
On One-way Functions and Kolmogorov Complexity

Yanyi Liu

Cornell University

yl2866@cornell.edu

Rafael Pass

Cornell Tech

rafael@cs.cornell.edu

Abstract—We prove that the equivalence of two funda-
mental problems in the theory of computing. For every
polynomial t(n) ≥ (1 + ε)n, ε > 0, the following are
equivalent:
• One-way functions exists (which in turn is equivalent

to the existence of secure private-key encryption
schemes, digital signatures, pseudorandom generators,
pseudorandom functions, commitment schemes, and
more);

• t-time bounded Kolmogorov Complexity, Kt, is mildly
hard-on-average (i.e., there exists a polynomial p(n) >
0 such that no PPT algorithm can compute Kt, for
more than a 1− 1

p(n)
fraction of n-bit strings).

In doing so, we present the first natural, and well-studied,
computational problem characterizing the feasibility of the
central private-key primitives and protocols in Cryptogra-
phy.

I. INTRODUCTION

We prove the equivalence of two fundamental prob-

lems in the theory of computing: (a) the existence of

one-way functions, and (b) mild average-case hardness

of the time-bounded Kolmogorov Complexity problem.

Existence of One-way Functions: A one-way function
[13] (OWF) is a function f that can be efficiently

computed (in polynomial time), yet no probabilistic

polynomial-time (PPT) algorithm can invert f with

inverse polynomial probability for infinitely many input

lengths n. Whether one-way functions exist is unequiv-

ocally the most important open problem in Cryptogra-

phy (and arguably the most importantly open problem

in the theory of computation, see e.g., [35]): OWFs

are both necessary [31] and sufficient for many of

the most central cryptographic primitives and protocols

(e.g., pseudorandom generators [8], [26], pseudorandom

functions [17], private-key encryption [20], digital sig-

natures [43], commitment schemes [39], identification

protocols [15], coin-flipping protocols [10], and more).

These primitives and protocols are often referred to as

private-key primitives, or “Minicrypt” primitives [29] as

they exclude the notable task of public-key encryption

[13], [42]. Additionally, as observed by Impagliazzo

[22], [29], the existence of a OWF is equivalent to the

existence of polynomial-time method for sampling hard

solved instances for an NP language (i.e., hard instances

together with their witnesses).

While many candidate constructions of OWFs are

known—most notably based on factoring [42], the dis-

crete logarithm problem [13], or the hardness of lattice

problems [1]—the question of whether there exists some

natural average-case hard problem that characterizes

the hardness of OWFs (and thus the feasibility of the

above central cryptographic primitives) has been a long-

standing open problem:1

Does there exists some natural average-case
hard computational problem (i.e., both the
computational problem and the distribution
over instances is “natural”), which character-
izes the existence of one-way functions?

This problem is particularly pressing given recent ad-

vances in quantum computing [7] and the fact that many

classic OWF candidates (e.g., based on factoring and

discrete log) can be broken by a quantum computer [45].

Average-case Hardness of Kpoly-Complexity: What

makes the string 12121212121212121 less random than

60484850668340357492? The notion of Kolmogorov
complexity (K-complexity), introduced by Solomonoff

[48], Kolmogorov [34] and Chaitin [12], provides an ele-

gant method for measuring the amount of “randomness”

in individual strings: The K-complexity of a string is

the length of the shortest program (to be run on some

fixed universal Turing machine U) that outputs the string

x. From a computational point of view, however, this

notion is unappealing as there is no efficiency require-

ment on the program. The notion of t(·)-time-bounded
Kolmogorov Complexity (Kt-complexity) overcomes this

issue: Kt(x) is defined as the length of the shortest

program that outputs the string x within time t(|x|). As

surveyed by Trakhtenbrot [49], the problem of efficiently

determining the Kt-complexity for t(n) = poly(n)
predates the theory of NP-completeness and was studied

in the Soviet Union since the 60s as a candidate for a

problem that requires “brute-force search” (see Task 5

on page 392 in [49]). The modern complexity-theoretic

1Note that Levin [36] presents an ingenious construction of a
universal one-way function—a function that is one-way if one-way
functions exists. But his construction (which relies on an enumeration
argument) is artificial. Levin [35] takes a step towards making it less
artificial by constructing a universal one-way function based on a new
specially-tailored Tiling Expansion problem.

1243

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/20/$31.00 ©2020 IEEE
DOI 10.1109/FOCS46700.2020.00118

20
20

 IE
EE

 6
1s

t A
nn

ua
l S

ym
po

siu
m

 o
n

Fo
un

da
tio

ns
 o

f C
om

pu
te

r S
ci

en
ce

 (F
O

CS
) |

 9
78

-1
-7

28
1-

96
21

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FO

CS
46

70
0.

20
20

.0
01

18

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

study of this problem goes back to Sipser [46], Ko [33]

and Hartmanis [25].

Intriguingly, Trakhtenbrot also notes that a “frequen-

tial” version of this problem was considered in the Soviet

Union in the 60s: the problem of finding an algorithm

that succeeds for a “high” fraction of strings x—in

more modern terms from the theory of average-case

complexity [37], whether Kt can be computed by a

heuristic algorithm with inverse polynomial error, over

random inputs x. We say that Kt is mildly hard-on-
average (mildly HoA) if there exists some polynomial

p(·) > 0 such that every PPT fails in computing Kt(·)
for at least a 1

p(·) fraction of n-bit strings x for all

sufficiently large n, and that Kpoly is mildly HoA if there

exists some polynomial t(n) > 0 such that Kt is mildly

HoA. Our main result shows that the existence of OWFs

is equivalent to mild average-case hardness of Kpoly.

In doing so, we resolve the above-mentionned open

problem, and present the first natural (and well-studied)

computational problem, characterizing the feasibility of

the central private-key primitives in Cryptography.

Theorem 1. The following are equivalent:
• One-way functions exist;
• Kpoly is mildly hard-on-average.

In other words,

Secure private-key encryption, digial digna-
tures, pseudorandom generators, pseudoran-
dom functions, commitment schemes, etc., are
possible iff Kpoly-complexity is mildly hard-on-
average.

In fact, our main theorem is stronger than stated: we

show that for every polynomial t(n) ≥ (1 + ε)n, where

ε > 0 is a constant, mild average-case hardness of Kt

is equivalent to the existence of one-way functions.

On the Hardness of Approximating Kpoly-complexity:
Our connection between OWFs and Kt-complexity has

direct implications to the theory of Kt-complexity.

Trakhtenbrot [49] also discusses average-case hardness

of the approximate Kt-complexity problem: the problem

of, given a random x, outputting an “approximation” y
that is β(|x|)-close to Kt(x) (i.e., |Kt(x)−y| ≤ β(|x|)).
He observes that there is a trivial heuristic approximation

algorithm that succeeds with probability approaching 1

(for large enough n): Given x, simply output |x|. In fact,

this trivial algorithm produces a (d log n)-approximation

with probability ≥ 1 − 1
nd over random n-bits strings.2

We note that our proof that OWFs imply mild average-

case hardness of Kpoly actually directly extends to show

that Kpoly is mildly-HoA also to (d log n)-approximate.

We thus directly get:

2At most 2n−d logn out of 2n strings have Kt-complexity that is
smaller than n− d logn.

Theorem 2. If Kpoly is mildly hard-on-average, then
for every constant d, Kpoly is mildly hard-on-average to
(d log n)-approximate.

