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Abstract—Consider the following two fundamental open
problems in complexity theory:

« Does a hard-on-average language in NP imply the exis-
tence of one-way functions?

« Does a hard-on-average language in NP imply a hard-
on-average problem in TFNP (i.e., the class of tofal NP
search problem)?

Our main result is that the answer to (at least) one of these
questions is yes.

Both one-way functions and problems in TFNP can be in-
terpreted as promise-true distributional NP search problems—
namely, distributional search problems where the sampler only
samples frue statements. As a direct corollary of the above
result, we thus get that the existence of a hard-on-average
distributional NP search problem implies a hard-on-average
promise-true distributional NP search problem. In other words,

It is no easier to find witnesses (a.k.a. proofs)
for efficiently-sampled statements (theorems) that are
guaranteed to be true.

This result follows from a more general study of in-
teractive puzzles—a generalization of average-case hardness
in NP—and in particular, a novel round-collapse theorem
for computationally-sound protocols, analogous to Babai-
Moran’s celebrated round-collapse theorem for information-
theoretically sound protocols. As another consequence of this
treatment, we show that the existence of O(1)-round public-
coin non-trivial arguments (i.e., argument systems that are not
proofs) imply the existence of a hard-on-average problem in
NP /poly.

I. INTRODUCTION

Even if NP # P, it could be that in practice, NP problems
are easy in the sense that the problems we encounter in
“real life” come from some distribution that make them easy
to solve. The complexity-theoretic study of average-case
hardness of NP problems addresses this problem [1], [2], [3],
[4]. A particularly appealing abstraction of an average-case
analog of NP # P was provided by Gurevich in his 1989
essay [5] through his notion of a Challenger-Solver Game."
Consider a probabilistic polynomial-time Challenger C' who
samples an instance = and provides it to the Solver S. The
solver .S is supposed to find a witness to x and is said to win
if either (1) the statement x chosen by the challenger is false,
or (2) S succeeds in finding a witness w for x. We refer to
the Challenger-Solver game as being hard if no probabilistic

'Gurevich actually outlines several classes of Challenger-Solver games;
we here outline one particular instance of it, focusing on NP search
problems.
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polynomial-time (PPT) solver succeeds in winning in the
game with inverse polynomial probability. (In other words,
such a game models a hard-on-average distributional search
problem in NP.) The existence of a hard Challenger-Solver
game means that there exists a way to efficiently sample
mathematical statements x that no computationally bounded
mathematician can find proofs for. (Impagliazzo [6] con-
siders a similar type of game between Professor Grauss and
young Gauss, where Professor Grauss is trying to embarrass
Gauss by picking mathematical problems that Gauss cannot
solve.)

But, an unappealing aspect of a Challenger-Solver game
(which already goes back to the definition of distributional
search problems [3]) is that checking whether the solver
wins cannot necessarily be efficiently done, as it requires
determining whether the sampled instance x is in the lan-
guage. Does it make the problem easier if we restrict the
challenger to always sample true statements x?> In other
words, “Is it easier to find proofs for efficiently-sampled
mathematical statements that are guaranteed to be true?”
In complexity-theoretic terms:

Does the existence of an hard-on-average distribu-
tional search problem in NP imply the existence of
a hard-on-average distributional search problem
where the sampler only samples true statements?

We refer to distributional search problems where the sampler
only samples true statements as promise-true distributional
search problems. The above question, and the notion of
a promise-true distributional search problems, actually pre-
dates the formal study of average-case complexity: It was
noted already by Even, Selman and Yacobi [7] in 1984 that
for typical applications of (average-case) hardness for NP
problems—in particular, for cryptographic applications—we
need hardness for instances that are “promised” to be true.
As they noted (following [8]), in the context of public-
key encryption, security is only required for ciphertexts that
are sampled as valid encryptions of some message. (This
motivated [7] to introduce the concept of a promise problem;
see also [11] for further discussion on this issue and the

20r equivalently, to distributions where one can efficiently check when
the sampler outputs a false instance.

3 As remarked in [8], these type of “problems with a promise” can be
traced back even further: they are closely related to what was referred to
as a “birdy” problem in [9] and a “partial algorithm problem” in [10], in
the study of context-free languages
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connection to average-case complexity.)

Intuitively, restricting to challengers that only sample true
statements ought to make the job of the challenger a lot
harder—it now needs to be sure that the sampled instance
is true. There are two natural methods for the challenger to
achieve this task:

(a) sampling the statement x together with a witness w (as
this clearly enables the challenger to be sure that x is
true); and,

(b) restricting to NP languages where every statement is
true.

As noted by Impagliazzo [5], [6], the existence of a
challenger-solver game satisfying restriction (a) is equivalent
to the existence of one-way functions.* But whether the
existence of a hard-on-average language in NP implies
the existence of one-way functions is arguably the most
important open problem in the foundations of Cryptography:
One-way functions are both necessary [12] and sufficient for
many of the central cryptographic tasks (e.g., pseudorandom
generators [13], pseudorandom functions [14], private-key
encryption [15], [16]). As far as we know, there are only two
approaches towards demonstrating the existence of one-way
functions from average-case NP hardness: (1) Ostrovsky and
Wigderson [17] demonstrate such an implication assuming
that NP has zero-knowledge proofs [18], (2) Komargodski
et al. [19] demonstrate the implication (in fact, an even
stronger implication, showing worst-case hardness of NP
implies one-way functions) assuming the existence of in-
distinguishability obfuscators [20]. Both of these additional
assumptions are not known to imply one-way functions
on their own (in fact, they are unconditionally true if
NP C BPP).

A hard challenger-solver game satisfying restriction (b),
on the other hand, is syntactically equivalent to a hard-on-
average problem in the class TFNP [21]: the class TFNP
(total function NP) is the search analog of NP with the
additional guarantee that any instance has a solution. In other
words, TFNP is the class of search problems in NP N coNP
(i.e., F(NP N coNP)). In recent years, TFNP has attracted
extensive attention due to its natural syntactic subclasses
that capture the computational complexity of important
search problems from algorithmic game theory, combinato-
rial optimization and computational topology—perhaps most
notable among those are the classes PPAD [22], [23], which
characterizes the hardness of computing Nash equilibrium
[24], [25], [26], and PLS [27], which characterizes the
hardness of local search. A central open problem is whether

4That is, a function f that can be computed in polynomial time but
cannot be efficiently inverted. Such a function f directly yields the desired
sampling method: pick a random string r and let z = f(r) be the statement
and r the witness. Conversely, to see why the existence of such a sampling
method implies a one-way function, consider the function f that takes
the random coins used by the sampling method and outputs the instance
generated by it.

