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ABSTRACT

Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven
build of metal products. However, the more complex the design, the more difficult it becomes to control the
quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology.
Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been
increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the
full potential of imaging data depends on the advent of information processing methodologies for the analysis of
design-quality interactions. This paper presents a design of AM experiment to investigate how design parameters
(e.g., build orientation, thin-wall width, thin-wall height, and contour space) interact with quality characteristics
in thin-wall builds. Note that the build orientation refers to the position of thin-walls in relation to the recoating
direction on the plate, and the contour space indicates the width between rectangle hatches. First, we develop a
novel generalized recurrence network (GRN) to represent the AM spatial image data. Then, GRN quantifiers,
namely degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted to characterize the
quality of layerwise builds. Further, we establish a regression model to predict how the design complexity im-
pacts GRN behaviors in each layer of thin-wall builds. Experimental results show that network features are
sensitive to build orientations, width, height, and contour space under the significant level « = 0.05. Thin-walls
with the width bigger than 0.1 mm printed under orientation 0° are found to yield better quality compared to 60°
and 90°. Also, thin-walls build with orientation 60° are more sensitive to the changes in contour space compare to
the other two orientations. As a result, the orientation 60° should be avoided while printing thin-wall structures.
The proposed design-quality analysis shows great potential to optimize engineering design and enhance the
quality of PBF-AM builds.

1. Introduction

science in recent years fuels the widespread applications of AM in many
industries such as aerospace [3] and healthcare [4].

Powder bed fusion (PBF) additive manufacturing (AM) provides an
unprecedented opportunity to produce metal builds with complex ge-
ometries layer by layer directly from digital designs. In contrast with
conventional subtractive manufacturing, AM technology offers a higher
degree of design freedom and avoids extra tooling costs [1]. Therefore,
design constraints in conventional subtractive manufacturing (i.e.,
design for manufacturing) are lessened by this new technology. In other
words, PBF-AM enables a new paradigm of "manufacturing for design" to
fabricate the complex design in a layer-by-layer fashion [2]. Conse-
quently, the rapid development of digital manufacturing and material
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However, a higher level of design complexity tends to degrade the
quality of final PBF-AM builds and lower the repeatability of the process
[5]. Advanced imaging (e.g., X-ray computed tomography scans and
high-resolution optical images) is increasingly utilized to cope with
design complexity and enhance the information visibility for quality
assessment [6]. However, advanced AM imaging technologies bring
complex-structured and high-dimensional spatial data (i.e., a large
number of pixels that are spatially correlated in each layerwise image of
an AM build). There is a dire need to develop new analytical method-
ologies that realize the full potential of imaging data for the analysis of
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design-quality interactions.

Recurrence plot (RP) and recurrence quantification analysis (RQA)
are widely used to graphically represent recurrence dynamics and
quantify recurrence patterns of nonlinear time series analysis in complex
manufacturing systems. However, traditional RP and RQA tend to be
limited in the ability to handle high-dimensional spatial data. To
delineate recurrence dynamics in the spatial data, prior efforts have
been made to extend the recurrence plot to a four-dimensional hyper-
space [7]. However, this conventional method can only visualize the
recurrence patterns in the reduced-dimension space and is rather limited
in the ability to provide a complete picture of recurrence patterns in AM
spatial imaging data. New analytical methodologies are needed to (1)
characterize recurrence behaviors and patterns in AM spatial data; (2)
measure and quantify the recurrence features; and (3) analyze the
relationship between the extracted features and the quality of AM
builds.

This study presents our experimental studies on PBF-AM, as well as
the analysis of imaging data to investigate the relationship between
design parameters and quality characteristics through a recurrence
network approach. The proposed methodology, namely the generalized
recurrence network (GRN) approach enables (1) effective visualization
of complex spatial patterns in AM images that overcomes the "curse of
dimensionality" problem in the traditional RP methodologies; (2) the use
of network theory to characterize and quantify recurrence properties,
thereby reducing high-dimensional image profiles into a lower-
dimensionality set of quantifiers; and (3) the design of experiments to
select important features, and predict how the design complexity im-
pacts network characteristics in each layer of thin-wall builds.

The proposed methodology is evaluated and validated with simula-
tion and real-world case studies of thin-wall structures fabricated by the
PBF-AM. The simulation study is aimed at evaluating the effectiveness of
GRN to characterize layerwise imaging data as well as testing the sig-
nificance of quantifiers with defect variations. In the real-world case
study, we conduct a series of experiments to fabricate thin-wall struc-
tures by varying the levels of design parameters such as build orientation
(i.e., the planar inclination of thin-walls in the X-Y plane with respect to
the recoater blade), thin-wall width, thin-wall height, and contour space
(see Section 4). Thin-wall structures are commonly utilized in heat ex-
changers to increase the efficiency of thermal transfer and reduce the
material consumption. However, fabricating thin-wall structures is a
challenging task for PBF-AM. Therefore, a better understanding the
design-quality interaction is urgently needed. As illustrated in Fig. 1,
thin-walls may collapse, contain pores and lack-of-fusion defects, or
have structural inconsistency. A total of three thin-wall builds were
made using the PBF-AM. A post-build inspection on the parts was con-
ducted with X-ray computed tomography (XCT). Then, we registered the
XCT images layer-by-layer with the sliced computer-aided design (CAD)
files to delineate the region of interest (ROI) and then measure quality-
related features. These network features characterize the defect patterns
(i.e., inversely proportional to the quality level) in each layer, which are
then used to track the variation of quality across layers so as to detect
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impending failures in the layers of a thin-wall. Lastly, we performed an
analysis of variance (ANOVA) analysis to select important features then
constructed a regression model to predict how design complexity im-
pacts network characteristics in each layer of thin-wall structures.
Experimental results show that the build quality is sensitive to build
orientation, thin-wall width, thin-wall height, and contour space.