In other words, any efficient algorithm that only

slightly beats the success probability of the “trivial”

approximation algorithm, can be used to break OWFs.

Existential v.s. Constructive Kt complexity: Trakht-

enbrot [49] considers also “constructive” variant of the

Kt-complexity problem, where the task of the solver is

to, not only determine the Kt-complexity of a string

x, but to also output a minimal-length program Π that

generates x. We remark that for our proof that mild

average-case hardness of Kpoly implies OWFs, it actually

suffices to assume mild average-case hardness of the

“constructive” Kpoly problem, and thus we obtain an

equivalence between the “existential” and “constructive”

versions of the problem in the average-case regime.

On Decisional Time-Bounded Kolmogorov Complex-
ity Problems: We finally note that our results also show

an equivalence between one-way functions and mild

average-case hardness of a decisional Kpoly problem:

Let MINKt[s] denote the set of strings x such that

Kt(|x|)(x) ≤ s(|x|). Our proof directly shows that there

exists some constant c such that for every constant ε > 0,

every t(n) ≥ (1 + ε)n, and letting s(n) = n − c log n,

mild average-case hardness of the language MINKt[s]
(with respect to the uniform distribution over instances)

is equivalent the existence of one-way functions.

A. Related Work

We refer the reader to Goldreich’s textbook [16] for

more context and applications of OWFs (and complexity-

based cryptography in general); we highly recommend

Barak’s survey on candidate constructions of one-way

functions [9]. We refer the reader to the textbook of Li

and Vitanyi [38] for more context and applications of

Kolmogorov complexity; we highly recommend Allen-

der’s surveys on the history, and recent applications, of

notions of time-bounded Kolmogorov complexity [2]–

[4].

On Connections between Kpoly-complexity and
OWFs: We note that some (partial) connections between

Kt-complexity and OWFs already existed in the litera-

ture:

• Results by Kabanets and Cai [32] and Allender et

al [5] show that the existence of OWFs implies that

Kpoly must be worst-case hard to compute; their

results will be the starting point for our result that

OWFs also imply average-case hardness of Kpoly.

• Allender and Das [6] show that every problem

in SZK (the class of promise problems hav-

ing statistical zero-knowledge proofs [21]) can be

solved in probabilistic polynomial-time using a

1244

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

Kpoly-complexity oracle. Furthermore, Ostrovsky

and Wigderson [40], [41] show that if SZK con-

tains a problem that is hard-on-average, then OWFs

exist. In contrast, we show the existence of OWFs

assuming only that Kpoly is hard-on-average.

• A very recent elegant work by Santhanam [44] is

also explicitly motivated by the above-mentionned

open problem, and presents an intruiging connection

between one-way functions and error-less average-

case hardness of the circuit minimization problem
(MCSP) [32]—i.e., the problem of, given a truth

table of a boolean function, determining the size

of the smallest circuit that computes the function;

the MCSP problem is closely related to the time-

bounded Kolmogorov complexity problem [5], [49].

Santhanam proves equivalence between OWFs and

errorless average-case hardness of MCSP under a

new (and somewhat complicated) conjecture that

he introduces. We emphasize that, in contrast, our

equivalence is unconditional.

On Worst-case to Average-case Reductions for Kpoly-
complexity: We highlight a very elegant recent result by

Hirahara [27] that presents a worst-case (approximation)

to average-case reduction for Kpoly-complexity. Unfor-

tunately, his result only gives average-case hardness

w.r.t. errorless heuristics—namely, heuristics that always

provide either the correct answer or output ⊥ (and

additionally only output ⊥ with small probability). For

our construction of a OWF, however, we require average-

case hardness of Kt also with respect to heuristics that

may err (with small probability). Santhanam [44], inde-

pendently, obtains a similar result for a related problem.
Hirahara notes that it is an open problem to obtain

a worst-case to average-case reduction for Kpoly w.r.t.

heuristics that may err. Let us emphasize that average-

case hardness w.r.t. errorless heuristics is a much weaker

property that just “plain” average-case hardness (with

respect to heuristics that may err): Consider a random

3SAT formula on n variables with 1000n clauses. It is

well-known that, with high probability, the formula is not

be satisfiable. Thus, there is a trivial heuristic algorithm

for solving 3SAT on such random instances by simply

outputting “No”. Yet, the question of whether there exists

an efficient errorless heuristic for this problem is still

open, and non-existence of such an algorithm is implied

by Feige’s Random 3SAT conjecture [14].

On Universal Extrapolation: Impagliazzo and

Levin [30] consider a problem of universal extrapolation:

Roughly speaking, extrapolation with respect to some

polynomial-time Turing machine M requires, given

some prefix string xpre, sampling a random continuation

xpost such that M (on input a random tape) generates

xpre||xpost. Universal extrapolation is said to be

possible if all polynomial-time Turing machines can be

extrapolated. Impagliazzo and Levin demonstrate the

equivalence of one-way functions and the infeasibility

of universal extrapolation.

As suggested by an anonymous FOCS reviewer, uni-

versal extrapolation seems related to time-bounded Kol-

mogorov complexity: Extrapolation with respect to a

universal Turing machine should, intuitively, be equiv-

alent to approximating Kpoly (for random string x) by

counting the number of possible continuations xpost to

a prefix xpre of x: Strings with small Kpoly-complexity

should have many possible continuation, while strings

with large Kpoly-complexity should have few.

While this method may perhaps be used to obtain an

alternative proof of one direction (existence of one-way

function from hardness of Kpoly) of our main theorem,

as far as we can tell, the actual proof is non-trivial and

would result in a significantly weaker conclusion than

what we obtain: It would only show that average-case

hardness of approximating Kpoly implies infeasibility

of universal extrapolation and thus one-way functions,

whereas we show that even average-case hardness of

exactly computing Kpoly implies the existence of one-

way functions.

For the converse direction, the infeasibility of uni-

versal extrapolation only means that there exists some
polynomial-time Turing machine M that is hard to ex-

trapolate, and this M is not necessarily a universal Turing

machine. It is not a-priori clear whether infeasibility

of extrapolation w.r.t. some M implies infeasibility of

extrapolation w.r.t. a universal Turing machine.

A direct corollary of our main theorem is a formal con-

nection between universal extrapolation and average-case

hardness of Kpoly: Infeasibility of universal extrapolation

is equivalent to mild average-case hardness of Kpoly

(since by [30], infeasibility of universal extrapolation is

equivalent to the existence of one-way functions).

B. Proof outline

We provide an outline for the proof of Theorem 1.

OWFs from Avg-case Kpoly-Hardness: We show that

if Kt is mildly average-case hard for some polynomial

t(n) > 0, then a weak one-way function exists3; the

existence of (strong) one-way functions then follows

by Yao’s hardness amplification theorem [50]. Let c
be a constant such that every string x can be output

by a program of length |x| + c (running on the fixed

Universal Turing machine U). Consider the function

f(�||Π′), where � is a bitstring of length log(n+c) and Π′

is a bitstring of length n+c, that lets Π be the first � bits

3Recall that an efficiently computable function f is a weak OWF if
there exists some polynomial q > 0 such that f cannot be efficiently
inverted with probability better than 1− 1

q(n)
for sufficiently large n.

