.86±0.017 0.74±0.083 0.4048±0.035 0.56 ±0.028 

Support Vector 

Machine (SVM) 
0.94±0.009 0.81±0.018 0.48±0.081 0.4652±0.050 0.83±0.029 

K-nearest Neighbor 

(KNN) 
0.93±0.013 0.75±0.041 0.16± 0.360 0.5406±0.208 0.77±0.048 

Ensemble of 

regression trees 

(CART) 

0.91±0.029 0.77±0.009 0.37±0.142 0.66 ±0.088 0.89±0.034 

General Linear 

Model (GLM) 
0.9349 0.8242 0.3844 0.4967 N/A 

 

The CNN and long short-term memory (LSTM) RNN represent backpropagation based neural 

network machine learning approaches. Unlike the CNN and LSTM methods, SVM and KNN are 

not backpropagation-based and use hand-crafted features that use supervised and unsupervised 

learning, respectively. The general linear model (GLM) and ensemble of regression trees (CART) 

models represent white-box linear models with no active learning component, and operate with 
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and without hierarchical prediction, respectively. Due to its simplicity, we take GLM as the 

baseline model. In Table 3, Apart from the CNN, the input feature vectors for all the machine 

learning algorithms are identical. In other words, we use the same features extracted from both the 

high-speed video camera and the pyrometer raw sensor data as input vectors for the SeDANN, as 

well as all machine learning models (except the CNN). The CNN deployed in this work uses the 

raw meltpool images directly, without resorting to any feature extraction steps to leverage the 

abilities of deep learning to its fullest.  

In the context of the CNN, as correctly pointed out by one of the anonymous the reviewers, 

certain embodiments of the CNN, such as ResNet [63], VGGNet [64] and AlexNet [65], are 

relatively complex. We acknowledge that an optimized CNN model that leverages the 

computational efficacy of a graphical processing unit (GPU) is likely to substantially outperform 

the modeling approaches tested in this work. Testing our data with the vast variety of existing 

CNN models would be out of the scope this work.  

Accordingly, we used only one type of CNN architecture, that was employed in our prior work 

in the context of process monitoring in LPBF [27]. We proceeded to optimize the hyperparameters 

of this CNN network through extensive offline studies using a manual grid search method. We 

present the optimized hyperparameters achieved from the manual grid search method in Appendix 

A. Our intent was to show that the SeDANN approach compared well with such a general CNN 

model used in our prior work in LPBF. Additionally, the CNN model tested in this work was 

compiled in MATLAB 2019a, and does not leverage GPU processing to maintain equitable 

comparison with all ML approaches. 
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While the CNN uses multi-resolution filters to process the input data, the SeDANN has a 

rudimentary ANN architecture with only one hidden layer and uses features derived based on the 

physical reasoning of the process regimes. The simple architecture and tractable features used by 

the SeDANN preserves physical interpretability – a key rationale for the scientific machine 

learning aspect of this work. While a CNN or RNN can be coupled with a sequential decision-

making schema of the SeDANN, the essential novelty of the work is a sequential decision-making 

approach to scientific machine learning in the context of LPBF additive manufacturing process.   

Also, the SeDANN approach can accommodate heterogeneous data sources, such as 1D time 

series from a pyrometer, and 2D streaming images from the high-speed video camera in a 

physically intuitive manner taking advantage of the capabilities of each type of sensor. Lastly, 

chaining shallow ANNs to make sequential decisions with a sparse set of features in a shallow 

neural network is computationally more efficient in comparison to using dense input data arrayed 

in multiple layers, such as image-based deep neural networks. 

The network architectures for SeDANN, CNN, and LSTM are described in Appendix A. In 

Table 3, nearly all these approaches perform well for prediction of the mean of single-width, i.e. 

R2 > 0.75. The prediction fidelity of machine learning improves for continuity (classification and 

prediction) and standard deviation of single-track width in comparison to the linear regression 

analysis. Particularly, for prediction of standard deviation, majority of the machine learning 

approaches (other than KNN) significantly outperform linear statistical analysis, with the 

SeDANN having the highest R2.  

