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Abstract—We prove that the equivalence of two funda-
mental problems in the theory of computing. For every
polynomial t(n) > (1 + €)n, ¢ > 0, the following are
equivalent:

« One-way functions exists (which in turn is equivalent
to the existence of secure private-key encryption
schemes, digital signatures, pseudorandom generators,
pseudorandom functions, commitment schemes, and
more);

« t-time bounded Kolmogorov Complexity, K?, is mildly
hard-on-average (i.e., there exists a polynomial p(n) >
0 such that no PPT algorithm can compute K?, for
more than a 1 — ﬁ fraction of n-bit strings).

In doing so, we present the first natural, and well-studied,
computational problem characterizing the feasibility of the
central private-key primitives and protocols in Cryptogra-

phy.

I. INTRODUCTION

We prove the equivalence of two fundamental prob-
lems in the theory of computing: (a) the existence of
one-way functions, and (b) mild average-case hardness
of the time-bounded Kolmogorov Complexity problem.

Existence of One-way Functions: A one-way function
[13] (OWF) is a function f that can be efficiently
computed (in polynomial time), yet no probabilistic
polynomial-time (PPT) algorithm can invert f with
inverse polynomial probability for infinitely many input
lengths n. Whether one-way functions exist is unequiv-
ocally the most important open problem in Cryptogra-
phy (and arguably the most importantly open problem
in the theory of computation, see e.g., [35]): OWFs
are both necessary [31] and sufficient for many of
the most central cryptographic primitives and protocols
(e.g., pseudorandom generators [8], [26], pseudorandom
functions [17], private-key encryption [20], digital sig-
natures [43], commitment schemes [39], identification
protocols [15], coin-flipping protocols [10], and more).
These primitives and protocols are often referred to as
private-key primitives, or “Minicrypt” primitives [29] as
they exclude the notable task of public-key encryption
[13], [42]. Additionally, as observed by Impagliazzo
[22], [29], the existence of a OWF is equivalent to the
existence of polynomial-time method for sampling hard
solved instances for an NP language (i.e., hard instances
together with their witnesses).
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While many candidate constructions of OWFs are
known—most notably based on factoring [42], the dis-
crete logarithm problem [13], or the hardness of lattice
problems [1]—the question of whether there exists some
natural average-case hard problem that characterizes
the hardness of OWFs (and thus the feasibility of the
above central cryptographic primitives) has been a long-
standing open problem:!

Does there exists some natural average-case
hard computational problem (i.e., both the
computational problem and the distribution
over instances is “natural’ ), which character-
izes the existence of one-way functions?

This problem is particularly pressing given recent ad-
vances in quantum computing [7] and the fact that many
classic OWF candidates (e.g., based on factoring and
discrete log) can be broken by a quantum computer [45].

Average-case Hardness of KP°Y-Complexity: What
makes the string 12121212121212121 less random than
60484850668340357492? The notion of Kolmogorov
complexity (K-complexity), introduced by Solomonoff
[48], Kolmogorov [34] and Chaitin [12], provides an ele-
gant method for measuring the amount of “randomness”
in individual strings: The K-complexity of a string is
the length of the shortest program (to be run on some
fixed universal Turing machine U) that outputs the string
z. From a computational point of view, however, this
notion is unappealing as there is no efficiency require-
ment on the program. The notion of ¢(-)-time-bounded
Kolmogorov Complexity (K*-complexity) overcomes this
issue: K'(z) is defined as the length of the shortest
program that outputs the string & within time ¢(|x|). As
surveyed by Trakhtenbrot [49], the problem of efficiently
determining the K?®-complexity for ¢(n) = poly(n)
predates the theory of NP-completeness and was studied
in the Soviet Union since the 60s as a candidate for a
problem that requires “brute-force search” (see Task 5
on page 392 in [49]). The modern complexity-theoretic

INote that Levin [36] presents an ingenious construction of a
universal one-way function—a function that is one-way if one-way
functions exists. But his construction (which relies on an enumeration
argument) is artificial. Levin [35] takes a step towards making it less
artificial by constructing a universal one-way function based on a new
specially-tailored Tiling Expansion problem.
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study of this problem goes back to Sipser [46], Ko [33]
and Hartmanis [25].

Intriguingly, Trakhtenbrot also notes that a “frequen-
tial” version of this problem was considered in the Soviet
Union in the 60s: the problem of finding an algorithm
that succeeds for a “high” fraction of strings x—in
more modern terms from the theory of average-case
complexity [37], whether K! can be computed by a
heuristic algorithm with inverse polynomial error, over
random inputs x. We say that K* is mildly hard-on-
average (mildly HoA) if there exists some polynomial
p(-) > 0 such that every PPT fails in computing K*(-)
for at least a ﬁ fraction of n-bit strings x for all
sufficiently large n, and that KP°Y is mildly HoA if there
exists some polynomial ¢(n) > 0 such that K* is mildly
HoA. Our main result shows that the existence of OWFs
is equivalent to mild average-case hardness of KP°Y.
In doing so, we resolve the above-mentionned open
problem, and present the first natural (and well-studied)
computational problem, characterizing the feasibility of
the central private-key primitives in Cryptography.

Theorem 1. The following are equivalent:

e One-way functions exist;
o KP°Y is mildly hard-on-average.

In other words,
Secure private-key encryption, digial digna-
tures, pseudorandom generators, pseudoran-
dom functions, commitment schemes, etc., are
possible iff KP°Y-complexity is mildly hard-on-
average.

In fact, our main theorem is stronger than stated: we
show that for every polynomial ¢(n) > (1 + €)n, where
€ > 0 is a constant, mild average-case hardness of K*
is equivalent to the existence of one-way functions.