1245

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

of Π′, and outputs �||y where y is the output generated

by running the program Π4 for t(n) steps.5

We aim to show that if f can be inverted with

high probability—significantly higher than 1 − 1/n—

then Kt-complexity of random strings z ∈ {0, 1}n can

be computed with high probability. Our heuristic H,

given a string z, simply tries to invert f on �||z for

all � ∈ [n + c], and outputs the smallest � for which

inversion succeeds.6 First, note that since every length

� ∈ [n + c] is selected with probability 1/(n + c), the

inverter must still succeed with high probability even

if we condition the output of the one-way function on

any particular length � (as we assume that the one-

way function inverter fails with probability significantly

smaller than 1
n). This, however, does not suffice to prove

that the heuristic works with high probability, as the

string y output by the one-way function is not uni-

formly distributed (whereas we need to compute the Kt-

complexity for uniformly chosen strings). But, we show

using a simple counting argument that y is not too “far”

from uniform in relative distance. The key idea is that for

every string z with Kt-complexity w, there exists some

program Πz of length w that outputs it; furthermore, by

our assumption on c, w ≤ n + c. We thus have that

f(Un+c+log(n+c)) will output w||z with probability at

least 1
n+c · 2−w ≥ 1

n+c · 2−(n+c) = 2−n

O(n) (we need to

pick the right length, and next the right program). So, if

the heuristic fails with probability δ, then the one-way

function inverter must fail with probability at least δ
O(n) ,

which leads to the conclusion that δ must be small (as we

assumed the inverter fails with probability significantly

smaller than 1
n).

Avg-case Kpoly-Hardness from EP-PRGs: To show

the converse direction, our starting point is the earlier

result by Kabanets and Cai [32] and Allender et al [5]

which shows that the existence of OWFs implies that

Kt-complexity, for every sufficiently large polynomial

t(·), must be worst-case hard to compute. In more detail,

they show that if Kt-complexity can be computed in

polynomial-time for every input x, then pseudo-random

generators (PRGs) cannot exist (and PRGs are implied

4Formally, the program/description Π is an encoding of a pair
(M,w) where M is a Turing machine and w is some input, and we
evaluate M(w) on the Universal Turing machine U .

5We remark that although our construction of the function f is
somewhat reminiscent of Levin’s construction of a universal OWF,
the actual function (and even more so the analysis) is actually quite
different. Levin’s function f̂ , roughly speaking, parses the input into a
Turing machine M of length logn and an input x of length n, and next
outputs M(x). As he argues, if a OWF f ′ exists, then with probability
1
n

, f̂ will compute output f ′(x) for a randomly selected x, and is thus
hard to invert. In contrast, in our candidate OWF construction, the key
idea is to vary the length of a “fully specified” program Π (including
an input).

6Or, in case, we also want to break the “constructive” Kpoly problem,
we also output the �-bit truncation of the program Π′ output by the
inverter.

by OWF by [26]). This follows from the observations

that (1) random strings have high Kt-complexity with

overwhelming probability, and (2) outputs of a PRG

always have small Kt-complexity as long as t(n) is

sufficiently greater than the running time of the PRG (as

the seed plus the constant-sized description of the PRG

suffice to compute the output). Thus, using an algorithm

that computes Kt, we can easily distinguish outputs of

the PRG from random strings—simply output 1 if the

Kt-complexity is high, and 0 otherwise. This method,

however, relies on the algorithm working for every input.

If we only have access to a heuristic H for Kt, we have

no guarantees that H will output a correct value when

we feed it a pseudorandom string, as those strings are

sparse in the universe of all strings.7

To overcome this issue, we introduce the concept of

an entropy-preserving PRG (EP-PRG). This is a PRG

that expands the seed by O(log n) bits, while ensuring

that the output of the PRG loses at most O(log n) bits of

Shannon entropy—it will be important for the sequel that

we rely on Shannon entropy as opposed to min-entropy.

In essence, the PRG preserves (up to an additive term

of O(log n)) the entropy in the seed s. We next show

that any good heuristic H for Kt can break such an

EP-PRG. The key point is that since the output of the

PRG is entropy preserving, by an averaging argument,

there exists a 1/n fraction of “good” seeds S such that,

conditioned on the seed belonging to S, the output of

the PRG on input seeds of length n has min-entropy
n−O(log n). This means that the probability that H fails

to compute Kt on output of the PRG, conditioned on

picking a “good” seed, can increase at most by a factor

poly(n). We conclude that H can be used to determine

(with sufficiently high probability) the Kt-complexity for

both random strings and for outputs of the PRG.

EP-PRGs from Regular OWFs: We start by noting that

the standard Blum-Micali-Goldreich-Levin [11], [19]

PRG construction from one-way permutations is entropy

preserving. To see this, recall the construction:

Gf (s, hGL) = f(s)||hGL||hGL(s)

where f is a one-way permutation and hGL is a hardcore

function for f—by [19], we can select a random hardcore

function hGL that output O(log n) bits. Since f is a

permutation, the output of the PRG fully determines

the input and thus there is actually no entropy loss.

We next show that the PRG construction of [16], [18],

[26], [51] from regular OWFs also is an EP-PRG. We

7We note that, although it was not explictly pointed out, their
argument actually also extends to show that Kt does not have an
errorless heuristic assuming the existence of PRGs. The point is that
even on outputs of the PRG, an errorless heuristic must output either a
small value or ⊥ (and perhaps always just output ⊥). But for random
strings, the heuristic can only output ⊥ with small probability. Dealing
with heuristics that may err will be more complicated.

1246

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

refer to a function f as being r-regular if for every

x ∈ {0, 1}∗, f(x) has between 2r(|x|)−1 and 2r(|x|)

many preimages. Roughly speaking, the construction

applies pairwise independent hash functions (that act as

strong extractors) h1, h2 to both the input and output

of the OWF (parametrized to match the regularity r) to

“squeeze” out randomness from both the input and the

output, and finally also applies a hardcore function that

outputs O(log n) bits:

Gr
f (s||h1||h2||hGL) = hGL||h1||h2||

[h1(s)]r−O(logn)||[h2(f(s))]n−r−O(logn)||hGL(s), (1)

where [a]j means a truncated to j bits. As already shown

in [16] (see also [51]), the output of the function ex-

cluding the hardcore bits is actually 1/poly(n) -close to

uniform in statistical distance (this follows directly from

the Leftover Hash Lemma [26]), and this implies (using

an averaging argument) that the Shannon entropy of the

output is at least n−O(log n), thus the construction is an

EP-PRG. We finally note that this construction remains

both secure and entropy preserving, even if the input

domain of the function f is not {0, 1}n, but rather any
set S of size 2n/n; this will be useful to us shortly.