(average-case) NP hardness implies (average-case) TFNP
hardness. A recent elegant result by Hubacek, Naor, and Yo-
gev [28] shows that under certain strong “derandomization”
assumptions [29], [30], [31], [32]—the existence of Nisan-
Wigderson (NW) [29] type pseudorandom generators that
fool circuits with oracle gates to languages in the second
level of the polynomial hierarchy’—(almost everywhere)
average-case hardness of NP implies average-case hardness
of TFNP.® Hubacek et al. also present another condition
under which TFNP is average-case hard: assuming the
existence of one-way functions and non-interactive witness
indistinguishable proofs (NIWI) [33], [34], [32] for NP.

The above mentioned works thus give complexity-
theoretic assumptions (e.g., the existence of zero-knowledge
proofs for NP, or strong derandomization assumption) under
which the above problem has a positive resolution. But these
assumptions are both complex and strong.

Our main result provides a resolution to the above prob-
lem without any complexity-theoretic assumption:’

Theorem 1.1 (Informally stated). The existence of an
almost-everywhere hard-on-average language in NP® im-
plies the existence of a hard-on-average promise-true dis-
tributional search problem in NP.

In fact, we demonstrate an even stronger statement. Per-
haps surprisingly, we show that without loss of generality,
the sampler/challenger of the distributional search problem
needs to satisfy one of the above two “natural” restrictions:

Theorem 1.2 (Informally stated). The existence of an
almost-everywhere hard-on-average language in NP implies
either (a) the existence one-way functions, or (b) a hard-on-
average TFENP problem.

In other words, in Impagliazzo’s Pessiland [6] (a world
where NP is hard-on-average, but one-way functions do not
exist), TFNP is unconditionally hard (on average).

Towards proving this result, we consider an alternative
notion of a Challenger-Solver game, which we refer to
as a Interactive Puzzle. Roughly speaking, there are 2

SSuch PRGs are known under the assumption that E =
DTIME[2O(">} has no 2" sized Ils-circuits, for all € > 0, where a
II2-circuit is a standard circuit that can additionally perform oracle queries
to any language L € Il (i.e., any language in the second level of the
polynomial hierarchy).

6[28] also show that average-case hardness of NP implies an average-
case hard problem in TFNP /poly (i.e,, TENP with a non-uniform veri-
fier). In essence, this follows since non-uniformity enables unconditional
derandomization.

7Pedantically, it is not a fully complete resolution as we start with
an almost-everywhere hard problem and only get an infinitely-often hard
problem. But, except for this minor issue, it is a complete resolution. We
also note that earlier results [17], [28] also require starting off with an
almost-everywhere hard-on-average language in NP.

8That is, a language in NP such that for every § > 0, no PPT attacker
A can decide random instances with probability greater than % + ¢ for
infinitely many (as opposed to all) n € N. Such an “almost-everywhere”
notion is more commonly used in the cryptographic literature.
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differences: (1) whether the solver wins should always be
computationally feasible to determine, and (2) we allow for
more than just 2 rounds of interaction. As we hope to convey,
the study of interactive puzzles is intriguing in its own right
and yields other applications.

A. Interactive Puzzles

We initiate a complexity-theoretic study of interactive
puzzles: 2-player interactive games between a polynomial-
time challenger C and a Solver/Attacker’ satisfying the
following properties:

o Computational Soundness: There does not exist a
probabilistic polynomial-time (PPT) attacker A* and
polynomial p such that A*(1™) succeeds in making
C(1™) output 1 with probability Tln) for all sufficiently
large n € N.

Completeness/Non-triviality: There exists a negligible
function p and an inefficient attacker A that on input
1™ succeeds in making C(1™) output 1 with probability
1 —p(n) forall n € N.

Public Verifiability: Whether C accepts should just be
a deterministic function of the transcript.

In other words, (a) no polynomial-time attacker, A*, can
make C output 1 with inverse polynomial probability, yet
(b) there exists a computationally unbounded attacker A
that makes C' output 1 with overwhelming probability. We
refer to C as a k(-)-round computational puzzle (or simply a
k(-)-round puzzle) if C satisfies the above completeness and
computational soundness conditions, while restricting C(1")
to communicate with A in k(n) rounds. In this work, we
mostly restrict our attention to public-coin puzzles, where
the Challenger’s messages are simply random strings.

As an example of a 2-round public-coin puzzle, let f be
a one-way permutation and consider a game where C(1™)
samples a random y € {0,1}" and requires the adversary
to output a preimage = such that f(z) = y. Since f is
a permutation, this puzzle has “perfect” completeness—an
unbounded attacker A can always find a pre-image z. By
the one-wayness of f (and the permutation property of f),
we also have that no PPT adversary A4* can find such an
x (with inverse polynomial probability), and thus soundness
holds. If however, f had only been a one-way function and
not a permutation, then we can no longer sample a uniform
y, but rather must have C first sample a random = and next
output y = f(x). This 2-round puzzle does not satisfy the
public-coin property, but it still have perfect completeness.

Its not hard to see that the existence of 2-round (public-
coin) puzzles is “essentially” equivalent to the existence of
an average-case hard problem in NP: any 2-round public-
coin puzzle trivially implies a hard-on-average search prob-
lem (w.r.t. the uniform distribution) in NP and thus by

9Following the nomenclature in the cryptographic literature, we use the
name Attacker instead of Solver.
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[4] also a hard-on-average decision problem in NP. Fur-
thermore, “almost-everywhere” hard-on-average languages
in NP also imply the existence of a 2-round puzzle (by
simply sampling many random instances x and asking the
attacker to provide a witness for at least, say, 1/3 of the
instances).'?

Proposition 1.1 (informally stated). The existence of an
(almost-everywhere) hard-on-average language in NP im-
plies the existence of a 2-round puzzle. Furthermore, the
existence of a 2-round puzzle implies the existence of a hard-
on-average language in NP.