On the Hardness of Approximating KP°Y-complexity:
Our connection between OWFs and K*-complexity has
direct implications to the theory of K°®-complexity.
Trakhtenbrot [49] also discusses average-case hardness
of the approximate K ‘-complexity problem: the problem
of, given a random z, outputting an “approximation” y
that is 3(|x|)-close to K'(z) (i.e., |K!(z)—y| < B(|z|)).
He observes that there is a trivial heuristic approximation
algorithm that succeeds with probability approaching 1
(for large enough n): Given x, simply output |x|. In fact,
this trivial algorithm produces a (d log n)-approximation
with probability > 1 — # over random n-bits strings.”
We note that our proof that OWFs imply mild average-
case hardness of KP°Y actually directly extends to show
that KP°Y is mildly-HoA also to (dlogn)-approximate.
We thus directly get:

2At most 24108 oyt of 2™ strings have Kt-complexity that is
smaller than n — dlogn.

Theorem 2. [f KPY is mildly hard-on-average, then
for every constant d, KP°Y is mildly hard-on-average to
(dlog n)-approximate.

In other words, any efficient algorithm that only
slightly beats the success probability of the “trivial”
approximation algorithm, can be used to break OWFs.

Existential v.s. Constructive K’ complexity: Trakht-
enbrot [49] considers also “constructive” variant of the
K*-complexity problem, where the task of the solver is
to, not only determine the K*-complexity of a string
x, but to also output a minimal-length program II that
generates . We remark that for our proof that mild
average-case hardness of KP°Y implies OWFs, it actually
suffices to assume mild average-case hardness of the
“constructive” K Pl problem, and thus we obtain an
equivalence between the “existential” and “constructive”
versions of the problem in the average-case regime.

On Decisional Time-Bounded Kolmogorov Complex-
ity Problems: We finally note that our results also show
an equivalence between one-way functions and mild
average-case hardness of a decisional KP°Y problem:
Let MINK'[s] denote the set of strings z such that
K*2D(2) < s(||). Our proof directly shows that there
exists some constant ¢ such that for every constant € > 0,
every t(n) > (1 + €)n, and letting s(n) = n — clogn,
mild average-case hardness of the language MINK[s]
(with respect to the uniform distribution over instances)
is equivalent the existence of one-way functions.

A. Related Work

We refer the reader to Goldreich’s textbook [16] for
more context and applications of OWFs (and complexity-
based cryptography in general); we highly recommend
Barak’s survey on candidate constructions of one-way
functions [9]. We refer the reader to the textbook of Li
and Vitanyi [38] for more context and applications of
Kolmogorov complexity; we highly recommend Allen-
der’s surveys on the history, and recent applications, of
notions of time-bounded Kolmogorov complexity [2]-

[4].

On Connections between KP°Y-complexity and
OWFs: We note that some (partial) connections between
K'-complexity and OWFs already existed in the litera-
ture:

« Results by Kabanets and Cai [32] and Allender et
al [5] show that the existence of OWFs implies that
KPY must be worst-case hard to compute; their
results will be the starting point for our result that
OWFs also imply average-case hardness of KP°Y.

o Allender and Das [6] show that every problem
in SZK (the class of promise problems hav-
ing statistical zero-knowledge proofs [21]) can be
solved in probabilistic polynomial-time using a

1244

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.



KP°Y_complexity oracle. Furthermore, Ostrovsky
and Wigderson [40], [41] show that if SZK con-
tains a problem that is hard-on-average, then OWFs
exist. In contrast, we show the existence of OWFs
assuming only that KP°Y is hard-on-average.

A very recent elegant work by Santhanam [44] is
also explicitly motivated by the above-mentionned
open problem, and presents an intruiging connection
between one-way functions and error-less average-
case hardness of the circuit minimization problem
(MCSP) [32]—i.e., the problem of, given a truth
table of a boolean function, determining the size
of the smallest circuit that computes the function;
the MCSP problem is closely related to the time-
bounded Kolmogorov complexity problem [5], [49].
Santhanam proves equivalence between OWFs and
errorless average-case hardness of MCSP under a
new (and somewhat complicated) conjecture that
he introduces. We emphasize that, in contrast, our
equivalence is unconditional.

On Worst-case to Average-case Reductions for KP°Y-
complexity: We highlight a very elegant recent result by
Hirahara [27] that presents a worst-case (approximation)
to average-case reduction for KP°Y-complexity. Unfor-
tunately, his result only gives average-case hardness
w.rI.t. errorless heuristics—namely, heuristics that always
provide either the correct answer or output L (and
additionally only output L with small probability). For
our construction of a OWF, however, we require average-
case hardness of K* also with respect to heuristics that
may err (with small probability). Santhanam [44], inde-
pendently, obtains a similar result for a related problem.

Hirahara notes that it is an open problem to obtain
a worst-case to average-case reduction for KP°Y wir.t.
heuristics that may err. Let us emphasize that average-
case hardness w.r.t. errorless heuristics is a much weaker
property that just “plain” average-case hardness (with
respect to heuristics that may err): Consider a random
3SAT formula on n variables with 10007 clauses. It is
well-known that, with high probability, the formula is not
be satisfiable. Thus, there is a trivial heuristic algorithm
for solving 3SAT on such random instances by simply
outputting “No”. Yet, the question of whether there exists
an efficient errorless heuristic for this problem is still
open, and non-existence of such an algorithm is implied
by Feige’s Random 3SAT conjecture [14].

On Universal Extrapolation: Impagliazzo and
Levin [30] consider a problem of universal extrapolation:
Roughly speaking, extrapolation with respect to some
polynomial-time Turing machine M requires, given
some prefix string x,,.., sampling a random continuation
Tpost such that M (on input a random tape) generates
Tpre||Tpost- Universal extrapolation is said to be
possible if all polynomial-time Turing machines can be
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extrapolated. Impagliazzo and Levin demonstrate the
equivalence of one-way functions and the infeasibility
of universal extrapolation.

As suggested by an anonymous FOCS reviewer, uni-
versal extrapolation seems related to time-bounded Kol-
mogorov complexity: Extrapolation with respect to a
universal Turing machine should, intuitively, be equiv-
alent to approximating KP°Y (for random string z) by
counting the number of possible continuations x4 to
a prefix x,,.. of z: Strings with small KP°Y-complexity
should have many possible continuation, while strings
with large KP°Y-complexity should have few.