The rest of the paper is organized as follows: Section 2 reviews the
related literature on AM design studies and provides the research
background in recurrence analysis. Section 3 presents the experimental
setup and GRN analysis of spatial data. The experimental results are
provided in Section 4. Section 5 concludes this study.

2. Research background
2.1. Quality control and design parameters in PBF-AM

The quality of an AM build is impacted by feedstock materials, ma-
chine environment, process settings, and design complexity. Our prior
studies concentrated on the impact of process and machine settings (e.g.,
scanning velocity, laser power, and hatch spacing) on the builds quality
[8,9]. Furthermore, we developed a Markov decision process model to
sequentially optimize the quality of AM builds [10,11]. This paper
specifically focuses on the interactions between design parameters and
quality characteristics. Several prior works have been done to study the
builds of thin-wall structures when the design parameters are varied.
Thomas [12] reported that walls thinner than 0.4 mm are difficult to
build based on experimental studies on an MCP Realizer 250 SLM ma-
chine. Dunbar et al. [13] tried different process settings (i.e., laser
power, velocity, and scan type) to test the limits of thin, metallic com-
ponents using PBF-AM. They found that thin-walls fabricated with the
orientation of 90° are consistently thicker than the thin-wall built with
the orientation 45°. Kranz et al. [14] conducted experiments on the EOS
270xt, and showed that it is possible to manufacture thin-wall structures
made of TiAl6V4 in all the examined orientations (i.e.,0°, 45°, 90°, 135°,
and 180°) at a minimum thickness from 0.4 mm. Thin-walls of 0.3 mm
were only successfully printed under orientation 30°; however, the
highest deviation is also observed at the orientation of 30°.

Gaikwad et al. [15] extracted statistical features (i.e., thickness,
density, edge smoothness, and discontinuity) from imaging data to
quantify the build quality, and further leveraged deep learning for
real-time flaw detection. Our prior work has also studied the interaction
between design complexity and edge roughness [16]. Note that the edge
roughness is defined as the geometric deviation of thin-wall boundaries
between the sliced CAD file and the registered XCT scan. However, the
calculated edge roughness is treated as one-dimensional time series data
and does not have a high-dimensional structure with geometric infor-
mation. Few, if any, previous works have leveraged GRN analysis of
imaging data to study interactions between design parameters and the
quality of PBF final builds. AM imaging provides spatial data which
includes both geographical coordinates and pixel intensity characteris-
tics. Therefore, new analytical methodologies are urgently needed to
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Fig. 1. (a) XCT scan of the thin-wall build in orientation 0°; (b) a slice of XCT scan from the 103 layer of 0° build with quality issues such as collapsed walls, lack of

fusion, edge inconsistency, and porosity.
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handle AM spatial data and extract useful information to analyze the
design-quality interactions.

2.2. Recurrence analysis and network theory

Recurrence is a fundamental property that commonly exists in
complex systems. For example, RQA provides an effective tool to
analyze acoustic emission signals and extract features to estimate sur-
face roughness of metal cutting [17]. Poincare recurrence theorem
shows that the trajectory of a dynamical system will eventually reappear
in the e-neighborhood of former states [18]. Eckmann et al. [19]
introduced a graphical tool, namely RP, to visualize recurrence patterns
of dynamical systems in 1987. RP characterizes the proximity of two
states using the Heaviside function ©, then obtains the topological re-
lationships in the state spaces as a two-dimensional recurrence plot:

R,, = @(57 ll'sy —sq |l ) Sy, 8, € R” @

where R, 4 is the recurrence matrix R, s, and s, are two states, and € is a
threshold. Mutual information and the false nearest neighbor are
commonly used to select optimal delay and determine the embedding
dimension for state-space reconstruction from time series. Mutual in-
formation quantifies both linear and nonlinear interdependence in the
time series, and the optimal dimension is determined by varying the
dimensionality and comparing the behavior of false nearest neighbors
[20]. Zbilut and Webber [21] proposed RQA to extract statistical fea-
tures from small-structures in the RP to understand the dynamical
properties of complex systems. Yang and Chen [22] considered different
types of recurrences in the state space and extended the conventional
RQA to heterogeneous recurrence quantification analysis (HRQA). The
HRQA has been widely applied in the manufacturing domain [23,24] as
well as the healthcare area [25,26].

However, RP is limited in the ability to handle high-dimensional and
geometric spatial data. Marwan et al. [7] extended the one-dimensional
RP framework to high-dimensional spatial data:

R(x,,x,) = O(e — || s(x,) —s(x,) || ) s(x,),8(x,) € R" (2)

where s(x,) and s(x,) are the states (i.e., pixel intensity), x, and x4 de-
notes the spatial locations. If the intensity differences between two
pixels is less than threshold ¢, there exists a recurrence. However, only
limited information about the recurrence behavior can be visualized.
Let’s denote the spatial reference (i.e., location information) as x = (xj,
X3, . . . , Xq) with d dimensions, and the attribute set asa = (ay, ao, . . .,
am) with m dimensions. A pixel p in a two-dimensional image contains

the location x, = (x(lp),xg’ )} and attribute a, = (ag’), a(Gp ), a?)). Then, a

two-dimensional image will generate a four-dimensional RP R(x;,x;) =
R o) o @ (0. However, only three out of four dimensions can be
1 72 1 2

selected for the visualization in the three-dimensional coordinate sys-
tem. It will be even more challenging to visualize three-dimensional
imaging data which generates an RP of six dimensions R(x,, X;) =
Rx(lp) ,x[;] ‘xg’) .x(lq‘ _x(qu .xé‘” :

Further, Yang et al. [20,27] introduced a recurrence network for
nonlinear time series analysis. Network nodes represent the states and
edges denote the recurrence relationship.