Thus, 2-round puzzles are “morally” (up to the infinitely-
often/almost-everywhere issue) equivalent to the existence of
a hard-on-average language in NP. As such, k(-)-round puz-
zles are a natural way to generalize average-case hardness
in NP. Additionally, natural restrictions of 2-round puzzles
capture natural subclasses of distributional problems in NP:

« the existence of a hard-on-average problem in TFNP
is syntactically equivalent to the existence of a 2-round
public-coin puzzle with perfect completeness.

the existence of a hard-on-average promise-true distri-
butional search problem is syntactically equivalent to
a 2-round (private-coin) puzzle with perfect complete-
ness.

While the game-based modeling in the notion of a puzzle
is common in the cryptographic literature—most notably, it
is commonly used to model cryptographic assumptions [35],
[36], [37], complexity-theoretic consequences or properties
of puzzles have remained largely unexplored.

B. The Round-Complexity of Puzzles

Perhaps the most basic question regarding the existence
of interactive puzzles is whether the existence of a k-round
puzzle is actually a weaker assumption than the existence
of a k —1 round puzzle. In particular, do interactive puzzles
actually generalize beyond just average-case hardness in NP:

Does the existence of a k-round puzzle imply the
existence of (k — 1)-round puzzle?

We here focus our attention only on public-coin puzzles.
At first sight, one would hope the classic “round-reduction”
theorem due to Babai-Moran (BM) [16] can be applied to
collapse any O(1)-round puzzle into a 2-round puzzle (i.e.,
a hard-on-average NP problem). Unfortunately, while BM’s
round reduction technique indeed works for all information-
theoretically sound protocols, Wee [38] demonstrated that
BM’s round reduction fails for computationally sound pro-
tocols. In particular, Wee shows that black-box proofs of
security cannot be used to prove that BM’s transformation

10The reason we need the language to be almost-everywhere hard-on-
average is to guarantee that YES instances exists for every sufficiently
large input length, or else completeness would not hold.
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preserves soundness even when applied to just 3-round pro-
tocols, and demonstrates (under computational assumptions)
a concrete 4-round protocol for which BM’s round-reduction
results in an unsound protocol.

As BM’s round reduction is the only known round-
reduction technique (which does not rely on any assump-
tions), it was generally conjectured that the existence of a
k-round puzzle is a strictly stronger assumption than the
existence of a (k + 1)-round puzzle—in particular, this
would imply the existence of infinitely many worlds between
Impagliazzo’s Pessiland and Heuristica [6] (i.e., infinitely
many worlds where NP # P yet average-case NP hardness
does not exist). Further evidence in this direction comes
from a work by Gertner et al. [39] which shows a black-
box separation between k-round puzzles and (k + 1)-round
puzzles for a particular cryptographic task (namely that of
a key-agreement scheme).!!

In contrast to the above negative results, our main tech-
nical result provides an affirmative answer to the above
question—we demonstrates a round-reduction theorem for
puzzles.

Theorem L.3 (informally stated). For every constant c, the
existence of a k(-)-round public-coin puzzle is equivalent to
the existence of a (k(-) — c¢)-round public-coin puzzle.

In particular, as corollary of this result, we get that the
assumption that a O(1)-round public-coin puzzle exists is
not weaker than the assumption that average-case hardness
in NP exists:

Corollary 1.4 (informally stated). The existence of an O(1)-
round puzzle implies the existence of a hard-on-average
problem in NP.

Perhaps paradoxically, we strongly rely on BM’s round
reduction technique, yet we rely on a non-black-box security
analysis. Our main technical lemma shows that if infinitely-
often one-way functions'> do not exist (i.e., if we can invert
any function for all sufficiently large input lengths), then
BM’s round reduction actually works:

Lemma 1.2 (informally stated). Either infinitely-often one-
way functions exist, or BM’s round-reduction transformation
turns a k(-)-round puzzle into a (k(-) — 1)-round puzzle.

We provide a proof outline of Lemma 1.2 in Section I-E. The
proof of Theorem 1.3 now easily follows by considering two
cases:

The example from [39] isn’t quite captured by our notion of a
computational puzzle as their challenger is not public coin.

12Recall that a one-way function f is a function that is efficiently
computable, yet there does not exist a PPT attacker A and polynomial
p(+) such that A inverts f with probability ﬁ for infinitely many inputs
lengths n € N. A function f is infinitely often one-way if the same
conditions hold except that we onl%/ require that no PPT attacker A succeeds
in inverting f with probability ) for all sufficiently large n € N—i.e.,
it is hard for invert f “infinitely often”
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Case 1: (Infinitely-often) one-way functions ex-
ists. In such a world, we can rely on Rompel’s
construction of a universal one-way hash function
[40], [41] to get a 2-round puzzle.

Case 2: (Infinitely-often) one-way functions does
not exist. In such a world, by Lemma 1.2, BM’s
round reduction preserves soundness of the under-
lying protocol and thus we have gotten a puzzle
with one round less. We can next iterate BM’s
round reduction any constant number of times.

A natural question is whether we can collapse more than a
constant number of rounds. Our next result—which charac-
terizes the existence of poly(n)-round puzzles—shows that
this is unlikely.

Theorem L5 (informally stated). For every ¢ > 0, there
exists an nf-round (public-coin) puzzle if and only if
PSPACE ¢ BPP.

In particular, if nf-round public-coin puzzles imply O(1)-
round public-coin puzzles, then by combining Theorem 1.3
and Theorem 1.5, we have that PSPACE ¢ BPP implies
the existence of a hard-on-average problem in NP, which
seems unlikely. Theorem 1.5 also shows that the notion
of an interactive puzzle (with a super constant-number of
rounds) indeed is a non-trivial generalization of average-case
hardness in NP. Theorem 1.5 follows using mostly standard
techniques.'?

We next present some complexity-theoretic consequences
of our treatment of interactive puzzles.

C. Achieving Perfect Completeness: Proving Theorem 1.2

We outline how the round-reduction theorem can be used
to prove Theorem 1.2 in the following steps:

« As mentioned above, an (almost-everywhere) hard-on-
average problem in NP yields a 2-round puzzle;

We can next use a standard technique from the literature
on interactive proofs (namely the result of [46]) to
turn this puzzle into a 3-round puzzle with perfect
completeness.