While this method may perhaps be used to obtain an
alternative proof of one direction (existence of one-way
function from hardness of KP°Y) of our main theorem,
as far as we can tell, the actual proof is non-trivial and
would result in a significantly weaker conclusion than
what we obtain: It would only show that average-case
hardness of approximating KP°Y implies infeasibility
of universal extrapolation and thus one-way functions,
whereas we show that even average-case hardness of
exactly computing KP°Y implies the existence of one-
way functions.

For the converse direction, the infeasibility of uni-
versal extrapolation only means that there exists some
polynomial-time Turing machine M that is hard to ex-
trapolate, and this M is not necessarily a universal Turing
machine. It is not a-priori clear whether infeasibility
of extrapolation w.r.t. some M implies infeasibility of
extrapolation w.r.t. a universal Turing machine.

A direct corollary of our main theorem is a formal con-
nection between universal extrapolation and average-case
hardness of KP°Y: Infeasibility of universal extrapolation
is equivalent to mild average-case hardness of KP°Y
(since by [30], infeasibility of universal extrapolation is
equivalent to the existence of one-way functions).

B. Proof outline

We provide an outline for the proof of Theorem 1.

OWFs from Avg-case KP°Y-Hardness: We show that
if Kt is mildly average-case hard for some polynomial
t(n) > 0, then a weak one-way function exists®; the
existence of (strong) one-way functions then follows
by Yao’s hardness amplification theorem [50]. Let c
be a constant such that every string x can be output
by a program of length |z| + ¢ (running on the fixed
Universal Turing machine U). Consider the function
f(£]|IT"), where £ is a bitstring of length log(n+c) and I’
is a bitstring of length 1+ ¢, that lets II be the first £ bits

3Recall that an efficiently computable function f is a weak OWF if
there exists some polynomial ¢ > 0 such that f cannot be efficiently
inverted with probability better than 1 — for sufficiently large n.

q(n)
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of IT', and outputs ||y where y is the output generated
by running the program IT* for #(n) steps.’

We aim to show that if f can be inverted with
high probability—significantly higher than 1 — 1/n—
then K'-complexity of random strings z € {0,1}" can
be computed with high probability. Our heuristic H,
given a string z, simply tries to invert f on ¢||z for
all ¢ € [n + ], and outputs the smallest ¢ for which
inversion succeeds.® First, note that since every length
¢ € [n+ ] is selected with probability 1/(n + ¢), the
inverter must still succeed with high probability even
if we condition the output of the one-way function on
any particular length ¢ (as we assume that the one-
way function inverter fails with probability significantly
smaller than %). This, however, does not suffice to prove
that the heuristic works with high probability, as the
string y output by the one-way function is not uni-
formly distributed (whereas we need to compute the K-
complexity for uniformly chosen strings). But, we show
using a simple counting argument that y is not too “far”
from uniform in relative distance. The key idea is that for
every string z with K*-complexity w, there exists some
program II, of length w that outputs it; furthermore, by
our assumption on ¢, w < n + c. We thus have that
J(Un+ct10g(n+e)) Will output wl|z with probability at
least nic LoTw > ﬁ .9~ (nte) — % (we need to
pick the right length, and next the right program). So, if
the heuristic fails with probability J, then the one-way
function inverter must fail with probability at least %,
which leads to the conclusion that § must be small (as we
assumed the inverter fails with probability significantly
smaller than %).

Avg-case KP°Y-Hardness from EP-PRGs: To show
the converse direction, our starting point is the earlier
result by Kabanets and Cai [32] and Allender et al [5]
which shows that the existence of OWFs implies that
K'-complexity, for every sufficiently large polynomial
t(-), must be worst-case hard to compute. In more detail,
they show that if K*-complexity can be computed in
polynomial-time for every input x, then pseudo-random
generators (PRGs) cannot exist (and PRGs are implied

4Formally, the program/description IT is an encoding of a pair
(M, w) where M is a Turing machine and w is some input, and we
evaluate M (w) on the Universal Turing machine U.

SWe remark that although our construction of the function f is
somewhat reminiscent of Levin’s construction of a universal OWF,
the actual function (and even more so the analysis) is actually quite
different. Levin’s function f, roughly speaking, parses the input into a
Turing machine M of length log n and an input x of length n, and next
outputs M (z). As he argues, if a OWF f’ exists, then with probability
711, f will compute output f’(z) for a randomly selected z, and is thus
hard to invert. In contrast, in our candidate OWF construction, the key
idea is to vary the length of a “fully specified” program II (including
an input).

60r, in case, we also want to break the “constructive” KP°Y problem,
we also output the ¢-bit truncation of the program II’ output by the
inverter.

by OWF by [26]). This follows from the observations
that (1) random strings have high K*-complexity with
overwhelming probability, and (2) outputs of a PRG
always have small K®-complexity as long as t(n) is
sufficiently greater than the running time of the PRG (as
the seed plus the constant-sized description of the PRG
suffice to compute the output). Thus, using an algorithm
that computes K¢, we can easily distinguish outputs of
the PRG from random strings—simply output 1 if the
Kt-complexity is high, and O otherwise. This method,
however, relies on the algorithm working for every input.
If we only have access to a heuristic H for K t, we have
no guarantees that H will output a correct value when
we feed it a pseudorandom string, as those strings are
sparse in the universe of all strings.’

To overcome this issue, we introduce the concept of
an entropy-preserving PRG (EP-PRG). This is a PRG
that expands the seed by O(logn) bits, while ensuring
that the output of the PRG loses at most O(logn) bits of
Shannon entropy—it will be important for the sequel that
we rely on Shannon entropy as opposed to min-entropy.
In essence, the PRG preserves (up to an additive term
of O(logn)) the entropy in the seed s. We next show
that any good heuristic H for K* can break such an
EP-PRG. The key point is that since the output of the
PRG is entropy preserving, by an averaging argument,
there exists a 1/n fraction of “good” seeds S such that,
conditioned on the seed belonging to S, the output of
the PRG on input seeds of length n has min-entropy
n—0(logn). This means that the probability that # fails
to compute K* on output of the PRG, conditioned on
picking a “good” seed, can increase at most by a factor
poly(n). We conclude that H can be used to determine
(with sufficiently high probability) the K*-complexity for
both random strings and for outputs of the PRG.