Cond EP-PRGs from Any OWFs: Unfortunately, con-

structions of PRGs from OWFs [23], [24], [26], [28]

are not entropy preserving as far as we can tell. We,

however, remark that to prove that Kt is mildly HoA,

we do not actually need a “full-fledged” EP-PRG: Rather,

it suffices to have what we refer to as a conditionally-
secure EP-PRG G: a conditionally-secure EP-PRG (cond

EP-PRG) is an efficiently computable function G having

the property that there exists some event E such that:

1) G(Un′ | E) has Shannon entropy n′ −O(log n′);
2) G(Un′ | E) is indistinguishable from Um for some

m ≥ n′ +O(log n′).
In other words, there exists some event E such that

conditionned on the event E, G behaves likes an EP-

PRG. We next show how to adapt the above construction

to yield a cond EP-PRG from any OWF f . Consider

G(i||s||h1, h2, hGL) = Gi
f (s, h1, h2, hGL) where |s| =

n, |i| = log n, and Gi
f is the PRG construction defined

in equation 1. We remark that for any function f , there

exists some regularity i∗ such that at least a fraction 1/n
of inputs x have regularity i∗. Let Si∗ denote the set

of these x’s. Clearly, |Si∗ | ≥ 2n/n; thus, by the above

argument, Gi∗
f (Un′ | Si∗) is both pseudorandom and has

entropy n′−O(log n′). Finally, consider the event E that

i = i∗ and s ∈ Si∗ . By definition, G(Ulogn||Un||Um | E)
is identically distributed to Gi∗

f (Un′ | Si∗), and thus G is

a cond EP-PRG from any OWF. For clarity, let us provide

the full expanded description of the cond EP-PRG G:

G(i||s||h1||h2||hGL) = hGL||h1||h2||
[h1(s)]i−O(logn)||[h2(f(s))]n−i−O(logn)||hGL(s)

Note that this G is not a PRG: if the input i �= i∗

(which happens with probability 1 − 1
n), the output of

G may not be pseudorandom! But, recall that the notion

of a cond EP-PRG only requires the output of G to be

pseudorandom conditioned on some event E (while also

being entropy preserving conditioned on the same event

E).

Finally, the above outline only shows that Kt is mildly

HoA if t(·) is larger than running time of the cond EP-

PRG that we constructed; that is, so far, we have only

shown that OWFs imply that Kt is mildly HoA for some

polynomial t. To prove that this holds for every t(n) ≥
(1+ε)n, ε > 0, we remark that using a padding trick, we

can also construct a cond EP-PRG that can be computed

in time n+O(nα), where α < 1—we refer to this as a

rate-1 efficient PRG. Using such a rate-1 efficient cond

EP-PRG, we can show that Kt is mildly HoA for every

t(n) ≥ (1 + ε)n, ε > 0.

II. PRELIMINARIES

We assume familiarity with basic concepts such as

Turing machines, polynomial-time algorithms and proba-

bilistic polynomial-time algorithms (PPT). A function μ
is said to be negligible if for every polynomial p(·) there

exists some n0 such that for all n > n0, μ(n) ≤ 1
p(n) . A

probability ensemble is a sequence of random variables

A = {An}n∈N. We let Un the uniform distribution over

{0, 1}n.

A. One-way Functions

We recall the definition of one-way functions [13].

Roughly speaking, a function f is one-way if it is

polynomial-time computable, but hard to invert for PPT
attackers.

Definition 3. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function. f is said to be a one-way

function (OWF) if for every PPT algorithm A, there
exists a negligible function μ such that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

We may also consider a weaker notion of a weak
one-way function [50], where we only require all PPT
attackers to fail with probability noticeably bounded

away from 1:

Definition 4. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function. f is said to be a α-weak one-

way function (α-weak OWF) if for every PPT algorithm
A, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1−α(n)
We say that f is simply a weak one-way function (weak

OWF) if there exists some polynomial q > 0 such that f
is a 1

q(·) -weak OWF.

1247

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

Yao’s hardness amplification theorem [50] shows that

any weak OWF can be turned into a (strong) OWF.

Theorem 5 ([50]). Assume there exists a weak one-way
function. Then there exists a one-way function.

B. Time-bounded Kolmogorov Complexity

Let U be some fixed Universal Turing machine that

can emulate any Turing machine M with polynomial

overhead. Given a description Π ∈ {0, 1}∗ which en-

codes a pair (M,w) where M is a (single-tape) Turing

machine and w ∈ {0, 1}∗ is an input, let U(Π, 1t) denote

the output of M(w) when emulated on U for t steps.

Note that (by assumption that U only has polynomial

overhead) U(Π, 1t) can be computed in time poly(d, t).
The t-time bounded Kolmogorov Complexity, Kt(x),

of a string x [33], [34], [46], [49] is defined as the length

of the shortest description Π such that U(Π, 1t) = x:

Kt(x) = min
Π∈{0,1}∗

{|Π| : U(Π, 1t(|x|)) = x}.

A central fact about Kt-complexity is that the length of

a string x essentially (up to an additive constant) bounds

the Kt-complexity of the string for every t(n) > 0 [12],

[34], [48] (see e.g., [47] for simple treatment). This fol-

lows by considering Π = (M,x) where M is a constant-

length Turing machine that directly halts; consequently,

M simply outputs its input and thus M(x) = x.

Fact 1. There exists a constant c such that for every
function t(n) > 0 and every x ∈ {0, 1}∗ it holds that
Kt(x) ≤ |x|+ c.

C. Average-case Hard Functions

We turn to defining what it means for a function to be

average-case hard (for PPT algorithms).

Definition 6. We say that a function f : {0, 1}∗ →
{0, 1}∗ is α(·) hard-on-average (α-HoA) if for all PPT
heuristic H, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n : H(x) = f(x)] < 1− α(|n|)
In other words, there does not exist a PPT “heuristic”

H that computes f with probability 1−α(n) for infinitely

many n ∈ N . We also consider what it means for a

function to be average-case hard to approximate.

Definition 7. We say that a function f : {0, 1}∗ →
{0, 1}∗ is α hard-on-average (α-HoA) to β(·)-
approximate if for all PPT heuristic H, for all suffi-
ciently large n ∈ N ,

Pr[x← {0, 1}n : |H(x)− f(x)| ≤ β(|x|)] < 1− α(|n|)
In other words, there does not exists a PPT heuristic

H that approximates f within a β(·) additive term, with

probability 1− α(n) for infinitely many n ∈ N .

Finally, we refer to a function f as being mildly HoA

(resp HoA to approximate) if there exists a polynomial

p(·) > 0 such that f is 1
p(·) -HoA (resp. HoA to

approximate).

D. Computational Indistinguishability

We recall the definition of (computational) indistin-

guishability [20].

Definition 8. Two ensembles {An}n∈N and {Bn}n∈N
are said to be μ(·)-indistinguishable, if for every proba-
bilistic machine D (the “distinguisher”) whose running
time is polynomial in the length of its first input, there
exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < μ(n)

We say that are {An}n∈N and {Bn}n∈N simply indis-

tinguishable if they are 1
p(·) -indistinguishable for every

polynomial p(·).

E. Statistical Distance and Entropy

For any two random variables X and Y defined over

some set V , we let SD(X,Y) = 1
2

∑
v∈V |Pr[X =

v] − Pr[Y = v]| denote the statistical distance between

X and Y . For a random variable X , let H(X) =
E[log 1

Pr[X=x]] denote the (Shannon) entropy of X , and

let H∞(X) = minx∈Supp(X) log
1

Pr[X=x] denote the

min-entropy of X .

We next demonstrate a simple lemma showing that

any distribution that is statistically close to random, has

very high Shannon entropy.

Lemma 2. For every n ≥ 4, the following holds.
Let X be a random variable over {0, 1}n such that
SD(X,Un) ≤ 1

n2 . Then H(Xn) ≥ n− 2.

Proof: Let S = {x ∈ {0, 1}n : Pr[X = x] ≤
2−(n−1)}. Note that for every x /∈ S, x will contribute

at least

1

2
(Pr[X = x]− Pr[Un = x])

≥1

2

(
Pr[X = x]− Pr[X = x]

2

)
=

Pr[X = x]

4

to SD(X,Un). Thus,

Pr[X /∈ S] ≤ 4 · 1

n2
.