We next observe that the BM transformation preserves
perfect completeness of the protocol. Thus, by Lemma

13 Any puzzle C can be broken using a PSPACE oracle (as the optimal
strategy can be found using a PSPACE oracle), so if PSPACE C BPP,
it can also be broken by a probabilistic polynomial-time algorithm. For
the other direction, recall that worst-case to average-case reductions are
known for PSPACE [42], [43]. In other words, there exists a language
L € PSPACE that is hard-on-average assuming PSPACE ¢ BPP.
Additionally, recall that PSPACE is closed under complement. We then
construct a public-coin puzzle where C first samples a hard instance for
L and then asks A to determine whether x € L and next provide an
interactive proof—using [44], [45] which is public-coin—for containment
or non containment in L. This puzzle clearly satisfies the completeness
condition. Computational soundness, on the other hand, follows directly
from the hard-on-average property of L (and the unconditional soundness
of the interactive proof of [44]).
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1.2, either infinitely-often one-way functions exist, or
we can get a 2-round puzzle with perfect completeness.
Finally, as observed above, the existence of a 2-round
puzzle with perfect completeness is syntactically equiv-
alent to the existence of a hard-on-average problem
in TFNP (with respect to the uniform distribution on
instances).

The above proof approach actually only concludes a slightly
weaker form of Theorem [.2—we only show that either
TFENP is hard or infinitely-often one-way functions exist.
As infinitely-often one-way functions directly imply 2-round
private-coin puzzles with perfect completeness, which (as
observed above) are syntactically equivalent to hard-on-
average promise-true distributional search problems, this
however already suffices to prove Theorem I.1.

We can get the proof also of the stronger conclusion
of Theorem 1.2 (i.e., conclude the existence of standard
(i.e., “almost-everywhere”) one-way functions), by noting
that an almost-everywhere hard-on-average language in NP
actually implies an 2-round puzzle satisfying a “almost-
everywhere” notion of soundness, and for such ‘“almost-
everywhere puzzles”, Lemma 1.2 can be strengthened to
show that either one-way functions exist, or BM’s round-
reduction works.'*

D. The Complexity of Non-trivial Public-coin Arguments

Soon after the introduction of interactive proof by Gold-
wasser, Micali and Rackoff [47] and Babai and Moran [16],
Brassard, Chaum and Crepeau [48] introduced the notion of
an interactive argument. Interactive arguments are defined
identically to interactive proofs, but we relax the soundness
condition to only hold with respect to non-uniform PPT
algorithms (i.e., no non-uniform PPT algorithm can produce
proofs of false statements, except with negligible probabil-
ity).

Interactive arguments have proven extremely useful in the
cryptographic literature, most notably due to the feasibility
(assuming the existence of collision-resistant hashfunctions)
of succinct public-coin argument systems for NP—namely,
argument systems with sublinear, or even polylogarithmic
communication complexity [49], [50]. Under widely be-
lieved complexity assumptions (i.e., NP not being solvable
in subexponential time), interactive proofs cannot be succinct
[51].

A fundamental problem regarding interactive arguments
involves characterizing the complexity of non-trivial argu-
ment systems—namely interactive arguments that are not
interactive proofs (in other words, the soundness condition
is inherently computational). As far as we know, the first
explicit formalization of this question appears in a recent

“More precisely, the variant of Lemma 1.2 says that either one-way
functions exist, or the existence of a k-round almost-everywhere puzzle
yields the existence of a k — 1-round puzzle (with the standard, infinitely-
often, notion of soundness).
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work by Goldreich [52], but the notion of a non-trivial
argument has been discussed in the community for at least
15 years."”

We focus our attention on public-coin arguments (similar
to our treatment of puzzles). Using our interactive-average-
case hardness treatment, we are able to establish an “almost-
tight” characterization of constant-round public-coin non-
trivial arguments.

Theorem 1.6 (informally stated). The existence of a O(1)-
round public-coin non-trivial argument for any language
L implies a hard-on-average language in NP /poly. Con-
versely, the existence of a hard-on-average language in NP
implies an (efficient-prover) 2-round public-coin non-trivial
argument for NP.

The first part of the theorem is shown by observing that
any public-coin non-trivial argument can be turned into a
non-uniform public-coin puzzle (where the challenger is a
non-uniform PPT algorithm), and next observing that our
round-collapse theorem also applies to non-uniform puzzles.
The second part follows from the observation that we can
take any NP proof for some language L and extending it
into a 2-round non-trivial argument for L where the verifier
samples a random statement z’ from a hard-on-average
language L’ and next requiring the prover to provide a
witness w that either x € L or 2’ € L’. Completeness
follows trivially (as we can always provide a normal NP
witness proving that € L, and computational soundness
follows directly if L’ is sufficiently hard-on-average (in the
sense that it is hard to find witnesses to true statements
with inverse polynomial probability). This argument system
is not a proof, though, since by the hard-on-average property
of L', there must exist infinitely many input lengths for
which random instances are contained in L’ with inverse
polynomial probability.

We finally observe that the existence of n°-round non-
trivial public-coin arguments is equivalent to PSPACE ¢

P/poly.

Theorem 1.7 (informally stated). For every ¢ > 0, there
exists an (efficient-prover) n-round non-trivial public-coin

argument (for NP) if and only if PSPACE < P/poly.

The “only-if” direction was already proven by Goldreich
[52] and follows just as the only-if direction of Theorem
1.5. The “if” direction follows by combining a standard NP
proof with the puzzle from Theorem I.5 (which becomes
sound w.r.t. nu PPT attacker assuming PSPACE € P/poly),
and requiring the prover to either provide the NP witness,
or to provide a solution to the puzzle.

15Wee [53] also considers a notion of a non-trivial argument, but his
notion refers to what today is called a succinct argument.
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E. Proof Overview for Lemma 1.2

We here provide a proof overview of our main techni-
cal lemma. As mentioned, we shall show that if one-way
functions do not exist, then Babai-Moran’s round reduction
method actually works. Towards this we will rely on two
tools:

e Pre-image sampling. By the result of Impagliazzo and
Levin [4], the existence of so-called “distributional one-
way functions” (function for which it is hard to sample
a uniform pre-image) imply the existence of one-way
function. So if one-way functions do not exist, we have
that for every efficient function f, given a sample f(x)
for a random input z, we can efficiently sample a (close
to random) pre-image z’.

e Raz’s sampling lemma (from the literature on parallel
repetition for 2-prover games and interactive arguments
[54], [55], [56]). This lemma states that if we sample
£ uniform n-bit random variables R;, Ry, ... R, condi-
tioned on some event W that happens with sufficiently
large probability e, then the conditional distribution R;
of a randomly selected index ¢ will be close to uniform.