At the behest of an anonymous reviewer, we further used machine learning models for 

prediction of the energy density values (EL = P·V-1
 [J·mm-1]). The rationale is to compare and 
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verify the efficacy of the SeDANN with other machine learning approaches in the context of the 

energy density. As shown in Table 3, all the approaches tested in this work have similar prediction 

fidelity (R2) in the context of the energy density. However, the performance of machine learning 

models, except the SeDANN, deteriorate when predicting the single-track quality metrics. This 

result has an important implication – being able to predict the energy density, i.e., process regime 

alone is not a robust indicator of predictive performance of a machine learning model.  

The conventional machine learning approaches represented by SVM, KNN, ensemble of 

regression trees, have R2 less than 50% in predicting the standard deviation of the single-track 

width. Models that use the backpropagation learning techniques with derived process signatures, 

viz. SeDANN and RNN perform significantly better in capturing the standard deviation of single-

track width with R2 approaching 60% and higher. However, of all algorithms tested, the SeDANN 

has prediction accuracy exceeding 80% for all the quality metrics tested.  

Further, the prediction time for the various approaches is given in Table 4. Not only does the 

SeDANN outperform the CNN and LSTM models in predicting the single-track quality metrics, 

once trained, the prediction time is also a fraction of both the time taken by trained CNN and 

LSTM models. We reiterate that none of these data-driven models used GPU computing, and all, 

except the CNN, use identical input features. The relatively high prediction time observed in CNN 

and LSTM is undesirable as high latency in the in-situ monitoring of single tracks will cause a 

cascading delay for actuating a corrective control action within the right time frame.   

In Figure 13, we compare top three performing models (SeDANN, CNN, LSTM) graphically 

via predicted versus measured plots of  𝜇𝑤, 𝜎𝑤, and 𝜅. In these plots, the distribution of datapoints 

for a given model indicates strength of correlation between predicted and measured values. Thus, 
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a high performing model, i.e. R2 → 1, yields distribution of datapoints that cluster along the 

equality line (along the diagonal). Thus, as indicated quantitatively in Table 3, width predictions 

for all three models are similarly impressive in Figure 13 (a).  

Table 4: Time taken to predict/classify each quality metric of a single-track in milliseconds. 

Standard deviation of single-track width is omitted for all algorithms (except CNN) as it derived 

from the mean width of segments of a single-track. 

Machine learning approach 

Energy 

density 

of single-

track 

[ms] 

Mean of 

single-

track 

width 

[ms] 

Standard 

deviation 

of single-

track 

width 

[ms] 

Binary 

Continuity 

Classification 

[ms] 

Percentage 

Continuity 

[ms] 

SeDANN 0.02 0.04 0.12 0.06 

Convolutional Neural 

Network (CNN)  
12.2 186 8.4 7.8 6.2 

Long short-term memory 

(LSTM) Recurrent neural 

network (RNN)  

5.5 9.8 7.9 6.0 

Support vector machine 

(SVM) 
0.05 0.08 0.038 0.012 

K-nearest neighbor (KNN) 0.01 0.41 0.021 0.019 

Ensemble of regression trees 

(CART) 
0.12 0.03 0.11 0.18 

The distribution of 𝜎𝑤 predictions in Figure 13 (b) shows SeDANN (R2 ~ 0.81) outperforms 

the other two deep learning techniques. The CNN which does not use the signatures selected 

through rigorous correlation of sensor data and single-track quality, but directly uses the meltpool 

features has poor prediction ability, approaching R2 ~ 0.35. Furthermore, Figure 13 (c) 

demonstrates the superior performance of SeDANN (R2 ~ 0.73) in comparison to CNN and LSTM 

while predicting percent continuity of single tracks. Although the percent continuity predictions 

made by SeDANN do not have high accuracy, they have a good distribution around the regression 

line. On the contrary, both CNN and LSTM incorrectly predict high percent continuity for majority 

of single tracks. 
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A purely data-driven black-box approach, such as CNN despite its ability to accommodate 

complex nonlinear patterns, does not outperform rudimentary linear modeling approaches (GLM) 

that use features chosen based on understanding of the process physics. SeDANN combines the 

efficiency of these process physics-based features and shallow ANNs to invoke a grey-box model 

that outperforms white and black-box models. The simplicity, flexibility, and intuitiveness of the 

SeDANN can prove to be useful in expanding the current in-situ monitoring system by 

incorporating data from more sensors to predict more LPBF AM process characteristics. 