Ap,q = 6(5_ H S(Xp) _S(Xq) H ) _Ap.q S(Xp)vs(xq) eR" 3

where ¢ denotes the recurrence threshold, A, 4 is the adjacency matrix,
Ap,q is the Kronecker delta, which prevents the self-loop in the recur-
rence network. However, the proposed recurrence network is designed
for time series data, and cannot be utilized for spatial data directly. In
this work, we leverage network theory to investigate the recurrence
behavior of spatial data, further characterize and quantify spatial
characteristics through network statistics.
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3. Research methodology

This paper presents the analysis of design-quality interactions in the
PBF-AM process. As shown in Fig. 2 (a), a total of three builds were
fabricated, each differing in build direction (i.e., their planar inclination
in the X-Y plane with respect to the recoater blade). We performed a
post-build inspection through XCT. As shown in Fig. 2 (b), a shape-to-
image registration is conducted between XCT images and layerwise
CAD images. Next, we leveraged a GRN analysis to characterize and
quantify the layerwise imaging data. Finally, we performed an ANOVA
analysis to select important features and established a regression model
to predict how the design complexity impacts the network behaviors in
each layer of thin-wall builds.

3.1. Experimental setup

In this experiment, thin-wall parts were built from Spherical ASTM
B348 Grade 23 Ti-6Al-4V powder with a size distribution of 14-45 pm
on an EOS M280 PBF machine. As shown in Fig. 3, thin-wall parts are
built vertically with a layer thickness of 60 pm in three orientations (i.
e., 0°, 60°, and 90°) with respect to the travel direction of recoater blade
(i.e., indicated by the arrow on each part). Standard EOS M280 pro-
cessing parameters for 60 micron layers were complyed. Each thin-wall
build consists of 25 thin-walls built on a platform of size
15mm x 15mm x 55 mm. The width of thin-walls increases from
0.06 mm, with a step size of 0.01 mm, to 0.3 mm. Also, two thin-walls
are separated with a constant distance of 0.3 mm. It is worth
mentioning that the height/width ratio of each thin-wall is 10. In other
words, if the width of a thin-wall is 0.3 mm, then the height is set to be
3.0 mm. Contour space is defined as the width between rectangle
hatches indicated by the pink arrpw in Fig. 3 (d). Table 1 shows the
variation of contour spaces within thin-wall 1 to thin-wall 25. The dis-
tance between contours is 0.244 mm for thin wall 1, and decreases from
thin-wall 1-24 (0.011 mm). Post build XCT data are obtained on General
Electric V|tome|X system with a voxel size of 15 pm3.

3.2. Image registration

Image registration helps delineate the correspondence of ROIs be-
tween two images (i.e., a moving image and a fixed image) using a
common coordinate system. Note that this paper focuses on the analysis
of design-quality interactions and does not preclude others to use a
different registration approach. We used a standard registration process
with four components, namely similarity metric, optimizer, moving
transformation, and interpolator. The similarity metric is aimed at
evaluating the accuracy of image registration, which takes two images
(i.e., the moving image and the fixed image) and returns a scalar value
that measures the similarity between two images. Fig. 4 illustrates this
iterative process and flow chart of image registration.

The mean square differences () is used to define the similarity
metric between a fixed image F and a transformed image M’ as:

, 1
ZEM) =3 I Fp) =M (p) [P YpeFnm @

where N represents the number of pixels in each image, F(p) shows the
intensity of pixel p in the fixed image, M'(p) denotes intensity of pixel p
in the transformed image.

M =T(M) 5

where M is the moving image, and T is the transformation function. The
optimization problem is formulated as:

argmin Z(F,M’) (6)
T

The gradient descent method is utilized to iteratively update T and
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Fig. 2. The flow chart of research methodology.
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erences to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
The variations of contour spaces within contour from thin-wall 1 to thin-wall 25.
Thin-wall number W, mm Thin-wall number W, mm Thin-wall number Wy mm Thin-wall number Wy mm Thin-wall number Wj mm
1 0.244 6 0.190 11 0.142 16 0.092 21 0.045
2 0.234 7 0.183 12 0.136 17 0.082 22 0.033
3 0.220 8 0.167 13 0.125 18 0.076 23 0.022
4 0.208 9 0.159 14 0.114 19 0.059 24 0.011
5 0.198 10 0.154 15 0.102 20 0.049 25 N/A
Moving Image M Fixed Image F
START
Initial Transformation
1 Transformed
i-li Moving Image imilari i
Transformation T, Bi Ilnea.r g Imag Similarity I\fletrlc
Interpolation M' =T, (M) D(F,M")
Registered Image
Optimizer
New Transformation D(F,M")
Trn =T, +ar(~g,) N Qg
Fig. 4. The flow chart of image registration.
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Pt Pe
T =T, +a,(~g) @ [ e e ]
I | | !
1 1 1 !
where a, > 0 is the step size at iteration r, g is the gradient vector of &. A O i
. . . . . i )
Then, we isolate the region of interest (ROI) (i.e., each thin-wall) from : : | !
. . . - 1
the powder area in registered images. The extracted ROIs are used for 1.0 i ! !
the GRN analysis in the next session. — r ]
- 08 !
x i
1
3.3. Recurrence network analysis of spatial data | 06} )
IS 1
. . . . L R sl ¢l # x| i
Spatial data contains both spatial locations and intensity values of = H
pixels. The traditional recurrence analysis is limited in the ability to = 0.2 :
. . . . . fu— 1
analyze high-dimensional spatial data. Here, we propose a GRN analysis :
. ) Y B (||xp, — x4
method, which accounts for both spatial closeness and pixel similarity. 0 > q
As discussed in Section 2, let’s denote spatial reference as x = (xy, X2, . . - 0
, X4), and attribute information as a = (ay, ay, . . . , a;), where d and m
are the dimensions, respectively. For the pixel p in a two-dimensional || Xp — Xgq ||

image, x, = (x(lp),x(z’J )