More precisely, the statistical distance will be logﬁ) s

so even if € is tiny, as long as we have sufficiently many

repetitions ¢, the distance will be small.'®

To see how we will use these tools, let us first recall the BM
transformation (and its proof for the case of information-
theoretically sound protocols). To simplify our discussion,
we here focus on showing how to collapse a 3-round
public-coin protocol between a prover P and a public-coin
verifier V' into a 2-round protocol. We denote a transcript
of the 3-round protocol (p1, r1, p2) where p; and ps are the
prover messages and r; is the randomness of the verifier.
Let n = |p;1| be the length of the prover message. The
BM transformation collapses this protocol into a 2-round
protocol in the following two steps:

o Step 1: Reducing soundness error: First, use a form
of parallel repetition to make the soundness error 92—
(i.e., extremely small). More precisely, consider a 3-
round protocol where P first still send just p;, next the
verifier picks £ = n? random strings 7 = (r1,...,7%),
and finally P needs to provide accepting answers p3 =
(p,...,p5) to all of the queries # (so that for every
i € [0], (p1,r%,ph) is accepting transcript).

o Step 2: Swap order of messages: Once the soundness
error is small, yet the length of the first message is
short, we can simply allow the prover to pick its first
message p; after having 7. In other words, we now
have a 2-round protocol where V first picks , then
the prover responds by sending p;,p3. This swapping
preserves soundness by a simple union bound: since

15Earlier works [55], [56] always used Raz’ lemma when € was non-
negligible. In contrast, we will here use it also when ¢ is actually negligible.

(by soundness) for every string p;, the probability over
7 that there exists some accepting response 7 is22_” , it
follows that with probability at most 2" x 27" = 27"
over 7, there exists some py that has an accepting p3
(as the number of possible first messages p; is 2").
Thus soundness still holds (with a 2™ degradation) if
we allow P to choose p; after seeing 7.

For the case of computationally sound protocols, the “logic”
behind both steps fail: (1) it is not known how to use
parallel repetition to reduce soundness error beyond being
negligible, (2) the union bound cannot be applied since,
for computationally sound protocols, it is not the case
that responses p; do not exist, rather, they are just hard
to find. Yet, as we shall see, using the above tools, we
present a different proof strategy. More precisely, to capture
computational hardness, we show a reduction from any
polynomial-time attacker A that breaks soundness of the
collapsed protocol with some inverse polynomial probability
€, to a polynomial-time attacker B that breaks soundness of
the original 3-round protocol.

B starts by sampling a random string 7 and computes
A’s response given this challenge (p),p5) < A(r/). If the
response is not an accepting transcript, simply abort; other-
wise, take p} and forward externally as B’s first message.
(Since A is successful in breaking soundness, we have that
B won’t abort with probability €.) Next, B gets a verifier
challenge r from the external verifier and needs to figure
out how to provide an answer to it. If B is lucky and r
is one of the challenges 7} in 7, then B could provide
the appropriate po message, but this unfortunately will only
happen with negligible probability. Rather, B will try to
get A to produce another accepting transcript (p} ! ,P5)
that (1) still contains p} as the prover’s first message (i.e.,
p] = p!), and (2) contains r in some coordinate ¢ of 7. To
do this, B will consider the function f (7, z,i)—which runs
(p1,p3) < A(7 2) (i.e., A has its randomness fixed to z) and
outputs (py,7;) if (p1,7, p3) is accepting and | otherwise—
and runs the pre-image sampler for this function f on (p,r)
to recover some new verifier challenge, randomness, index
tuple (r”, z,7) which leads A(r”; z) to produce a transcript
(p’l,r7’ ,p_é’ of the desired form, and B can subsequently
forward externally the 7’th coordinate of p72’ as its response
and convince the external verifier.

So, as long as the pre-image sampler indeed succeeds
with high enough probability, we have managed to break
soundness of the original 3-round protocol. The problem is
that the pre-image sampler is only required to work given
outputs that are correctly distributed over the range of the
function f, and the input (p;,r) that we now feed it may
not be so—for instance, perhaps A(7) chooses the string p;
as a function of 7. So, whereas the marginal distribution of
both p; and r are correct, the joint distribution is not. In
particular, the distribution of » conditioned on p; may be
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off. We, however, show how to use Raz’s lemma to argue
that if the number of repetitions ¢ is sufficiently bigger than
the length of p;, the conditional distribution of r cannot
be too far off from being uniform (and thus the pre-image
sampler will work). On a high-level, we proceed as follows:
« Note that in the one-way function experiment, we can
think of the output distribution (p1, ) of f on a random
input, as having been produced by first sampling p;
and next, if p; # 1, sampling 7 conditioned on the
event W), that A generates a successful transcript with
first-round prover message pi, and finally sampling a
random index ¢ and outputting p; and 7; (and otherwise
output ).
Note that by an averaging argument, we have that with
probability at least § over the choice of py, Pr[W,, ]| >
snrr (otherwise, the probability that A succeeds would
need to be smaller than % + 2™ x ﬁ = ¢, which is a
contradiction).
Thus, whenever we pick such a “good” p; (ie., a
p1 such that Pr[WW, ] > 557), by Raz’ lemma the
distribution of r; for a random ¢ can be made ﬁ
close to uniform for any polynomial p by choosing ¢
to be sufficiently large (yet polynomial). Note that even
though the lower bound on Pr[W,,] is negligible, the
key point is that it is independent of ¢ and as such we
can still rely on Raz lemma by choosing a sufficiently
large /. (As we pointed out above, this usage of Raz’
lemma even on very “rare” events—with negligible
probability mass—is different from how it was previ-
ously applied to argue soundness for computationally
sound protocols [55], [56].)
It follows that conditioned on picking such a “good” p,
the pre-image sampler will also successfully generate
correctly distributed preimages if we feed him pq, 7
where r is randomly sampled. But this is exactly the
distribution that B feeds to the pre-image sampler, so
we conclude that with probability § over the choice of
p1, B will manage to convince the outside verifier with
probability close to 1.
This concludes the proof overview for 3-round protocols.
When the protocol has more than 3 rounds, we can apply a
similar method to collapse the last rounds of the protocol.
The analysis now needs to be appropriately modified to
condition also on the prefix of the partial execution up until
the last rounds.