 
Figure 13: Predicted values of single-track quality using fifty randomly selected data points from 

different machine learning techniques.  
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(a) All machine learning techniques perform well while predicting the mean of single-track width 

which is depicted by the close of fit of predicted values to the straight line. (b) The statistical 

fidelity of predicting standard deviation of single-track width is low in comparison to the mean for 

all techniques as seen in Table 3. SeDANN has a better performance as well as limited bias in 

comparison to the other two deep learning techniques. Similarly, (c) SeDANN shows better percent 

continuity prediction fidelity in comparison to the other techniques. 

4 Conclusion and Future Work  

This work investigates the causal relationship encompassing process parameters, in-process 

sensor signatures, and part quality in laser powder bed fusion (LPBF). The key finding of this work 

is that in-process quality assurance improves significantly when machine learning models 

incorporate process signatures that are based on fundamental knowledge of the process regime, as 

opposed to purely data-driven machine learning algorithms, such as deep learning convolutional 

neural networks.  

We study the effect of varying common LPBF process parameters, i.e. laser power (P) and 

laser velocity (V), on the quality of single tracks while collecting pyrometer and high-speed video 

data during fabrication. We generate quality labels of single-track morphology efficiently via 

analysis of height map measurements that extract the mean and standard deviation of their width 

and percent continuity. We then characterize these morphology labels in the four process 

parameter regimes based on linear energy density (EL = P·V-1): keyholing, conduction, lack-of-

fusion, and balling.  

Furthermore, we identify how process signatures from our sensing modalities map onto the 

four EL regimes. Collectively, these insights motivate the design of our scientific machine learning 

model that predicts single-track quality by fusing sensing modalities in a physically intuitive way. 

Our Sequential Decision Analysis Neural Network (SeDANN) model thus utilizes specific sensor 

data-derived feature sets in a physically intuitive and effective manner, leveraging sequences of 
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shallow and computationally tractable neural networks to correlate process signature(s) with 

quality metric(s).  

We evaluate and compare the performance of SeDANN against several well-established 

machine learning approaches, such as convolutional neural network (CNN), long short-term 

memory (LSTM), recurrent neural network (RNN), among others. We find SeDANN outperforms 

purely data-driven (black-box) models. The SeDANN approach thus facilitates the inclusion of the 

knowledge of the process physics into machine learning, in keeping with the scientific machine 

learning paradigm. This makes the SeDANN highly interpretable, intuitive, computationally 

tractable, and less prone to overfitting compared to conventional black-box machine learning 

models.  

For instance, compared to the CNN tested in this work, for predicting the standard deviation 

of the single track the incorporation of the physical knowledge of the process regimes improves 

the prediction fidelity (R2) by as much as 40% within 1/10th of the computation time. However, 

the SeDANN approach remains to be extended for multi-layer builds, complex geometries, and 

additional functional quality metric than reported here. The extension of the SeDANN to multi-

layer builds would necessitate synchronization of spatiotemporal information, such as the laser 

position with the sensor data.  

The current work can be taken forward by the AM community in numerous directions. To 

have a concise and effectual process parameter space, we focused our attention solely to the effect 

of variations in laser power and laser velocity (in terms of EL) on the LPBF process. This can be 

expanded by adding more process parameters, such as hatch spacing, laser spot size etc., and 

studying variations in resulting quantities like volumetric energy density and enthalpy. Next, given 
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the flexible nature of SeDANN, different types of sensor data over multiple layers can be readily 

added to the model to improve the prediction fidelity. For example, an acoustic emission sensor 

can be employed to detect process deviations that may affect the single-track quality [47].  

Further, the SeDANN can be modified to incorporate multiple sensors, monitor multiple 

process phenomenon, thereby creating an integrated in-situ monitoring system for LPBF and other 

AM processes, e.g. electron beam powder bed fusion, in a way that accommodates the evolving 

sensing capabilities and quality specifications common to AM.  