Since for every x ∈ S, log 1
Pr[X=x] ≥ n − 1 and the

probability that X ∈ S is at least 1 − 4/n2, it follows

that

H(X) ≥ Pr[X ∈ S](n−1) ≥ (1− 4

n2
)(n−1) ≥ n− 4

n
−1 ≥ n−2.

1248

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

III. THE MAIN THEOREM

Theorem 9. The following are equivalent:
(a) The existence of one-way functions.
(b) The existence of a polynomial t(n) > 0 such that

Kt is mildly hard-on-average.
(c) For all constants d > 0, ε > 0, and every polyno-

mial t(n) ≥ (1+ε)n, Kt is mildly hard-on-average
to (d log n)-approximate.

We prove Theorem 9 by showing that (b) implies (a)

(in Section IV) and next that (a) implies (c) (in Section

V). Finally, (c) trivially implies (b).

Note that a consequence of 9 is that for every poly-

nomial t(n) ≥ (1+ ε)n, where ε > 0 is a constant t(n),
mild average-case hardness of Kt is equivalent to the

existence of one-way functions.

IV. OWFS FROM MILD AVG-CASE Kt-HARDNESS

In this section, we state our main theorem.

Theorem 10. Assume there exist polynomials t(n) >
0, p(n) > 0 such that Kt is 1

p(·) -HoA. Then there exists
a weak OWF f (and thus also a OWF).

Proof: Let c be the constant from Fact 1. Consider

the function f : {0, 1}n+c+�log(n+c)� → {0, 1}∗, which

given an input �||Π′ where |�| = 	log(n+c)
 and |Π′| =
n+c, outputs �||U(Π, 1t(n)) where Π is the �-bit prefix of

Π′. This function is only defined over some input lengths,

but by an easy padding trick, it can be transformed into

a function f ′ defined over all input lengths, such that if

f is (weakly) one-way (over the restricted input lengths),

then f ′ will be (weakly) one-way (over all input lengths):

f ′(x′) simply truncates its input x′ (as little as possible)

so that the (truncated) input x now becomes of length

m = n+ c+ 	log(n+ c)
 for some n and outputs f(x).
We now show if Kt is 1

p(·) -HoA, then f is a 1
q(·) -weak

OWF, where q(n) = 22c+3np(n)2, which concludes

the proof of the theorem. Assume for contradiction

that f is not a 1
q(·) -weak OWF. That is, there exists

some PPT attacker A that inverts f with probability

at least 1 − 1
q(n) ≤ 1 − 1

q(m) for infinitely many

m = n + c + 	log(n + c)
. Fix some such m,n > 2.

By an averaging argument, except for a fraction 1
2p(n) of

random tapes r for A, the deterministic machine Ar (i.e.,

machine A with randomness fixed to r) fails to invert f
with probability at most

2p(n)
q(n) . Fix some such “good”

randomness r for which Ar succeeds to invert f with

probability 1− 2p(n)
q(n) .

We next show how to use Ar to compute Kt with

high probability over random inputs z ∈ {0, 1}n. Our

heuristic Hr(z) runs Ar(i||z) for all i ∈ [n + c] where

i is represented as a 	log(n+ c)
 bit string, and outputs

the length of the smallest program Π output by Ar that

produces the string z within t(n) steps. Let S be the set

of strings z ∈ {0, 1}n for which Hr(z) fails to compute

Kt(z). Note that Hr thus fails with probability

failr =
|S|
2n

.

Consider any string z ∈ S and let w = Kt(z) be its

Kt-complexity. By Fact 1, we have that w ≤ n + c.
Since Hr(z) fails to compute Kt(z), Ar must fail to

invert (w||z). But, since w ≤ n+ c, the output (w||z) is

sampled with probability

1

n+ c
· 1

2w
≥ 1

(n+ c)

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with

probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|
2n

=
failr
n22c+1

which by assumption (that Ar is a good inverter) is at

most that
2p(n)
q(n) . We thus conclude that

failr ≤ 22c+2np(n)

q(n)

Finally, by a union bound, we have that H (using a

uniform random tape r) fails in computing Kt with

probability at most

1

2p(n)
+

22c+2np(n)

q(n)
=

1

2p(n)
+

22c+2np(n)

2c+3np(n)2
=

1

p(n)
.

Thus, H computes Kt with probability 1 − 1
p(n) for

infinitely many n ∈ N, which contradicts the assumption

that Kt is 1
p(·) -HoA.

V. MILD AVG-CASE Kt-HARDNESS FROM OWFS

We introduce the notion of a (conditionally-secure)

entropy-preserving pseudo-random generator (EP-PRG)

and next show (1) the existence of a condEP-PRG im-

plies that Kt is hard-on-average (even to approximate),

and (2) OWFs imply condEP-PRGs.

A. Entropy-preserving PRGs

We start by defining the notion of a conditionally-
secure entropy-preserving PRG.

Definition 11. An efficiently computable function G :
{0, 1}n → {0, 1}n+γ logn is a μ(·)-conditionally secure

entropy-preserving pseudorandom generator (μ-condEP-

PRG) if there exist a sequence of events = {En}n∈N and
a constant α (referred to as the entropy-loss constant)
such that the following conditions hold:
• (pseudorandomness): {G(Un|En)}n∈N and
{Un+γ logn}n∈N are μ(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈
N, H(G(Un|En)) ≥ n− α log n.

1249

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

If for all n, En = {0, 1}n (i.e., there is no condition-
ing), we say that G is an μ-secure entropy-preserving

pseudorandom generator (μ-EP-PRG).

We say that G has rate-1 efficiency if its running time

on inputs of length n is bounded by n+O(nε) for some

constant ε < 1.

B. Avg-case Kt-Hardness from Cond EP-PRGs

Theorem 12. Assume that for every γ > 1, there
exists a rate-1 efficient μ-condEP-PRG G : {0, 1}n →
{0, 1}n+γ logn where μ(n) = 1/n2. Then, for every con-
stant d > 0, ε > 0, for every polynomial t(n) ≥ (1+ε)n,
Kt is mildly hard-on-average to (d log n)-approximate.

Proof: Let γ ≥ max(8, 8d), and let G′ : {0, 1}n →
{0, 1}m′(n) where m′(n) = n + γ log n be a rate-1

efficient μ-condEP-PRG, where μ = 1/n2. For any

constant c, let Gc(x) be a function that computes G′(x)
and truncates the last c bits. It directly follows that Gc

is also a rate-1 efficient μ-condEP-PRG (since G′ is so).

Consider any ε > 0 and any polynomial t(n) ≥ (1+ε)n
and let p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPT
H that β-approximates Kt with probability 1 − 1

p(m)

for infinitely many m ∈ N, where β(n) = γ/8 logn ≥
d log n. Since m′(n+1)−m′(n) ≤ γ+1, there must exist

some constant c ≤ γ + 1 such that H succeeds (to β-

approximate Kt) with probability 1− 1
p(m) for infinitely

many m of the form m = m(n) = n + γ log n − c.
Let G(x) = Gc(x); recall that G is a rate-1 efficient μ-

condEP-PRG (trivially, since Gc is so), and let α, {En},
respectively, be the entropy loss constant and sequence

of events, associated with it.