II. PRELIMINARIES

We assume familiarity with basic concepts such as Turing
machines, interactive Turing machine, polynomial-time al-
gorithms, probabilistic polynomial-time algorithms (PPT),
non-uniform polynomial-time and non-uniform PPT algo-
rithms. A function p is said to be negligible if for every
polynomial p(-) there exists some ng such that for all
n > ng, p(n) < 5. For any two random variables X and
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Y, we let SD(X,Y) = maxpcy |Pr[X € T] - Pr[Y € T
denote the statistical distance between X and Y.

Basic Complexity Classes: Recall that P is the class of
languages L decidable in polynomial time (i.e., there exists
a polynomial-time algorithm M such that for every z €
{0,1}*, M(xz) = L(x)), P/poly is the class of languages
decidable in non-uniform polynomial time, and BPP is the
class of languages decidable in probabilistic polynomial time
with probability 2/3 (i.e., there exists a PPT M such that
for every x € {0,1}*, Pr[M(x) = L(z)] > 2/3 where
we abuse of notation and define L(z) = 1 if € L and
L(z) = 0 otherwise.)

We refer to a relation R over pairs (z,y) as being
polynomially bounded if there exists a polynomial p(-) such
that for every (z,y) € R, |y| < p(|z|). We denote by Lg
the language characterized by the “witness relation” R—
ie., x € L iff there exists some y such that (z,y) € R.
We say that a relation R is polynomial-time (resp. non-
uniform polynomial-time) if R is polynomially-bounded and
the languages consisting of pairs (z,y) € R is in P (resp.
P/poly). NP (resp NP/poly) is the class of languages L
for which there exists a polynomial-time (resp. non-uniform
polynomial-time) relation R such that « € L iff there exists
some y such that (z,y) € R.

Search Problems: A search problem R is simply
a polynomially-bounded relation; an NP search problem
R is a polynomial-time relation. We say that the search
problem is solvable in polynomial-time (resp. non-uniform
polynomial time) if there exists a polynomial-time (resp.
non-uniform polynomial-time) algorithm M that for every
x € Lg outputs a “witness” y such that (z,y) € R.
Analogously, R is solvable in PPT if there exists some PPT
M that for every x € Lz outputs a “witness” y such that
(x,y) € R with probability 2/3.

An NP search problem R is rotal if for every x € {0,1}*
there exists some y such that (z,y) € R) (i.e., every instance
has a witness). We refer to FNP (function NP) as the class
of NP search problems and TFNP (total-function NP) as
the class of total NP search problems.

A. One-way functions

We recall the definition of one-way functions (see e.g.,
[57]). Roughly speaking, a function f is one-way if it is
polynomial-time computable, but hard to invert for PPT
attackers. The standard (cryptographic) definition of a one-
way function requires every PPT attacker to fail (with high
probability) on all sufficiently large input lengths. We will
also consider a weaker notion of an infinitely-often one-
way function [17] which only requires the PPT attacker to
fail for infinitely many inputs length (in other words, there
is no PPT attacker that succeeds on all sufficiently large
input lengths, analogously to complexity-theoretic notions
of hardness).
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Definition IL.1. Let f : {0,1}* — {0,1}* be a polynomial-
time computable function. f is said to be a one-way function
(OWF) if for every PPT algorithm A, there exists a negli-
gible function p such that for all n € N,

Prlz + {0,1}"y = f(z) : A", y) € 71 (f(2))] < p(n)

f is said to be an infinitely-often one-way function
(10oOWF) if the above condition holds for infinitely many
n € N (as opposed to all).

We may also consider a notion of a non-uniform (a.k.a.
“auxiliary-input”) one way function, which is identically
defined except that (a) we allow f to be computable by
a non-uniform PPT, and (b) the attacker A is also allowed
to be a non-uniform PPT.

B. Average-Case Complexity

We recall some basic notions from average-case com-
plexity. A distributional problem is a pair (L,D) where
L C {0,1}* and D is a PPT; we say that (L,D) is an
NP (resp. NP /poly) distributional problem if L € NP (resp.
L € NP/poly). Roughly speaking, a distributional problem
(L, D) is hard-on-average if there does not exist some PPT
algorithm that can decide instances drawn from D with
probability significantly better than 1/2.

Definition I1.2 (§-hard-on-the-average). We say that a distri-
butional problem (L, D) is d-hard-on-the-average (0-HOA)
if there does not exist some PPT A such that for every
sufficiently large n € N,

Prjz < D(1") : A(1",z2) = L(x)] > 1 -0

We say that a distributional problem (L, D) is simply hard-
on-the-average (HOA) if it is §-HOA for some § > 0.

We also define an notion of HOA w.r.t. non-uniform PPT
algorithm (nuHAO) in exactly the same way but where we
allow A to be a non-uniform PPT (as opposed to just a
PPT).

The above notion of average-case hardness (traditionally
used in the complexity-theory literature) is defined analo-
gously to the notion of an infinitely-often one-way function:
we simply require every PPT “decider” to fail for infinitely
many n € N. For our purposes, we will also rely on
an “almost-everywhere” notion of average-case hardness
(similar to standard definitions in the cryptography, and
analogously to the definition of a one-way function), where
we require that every decider fails on all (sufficiently large)
input lengths.

Definition I1.3 (almost-everywhere hard-on-the-average (ae-
HOA)). We say that a distributional problem (L,D)
is almost-everywhere § hard-on-the-average (d-aecHOA) if
there does not exist some PPT A such that for infinitely
many n € N,

Prjz < D(1"): A(1",2) = L(x)] >1-6
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We say (L,D) is almost-everywhere hard-on-the-average
(aeHOA) if (L, D) is §-aeHOA for some § > 0.

We move on to defining hard-on-the-average search prob-
lems. A distributional search problem is a pair (R, D) where
‘R is a search problem and D is a PPT. If R is an NP search
problem (resp. NP /poly search problem), we refer to (R, D)
as a distributional NP (resp. NP/poly) search problem.

Finally, we say that a distributional search problem (R, D)
is promise-true if for every n and every x in the support of
D(1™), it holds that x € L. (That is, D only samples true
instances.)