EP-PRGs from Regular OWFs: We start by noting that
the standard Blum-Micali-Goldreich-Levin [11], [19]
PRG construction from one-way permutations is entropy
preserving. To see this, recall the construction:

Gy(s har) = f(s)llharllhar(s)

where f is a one-way permutation and h¢y, is a hardcore
function for f—by [19], we can select a random hardcore
function hgy that output O(logn) bits. Since f is a
permutation, the output of the PRG fully determines
the input and thus there is actually no entropy loss.
We next show that the PRG construction of [16], [18],
[26], [51] from regular OWFs also is an EP-PRG. We

7We note that, although it was not explictly pointed out, their
argument actually also extends to show that K* does not have an
errorless heuristic assuming the existence of PRGs. The point is that
even on outputs of the PRG, an errorless heuristic must output either a
small value or L (and perhaps always just output ). But for random
strings, the heuristic can only output L with small probability. Dealing
with heuristics that may err will be more complicated.
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refer to a function f as being r-regular if for every
x € {0,1}*, f(z) has between 27(#D=1 and 2r(z)
many preimages. Roughly speaking, the construction
applies pairwise independent hash functions (that act as
strong extractors) hi,hs to both the input and output
of the OWF (parametrized to match the regularity ) to
“squeeze” out randomness from both the input and the
output, and finally also applies a hardcore function that
outputs O(logn) bits:

t(s[ha|lh2|lhcr) = harllhillhal|
[hl(s)]T—O(logn)H[h2(f(5))}n—r—0(logn)‘|hGL(S)7 M

where [a]; means a truncated to j bits. As already shown
in [16] (see also [51]), the output of the function ex-
cluding the hardcore bits is actually 1/poly(n) -close to
uniform in statistical distance (this follows directly from
the Leftover Hash Lemma [26]), and this implies (using
an averaging argument) that the Shannon entropy of the
output is at least n—O(log n), thus the construction is an
EP-PRG. We finally note that this construction remains
both secure and entropy preserving, even if the input
domain of the function f is not {0, 1}", but rather any
set S of size 2" /n; this will be useful to us shortly.

Cond EP-PRGs from Any OWFs: Unfortunately, con-
structions of PRGs from OWFs [23], [24], [26], [28]
are not entropy preserving as far as we can tell. We,
however, remark that to prove that K? is mildly HoA,
we do not actually need a “full-fledged” EP-PRG: Rather,
it suffices to have what we refer to as a conditionally-
secure EP-PRG G a conditionally-secure EP-PRG (cond
EP-PRG) is an efficiently computable function G having
the property that there exists some event E such that:
1) G(Uy, | E) has Shannon entropy n’ — O(logn');
2) G(U,, | E) is indistinguishable from I, for some
m >n’ + O(logn').
In other words, there exists some event F such that
conditionned on the event E/, G behaves likes an EP-
PRG. We next show how to adapt the above construction
to yield a cond EP-PRG from any OWF f. Consider
G(i“s”hl, hg, hGL) = Gif(s, hl, hg, hGL) where |S| =
n, |i| = logn, and G;} is the PRG construction defined
in equation 1. We remark that for any function f, there
exists some regularity ¢* such that at least a fraction 1/n
of inputs z have regularity i*. Let S;« denote the set
of these z’s. Clearly, |S;«| > 2" /n; thus, by the above
argument, Gé: (Ups | Si=) is both pseudorandom and has
entropy n’ —O(log n’). Finally, consider the event F that
i =" and s € S;-. By definition, G (Uiog n |[Un||Um | E)
is identically distributed to Gl; (Ups | Si+), and thus G is
a cond EP-PRG from any OWEF. For clarity, let us provide
the full expanded description of the cond EP-PRG G:

G(il[s||P1l[h2]lhar) = haL||ha|[hel|
[hl (5)}i—0(log n) H[hQ(f(S))]n—i—O(log n) ‘ |hGL (5)

Note that this G is not a PRG: if the input ¢ # i*
(which happens with probability 1 — %), the output of
G may not be pseudorandom! But, recall that the notion
of a cond EP-PRG only requires the output of G to be
pseudorandom conditioned on some event E (while also
being entropy preserving conditioned on the same event
E).

Finally, the above outline only shows that K¢ is mildly
HoA if ¢(-) is larger than running time of the cond EP-
PRG that we constructed; that is, so far, we have only
shown that OWFs imply that K* is mildly HoA for some
polynomial ¢. To prove that this holds for every ¢(n) >
(1+¢&)n, e > 0, we remark that using a padding trick, we
can also construct a cond EP-PRG that can be computed
in time n + O(n®), where a < 1—we refer to this as a
rate-1 efficient PRG. Using such a rate-1 efficient cond
EP-PRG, we can show that K* is mildly HoA for every
t(n) > (1 +¢)n, e > 0.

II. PRELIMINARIES

We assume familiarity with basic concepts such as
Turing machines, polynomial-time algorithms and proba-
bilistic polynomial-time algorithms (PPT). A function p
is said to be negligible if for every polynomial p(-) there
exists some ng such that for all n > ng, p(n) < ﬁ. A
probability ensemble is a sequence of random variables
A ={A,}nen. We let U, the uniform distribution over

{0,1}".
A. One-way Functions

We recall the definition of one-way functions [13].
Roughly speaking, a function f is one-way if it is
polynomial-time computable, but hard to invert for PPT
attackers.