(62, X0 xP) and a, = (aif,al¥,al?). The edge weight of a recurrence

network is formulated as:

@) @) )

) and a, = (ag’,a;’,ag ). For a 3D voxel q, x; =

I,, x D,

Pq Pq (8)

Wpq =
where the intensity similarity I, 4 (i.e., the closeness between two pixels)
is
_ Il s(x,) —s(x,) ||

max{|| s(x) [} — min{|| s(x) ||}
Spatial closeness Dy, (i.e., the spatial correlation between two

pixels) is

¢(HXP_X11 H)
#(1101)

Ly = X, X, € Ns,,5, € R" ©

pq

X, X, € N? 10)

where ¢(-) denotes the Gaussian function. As shown in Fig. 5, if two
pixels are far away from each other, the spatial correlation between
them is low. In other words, ¢(|| xp —%q ) < &(|| Xp —X¢ ||) while
Dpq>Dpg.

Fig. 5. The relationship of ¢ (|| x, — x4 ||) and spatial distance. If two pixels are
far away from each other, the spatial correlation between them is tend to be
low. In other words, ¢ (|| xp — Xq ||) < ¢(|| Xp —X¢ ||) while Dy > Dy 4.

The adjacency matrix A, is derived as a binary matrix where A,
¢ = 1 if there is a link from node p to node g, and otherwise if they are
not connected:

A(x),x,) = O(e—wyq) —4,, an
where ¢ denotes the threshold, @ is the Heaviside Function, and A 4 is
the Kronecker delta which prevents the self-loop in the recurrence
network. The threshold ¢ is often chosen based on the significance level
a. Note that the 0.05 significance level is the most commonly used a

value in statistics. In this study, we set a = 0.05.

3.4. Network characterization and quantification

Network statistics are established measurements for the character-
ization of the topology, and provide useful information for statistical



R. Chen et al.

Table 2
Network measures and the corresponding mathematical expressions.
Quantifiers Expression Description
Degree k, = ):2":] Apg Number of edges connected to node p. N
denotes the number of node in the
network.
Betweenness BC, =Y, OgrP 04 is the total number of paths from
centrality ’ PP ogr node g to node r, 64p is the number of
those paths which pass through node p.
1 . .
Pagerank. PR, =(1-a)iv © € (0, 1), Ly is the number of neighbors
centrality N of node q.
PR,
anAq-quq
Closeness 1 d,q is the distance between node p and
centrality P Spiadng node g.
Eigenvector 1 M(q) denotes the set of neighbors of p, 1
B Vo = 2Zgemiq) Yy :
centrality A is a constant.

inference as well as predictive modeling [28]. Table 2 summarizes the
network statistics and their corresponding mathematical equations used
in this study.

In the proposed GRN framework, degree k;, represents the recurrence
frequency relative to the pixel p. In other words, the distribution of k,
shows the recurrence distribution of spatial data. The centrality mea-
surements reveal recurrence patterns between a node and its neighbors.
For example, the betweenness centrality quantifies the number of
shortest paths that pass through one node, which indicates how many
times a node appears in different patterns. Eigenvector centrality is a
measure of the influence of a node in a network, and pagerank centrality
is its variant. The bigger the eigenvector centrality, the more a node
impacts other nodes in a network. The closeness centrality is calculated
as the reciprocal of the sum of the shortest paths between the node and
all other nodes in the network. The node with larger closeness centrality
is closer to other nodes, and indicates a stronger recurrence pattern.

3.5. Hypothesis testing

We tested the statistical significance of extracted network features
using the Mann-Whitney U test [29]. Let X and Y denote two histograms,
and contain m and n observations, respectively. The hypothesis of the
Mann-Whitney U test is

H, : Two histogramsX andY follow the same distribution

H, : Two histogramsX andY follow different distributions 12

Mann-Whitney U test begins by arranging the m + n observations in
a single sequence from the smallest to the largest. Then, a rank is
assigned to each element corresponding to the position. That is, each of
the observation is assigned a rank from 1 tom + n in the ordering. If Hy
is true, the observations Xy, . . . , X;; (or Yy, . . . Y) tend to be dispersed
throughout the ordering of all m + n observations. Otherwise, the ob-
servations are concentrated among the smaller values or among the
larger values if Hj is true. Let S denote the sum of the ranks assigned tom
observations from X. Given Hj is true,

£(s) =" D a3)
and
Var(S) = min(m ;LG +1) (14)

Note that when the Hy is true and sample size m and n are large, the
distribution of S is approximately normal. The null hypothesis Hj is

rejected if |S — (1/2)m(m+n+1)| > ¢, where ¢ = [Var(S)]"*®~' (1 -
a/2). The p-value is computed as 2[1 — ®(z)] where z, = |S —
E(S)|/ \/Var(S). If the p-value is less than the significant level (i.e.,
a = 0.05), Hy will be rejected and the distributions of X and Y are
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declared to be different at the significance level of 0.05.

3.6. ANOVA and predictive modeling

Further, we perform an ANOVA to study the effects of experimental
factors (i.e., orientations and other design parameters) on the build
quality. Here, the parameters of contour space, thin-wall width, and
height are associated with the thin-wall number. In total, there are three
levels for orientation O and 21 levels for thin-wall characteristics #. The
last four thin-walls collapsed during the fabrication process (see Fig. 1).
Therefore, we only take the other 21 thin-walls into account in the
ANOVA. We reorganize our design parameters into two groups, i.e.,
orientation and thin-wall characteristics, with 3 levels and 21 levels,
respectively.