III. INTERACTIVE PUZZLES

Roughly speaking, an interactive puzzle is described by an
interactive polynomial-time challenger C having the property
that (a) there exists an inefficient A that succeeds in con-
vincing C(1™) with probability negligibly close to 1, yet (b)
no PPT attacker .A* can make C(1™) output 1 with inverse
polynomial probability for sufficiently large n.

Definition IIL.1 (interactive puzzle). An interactive algo-
rithm C is referred to as a k(-)-round puzzle if the following
conditions hold:

e k(-)-round, publicly-verifiability: C is an (interactive)
PPT that on input 1" (a) only communicates in k(n)
communication rounds, and (b) only performs some de-
terministic computation as a function of the transcript
to determine its final verdict.
Completeness/Non-triviality: There exists a (possibly
unbounded) Turing machine A and a negligible func-
tion pc(+) such that for all n € N,

Prl(A,C)(1") = 1] > 1 — p(n)

Computational Soundness: There does not exist a
PPT machine A* and polynomial p(-) such that for
all sufficiently large n € N,

1

(n)

In other words, a k(-)-round puzzle, C, gives rise to an
k(-)-round interactive proof (P, V) (where P = A,V = ()
for the “trivial” language L = {0,1}* with the property
that there does not exist a PPT prover that succeeds in
convincing the verifier with inverse polynomial probability
for all sufficiently large n.

We will consider several restricted, or alternative, types
of puzzle:

o We refer to the puzzle C as being public-coin if C
simply sends the outcomes of its coin tosses in each
communication round.

We may also define an almost-everywhere notion of a
puzzle by replacing “for all sufficiently large n € N”
in the soundness condition with “for infinitely many
n € N”, and a non-uniform notion of a puzzle C which

Pr{(A",0)(1") = 1] >
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allows both C and A* to be non-uniform PPT (as
opposed to just PPT).

Finally, a puzzle C is said to have perfect completeness
if the “completeness error”, pc(n), is O—in other
words, the completeness condition holds with proba-
bility 1.

Remark IIL.1. One can consider a more relaxed notion of
a (c(-), s(-))-puzzle for c¢(n) > s(n) + ﬁ(n)’ where the
completeness condition is required to hold with probability
c(+) for every sufficiently large n € N, and the soundness
condition holds with probability s(-) for every sufficiently
large n € N. But, by “Chernoff-type” parallel-repetition the-
orems for computationally-sound protocols [58], [59], [55],
[60], [56], the existence of such a k(-)-round (c(-),s(-))-
puzzle implies the existence of a k(-)-round puzzle. The same
holds for almost-everywhere (resp. non-uniform) puzzles.

In the remainder of this extended abstract, we state our
results and the proofs can be found in the full version [61].

A. The Round-Collapse Theorem

In this section, we state our main theorems about puzzles
and some variants.

Our main lemma shows that if iI0OWF do not exist,
the the Babai-Moran transformation preserves computational
soundness.

Lemma IIL.2. Assume there exists a k(-)-round public-coin
puzzle such that k(n) > 3. Then, either there exists an
i0OWF, or there exists a (k(-)— 1)-round public-coin puzzle.
Moreover, if the k(-)-round puzzle has perfect completeness,
then either there exists an ioOWE, or a (k(-) — 1)-round
public-coin puzzle with perfect-completeness.

Variations: Using essentially the same proofs, we can
directly get the following vacations of III.2. The first vari-
ant simply states that the same result holds for almost-
everywhere puzzles.

Lemma IIL3 (Almost-everywhere variant 1). Assume there
exists a k(-)-round almost-everywhere public-coin puzzle
such that k(n) > 3. Then, either there exists an ioOWF,
or there exists a (k(-) — 1)-round almost-everywhere public-
coin puzzle. Moreover, if the k(-)-round puzzle has perfect
completeness, then either there exists an i0OWE or a
(k(+) = 1)-round almost-everywhere public-coin puzzle with
perfect-completeness.

The next variant shows that if we start off with an almost-
everywhere puzzle, we can either get a (standard) one-way
function or a puzzle with one less round (but this new
puzzle no longer satisfies almost-everywhere security) iThis
follows from the fact that if the attacker A* succeeds on
all sufficiently large input lengths, then it suffices for Inv
to work on infinitely many input lengths, to conclude that
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B works on infinitely many inputs length (thus violating
almost-everywhere security of the original puzzle).

Lemma II1.4 (Almost-everywhere variant 2). Assume there
exists a k(-)-round almost-everywhere public-coin puzzle
such that k(n) > 3. Then, either there exists a OWF, or
there exists a (k(-) — 1)-round public-coin puzzle. Moreover,
if the k(-)-round puzzle has perfect completeness, then either
there exists a OWE, or a (k(-) — 1)-round public-coin puzzle
with perfect-completeness.

We additionally consider a variant for non-uniform puz-
zles. As the challenger now may be a non-uniform PPT,
the function M that we are required to invert is also a non-
uniform PPT and thus we can only conclude the existence
of non-uniform OWFs.

Lemma IIL.5 (Non-uniform variant). Assume there exists a
k(-)-round non-uniform public-coin puzzle such that k(n) >
3. Then, either there exists a non-uniform ioOWF, or there
exists a (k(-) — 1)-round non-uniform public-coin puzzle."”

B. Characterizing O(1)-Round Public-coin Puzzles

We next apply our round-collapse theorem (and its vari-
ants) to get a characterization of O(1)-round puzzles. This
characterization applies to both standard puzzles and non-
uniform puzzles.

Corollary IIL2. Assume the existence of a O(1)-round
(resp. a O(1)-round non-uniform) public-coin puzzle. Then
there exists a 2-round public-coin puzzle (resp. 2-round non-
uniform public-coin puzzle) and thus a distributional NP
problem (resp. distributional NP /poly problem) that is HOA
(resp. nuHOA).

We remark that the reason we cannot get an (uncondi-
tional) characterization of almost-everywhere puzzles is that
i00WFs. are not known to imply 2-round almost-everywhere
puzzles.

IV. CHARACTERIZING POLYNOMIAL-ROUND PUZZLES

We observe that the existence of a poly-round public-coin
puzzle is equivalent to the statement that PSPACE ¢ BPP.
A consequence of this result is that any round-collapse
theorem that (unconditionally) can transform a polynomial-
round puzzle into a O(1)-round puzzle, must show the
existence of a HAO distributional NP problem based on the
assumption that PSPACE ¢ BPP (which would be highly
unexpected).