In a similar vein, addition of dimensionless quantities, such as bead statistics as a percentage 

of laser spot size will enable the transferability of the SeDANN model to other AM systems and 

sensing modalities. Furthermore, the current single-track characterization done by height map 

analysis, can be strengthened by performing additional diagnostics, such as X-ray computed 

tomography, to incorporate surface and sub-surface information of the single tracks which may 

prove beneficial in improving process monitoring capabilities. Lastly, the height maps of single 

tracks can be used to perform bead height analysis along with single-track width and continuity. 
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Appendices 

Appendix A: Neural Network Architecture and Optimization 

Sequential Decision Analysis Neural Network (SeDANN) 

SeDANN leverages the knowledge of the process physics crucial to the single-track quality 

prediction. Three independent shallow artificial neural networks (ANN) are trained and tested for 

the SeDANN, per Figure 5 in the main text. The ANN in the first echelon predicts the process 

parameter regime of single-track segment using 1D signals of a pyrometer. These process 

parameter predictions are used for subsequent prediction of the width and percent continuity of 

single tracks.  The second echelon’s ANN predicts the segment width and is translated to mean 

and standard deviation of width of the entire single-track via echelon 1’s predictions and meltpool 

characteristics extracted from the high-speed video camera frames. Lastly, in echelon 3, an ANN 

predicts the percent continuity, i.e. lack of discontinuity, via previously predicted parameters 

(echelon 1), meltpool characteristics, mean and standard deviation of single-track width (echelon 

2). 

The three shallow ANNs have a similar architecture. Each ANN has three layers, viz. input, output, 

and hidden layer. As the input feature space has a low dimensionality with respect to the sample 

size, the hidden layer has 12 neurons to ensure computational efficiency and mitigate overfitting. 
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Instead of the commonly used logistic function, a hyperbolic tangent activation function is used 

for these neurons since its gradient facilitates in faster approach towards global minima of the error 

function. Regularization is used while training the ANNs to avoid overfitting of the approximated 

function to the training data. Regularization is performed by adding a penalty to the error function 

when the weights are too high. This penalty of high weights ensures the slopes of the ANN’s 

approximated function are not too high and thus yields a good fit with the underlying function of 

the training data. Bayesian analysis is used to estimate the two regularization parameters that are 

applied to the error function and the weights of the neural network, as detailed elsewhere [66, 67]. 

Additionally, the number of effective parameters, i.e. weights and biases that influence the function 

approximation, is calculated and the non-essential parameters are neglected. This reduces the 

model complexity, computational cost, and likelihood of overfitting. 

 The hyperparameters of the ANNs were optimized to reduce the error function, viz. mean squared 

error. The sparse nature of the ANN architecture, and correspondingly low computation time, 

motivated a naïve grid search approach for hyperparameter space optimization. It was observed 

that the ANN predictive capability was hampered when the complexity of the architecture was 

increased, i.e. the number of hidden layers and number neurons were increased. Therefore, abiding 

to the Occam’s razor problem-solving principle, a modest neural network architecture was 

adopted.  

Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) was used to predict the quality metrics of the entire single-

track with the help of high-speed video camera frames (while excluding pyrometer data). Figure 

A1 shows how high-speed video camera frames of single tracks were concatenated. Single tracks 

that were deposited at high laser velocity have a smaller number of high-speed video camera 

frames (Figure A1 (b)) in comparison to single tracks deposited at low laser velocity (Figure A1 

(a)). Thus, to maintain uniformity in the data (concatenated frames) size, the standard practice of 

zero padding was implemented (Figure A1 (b)). 
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Figure A1: Representative high-speed video camera frames of two single tracks (frame number is 

shown in the upper left corner of each image). Concatenated high-speed video camera frames of 

a single-track deposited at laser power=115 W, (a) laser velocity=100 mm/s and (b) laser 

velocity=400 mm/s. Concatenated high-speed video camera frames of single tracks deposited at 

high velocity are padded with zeros to maintain a uniform image size. 

A schematic representation of the CNN architecture is shown in Figure A2. As seen in the figure, 

first layer is the input layer which takes the concatenated image of the high-speed video camera 

frames. The concatenated images were scaled down to 70% of their original size (105 × 6600 

pixels) to reduce the input data density. Consequently, the overall time required for hyperparameter 

optimization was significantly decreased.  

 

Figure A2: Schematic of the CNN architecture.  

Apart from the input and output layers, the CNN architecture has four blocks as shown in Figure 

A2. Each block has a convolutional layer with a 3×3 kernel size and varying number of feature 

maps (channels), viz. 8, 16, and 32. After each convolution layer, batch normalization was 

performed followed by introduction of non-linearity to the neural network with the rectified linear 

unit (ReLU) activation function. Subsequently, in Block 1 and Block 2, a 2×2 mean-pooling layer 

is used to reduce the dimensionality of the output obtained from the activation function. In the last 

block, a dropout layer with a rate of 0.4 was used. The dropout layer randomly ignores a fraction 

of the nodes in the network to avoid overfitting of the model (CNN) to the training data. This is 
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followed by a dense layer with 10 hidden units. The output layer is made up of single unit which 

uses the cross-entropy cost function for classification and the mean-squared error cost function for 

prediction. 