We next show that H can be used to break the

condEP-PRG G. Towards this, recall that a random

string has high Kt-complexity with high probability: for

m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) ≥ m− γ

4
log n]

≥2m − 2m−
γ
4 logn

2m
= 1− 1

nγ/4
, (2)

since the total number of Turing machines with length

smaller than m − γ
4 log n is only 2m−

γ
4 logn. However,

any string output by the EP-PRG, must have “low” Kt

complexity: For every sufficiently large n,m = m(n),
we have that,

Pr
s∈{0,1}n

[Kt(G(s)) ≥ m− γ

2
log n] = 0, (3)

since G(s) can be represented by combining a seed s
of length n with the code of G (of constant length),

and the running time of G(s) is bounded by t(|s|) =
t(n) ≤ t(m) for all sufficiently large n, so Kt(G(s)) =
n+O(1) = (m− γ log n+ c) +O(1) ≤ m− γ/2 logn
for sufficiently large n.

Based on these observations, we now construct a PPT
distinguisher A breaking G. On input 1n, x, where x ∈
{0, 1}m(n), A(1n, x) lets w ← H(x) and outputs 1 if

w ≥ m(n)− 3
8γ log n and 0 otherwise. Fix some n and

m = m(n) for which H succeeds with probability 1
p(m) .

The following two claims conclude that A distinguishes

Um(n) and G(Un | En) with probability at least 1
n2 .

Claim 1. A(1n,Um) outputs 1 with probability at least
1− 2

nγ/4 .

Proof: Note that A(1n, x) will output 1 if x is a

string with Kt-complexity larger than m−γ/4 logn and

H outputs a γ/8 logn-approximation to Kt(x). Thus,

Pr[A(1n, x) = 1]

≥Pr[Kt(x) ≥ m− γ/4 logn ∧H succeeds on x]

≥1− Pr[Kt(x) < m− γ/4 logn]− Pr[H fails on x]

≥1− 1

nγ/4
− 1

p(n)

≥1− 2

nγ/4
.

where the probability is over a random x← Um and the

randomness of A and H.

Claim 2. A(1n, G(Un | En)) outputs 1 with probability
at most 1− 1

n + 2
nα+γ

Proof: Recall that by assumption, H fails to

(γ/8 logn)-approximate Kt(x) for a random x ∈
{0, 1}m with probability at most 1

p(m) . By an averaging

argument, for at least a 1 − 1
n2 fraction of random

tapes r for H, the deterministic machine Hr fails to

approximate Kt with probability at most n2

p(m) . Fix some

“good” randomness r such that Hr approximates Kt

with probability at least 1 − n2

p(m) . We next analyze the

success probability of Ar. Assume for contradiction that

Ar outputs 1 with probability at least 1 − 1
n + 1

nα+γ

on input G(Un | En). Recall that (1) the entropy of

G(Un | En) is at least n − α log n and (2) the quantity

− log Pr[G(Un | En) = y] is upper bounded by n for all

y ∈ G(Un | En) since H∞(G(Un | En)) ≤ H∞(Un |
En) ≤ H∞(Un) = n. By an averaging argument, with

probability at least 1
n , a random y ∈ G(Un | En) will

satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition

as being “good” and other y’s as being “bad”. Let S =
{y ∈ G(Un | En) : Ar(1

n, y) = 1 ∧ y is good}, and let

S′ = {y ∈ G(Un | En) : Ar(1
n, y) = 1 ∧ y is bad}.

Since

Pr[Ar(1
n, G(Un | En)) = 1]

=Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

1250

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

and Pr[G(Un | En) ∈ S′] is at most the probability that

G(Un) is “bad” (which as argued above is at most 1− 1
n),

we have that

Pr[G(Un | En) ∈ S]

≥
(
1− 1

n
+

1

nα+γ

)
−

(
1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) =
y] ≤ 2−n+α logn+1, we also have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar(1
n, y) outputs

1, then by Equation 3, Hr(y) > Kt(y) + γ/8, so H
fails to output a good approximation. (This follows, since

by Equation 3, Kt(y) < n − γ/2 logn and Ar(1
n, y)

outputs 1 only if Hr(y) ≥ n− 3
8γ log n.)

Thus, the probability that Hr fails (to output a good

approximation) on a random y ∈ {0, 1}m is at least

|S|/2m =
2n−(2α+γ) logn−1

2n+γ logn−c
≥ 2−2(α+γ) logn−1 =

1

2n2(α+γ)

which contradicts the fact that Hr fails with approximate

Kt probability at most n2

p(m) <
1

2n2(α+γ) (since n < m).

We conclude that for every good randomness r, Ar

outputs 1 with probability at most 1− 1
n + 1

nα+γ . Finally,

by union bound (and since a random tape is bad with

probability ≤ 1
n2), we have that the probability that

A(G(Un | En)) outputs 1 is at most

1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 8, that A distinguishes

Um and G(Un | En) with probability of at least(
1− 2

nγ/4

)
−

(
1− 1

n
+

2

n2

)

≥
(
1− 2

n2

)
−

(
1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for infinitely many n ∈ N.

C. Cond EP-PRGs from OWFs

In this section, we show how to construct a condEP-

PRG from any OWF. Towards this, we first recall the

construction of [16], [26], [51] of a PRG from a regular
one-way function [18].

Definition 13. A function f : {0, 1}∗ → {0, 1}∗ is called
regular if there exists a function r : N→ N such that for
all sufficiently long x ∈ {0, 1}∗,

2r(|x|)−1 ≤ |f−1(f(x))| ≤ 2r(|x|).

We refer to r as the regularity of f .

As mentioned in the introduction, the construction pro-

ceeds in the following two steps given a OWF f with

regularity r.

• We “massage” f into a different OWF f̂ having the

property that there exists some �(n) = n−O(log n)
such that f̂(Un) is statistically close to U�(n)—
we will refer to such a OWF as being dense.

This is done by applying pairwise-independent hash

functions (acting as strong extractors) to both the

input and the output of the OWF (parametrized to

match the regularity r) to “squeeze” out randomness

from both the input and the output.

f̂(s||σ1||σ1) = σ1||σ2||[hσ1(s)]r−O(logn)||[hσ2(f(s))]n−r−O(logn)

where [a]j means a truncated to j bits.

• We next modify f̂ to include additional randomness

in the input (which is also revealed in the output)

to make sure the function has a hardcore function:

f ′(s||σ1||σ2||σGL) = σGL||f̂(s||σ1||σ1)

• We finally use f ′ to construct a PRG Gr by simply

adding the the Goldreich-Levin hardcore bits [19],

GL, to the output of the function f ′:

Gr(s||σ1||σ2||σGL) = f ′(s||σ1||σ2||σGL)||GL(s||σ1||σ2, σGL))

We note that the above steps do not actually produce a

“fully secure” PRG as the statistical distance between the

output of f̂(Un) and uniform is only 1
poly(n) as opposed

to being negligible. [16] thus presents a final amplifica-

tion step to deal with this issue—for our purposes it will

suffice to get a 1
poly(n) indistinguishability gap so we will

not be concerned about the amplification step.

We remark that nothing in the above steps requires

f to be a one-way function defined on the domain

{0, 1}n— all three steps still work even for one-way

functions defined over domains S that are different

than {0, 1}n, as long as a lower bound on the size

of the domain is efficiently computable (by a minor

modification of the construction in Step 1 to account

for the size of S). Let us start by formalizing this fact.