Two-way ANOVA is commonly performed when there are two fac-
tors (i.e., factor M with m levels and factor N with n levels) in an
experiment. Fig. 6 shows the data structure for ANOVA, which is
expressed as:

Xi/:M+O;+ 7/:/*‘1’0?,"/4’6,"/‘ (15)

wherei=1,...,3,j=1,...21, and ¢; represents the error term in the
model.

In addition, we develop a regression model to predict the effects of
design parameters on network characteristics.

Y=PBy+ B X 01+, x Or+ 3 x W+, x H+ fs x G+
Po X O x W+, X Oy x W By %0 x H+

Po X O x H+ 1y x Oy x G+ ), x O, x G+
PoXWXH+PxWxG+p,xHxG+e

(16

where the categorical variable O is coded with O; and Os, and stands for
the orientation (see Table 3). W denotes the width, H represents the
height of a thin-wall, and G indicates the contour space. Note that in Eq.
(16), the explanatory variables are the design parameters and the
response variable y is the Hotelling’s T statistic that is computed for the
i observation as T2(i) = (x) —x)"S™1(x( — x), where x? is the vector
of network features, X is the mean vector and S is the covariance matrix.

4. Experimental results

The proposed methodology is evaluated and validated with both
simulation and real-world case studies. First, we derive the visualization
results of GRN and extract corresponding network from simulated im-
ages with different types of defects (i.e., edge variations and surface
characteristics). Then, we perform pair-wise hypothesis tests on the
extracted quantifiers. The simulation study is aimed at testing the sig-
nificance of quantifiers with defect variations. Next, in the real-world
case study, we leverage the proposed GRN to characterize the quality
of PBF-AM builds and study the relationships between the design pa-
rameters (i.e., build orientation, contour space, thin-wall height, and
width) and quality characteristics of thin-wall structures. Finally, we
develop a regression model to predict how the design complexity im-
pacts the GRN behaviors in each layer of thin-wall builds.

4.1. Simulation study

As shown in Table 4, two types of defect patterns (i.e., edge variation
and inner surface variation) are simulated to evaluate the visualization
and the performance of the proposed GRN methodology. The size and
location of porosity defects are varied to simulate three different levels
of inner surface variations.

Fig. 7 shows the heatmap of the real XCT scan (top) and the simu-
lated XCT scan (bottom). Note that the real-world XCT scan is taken
from the layer 100 of thin-wall 13 in the part built under orientation 60°.
It may be noted that the thin-wall has both edge variation and inner
surface issues (i.e., porosity). Therefore, we add variations to edges and
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Fig. 6. Experimental data structure for the ANOVA analysis: # and O represent two factors, namely thin-wall characteristics and orientation.

Table 3
Coding for the categorical variable orientation.
0, 0O,
Orientation 0° 0 0
Orientation 60° 1 0
Orientation 90" 0 1
Table 4
Defect variation in the simulation study.
Category Case Description
Baseline A thin-wall without any flaws
Edge variation Case I Edge roughness with the frequency of
100 Hz
Case II Edge roughness with the frequency of
200 Hz
Case III Edge roughness with the frequency of
400 Hz
Number of pores Case IV Three pores each with a diameter of 4
variation pixels
Case V Six pores each with a diameter of 4 pixels
Case VI Nine pores each with a diameter of 4 pixels
Size of pores variation Case VII Six pores each with a diameter of 2 pixels
Case VIII  Six pores each with a diameter of 4 pixels
Case IX Six pores each with a diameter of 6 pixels

surfaces in the baseline to generate different types of defects, see
Table 4. In addition, it can be seen that the real XCT scan (see Fig. 7 (a))
shows a transition of pixel values on the edge, i.e., from the yellow re-
gion to the blue region. We have also added this transition to the
simulated XCT.

Fig. 8 shows the network visualization and the distribution of

Real XCT
Simulated XCT

]
1 255

Fig. 7. Proportional heatmap of the XCT scan from thin-wall 13, layer 100 in
the thin-wall part built under orientation 60°, and proportional heatmap of the
simulated baseline thin-wall. Note that the blue color represents nodes with
smaller pixel values, and the yellow color is corresponding to bigger values in
the gray scale. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

network quantifiers (i.e., degree k, betweenness centrality BC, pagerank
centrality PR, closeness centrality C, and eigenvector centrality V) for
the baseline case (Simulated XCT in Fig. 7). Note that nodes in the
network are clustered into two groups. In the network, yellow nodes (i.
e., laser-fused area) are clustered into one group and blue nodes (i.e.,
powder area) are clustered into another group, and two groups are
connected. Peaks shown in Fig. 8 (b) are corresponding to the degree
distribution in two clusters. For example, the smaller peak is related to
the cluster of laser-fused surface (i.e., yellow nodes) with less number of
nodes in the network, and the bigger peak is relevant to the powder area
cluster (i.e., blue nodes). The baseline distributions of network features
(Fig. 8 (b)-(H)) will be benchmarked with the following simulation
scenarios.

First, we explore the relationship between edge variation and
network characteristics, as shown in Fig. 9. In case I, we utilize a sine
wave with an amplitude of 15 and a frequency of 100 Hz to generate the
edge variation. Then, we increase the frequency to 200 and 400 Hz for
case II and case III, respectively.