Theorem IV.1. For every € > 0, there exists an nc-round
public-coin puzzle (resp. a non-uniform puzzle) if and only

if PSPACE ¢ BPP (resp. PSPACE ¢ P/poly).

"The transformation still preserves perfect completeness, but this will
not be of relevance for us.
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V. ACHIEVING PERFECT COMPLETENESS

We show that any 2-round public-coin puzzle can be
transformed into a 3-round public-coin puzzle with perfect
completeness; next, we shall use this result together with
our round-reduction theorem to conclude our main result.

A. From Imperfect to Perfect Completeness (by Adding a
Round)

Furer et al. [46] showed how to transform any 2-round
public-coin proof system into a 3-round public-coin proof
system with perfect completeness. We will rely on the same
protocol transformation to transform any 2-round puzzle into
a 3-round puzzle with perfect completeness. The perfect
completeness condition will follow directly from their proof;
we simply must argue that the transformation also preserves
computational soundness (as they only showed that it pre-
serves information-theoretic soundness).

Theorem V.1. Suppose there exists 2-round public-coin
puzzle. Then there exists a 3-round public-coin puzzle with
perfect completeness.

B. Promise-true Distributional Problems

We now conclude our main theorem that a hard-on-
average language in NP implies hard-on-average promise-
true distributional search problem.

We first show that 2-round public-coin puzzles imply 2-
round (private-coin) puzzles with perfect completeness:

Theorem V.2. Suppose there exists 2-round public-coin
puzzle. Then there exists a 2-round private-coin puzzle with
perfect completeness.

By observing that 2-round private-coin puzzles with per-
fect completeness are syntactically equivalent to a hard-
on-average promise-true distributional search problem, and
recalling that by Lemma ??, aeHOA distributional NP prob-
lem implies a 2-round puzzle, we directly get the following
corollary:

Corollary V.3. Suppose there exists a distributional NP
problem (L, D) that is aeHOA. Then, there exists a hard-
on-average promise-true distributional NP search problem.

In other words, “it isn’t easier to prove efficiently-sampled
statements that are guaranteed to the true”.

C. TENP is Hard in Pessiland

We next use the same approach to conclude that a hard-
on-average language in NP implies either (1) the existence of
one-way functions, or (2) the existence of a hard-on-average
problem in TFNP.

Theorem V4. Suppose there exists a distributional NP
problem (L, D) that is aeHOA. Then, either of the following
holds:

o There exists a OWF;
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o There exists some R € TENP and some PPT D such
that (R, D) is SearchHAO.

By replacing the use of Lemma II1.4 with Lemma II1.3
(round-collapse, variant 1), we instead get the following
variants.

Theorem V.5. Suppose there exists a distributional NP
problem (L, D) that is aeHOA. Then, either of the following
holds:
o There exists an ioOWF;
o There exists some R € TENP and some PPT D such
that (R, D) is aeSearchHAO.

VI. CHARACTERIZING NON-TRIVIAL PUBLIC-COIN
ARGUMENTS

We finally apply our round-collapse theorem to arguments
systems.

Non-trivial arguments: We first define the notion of a
non-trivial argument. Whereas such a notion of a non-trivial
argument has been discussed in the community for at least
15 years, as far as we know, the first explicit formalization
in the literature appears in a recent work by Goldreich [52].
We simply say that an argument system is non-trivial if it
is not a proof systems—i.e., the computation aspect of the
soundness condition is “real”.

Definition VIL.1 (non-trivial arguments). An argument sys-
tem (P, V) for a language L is called non-trivial if (P, V)
is not an interactive proof system for L.

We focus our attention on public-coin arguments. We
show that the existence of any O(1)-round public-coin
non-trivial argument implies the existence of distributional
NP /poly problem that is nuHAO.

Theorem VI.2. Assume there exists a O(1)-round public-
coin non-trivial argument for some language L. Then, there
exists a distributional NP /poly problem that is nuHOA.

We next remark that the implication is almost tight.
The existence of a nuHOA problem in NP (as opposed to
NP /poly) implies a 2-round non-trivial public-coin argument
for NP.

Lemma VL1. Suppose there exists a distributional NP
problem (L', D) that is nuHOA . Then, for every language
L € NP, there exists a non-trivial 2-round public-coin
argument for L with an efficient prover.

We finally observe that the existence of n°-round non-
trivial public-coin arguments is equivalent to PSPACE ¢
P/poly. We remark that one direction (that non-trivial ar-
guments imply PSPACE ¢ P /poly) was already previously
proven by Goldreich [52].

Theorem VI3 (informally stated). For every € > 0, there
exists an (efficient-prover) n¢-round non-trivial public-coin

argument (for NP) if and only if PSPACE < P/poly.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 01,2021 at 11:18:18 UTC from IEEE Xplore. Restrictions apply.



Round Collapse for Succinct Arguments: We proceed
to remark that the proof of our round-collapse theorem also
has consequences for succinct [49] and universal [50], [63]
argument systems.

Theorem VI.4. Assume there exists a k-round public-coin
(efficient-prover) argument system for L with communication
complexity ((-), where k is a constant. Then, either non-
uniform ioOWFs exists, or there exists a 2-round public-
coin (efficient-prover) argument for L with communication
complexity O(£(n)polylog(n))k(" =1,

Theorem VI.4 thus shows that the existence of a O(1)-
round succinct (i.e., with sublinear or polylogarithmic com-
munication complexity) public-coin argument systems can
either be collapsed into a 2-round public-coin succinct
argument for the same language (and while preserving
communication complexity up to polylogarithmic factors, as
well as prover efficiency), or non-uniform i0OWF exist.

It is worthwhile to also note that if the underlying O(1)-
round protocol satisfies some notion of resettable [64] pri-
vacy for the prover (e.g., resettable witness indistinguishabil-
ity (WI) or witness hiding (WH) [64], [33]), then so will the
resulting 2-round protocol. (The reason we do not consider
resettable zero-knowledge is that due to [65] even just plain
zero-knowledge protocols for non-trivial languages imply
the existence of a non-uniform i0OWF; thus for resettable
zero-knowledge, the result would hold vacuously assuming
NP ¢ BPP. However, it is not known whether (resettable)
WI or WH arguments for non-trivial languages imply non-
uniform i0OWFs.)
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