Definition 14. Let S = {Sn} be a sequence of sets
such that Sn ⊆ {0, 1}n and let f : Sn → {0, 1}∗ be
a polynomial-time computable function. f is said to be
a one-way function over S (S-OWF) if for every PPT
algorithm A, there exists a negligible function μ such
that for all n ∈ N,

Pr[x← Sn; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

We refer to f as being regular if it satisfies Definition 13
with the exception that we only quantify over all n ∈ N
and all x ∈ Sn (as opposed to all x ∈ {0, 1}n).

1251

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

We say that a family of functions {fi}i∈I is efficiently
computable if there exists a polynomial-time algorithm

M such that M(i, x) = fi(x).

Lemma 3 (implicit in [16], [51]). Let S = {Sn} be
a sequence of sets such that Sn ⊆ {0, 1}n, let s be an
efficiently computable function such that s(n) ≤ log |Sn|,
and let f be an S-OWF with regularity r(·). Then, there
exists a constant c ≥ 1 such that for every α′, γ′ ≥ 0,
there exists an efficiently computable family of functions
{f ′i}i∈N, and an efficiently computable function GL,
such that the following holds for �(n) = s(n) + 3nc −
2α′ log n, �′(n) = �(n) + γ′ log n:
• density: For all sufficiently large n, the distribu-

tions
– {x ← Sn, σ1, σ2, σGL ← {0, 1}nc

: f ′r(n)(x,
σ1, σ2, σGL)}, and

– U�(n)
are 3

nα′/2 -close in statistical distance.
• pseudorandomness: The ensembles of distribu-

tions,
– {x ← Sn, σ1, σ2, σGL ← {0, 1}nc

: f ′r(n)(x,
σ1, σ2, σGL)||GL(x, σ1, σ2, σGL)}n∈N, and

–
{U�′(n)}n∈N

are 4
nα′/2 -indistinguishable.

Proof: Given a r(·)-regular S-OWF f , the construc-

tion of f ′ has the form

f ′(s||σ1||σ1||σGL) = σGL||σ1||σ2||
[hσ1

(s)]r−α′ logn||[hσ2
(f(s))]s(n)−r−α′ logn

where |x| = n, |σ1| = |σ2| = |σc| = nc, and

GL(x, σ1, σ2, σGL) is simply the Goldreich-Levin hard-

core predicate [19] outputting γ′ log n inner products

between x and vectors in σGL. The function f ′r thus

maps n′ = n+ 3nc bits to 3nc + s(n)− 2α′ log n bits,

and once we add the output of GL, the total output length

becomes 3nc+s(n)−2α′ log n+γ′ log n as required. The

proof in [16], [51] directly works to show that {fi}, GL
satisfy the requirements stated in the theorem. 8

We additionally observe that every OWF actually is a

regular S-OWFs for a sufficiently large S.

Lemma 4. Let f be an one way function. There exists an
integer function r(·) and a sequence of sets S = {Sn}
such that Sn ⊆ {0, 1}n, |Sn| ≥ 2n

n , and f is a S-OWF
with regularity r.

Proof: The following simple claim is the crux of

the proof:

Claim 3. For every n ∈ N, there exists an integer rn ∈
[n] such that

Pr[x← {0, 1}n : 2rn−1 ≤ |f−1(f(x)|) ≤ 2rn] ≥ 1

n
.

8We refer the reader to the full version for a detailed proof.

Proof: For all i ∈ [n], let

w(i) = Pr[x← {0, 1}n : 2i−1 ≤ |f−1(f(x))| ≤ 2i].

Since for all x, the number of pre-images that map to

f(x) must be in the range of [1, 2n], we know that∑n
i=1 w(i) = 1. By an averaging argument, there must

exists such rn that w(rn) ≥ 1
n .

Let r(n) = rn for every n ∈ N , Sn = {x ∈
{0, 1}n : 2r(n)−1 ≤ |f−1(f(x))| ≤ 2r(n)]}; regularity

of f when the input domain is restricted to S follows

directly. It only remains to show that f is a S-OWF;

this follows directly from the fact that the set Sn are

dense in {0, 1}. More formally, assume for contradiction

that there exists a PPT algorithm A that inverts f with

probability ε(n) when the input is sampled in Sn. Since

|Sn| ≥ 2n

n , it follows that A can invert f with probability

at least ε(n)/n over uniform distribution, which is a

contradiction (as f is a OWF).

By combining Lemma 3 and Lemma 4, we can directly

get an EP-PRG defined over a subset S. We next turn

to showing how to instead get a μ-conditionally secure
EP-PRG that is defined over {0, 1}n. The formal proof

appears in the full version and we only give the statement

of the theorem as below.

Theorem 15. Assume that one way functions exist.
Then, there exists a polynomial t0(·) such that for
every γ > 1, δ > 1, there exists a

(
1
nδ

)
-condEP-PRG

G′δ,γ : {0, 1}n → {0, 1}n+γ logn with running time
bounded by (γ + δ)t0(n).

We now use a standard padding trick to obtain a rate-

1 efficient μ-cond EP-PRG: we simply output the first

n−� bits unchanged, and next apply a cond EP-PRG on

the last � bits. Since we only have a cond EP-PRG that

satisfies inverse polynomial (as opposed to negligible)

indistinguishability, we need to be a bit careful with the

choice of the parameters. The formal proof appears in

the full version and we only give the statement of the

theorem as below.

Theorem 16. Assume that one way functions exist. Then,
for every γ > 1, there exists a rate-1 efficient μ-cond
EP-PRG Gγ : {0, 1}n → {0, 1}n+γ logn, where μ(n) =
1/n2.

VI. ACKNOWLEDGEMENTS

We are very grateful to Eric Allender, Kai-min Chung,

Naomi Ephraim, Cody Freitag, Johan Håstad, Yuval

Ishai, Ilan Komargodski, Rahul Santhanam, and abhi

shelat for extremely helpful comments. We are also very

grateful to the anonymous FOCS reviewers.

Supported in part by NSF Award SATC-1704788,

NSF Award RI-1703846, AFOSR Award FA9550-18-1-

0267, and a JP Morgan Faculty Award. This research is

based upon work supported in part by the Office of the

1252

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

Director of National Intelligence (ODNI), Intelligence

Advanced Research Projects Activity (IARPA), via 2019-

19-020700006. The views and conclusions contained

herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies,

either expressed or implied, of ODNI, IARPA, or the

U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for governmental pur-

poses notwithstanding any copyright annotation therein.

REFERENCES

[1] Miklós Ajtai. Generating hard instances of lattice prob-
lems. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 99–108,
1996.

[2] Eric Allender. The complexity of complexity. In Com-
putability and Complexity - Essays Dedicated to Rodney
G. Downey on the Occasion of His 60th Birthday, pages
79–94, 2017.

[3] Eric Allender. Ker-i ko and the study of resource-
bounded kolmogorov complexity. In Complexity and
Approximation - In Memory of Ker-I Ko, pages 8–18,
2020.

[4] Eric Allender. The new complexity landscape around
circuit minimization. In Language and Automata Theory
and Applications - 14th International Conference, LATA
2020, Milan, Italy, March 4-6, 2020, Proceedings, pages
3–16, 2020.