As shown in Fig. 10, nodes in background and surface are clustered
into three different groups in all networks. The blue cluster represents
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Fig. 8. (a) Network visualization of the simulated baseline thin-wall in Fig. 7. (b)-(f) Distributions of k, BC, PR, C, and V. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Simulated thin-walls with edge variation of different frequencies. Case
I: 100 Hz, case II: 200 Hz, case III: 400 Hz.

the powder area, the yellow nodes correspond to the laser-fused layer-
wise surface, and the green nodes are related to the transitions on the
edges, which appear as a "bridge" linking the blue cluster and the yellow
cluster. Fig. 10 (b) and (c) shows more variations on the edge (i.e., the
frequencies are higher) compared to Fig. 10 (a). Therefore, the green
cluster becomes more dispersed as the variation increases. Distributions
of network quantifiers for the case I-III are shown in Fig. 11. Each degree
distribution contains two peaks corresponding to the blue and yellow
clusters. In comparison with the baseline case which also has two peaks
(see Fig. 8 (b)), the number of nodes with lower degrees (i.e., 1-500)
increases and the number of nodes with the degree around 2000-3000
decreases significantly. The peak between 0 and 500 is from the edge
cluster and is not as high as the others because the edge contains a
smaller number of nodes. Also, the number of nodes with a degree
around 4500 significantly increases as the edge variation increases. In
addition, the increment of edge variation is positively correlated with
the number of nodes with closeness centrality of 5.25e-5, and is

@ (®)

EVEAR AWV

negatively related to the number of nodes with closeness centrality of
6.25e-5. In summary, the distributions of network quantifiers vary be-
tween cases I-1II and the baseline.

We perform the Mann-Whitney U test for pairwise comparison be-
tween histograms among different simulation cases. The statistically
significant results are marked bold in Table 5. Note that, case I and case
11, and case I and case III are significantly different for five quantifiers,
but the GRN quantifiers of case II and case III only differ in degree and
eigenvector centrality according to the p-values in Table 5.

Next, we add porosity defects to the simulated thin-wall (i.e., the
baseline case). Each pore has the diameter of 4. Three pores are firstly
included to the laser-fused surface area (case IV). Then, we increase the
number of pores to six in case V, and nine pores in case VI as shown in
Fig. 12. Similarly, three clusters corresponding to the edge, laser-fused
area, and the powder area can be seen among all the networks in
Fig. 13. However, the edge cluster (in green) does not contain as many
nodes as in Fig. 10. This is because (1) there is no edge variations in these
cases, and (2) the number of transitional pixels on the edge is limited.
Note that the number of nodes in the circled cluster increases as the
number of pores increases in (a) and (b). It is challenging to visually find
individual groups representing different pores among networks. Here,
we keep all parameters the same for further quantification analysis in
our simulation study. In Fig. 14, the first row (i.e., in red) show the
distribution of k and the peak around 5000 drops while more pores are

2% .
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Fig. 10. Network visualization results of the GRNs in Fig. 9. (a) case L, (b) case II, and (c) case IIL. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Table 5 Case IV | T T n |
Two-sample Mann-Whitney U testing of quantifier distributions among simu- caseV [ - - - - - -~ |
lation cases I-III.
CaseVl K : L i : ¥ . s v v |

Case I vs. Case II

Case I vs. Case III

Case II vs. Case III

k 1.124e-5
BC 2.447e-17
PR 3.488e-08
C 0

14 8.445e-17

5.368e-22
5.501e-28
1.809e-09
0
2.252e-140

2.495e-24
0.395
0.777
0.2923

0

Bold values mark statistically significant results where p-values of Mann-
Whitney U tests are less than 0.05 (i.e., alpha).

Fig. 12. Simulated thin-walls with pores of same size (diameter 4 pixels) but
different number of pores. Case IV: 3 pores, case V: 6 pores, case VI: 9 pores.

added to the laser-fused area. Similarly, the peak of PR at the x-axis with
the value of 10e-5 decreases when the number of pores increases.
However, as shown in Table 6, the hypothesis test does not indicate
there exist significant variations in pagerank centrality among pairwise
comparisons. The variation is not enough to suggest any differences at
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Fig. 13. Network visualization results of the GRNs in Fig. 12. (a) case IV, (b) case V, and (c) case VI.
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Table 6
Two-sample Mann-Whitney U testing of quantifier distributions among simu-
lation cases IV-VI.

Case IV vs. Case V Case IV vs. Case VI Case V vs. Case VI

K 2.664e-04 0.497 3.941e-5
BC 0.022 0.442 0.303

PR 0.839 0.895 0.895

Cc 0.282 3.105e-5 5.03e-9
\4 2.738e-18 1.984e-20 0.0246

Bold values mark statistically significant results where p-values of Mann-
Whitney U tests are less than 0.05 (i.e., alpha).

the significance level of 0.05. Also, it can be seen from the results that
the eigenvector centrality is sensitive to the number of pores in the fin
part since the p-values are less than 0.05.

Finally, three more cases are designed with the pore diameters
selected as 2, 4, and 6 respectively as shown in Fig. 15. Fig. 16 shows
that the cluster associated with porosity defect is more noticeable when
the size of the pore becomes bigger (see red circles). The number of
nodes in the cluster increases as the size of pore increases. Fig. 17 shows
the distributions of their quantifiers, and Table 7 presents the result of
pair-wise hypothesis tests. Degree k, betweenness centrality (BC),
closeness centrality (C), and eigenvector (V) centrality track the changes
in the size of porosity. Note that pagerank centrality (PR) does not vary
significantly in both Table 6 and Table 7, and is not sensitive to the
porosity defect on the surface of thin-wall.