An adaptive learning optimization technique was applied during training with the help of the Adam 

solver [68]. This yielded better classification/prediction results on the test data set in comparison 

to the widely used stochastic gradient descent training method. A naïve grid search method was 

used for hyperparameter optimization. Table A1 shows the optimum hyperparameter values for 

this CNN architecture. 
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Table A1: Optimum hyperparameter values of the CNN obtained from naïve grid search 

optimization. 

Batch-size Initial learning rate Input size Dropout rate Hidden units in dense layer 

6 0.0001 [78, 4804] 0.4 10 

 

Long short-term memory recurrent neural network (LSTM-RNN) 

A long short-term memory (LSTM) neural network is a type of recurrent neural network (RNN), 

which was used to predict the quality metrics of single tracks. The mean and standard deviation of 

single-track width was derived from the widths of the three segments of the single tracks. In other 

words, width of each segment of a single-track was predicted, and the mean and standard deviation 

of these segment widths was calculated from the aggregate. A similar strategy was followed to 

predict the percent continuity of the single-tracks and to perform binary classification on single-

track continuity. Features extracted from the pyrometer and high-speed video camera of single-

track segments were concatenated and used in the LSTM-RNN for single-track quality metric 

prediction.  

The first layer of the LSTM-RNN is the sequence input layer that can take n elements in a 

sequence. For this work, n=3 which is the feature set (pyrometer and high-speed video camera) of 

three segments of a single-track. This is followed by a unidirectional LSTM layer with 300 hidden 

units which outputs a sequence. The output of the LSTM layer is fed into a dense layer with 100 

hidden units. A dropout layer performs the dropout operation at a rate of 0.4 on the output of the 

dense layer. Next, a dense layer with 3 hidden units (corresponding to the number of segments) 

was used followed by a regression or classification layer which depended on the single-track 

quality metric being predicted. 
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Figure A14: Schematic of the LSTM-RNN architecture. 

As with the SeDANN and CNN, a naïve grid search technique was used for hyperparameter 

optimization. Table A2 shows the hyperparameter values that yielded the best regression and 

classification results. 

Table A2: Optimum hyperparameter values of the LSTM-RNN obtained from naïve grid search 

optimization. 

Batch-

size 

Initial 

learning rate 

Number 

of LSTM 

layers 

Dropout rate Hidden units in 

first dense layer 

Maximum 

number of 

training epochs 

7 0.0001 1 0.4 100 30 
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Appendix B: Meltpool Extraction from High-Speed Video Camera Frames 

In Figure B1 we show the methodology adopted to extract meltpool from high-speed video camera 

frames (henceforth called images). Figure B1 (a) shows a representative high-speed video camera 

images of a single-track deposited at laser power (P) = 115 W and laser velocity (V) = 100 mm/s. 

Given the noisy nature of the high-speed video camera frames, the conventional thresholding 

technique to segment images prove ineffective. Therefore, we implemented the unsupervised 

learning-based k-means technique to segment the high-speed video camera images.  To account 

for the meltpool, spatter, and illuminated background, we segment the image into 4 clusters as 

shown in Figure B1 (b). An extensive visual analysis of the k-means segmented images reveal that 

the said technique performs quite well in the segmentation task. 

 

Figure B1: A representative example of meltpool extraction from high-speed video camera frames. 

The above shown high-speed video camera frames belongs to a single-track deposited at 115 W 

laser power and 100 mm/s laser velocity. The image size before and after segmentation is 256 

pixels × 256 pixels.  

Next, a binary mask of the meltpool is created as shown in Figure B1 (c). This mask is used to extract 

the meltpool intensity (I) values from the original high-speed video camera image (Figure B1 

(a)) and to determine the meltpool area (A). Subsequently, the binarized meltpool image is used 

to determine the meltpool edge with the help of the Canny edge detector as shown in Figure B1 

(d) [69]. The distance from center of the meltpool to the edge pixels (𝑑𝑦), as shown in Figure B 

(d), is used to compute the meltpool circularity (𝜇𝑐, 𝜎𝑐). 
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Appendix C: Single-track Quality Metrics Under Varying Process Parameters 

Table C1: Representative values of mean width (μw  [μm]), standard deviation of the width (σw  

[μm] and) and percentage continuity (κ) of single tracks, appear in the top, middle, and bottom 

positions, respectively, in each cell that indicate the laser power and velocity settings. The values 

have been color-coded according to the four process parameter regimes introduced in Section 1. 