Definition 3. Let f : {0,1}* — {0, 1}* be a polynomial-
time computable function. f is said to be a one-way
function (OWF) if for every PPT algorithm A, there
exists a negligible function | such that for all n € N,

Prle « 0,1}y = f(a) : A", y) € F(f(@))] < ()

We may also consider a weaker notion of a weak
one-way function [50], where we only require all PPT
attackers to fail with probability noticeably bounded
away from 1:

Definition 4. Let f : {0,1}* — {0, 1}* be a polynomial-
time computable function. f is said to be a a-weak one-
way function (a-weak OWF) if for every PPT algorithm
A, for all sufficiently large n € N,

Prlz < {0,1}"y = f() : A", y) € 7 (f(2))] < 1-a(n)

We say that f is simply a weak one-way function (weak
OWF) if there exists some polynomial q > 0 such that f
isa ﬁ-weak OWE

1247

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:10:31 UTC from IEEE Xplore. Restrictions apply.



Yao’s hardness amplification theorem [50] shows that
any weak OWF can be turned into a (strong) OWE.

Theorem 5 ( [50]). Assume there exists a weak one-way
function. Then there exists a one-way function.

B. Time-bounded Kolmogorov Complexity

Let U be some fixed Universal Turing machine that
can emulate any Turing machine M with polynomial
overhead. Given a description II € {0,1}* which en-
codes a pair (M, w) where M is a (single-tape) Turing
machine and w € {0,1}* is an input, let U (IL, 1*) denote
the output of M (w) when emulated on U for ¢ steps.
Note that (by assumption that U only has polynomial
overhead) U(II, 1*) can be computed in time poly(d,t).

The t-time bounded Kolmogorov Complexity, K'(z),
of a string x [33], [34], [46], [49] is defined as the length
of the shortest description II such that U(IL, 1*) = x:

K'z)= min {|I|: U100y = 2},

Ime{0,1}~*

A central fact about K*-complexity is that the length of
a string x essentially (up to an additive constant) bounds
the K*-complexity of the string for every #(n) > 0 [12],
[34], [48] (see e.g., [47] for simple treatment). This fol-
lows by considering IT = (M, z) where M is a constant-
length Turing machine that directly halts; consequently,
M simply outputs its input and thus M (z) = z.

Fact 1. There exists a constant c such that for every
function t(n) > 0 and every x € {0,1}* it holds that
Ki(z) <|z| +c

C. Average-case Hard Functions

We turn to defining what it means for a function to be
average-case hard (for PPT algorithms).

Definition 6. We say that a function f : {0,1}* —
{0,1}* is «(-) hard-on-average (a-HoA) if for all PPT
heuristic H, for all sufficiently large n € N,

Priz + {0,1}" : H(z) = f(z)] < 1 —a(|n]|)

In other words, there does not exist a PPT “heuristic”
‘H that computes f with probability 1—c(n) for infinitely
many n € N. We also consider what it means for a
function to be average-case hard to approximate.

Definition 7. We say that a function f : {0,1}* —
{0,1}* is « hard-on-average (a-HoA) to f(:)-
approximate if for all PPT heuristic H, for all suffi-
ciently large n € N,

Prlz « {0, 1}" : [H(z) - f(z)| < B(|z)] <1 = a(|n])

In other words, there does not exists a PPT heuristic
H that approximates f within a 8(-) additive term, with
probability 1 — a(n) for infinitely many n € N.

Finally, we refer to a function f as being mildly HoA
(resp HoA to approximate) if there exists a polynomial
p(-) > 0 such that f is ﬁ—HoA (resp. HoA to
approximate).

D. Computational Indistinguishability

We recall the definition of (computational) indistin-
guishability [20].

Definition 8. Two ensembles {A, }nen and {B,,}nen
are said to be p(-)-indistinguishable, if for every proba-
bilistic machine D (the “distinguisher”) whose running
time is polynomial in the length of its first input, there
exists some ng € N so that for every n > ngy:

IPr[D(", A,) = 1] — Pr[D(1", B,) = 1]| < p(n)

We say that are {A,}nen and {By}nen simply indis-
tinguishable if they are ﬁ-indistinguishable for every
polynomial p(-).

E. Statistical Distance and Entropy

For any two random variables X and Y defined over
some set V, we let SD(X,Y) = +Y° ., |Pr[X =
v] — Pr[Y = v]| denote the statistical distance between
X and Y. For a random variable X, let H(X) =
Ellog m] denote the (Shannon) entropy of X, and
let Hoo(X) = mingegupp(x) log m denote the
min-entropy of X.

We next demonstrate a simple lemma showing that
any distribution that is statistically close to random, has
very high Shannon entropy.

Lemma 2. For every n > 4, the following holds.
Let X be a random variable over {0,1}"™ such that
SD(X,U,) < n—lz Then H(X,) >n — 2.

Proof: Let S = {z € {0,1}" : Pr[X = 2] <
2-("=1)}. Note that for every = ¢ S, = will contribute
at least

% (Pr[X = 2] — Pr[U,, = 2])

z% (Pr[X _g o PX = ’3]> _ Pr[X =4

to SD(X,U,,). Thus,

1
PrlX ¢ 5] <4 —.

Since for every = € S, logm > n — 1 and the
probability that X € S is at least 1 — 4/n?, it follows

that

H(X) > Pr[X € S|(n—1) > (17%)(%1) > n%q > n—2.
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III. THE MAIN THEOREM

Theorem 9. The following are equivalent:

(a) The existence of one-way functions.

(b) The existence of a polynomial t(n) > 0 such that
K is mildly hard-on-average.

(¢) For all constants d > 0, > 0, and every polyno-
mial t(n) > (14¢)n, K* is mildly hard-on-average
to (dlogn)-approximate.

We prove Theorem 9 by showing that (b) implies (a)
(in Section IV) and next that (a) implies (c) (in Section
V). Finally, (c) trivially implies (b).

Note that a consequence of 9 is that for every poly-
nomial ¢(n) > (1+¢)n, where € > 0 is a constant t(n),
mild average-case hardness of K' is equivalent to the
existence of one-way functions.

IV. OWFS FROM MILD AVG-CASE K*-HARDNESS
In this section, we state our main theorem.

Theorem 10. Assume there exist polynomials t(n) >
0,p(n) > 0 such that K* is pll -HoA. Then there exists
a weak OWF f (and thus also a OWF).