The proposed GRN method provides a complete picture of spatial
patterns and recurrence behaviors through the network visualization
and hypothesis testing. Network structures have different patterns with
respect to simulated thin-wall images in cases I-IX. From the simulation
study, we select the set of five quantifiers (i.e., degree k, betweenness
centrality BC, pagerank centrality PR, closeness centrality C, and
eigenvector centrality V) that are sensitive to both powder area and
laser-fused area in various cases. Note that distributions of quantifiers
show different shapes regarding different quality issues. For example,
when edge variation increases, there is an increase in the peak among
distributions in Fig. 11. Also, the p-values two sample Mann-Whitney U
test indicates the differences between distributions of quantifiers. In the
real-world case study, we extract features (i.e., maximum, minimum,
quartiles, standard deviation, skewness, kurtosis, and entropy) from
these selected quantifiers for further analysis.

4.2. Real-world case study

We extracted 9 features from each distribution of network quanti-
fiers, i.e., the maximum value, the minimum value, the standard devi-
ation, quartiles (Q1, Q2, Q3), skewness, kurtosis, and entropy. In total,
45 features from 5 quantifiers of each network are extracted where one
thin-wall of one layer generates a recurrence network. Fig. 18 shows
distributions of Q1s of degree (k), betweenness centrality (BC), and
pagerank centrality (PR), respectively. Note that the distributions are
approximately normal. As shown in Fig. 18 (a), the Q1 of degree does
not vary significantly between parts built under three orientations.
However, they are vastly different for the betweenness centrality
(Fig. 18 (b)) and the pagerank centrality (Fig. 18 (c)).

We perform two-way ANOVA on total of 45 features, and then
calculate the Hotelling’s T2 statistic for each thin-wall based on the first
seven components (i.e., according to the Kaiser rule) to quantify the
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relationship between design complexity and the network features
(Table 8).

We conduct the square root transformation for the response variable
to improve the variance stabilization and reduce the heteroscedasticity.
Significant variables are summarized in Table 9. Orientation O, height
H, width W, and contour space G are important one-way factors with p-
values less than 0.05. It is worth mentioning that the p-value of f4 is
larger than the p-values of other coefficients, this indicates that the
parameter height H does not impact the quality of thin-wall builds as
much as others. We also observed that most of two-way interactions (e.
g., orientation x width, orientation x contour space) are significant,
thereby impacting the quality significantly. However, two-way in-
teractions orientation 60° x height (0; x H), width x height
(W x H), and height x contour space (H x G) do not have impact on
the quality because p-values of fg, 12, and 14 are greater than 0.05.

The regression model yields the R-squared statistic of 87.12% and
the adjusted R-squared statistic of 87.08%, which demonstrates that the
variations in response variable (i.e., the Hotelling’s T2 statistic) are
highly correlated with the design parameters. Note that the R-squared
_ 1 _ SI0-TH)

Zi(T(D)-T)
(i) is the Hotelling’s T? statistic, T(i) is the predicted value, and T is the
overall average. The normal Q-Q plot (Fig. 19) illustrates that the
normality assumption is valid because the plot approximately follows a
straight line.

In our experiment, quality is inversely proportional to the amount of
defects (e.g., lack of fusion, inconsistency, porosity, and edge variation).
However, summary statistics tend to be limited in the ability to char-
acterize and quantify complex defect patterns in layerwise images.
Therefore, we propose the generalized recurrence network method to
effectively represent the spatial imaging data, then leverage network
visualization and quantifiers to capture various forms of defect patterns.
Experimental results from hypothesis testing showed these network
quantifiers are effective and sensitive to different defect patterns. These
network quantifiers are then used to interpret and describe the level of
quality for each layer of the build, which are further utilized to establish
predicative models to investigate how design parameters (e.g., build
orientation, thin-wall width, thin-wall height, and contour space)
impact the quality characteristics in thin-wall builds. In addition,
experimental results show that four thin-walls (width < 0.1 mm)
collapsed regardless of what orientation is utilized in the fabrication
process. Therefore, only thin-walls with the width greater than 0.1 mm
can be printed by the PBF machine are utilized in this study. Thin-walls
with the width greater than 0.1 mm printed under orientation
0° generate results with better quality. The result also shows that the
quality decreases when the layer number goes up, which may cause by
the defect propagation when printing the build layer by layer or by the
different thermal conditions between the bottom and the top of each
thin wall. We also found that the layer quality varies less in thin-wall
builds with orientation 0° in comparison with orientation 60° and
orientation 90°. Also, the thin-wall build with orientation 60° is more
sensitive to the changes in contour space compare to the other two
orientations. Therefore, the orientation 60° should be avoided while
printing thin-wall structures. Although in our experiment, thin-walls
1-24 and the thin-wall 25 have built with two different hatching pat-
terns, contour space within the thin-wall decreases from thin-wall 1 to
thin-wall 25. Also, the collapse occurs in both types of hatching patterns.
Hatching patterns of the thin-wall are not controllable factors in this

-1 Sum of Squaregy,

Sum of Square,y, ) Where T

statistic is defined as R?

Case VIl [T ; .
case Vil |[I v :
Case IX I L] :

Fig. 15. Simulated thin-walls with different pore sizes but same number of pores. Case VII: diameter 2 pixels, case VIII: diameter 4 pixels, case VI: diameter 6 pixels.
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Fig. 16. Network visualization results of the GRNs in Fig. 15. (a) case VII,
legend, the reader is referred to the web version of this article.)
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Table 7
Two-sample Mann-Whitney U testing of quantifier distributions among simu-
lation cases VII-IX.