Laser power (W) 

 50 82.5 115 147.5 180 212.5 245 277.5 310 342.5 375 

 μw = 87.58  158.01 150.51 152.85 176.78 190.63 253.03 257.05 289.39 320.39 323.51 

100 σw =34.18 50.45 30.62 42.04 38.62 50.27 62.44 53.54 63.25 49.59 56.11 

 κ = 62.07 96.55 97.13 95.4 95.98 86.78 94.83 88.51 98.85 93.68 87.36 

 60.46 101.39 125.94 153.77 195.17 194.13 231.26 255.79 265.19 248.37 267.63 

130 24.18 22.58 28.24 31.54 38.92 29.15 51.03 53.24 39.99 51.99 80.82 

 36.21 94.83 95.4 94.83 94.83 89.66 91.38 90.8 88.51 89.66 89.66 

 79.97 104.69 93.33 134.96 159.61 205.97 202.26 226.32 249.37 241.41 262.09 

160 34.66 27.45 25.13 24.96 30.09 80.42 41.47 44.9 45.5 51.97 36.77 

 61.49 93.1 93.1 93.1 94.83 95.4 91.38 96.55 93.1 93.68 86.78 

 77.48 66.22 111.61 155.81 159.39 180.88 189.96 198.82 236.03 226.42 255.72 

190 45.17 23.21 26.9 35.05 34.8 24.15 30.75 29.65 55.93 38.26 50.98 

 45.98 63.22 94.25 93.68 93.68 93.68 87.36 91.95 90.23 87.36 88.51 

 55.26 119.45 128.63 135.54 126.04 157.36 171.94 181.18 195.84 212.98 240.54 

220 24.14 31.93 40.07 34.97 53.8 23.51 44.32 40.34 30.67 34.88 30.05 

 43.1 94.25 96.55 94.83 91.95 94.25 90.8 90.8 86.78 90.23 85.06 

 49.43 80.26 85.71 107.26 144.87 141.39 164.23 178.21 185.33 208.71 187.72 

250 21.32 18.06 27.24 24.84 36.77 31.35 26.69 34.81 33.75 34.5 53.82 

 30.46 87.93 85.63 91.95 93.1 89.66 88.51 92.53 91.95 90.23 78.74 

 69.47 84.27 91.73 142.13 118.93 140.41 163.34 168.11 185.34 190.39 212.68 

280 23.36 25.13 20.67 48.2 29.17 29.62 35.1 35.19 47.71 33.1 33.65 

 31.61 91.95 92.53 92.53 92.53 93.68 92.53 93.1 89.66 89.66 83.33 

 42.36 61.75 92.14 98.68 107.37 133.25 126.97 162.34 154.47 190.45 193.45 

310 16.79 21.27 30.71 23.19 27.18 25.51 36.45 27.41 39.04 28 30.63 

 16.09 75.86 91.38 93.68 91.38 90.23 87.93 91.95 87.36 87.93 91.38 

 42.8 62.17 89.01 88.65 119.48 135.06 129.75 155.73 171.35 158.32 173.74 

340 18.67 24.56 25.61 26.19 23.6 23.67 28.4 30.46 30.66 39.84 34.69 

 15.52 70.69 94.25 93.1 91.95 92.53 88.51 92.53 87.36 85.63 79.89 

 51.04 54.83 80.64 63.06 93.82 132.08 124.93 142.58 170.71 180.97 185.74 

370 22.67 20.09 23.41 27.2 25.57 28.49 29.81 27.04 25.17 30.19 36.27 

 11.49 50.57 87.93 71.84 90.8 94.25 89.66 90.8 89.08 86.78 83.33 

 57.87 57.54 87.73 84.64 112.18 117.13 115.19 130.09 137.46 139.11 166 

400 26.05 25.63 28.31 22.94 38.31 30.42 28.43 22.13 26.46 30.39 31.03 

 54.02 53.45 91.38 91.95 94.83 93.68 89.08 93.1 89.66 83.33 84.48 

 

L
a
se

r 
v
el

o
ci

ty
 