Proof: Let ¢ be the constant from Fact 1. Consider
the function f : {0, 1} Fetlos(nta)l 5 1 11+ which
given an input £||II" where |¢| = [log(n+c)]| and |II'| =
n4-c, outputs £||U (I, 1*(")) where IT is the ¢-bit prefix of
IT'. This function is only defined over some input lengths,
but by an easy padding trick, it can be transformed into
a function f’ defined over all input lengths, such that if
f is (weakly) one-way (over the restricted input lengths),
then f’ will be (weakly) one-way (over all input lengths):
f'(2") simply truncates its input 2’ (as little as possible)
so that the (truncated) input £ now becomes of length
m=n+c+ [log(n+c)] for some n and outputs f(z).

We now show if K is m )-HOA then fisa ﬂ-weak
OWF, where g(n) = 2%*3np(n)?, which concludes
the proof of the theorem. Assume for contradiction
that f is not a —~-weak OWF. That is, there exists
some PPT attacker A that inverts f with probability
at least 1 — q% < 1-a9 for infinitely many
m = n + ¢+ [log(n + ¢)]. Fix some such m, n > 2.
By an averaging argument, except for a fraction 5—— of
random tapes r for A, the deterministic machine /{J (e,
machine A with randomness fixed to r) fails to invert f
with probability at most 2}’ (:) Fix some such “good”
randomness 7 for which fi succeeds to invert f with
probability 1 — 2&%).

We next show how to use A, to compute K! with
high probability over random inputs z € {0,1}". Our
heuristic H,.(z) runs A, (i||z) for all i € [n + ¢] where
i is represented as a [log(n + ¢)] bit string, and outputs
the length of the smallest program IT output by A, that
produces the string z within ¢(n) steps. Let S be the set
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of strings z € {0, 1}"™ for which #,.(z) fails to compute
K'(z). Note that H, thus fails with probability

fail, = |2$7;‘ .

Consider any string z € S and let w = K'(z) be its
K'-complexity. By Fact 1, we have that w < n + c.
Since H,(z) fails to compute K*(z), A, must fail to
invert (w||z). But, since w < n + ¢, the output (w||z) is
sampled with probability

1 1 1 1
n+c Qw — (Tl+C) 27L+C —

1
n22(:+1 ’

1
2 n

in the one-way function experiment, so .4, must fail with
probability at least

1
n22ctl

1 IS|  fail,
on on T p22etl
which by assumption (that A, is a good inverter) is at

most that p((") We thus conclude that

1
T p92ctl

|51 -

220+2np(n)
q(n)

Finally, by a union bound, we have that H (using a
uniform random tape 7) fails in computing K! with
probability at most

fail, <

1 22¢t2np(n) 1 22¢t2np(n) 1
2p(n) q(n) 2p(n) = 2¢F3np(n)®  p(n)
Thus, H computes K¢ with probability 1 — for

(ﬂ)
1nﬁn1tely many n € N, which contradicts the assumption

that K? is ﬁ—HoA [ ]

V. MILD AVG-CASE K*-HARDNESS FROM OWFS

We introduce the notion of a (conditionally-secure)
entropy-preserving pseudo-random generator (EP-PRG)
and next show (1) the existence of a condEP-PRG im-
plies that K* is hard-on-average (even to approximate),
and (2) OWFs imply condEP-PRGs.

A. Entropy-preserving PRGs

We start by defining the notion of a conditionally-
secure entropy-preserving PRG.

Definition 11. An efficiently computable function G :
{0,1}" — {0, 1}"+71en js g p(-)-conditionally secure
entropy-preserving pseudorandom generator (p-condEP-
PRG) if there exist a sequence of events = {E,, } nen and
a constant « (referred to as the entropy-loss constant)
such that the following conditions hold:

« (pseudorandomness): {G(U,|E,)}nen
{Un4~10g n tnen are p(n)-indistinguishable;

« (entropy-preserving): For all sufficiently large n €
N, H(GU|Ey)) > n — alogn.

and
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If for all n, E, = {0,1}" (i.e., there is no condition-
ing), we say that G is an p-secure entropy-preserving
pseudorandom generator (u-EP-PRG).

We say that G has rate-1 efficiency if its running time
on inputs of length n is bounded by n+ O(n) for some
constant € < 1.

B. Avg-case K'-Hardness from Cond EP-PRGs

Theorem 12. Assume that for every ~ > 1, there
exists a rate-1 efficient p-condEP-PRG G : {0,1}" —
{0, 1} *718" where 1i(n) = 1/n%. Then, for every con-
stant d > 0,e > 0, for every polynomial t(n) > (14¢)n,
K is mildly hard-on-average to (dlogn)-approximate.

Proof: Let v > max(8,8d), and let G’ : {0,1}" —
{0,1}™ (™ where m/(n) = n + ylogn be a rate-1
efficient p-condEP-PRG, where 1 = 1/n?. For any
constant ¢, let G°(x) be a function that computes G’ ()
and truncates the last ¢ bits. It directly follows that G°¢
is also a rate-1 efficient u-condEP-PRG (since G’ is s0).
Consider any £ > 0 and any polynomial ¢(n) > (14+¢)n
and let p(n) = 2n2(@+t7+1),

Assume for contradiction that there exists some PPT
H that S-approximates K with probability 1 — ﬁ
for infinitely many m € N, where 3(n) = v/8logn >
dlogn. Since m’/(n+1)—m/(n) < y+1, there must exist
some constant ¢ < v + 1 such that H succeeds (to (-
approximate K*) with probability 1 — ﬁ for infinitely
many m of the form m = m(n) = n + ylogn — ¢
Let G(x) = G°(x); recall that G is a rate-1 efficient -
condEP-PRG (trivially, since G¢ is so0), and let o, { E,, },
respectively, be the entropy loss constant and sequence
of events, associated with it.