[5] Eric Allender, Harry Buhrman, Michal Kouckỳ, Di-
eter Van Melkebeek, and Detlef Ronneburger. Power
from random strings. SIAM Journal on Computing,
35(6):1467–1493, 2006.

[6] Eric Allender and Bireswar Das. Zero knowledge and
circuit minimization. Inf. Comput., 256:2–8, 2017.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio
Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto
Collins, William Courtney, Andrew Dunsworth, Edward
Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habeg-
ger, Matthew P. Harrigan, Michael J. Hartmann, Alan
Ho, Markus Hoffmann, Trent Huang, Travis S. Humble,
Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov,
Sergey Knysh, Alexander Korotkov, Fedor Kostritsa,
David Landhuis, Mike Lindmark, Erik Lucero, Dmitry
Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew
McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,
Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Os-
tby, Andre Petukhov, John C. Platt, Chris Quintana,
Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy,
Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher,
Benjamin Villalonga, Theodore White, Z. Jamie Yao,

Ping Yeh, Adam Zalcman, Hartmut Neven, and John M.
Martinis. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510,
2019.

[8] László Babai and Shlomo Moran. Arthur-merlin games: A
randomized proof system, and a hierarchy of complexity
classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[9] Boaz Barak. The complexity of public-key cryptography.
In Tutorials on the Foundations of Cryptography, pages
45–77. 2017.

[10] Manuel Blum. Coin flipping by telephone - A protocol for
solving impossible problems. In COMPCON’82, Digest
of Papers, Twenty-Fourth IEEE Computer Society In-
ternational Conference, San Francisco, California, USA,
February 22-25, 1982, pages 133–137. IEEE Computer
Society, 1982.

[11] Manuel Blum and Silvio Micali. How to generate cryp-
tographically strong sequences of pseudo-random bits.
SIAM Journal on Computing, 13(4):850–864, 1984.

[12] Gregory J. Chaitin. On the simplicity and speed of
programs for computing infinite sets of natural numbers.
J. ACM, 16(3):407–422, 1969.

[13] Whitfield Diffie and Martin Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[14] Uriel Feige. Relations between average case complexity
and approximation complexity. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, pages 534–543,
2002.

[15] Uriel Feige and Adi Shamir. Witness indistinguishable
and witness hiding protocols. In STOC ’90, pages 416–
426, 1990.

[16] Oded Goldreich. Foundations of Cryptography — Basic
Tools. Cambridge University Press, 2001.

[17] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On
the cryptographic applications of random functions. In
CRYPTO, pages 276–288, 1984.

[18] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On
the existence of pseudorandom generators. SIAM Journal
on Computing, 22(6):1163–1175, 1993.

[19] Oded Goldreich and Leonid A. Levin. A hard-core
predicate for all one-way functions. In STOC, pages 25–
32, 1989.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryp-
tion. J. Comput. Syst. Sci., 28(2):270–299, 1984.

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

[22] Yuri Gurevich. The challenger-solver game: variations
on the theme of p=np. In Logic in Computer Science
Column, The Bulletin of EATCS. 1989.

1253

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

[23] Iftach Haitner, Danny Harnik, and Omer Reingold. On
the power of the randomized iterate. In CRYPTO, pages
22–40, 2006.

[24] Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Effi-
ciency improvements in constructing pseudorandom gen-
erators from one-way functions. Electronic Colloquium
on Computational Complexity (ECCC), 17:89, 2010.

[25] J. Hartmanis. Generalized kolmogorov complexity and
the structure of feasible computations. In 24th Annual
Symposium on Foundations of Computer Science (sfcs
1983), pages 439–445, Nov 1983.

[26] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and
Michael Luby. A pseudorandom generator from any one-
way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[27] Shuichi Hirahara. Non-black-box worst-case to average-
case reductions within NP. In 59th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 247–258, 2018.

[28] Thomas Holenstein. Pseudorandom generators from one-
way functions: A simple construction for any hardness.
In TCC, pages 443–461, 2006.

[29] Russell Impagliazzo. A personal view of average-case
complexity. In Structure in Complexity Theory ’95, pages
134–147, 1995.

[30] Russell Impagliazzo and Leonid A. Levin. No better ways
to generate hard NP instances than picking uniformly at
random. In 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-
24, 1990, Volume II, pages 812–821, 1990.

[31] Russell Impagliazzo and Michael Luby. One-way func-
tions are essential for complexity based cryptography
(extended abstract). In 30th Annual Symposium on Foun-
dations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989,
pages 230–235, 1989.

[32] Valentine Kabanets and Jin-yi Cai. Circuit minimization
problem. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, pages 73–79, 2000.

[33] Ker-I Ko. On the notion of infinite pseudorandom
sequences. Theor. Comput. Sci., 48(3):9–33, 1986.

[34] A. N. Kolmogorov. Three approaches to the quantitative
definition of information. International Journal of Com-
puter Mathematics, 2(1-4):157–168, 1968.

[35] L. A. Levin. The tale of one-way functions. Problems of
Information Transmission, 39(1):92–103, 2003.

[36] Leonid A. Levin. One-way functions and pseudorandom
generators. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 363–365, 1985.

[37] Leonid A. Levin. Average case complete problems. SIAM
J. Comput., 15(1):285–286, 1986.

[38] Ming Li and Paul M.B. Vitanyi. An Introduction to
Kolmogorov Complexity and Its Applications. Springer
Publishing Company, Incorporated, 3 edition, 2008.

[39] Moni Naor. Bit commitment using pseudorandomness. J.
Cryptology, 4(2):151–158, 1991.

[40] Rafail Ostrovsky. One-way functions, hard on average
problems, and statistical zero-knowledge proofs. In Pro-
ceedings of the Sixth Annual Structure in Complexity
Theory Conference, Chicago, Illinois, USA, June 30 - July
3, 1991, pages 133–138, 1991.

[41] Rafail Ostrovsky and Avi Wigderson. One-way functions
are essential for non-trivial zero-knowledge. In Theory
and Computing Systems, 1993, pages 3–17, 1993.

[42] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
A method for obtaining digital signatures and public-key
cryptosystems (reprint). Commun. ACM, 26(1):96–99,
1983.

[43] John Rompel. One-way functions are necessary and
sufficient for secure signatures. In STOC, pages 387–394,
1990.

[44] Rahul Santhanam. Pseudorandomness and the minimum
circuit size problem. In 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-
14, 2020, Seattle, Washington, USA, pages 68:1–68:26,
2020.

[45] Peter W. Shor. Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26(5):1484–1509, 1997.

[46] Michael Sipser. A complexity theoretic approach to ran-
domness. In Proceedings of the 15th Annual ACM Sympo-
sium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 330–335. ACM, 1983.

[47] Michael Sipser. Introduction to the theory of computation.
ACM Sigact News, 27(1):27–29, 1996.

[48] R.J. Solomonoff. A formal theory of inductive inference.
part i. Information and Control, 7(1):1 – 22, 1964.

[49] Boris A Trakhtenbrot. A survey of russian approaches to
perebor (brute-force searches) algorithms. Annals of the
History of Computing, 6(4):384–400, 1984.

[50] Andrew Chi-Chih Yao. Theory and applications of trap-
door functions (extended abstract). In 23rd Annual Sym-
posium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

[51] Yu Yu, Xiangxue Li, and Jian Weng. Pseudorandom
generators from regular one-way functions: New con-
structions with improved parameters. Theor. Comput. Sci.,
569:58–69, 2015.

1254

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.