Case VII vs. Case VIII Case VII vs. Case IX Case VIII vs. Case IX

k 0.035 4.739e-4 1.394e-8
BC 0.474 0.004 0.083

PR 0.965 0.340 0.340

Cc 1.804e-8 1.787e-4 0.089

v 1.234e-6 4.078e-47 1.998e-27

Bold values mark statistically significant results where p-values of Mann-
Whitney U tests are less than 0.05 (i.e., alpha).

study because of the automatic settings by the EOS M280 PBF machine.
5. Discussions and conclusions

PBF-AM provides the design freedom that cannot be realized by
traditional manufacturing techniques such as cutting, milling and cast-
ing. PBF-AM provides the design freedom that cannot be realized by
traditional manufacturing techniques such as cutting, milling and cast-
ing. Engineers may come up with different designs. These designs may
have different levels of complexity. A higher level of design complexity
tends to degrade the quality of final PBF-AM builds and lower the
repeatability of the process. Realizing high quality and repeatability call
upon the development of sensor-based monitoring and control of PBF
processes. Advanced imaging leads to a rich data environment for AM
quality control. However, the structure of spatial data is often high-
dimensional with complex geometric patterns. Therefore, there is an
urgent need to extract quality characteristics from spatial imaging data
and further explore the design-quality relationship for engineering
designs.

Machine learning methods are commonly used in the AM community
to process image profiles and build predictive models that require
minimal feature engineering [30]. For example, contemporary machine
algorithms can help to optimize process parameters, and conduct ex-
amination of powder spreading and in-process defect monitoring.
Recently, there have been increasing interests in using deep learning
models for prediction in AM. For example, Zhang et al. [31] investigated
the relationship between the mechanisms underlying the layer-by-layer
printing process and the resulting product quality through an LSTM
network, Mozaffar et al. [32] proposed a recurrent neural network for
predicting the high-dimensional thermal history in the AM process.
Francis et al. [33] developed a novel Deep Learning approach that
accurately predicts distortion within LBAM tolerance limits by consid-
ering the local heat transfer. Although deep learning yielded a high
predictive power in many studies, they need large amounts of data to
study patterns hidden in the AM signals. Also, drawbacks of these deep
learning models include high computational cost and black-box ap-
proaches lacking physical interpretations.

In this paper, we propose a generalized recurrence network method
to visualize the complex spatial patterns in additive manufacturing

40
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Table 8
Example of two-way ANOVA for assessing the significance of # and O on max

(k).

Source Sum Sq. d.f. Mean Sq. F Prob >F
a 2.686e9 20 1.343e8 676.184 0

o) 2.621e7 2 1.311e7 65.985 3.112e-29
7z *0 3.010e7 40 7.525e5 3.788 9.058e-15
Error 2.491e9 12,537 1.987e5

Total 5.235e9 12,599

Bold values mark statistically significant results where p-values of ANOVA are
less than 0.05 (i.e., alpha).

Table 9
Results of regression analysis.
Effect Variable Estimate Error t value p-value
Po - 2.242 0.331 6.782 1.323e-11
h 0, 2.449 0.294 8.302 1.307e-16
Pa (o)) 1.444 0.295 4.891 1.034e-6
Ps w 34.885 5.419 6.438 1.327e-10
Pa H -0.962 0.310 -3.108 1.985e-3
Ps G -104.504 5.173 -20.201 2.699%e-87
Pe O x W -45.105 5.158 -8.745 3.001e-18
P7 O, x W -24.270 5.160 -4.704 2.621e-6
Po Oy xH -0.318 0.039 -8.260 1.853e-16
Bio 0, xG 50.139 5.241 9.567 1.683e-21
P 02 x G 27.216 5.242 5.192 2.165e-7
ZE] W xG 269.259 3.623 74.311 0
2 T T T T T T T
. o
1.5 E

0.5

-0.5

Standard Residuals

Fig. 19. Normal Q-Q plot of the regression model.
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Fig. 18. The distribution of (a) Q1 (k); (b) Q1 (BC); (c) Q1 (PR) of thin-wall 8 over all layers.
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images, and introduce network quantifiers to characterize recurrence
properties across layers. The proposed GRN method can not only extend
to high-dimensional data, but also effectively capture the complex defect
patterns in spatial imaging data. We leverage high-resolution post-build
XCT scan data to analyze the relationship between design parameters
and PBF-AM builds through a GRN framework. First, we generate
layerwise images from 3D XCT data and register these images to the CAD
model layer by layer. Then, the proposed GRN is utilized to extract the
quality-related quantifiers from registered images. Next, we perform a
design of experiment to investigate the relationship between design
parameters and network quantifiers in thin-wall builds. Finally, a
regression model is developed to predict the behavior of network fea-
tures from the design parameters. Experimental results demonstrate that
thin-wall build quality is sensitive to build orientation, thin-wall height,
thin-wall width, and contour space. Thin-walls with the width bigger
than 0.1 mm printed under orientation 0° are found to yield better
quality compared to 60° and 90°, and the thin-wall build with orientation
60° is more sensitive to the changes in contour spacee compare to the
other two orientations.

Network models are flexible and generally applicable to different
data forms (e.g., time series [34,35], two-dimensional image data [36,
27,37], three-dimensional voxel data [38]). AM provides a higher level
of flexibility for the low-volume and high-mix production, even for a
one-of-a-kind design. AM fabricates the build directly from a complex
CAD design through layer-upon-layer deposition of materials. Each
image contains not only metal powders but also many AM parts in the
build plate. As such, there is a need to delineate the image for a specific
part. In this paper, we register the ROI to the part geometry in each
layer, i.e., a rectangle region in each layer of the thin-wall build. How-
ever, ROI registration is generalizable to different part geometries, even
complex designs with layerwise variations as long as the CAD design
files are readily available, as shown in Fig. 4. The presented study sheds
insights into the optimization of engineering design for quality im-
provements of PBF-AM builds. Future works may focus on the optimi-
zation of design parameters, hatching patterns and process settings to
improve the quality of thin walls.
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