We next show that H can be used to break the
condEP-PRG . Towards this, recall that a random
string has high K*-complexity with high probability: for
m = m(n), we have,

Pr [K'(z)>m— %logn]

ze{0,1}m
om _ Qm—% logn 1
22—”’ =1- A )

since the total number of Turing machines with length
smaller than m — %logn is only gm—7logn However,
any string output by the EP-PRG, must have “low” K*
complexity: For every sufficiently large n,m = m(n),
we have that,
t g

LB KNG 2 m = Jlogn =0, ()
since G(s) can be represented by combining a seed s
of length n with the code of G (of constant length),
and the running time of G(s) is bounded by ¢(|s|) =
t(n) < t(m) for all sufficiently large n, so K*(G(s)) =
n+0(1)=(m—~vlogn+c)+O(1) <m—~/2logn
for sufficiently large n.

Based on these observations, we now construct a PPT
distinguisher A breaking G. On input 1", z, where = €
{0,137 A(1", z) lets w < H(x) and outputs 1 if
w > m(n) — 3vlogn and 0 otherwise. Fix some n and
m = m(n) for which H succeeds with probability ﬁ.
The following two claims conclude that A distinguishes
Upn(n) and G(U, | E,) with probability at least .

Claim 1. A(1™,U,,) outputs 1 with probability at least
1— 2

W

Proof: Note that A(1™, z) will output 1 if z is a
string with K ‘-complexity larger than m —+/4logn and
H outputs a /8 log n-approximation to K*(x). Thus,

Pr[A(1", z) = 1]
>Pr[K'(x) > m — v/4logn A H succeeds on x]
>1 — Pr[K'(z) < m — v/4logn] — Pr[H fails on z]

. 1
— n/t p(n)
2

where the probability is over a random z < U,,, and the
randomness of A and H. [ |

Claim 2. A(1",G(U,, | E,)) outputs 1 with probability
at most 1 — % + na%

Proof: Recall that by assumption, H fails to
(v/8logn)-approximate K®(z) for a random z €
{0,1}™ with probability at most T&n)' By an averaging
argument, for at least a 1 — # fraction of random
tapes r for H, the deterministic machine H, fails to
approximate K* with probability at most p?m). Fix some
“good” randomness 7 such thaQt ‘H, approximates K*
with probability at least 1 — %. We next analyze the
success probability of A,.. Assume for contradiction that
A, outputs 1 with probability at least 1 — % + n%w
on input G(U, | E,). Recall that (1) the entropy of
G(Uy, | Ey,) is at least n — alogn and (2) the quantity
—log Pr[G(U, | Ey) = y] is upper bounded by n for all
y € GU, | E,) since Huo(GUy, | En)) < Hoo(Uy, |
E,) < Hy(U,) = n. By an averaging argument, with
probability at least 1, a random y € G(U, | E,) will

satisfy

—log Pr[G(U, | Er) =y] > (n —alogn) — 1.

We refer to an output y satisfying the above condition
as being “good” and other y’s as being “bad”. Let S =
{y € GUy, | En) : A-(1™,y) = 1 Ay is good}, and let
S'={ye GU, | E,) : A.(1",y) = 1 Ay is bad}.
Since

Pr[Ar(ln,G(Un | En)) = 1]
=Pr[G(U, | E,) € S) +Pr[GU, | E,) € 5],
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and Pr[G(U,, | E,) € S’] is at most the probability that
G(U,) is “bad” (which as argued above is at most 1—1),
we have that

Pr(G(U, | E,) € 5]
Furthermore, since for every y € S, Pr[G(U, | E,) =

< 1 1 ) < 1
> — (1
y] < 27ntelosntl we also have,

n

1
n(x+'y :

L= T e

Pr[G(Uy | E,) € S] < |§|27nteloentt
So,

n—alogn—1
2 — 2n—(2a+'y) logn—1

|S| = noty
However, for any y € G(U,, | Ey), if A.(1",y) outputs
1, then by Equation 3, H,.(y) > K'(y) + 7/8, so H
fails to output a good approximation. (This follows, since
by Equation 3, K'(y) < n —~/2logn and A,(1",y)
outputs 1 only if H,(y) > n — 3vylogn.)

Thus, the probability that H, fails (to output a good
approximation) on a random y € {0,1}"™ is at least

X 1
> 9—2(at+y)logn—-1 _ =
2 on2(at+y)

2n—(2a+’v) logn—1
1S1/2™ = — g —

on+vylogn—c

which contradicts the fact tzhat ‘H., fails with approximate
K probability at most % < m (since n < m).

We conclude that for every good randomness 7, A,
outputs 1 with probability at most 1 — % + na%y Finally,
by union bound (and since a random tape is bad with
probability < #), we have that the probability that

A(GU, | E,)) outputs 1 is at most

1 1 1 1 <1 1 2
2\ Tt e ) Tt
since y > 2. |

We conclude, recalling that v > 8, that A distinguishes
Uy, and G(U,, | E,,) with probability of at least

2 1 2
(17m) - (=2 +5%)

2 1 2 1 4 1
>(1-2)-(1-2+2)=--S>—
_< n2> ( n+n2> n  n?2 " n?

for infinitely many n € N.

C. Cond EP-PRGs from OWFs

In this section, we show how to construct a condEP-
PRG from any OWEF. Towards this, we first recall the
construction of [16], [26], [51] of a PRG from a regular
one-way function [18].

Definition 13. A function f : {0,1}* — {0,1}* is called
regular if there exists a function r : N — N such that for
all sufficiently long x € {0,1}*

27Dt < |71 (f(a)| < 2709,
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We refer to r as the regularity of f.

As mentioned in the introduction, the construction pro-
ceeds in the following two steps given a OWF f with
regularity r.

o We “massage” f into a different OWF f having the
property that there exists some ¢(n) = n—O(logn)
such that f(Z/ln) is statistically close to Upg,)—
we will refer to such a OWF as being dense.
This is done by applying pairwise-independent hash
functions (acting as strong extractors) to both the
input and the output of the OWF (parametrized to
match the regularity r) to “squeeze” out randomness
from both the input and the output.

f(slloallor) = a1lloalllho, (8)lr—000g m 1o (£ (5))n-r—-000g m)

where [a]; means a truncated to j bits.

o We next modify f to include additional randomness
in the input (which is also revealed in the output)
to make sure the function has a hardcore function:

F(sllolloallocr) = oLl f(sllo]lor)

o We finally use f’ to construct a PRG G" by simply
adding the the Goldreich-Levin hardcore bits [19],
GL, to the output of the function f’:

G (sllorllozlloar) = f'(sllorllozlloar)[|GL(sllou]lo2, 0cr))

We note that the above steps do not actually produce a
“fully secure” PRG as the statistical distance between the
output of f(2,,) and uniform is only ﬁn) as opposed
to being negligible. [16] thus presents a final amplifica-
tion step to deal with this issue—for our purposes it will
suffice to get a m indistinguishability gap so we will
not be concerned about the amplification step.

We remark that nothing in the above steps requires
f to be a one-way function defined on the domain
{0,1}"— all three steps still work even for one-way
functions defined over domains S that are different
than {0,1}", as long as a lower bound on the size
of the domain is efficiently computable (by a minor
modification of the construction in Step 1 to account
for the size of S). Let us start by formalizing this fact.

Definition 14. Letr S = {S,,} be a sequence of sets
such that S,, C {0,1}" and let f : S, — {0,1}* be
a polynomial-time computable function. f is said to be
a one-way function over S (S-OWF) if for every PPT
algorithm A, there exists a negligible function p such
that for all n € N,

Prlz « Sniy = f(z) - A1, y) € F7(f(2))] < p(n)

We refer to [ as being regular if it satisfies Definition 13
with the exception that we only quantify over all n € N
and all x € S, (as opposed to all x € {0,1}").
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We say that a family of functions {f;}icr is efficiently
computable if there exists a polynomial-time algorithm
M such that M (i, z) = fi(z).

Lemma 3 (implicit in [16], [51]). Ler S = {S,} be
a sequence of sets such that S,, C {0,1}", let s be an
efficiently computable function such that s(n) < log|Sy|,
and let f be an S-OWF with regularity r(-). Then, there
exists a constant ¢ > 1 such that for every o/,v > 0,
there exists an efficiently computable family of functions
{fl}ien, and an efficiently computable function GL,
such that the following holds for ¢(n) = s(n) + 3n¢ —
2a’ logm, ¢'(n) = 4(n) ++'logn:
o density: For all sufficiently large n, the distribu-
tions
- {z « S,,01,00,0aL + {0,1}" : ;(n)(x,
01,092,0G6L)}, and
= Uyn)

are ﬁ-close in statistical distance.
o pseudorandomness: The ensembles of distribu-
tions,
- {z « S,,01,02,0¢r < {0,1}" : ;(n)(m‘,
01,02, UGL)HGL(Za 01,02, O-GL)}nEN, and
- {Urw) }pen

are -indistinguishable.

4
ne’/2

Proof: Given a r(-)-regular S-OWF f, the construc-
tion of f’ has the form

f'(sllorllorllogr) = ogilloil|oz|]
[Py (8)]r—a10g nll[Pios (f(s))]s(n),r,a/ logn

where |z| = n,|o1] = |o2] = |o.] = n¢ and

GL(z,01,02,0¢1) is simply the Goldreich-Levin hard-
core predicate [19] outputting ~'logn inner products
between z and vectors in ogr. The function f/ thus
maps n' = n + 3n° bits to 3n° + s(n) — 2a’ log n bits,
and once we add the output of GL, the total output length
becomes 3n°+s(n)—2a’ log n+v' log n as required. The
proof in [16], [51] directly works to show that {f;}, GL
satisfy the requirements stated in the theorem. ® ]

We additionally observe that every OWF actually is a
regular S-OWFs for a sufficiently large S.

Lemma 4. Let f be an one way function. There exists an
integer function r(-) and a sequence of sets S = {S,}
such that S, C {0,1}", |S,| > 27", and f is a S-OWF
with regularity r.

Proof: The following simple claim is the crux of
the proof:

Claim 3. For every n € N, there exists an integer r,, €
[n] such that

Prle — {0,1}" : 27 < {7 (f(@)]) < 2] > .

3

8We refer the reader to the full version for a detailed proof.

Proof: For all i € [n], let
w(i) = Prlz « {0,1}" : 27 < [f7H(f(2)] < 27].

Since for all x, the number of pre-images that map to
f(z) must be in the range of [1,2"], we know that
7, w(i) = 1. By an averaging argument, there must
exists such r,, that w(r,) > % [ |

Let r(n) = r, for every n € N, S, = {z €
{0,137+ 2701 < [F1(f(2))] < 277]}: regularity
of f when the input domain is restricted to S follows
directly. It only remains to show that f is a S-OWF;
this follows directly from the fact that the set .S, are
dense in {0, 1}. More formally, assume for contradiction
that there exists a PPT algorithm A that inverts f with
probability e(n) when the input is sampled in S,,. Since
|Sp| > 27 it follows that A can invert f with probability
at least £(n)/n over uniform distribution, which is a
contradiction (as f is a OWF). [ |

By combining Lemma 3 and Lemma 4, we can directly
get an EP-PRG defined over a subset S. We next turn
to showing how to instead get a p-conditionally secure
EP-PRG that is defined over {0, 1}". The formal proof
appears in the full version and we only give the statement
of the theorem as below.

Theorem 15. Assume that one way functions exist.
Then, there exists a polynomial to(-) such that for
every v > 1,0 > 1, there exists a (%)-condEP-PRG
G5, {0, 1} — {0, 1} 718" with running time
bounded by (v + 0)to(n).

We now use a standard padding trick to obtain a rate-
1 efficient p-cond EP-PRG: we simply output the first
n — { bits unchanged, and next apply a cond EP-PRG on
the last £ bits. Since we only have a cond EP-PRG that
satisfies inverse polynomial (as opposed to negligible)
indistinguishability, we need to be a bit careful with the
choice of the parameters. The formal proof appears in
the full version and we only give the statement of the
theorem as below.

Theorem 16. Assume that one way functions exist. Then,
for every v > 1, there exists a rate-1 efficient p-cond
EP-PRG G, : {0,1}" — {0, 1}" 718" yphere p(n) =
1/n2.
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